1
|
Wu K, Jiang H, Hicks DR, Liu C, Muratspahic E, Ramelot TA, Liu Y, McNally K, Gaur A, Coventry B, Chen W, Bera AK, Kang A, Gerben S, Lamb MYL, Murray A, Li X, Kennedy MA, Yang W, Schober G, Brierley SM, Gelb MH, Montelione GT, Derivery E, Baker D. Sequence-specific targeting of intrinsically disordered protein regions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.15.603480. [PMID: 39071356 PMCID: PMC11275711 DOI: 10.1101/2024.07.15.603480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
A general approach to design proteins that bind tightly and specifically to intrinsically disordered regions (IDRs) of proteins and flexible peptides would have wide application in biological research, therapeutics, and diagnosis. However, the lack of defined structures and the high variability in sequence and conformational preferences has complicated such efforts. We sought to develop a method combining biophysical principles with deep learning to readily generate binders for any disordered sequence. Instead of assuming a fixed regular structure for the target, general recognition is achieved by threading the query sequence through diverse extended binding modes in hundreds of templates with varying pocket depths and spacings, followed by RFdiffusion refinement to optimize the binder-target fit. We tested the method by designing binders to 39 highly diverse unstructured targets. Experimental testing of ~36 designs per target yielded binders with affinities better than 100 nM in 34 cases, and in the pM range in four cases. The co-crystal structure of a designed binder in complex with dynorphin A is closely consistent with the design model. All by all binding experiments for 20 designs binding diverse targets show they are highly specific for the intended targets, with no crosstalk even for the closely related dynorphin A and dynorphin B. Our approach thus could provide a general solution to the intrinsically disordered protein and peptide recognition problem.
Collapse
|
2
|
Houvast RD, Badr N, March T, de Muynck LDAN, Sier VQ, Schomann T, Bhairosingh S, Baart VM, Peeters JAHM, van Westen GJP, Plückthun A, Burggraaf J, Kuppen PJK, Vahrmeijer AL, Sier CFM. Preclinical evaluation of EpCAM-binding designed ankyrin repeat proteins (DARPins) as targeting moieties for bimodal near-infrared fluorescence and photoacoustic imaging of cancer. Eur J Nucl Med Mol Imaging 2024; 51:2179-2192. [PMID: 37642704 PMCID: PMC11178671 DOI: 10.1007/s00259-023-06407-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023]
Abstract
PURPOSE Fluorescence-guided surgery (FGS) can play a key role in improving radical resection rates by assisting surgeons to gain adequate visualization of malignant tissue intraoperatively. Designed ankyrin repeat proteins (DARPins) possess optimal pharmacokinetic and other properties for in vivo imaging. This study aims to evaluate the preclinical potential of epithelial cell adhesion molecule (EpCAM)-binding DARPins as targeting moieties for near-infrared fluorescence (NIRF) and photoacoustic (PA) imaging of cancer. METHODS EpCAM-binding DARPins Ac2, Ec4.1, and non-binding control DARPin Off7 were conjugated to IRDye 800CW and their binding efficacy was evaluated on EpCAM-positive HT-29 and EpCAM-negative COLO-320 human colon cancer cell lines. Thereafter, NIRF and PA imaging of all three conjugates were performed in HT-29_luc2 tumor-bearing mice. At 24 h post-injection, tumors and organs were resected and tracer biodistributions were analyzed. RESULTS Ac2-800CW and Ec4.1-800CW specifically bound to HT-29 cells, but not to COLO-320 cells. Next, 6 nmol and 24 h were established as the optimal in vivo dose and imaging time point for both DARPin tracers. At 24 h post-injection, mean tumor-to-background ratios of 2.60 ± 0.3 and 3.1 ± 0.3 were observed for Ac2-800CW and Ec4.1-800CW, respectively, allowing clear tumor delineation using the clinical Artemis NIRF imager. Biodistribution analyses in non-neoplastic tissue solely showed high fluorescence signal in the liver and kidney, which reflects the clearance of the DARPin tracers. CONCLUSION Our encouraging results show that EpCAM-binding DARPins are a promising class of targeting moieties for pan-carcinoma targeting, providing clear tumor delineation at 24 h post-injection. The work described provides the preclinical foundation for DARPin-based bimodal NIRF/PA imaging of cancer.
Collapse
Affiliation(s)
- Ruben D Houvast
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands.
| | - Nada Badr
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Taryn March
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Vincent Q Sier
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Timo Schomann
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Shadhvi Bhairosingh
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Victor M Baart
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Judith A H M Peeters
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Gerard J P van Westen
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden, the Netherlands
| | - Andreas Plückthun
- Department of Biochemistry, University of Zürich, Zurich, Switzerland
| | - Jacobus Burggraaf
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
- Centre for Human Drug Research, Leiden, the Netherlands
| | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Cornelis F M Sier
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
3
|
Fernandez-Martinez D, Kong Y, Goussard S, Zavala A, Gastineau P, Rey M, Ayme G, Chamot-Rooke J, Lafaye P, Vos M, Mechaly A, Duménil G. Cryo-EM structures of type IV pili complexed with nanobodies reveal immune escape mechanisms. Nat Commun 2024; 15:2414. [PMID: 38499587 PMCID: PMC10948894 DOI: 10.1038/s41467-024-46677-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/01/2024] [Indexed: 03/20/2024] Open
Abstract
Type IV pili (T4P) are prevalent, polymeric surface structures in pathogenic bacteria, making them ideal targets for effective vaccines. However, bacteria have evolved efficient strategies to evade type IV pili-directed antibody responses. Neisseria meningitidis are prototypical type IV pili-expressing Gram-negative bacteria responsible for life threatening sepsis and meningitis. This species has evolved several genetic strategies to modify the surface of its type IV pili, changing pilin subunit amino acid sequence, nature of glycosylation and phosphoforms, but how these modifications affect antibody binding at the structural level is still unknown. Here, to explore this question, we determine cryo-electron microscopy (cryo-EM) structures of pili of different sequence types with sufficiently high resolution to visualize posttranslational modifications. We then generate nanobodies directed against type IV pili which alter pilus function in vitro and in vivo. Cyro-EM in combination with molecular dynamics simulation of the nanobody-pilus complexes reveals how the different types of pili surface modifications alter nanobody binding. Our findings shed light on the impressive complementarity between the different strategies used by bacteria to avoid antibody binding. Importantly, we also show that structural information can be used to make informed modifications in nanobodies as countermeasures to these immune evasion mechanisms.
Collapse
Affiliation(s)
- David Fernandez-Martinez
- Institut Pasteur, Université Paris Cité, INSERM UMR1225, Pathogenesis of Vascular Infections, 75015, Paris, France
| | - Youxin Kong
- Institut Pasteur, Université Paris Cité, INSERM UMR1225, Pathogenesis of Vascular Infections, 75015, Paris, France
- Sanofi R&D, Integrated Drug Discovery, CRVA, 94403, Vitry-sur-Seine, France
| | - Sylvie Goussard
- Institut Pasteur, Université Paris Cité, INSERM UMR1225, Pathogenesis of Vascular Infections, 75015, Paris, France
| | - Agustin Zavala
- Institut Pasteur, Université Paris Cité, INSERM UMR1225, Pathogenesis of Vascular Infections, 75015, Paris, France
| | - Pauline Gastineau
- Institut Pasteur, Université Paris Cité, INSERM UMR1225, Pathogenesis of Vascular Infections, 75015, Paris, France
| | - Martial Rey
- Institut Pasteur, Université Paris-Cité, CNRS, UAR 2024, Mass Spectrometry for Biology, 75015, Paris, France
| | - Gabriel Ayme
- Institut Pasteur, Université Paris-Cité, CNRS-UMR 3528, Antibody Engineering Platform, 75015, Paris, France
| | - Julia Chamot-Rooke
- Institut Pasteur, Université Paris-Cité, CNRS, UAR 2024, Mass Spectrometry for Biology, 75015, Paris, France
| | - Pierre Lafaye
- Institut Pasteur, Université Paris-Cité, CNRS-UMR 3528, Antibody Engineering Platform, 75015, Paris, France
| | - Matthijn Vos
- NanoImaging Core Facility, Center for Technological Resources and Research, Institut Pasteur, 75015, Paris, France
| | - Ariel Mechaly
- Institut Pasteur, Crystallography Platform-C2RT, CNRS-UMR 3528, Université Paris Cité, Paris, France
| | - Guillaume Duménil
- Institut Pasteur, Université Paris Cité, INSERM UMR1225, Pathogenesis of Vascular Infections, 75015, Paris, France.
| |
Collapse
|
4
|
Pandey RK, Mehrotra S. Engineering high affinity antigen-binders: Beyond conventional antibodies. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 140:37-57. [PMID: 38762275 DOI: 10.1016/bs.apcsb.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
For decades, antibodies have remained the archetypal binding proteins that can be rapidly produced with high affinity and specificity against virtually any target. A conventional antibody is still considered the prototype of a binding molecule. It is therefore not surprising that antibodies are routinely used in basic scientific and biomedical research, analytical workflows, molecular diagnostics etc. and represent the fastest growing sector in the field of biotechnology. However, several limitations associated with conventional antibodies, including stringent requirement of animal immunizations, mammalian cells for expression, issues on stability and aggregation, bulkier size and the overall time and cost of production has propelled evolution of concepts along alternative antigen binders. Rapidly evolving protein engineering approaches and high throughput screening platforms have further complemented the development of myriads of classes of non-conventional protein binders including antibody derived as well as non-antibody based molecular scaffolds. These non-canonical binders are finding use across disciplines of which diagnostics and therapeutics are the most noteworthy.
Collapse
Affiliation(s)
- Rajeev Kumar Pandey
- Research and Development-Protein Biology, Thermo Fisher Scientific, Bangalore, India
| | - Sanjana Mehrotra
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India.
| |
Collapse
|
5
|
Raskova Kafkova L, Mierzwicka JM, Chakraborty P, Jakubec P, Fischer O, Skarda J, Maly P, Raska M. NSCLC: from tumorigenesis, immune checkpoint misuse to current and future targeted therapy. Front Immunol 2024; 15:1342086. [PMID: 38384472 PMCID: PMC10879685 DOI: 10.3389/fimmu.2024.1342086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/17/2024] [Indexed: 02/23/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) is largely promoted by a multistep tumorigenesis process involving various genetic and epigenetic alterations, which essentially contribute to the high incidence of mortality among patients with NSCLC. Clinical observations revealed that NSCLC also co-opts a multifaceted immune checkpoint dysregulation as an important driving factor in NSCLC progression and development. For example, a deregulated PI3K/AKT/mTOR pathway has been noticed in 50-70% of NSCLC cases, primarily modulated by mutations in key oncogenes such as ALK, EGFR, KRAS, and others. Additionally, genetic association studies containing patient-specific factors and local reimbursement criteria expose/reveal mutations in EGFR/ALK/ROS/BRAF/KRAS/PD-L1 proteins to determine the suitability of available immunotherapy or tyrosine kinase inhibitor therapy. Thus, the expression of such checkpoints on tumors and immune cells is pivotal in understanding the therapeutic efficacy and has been extensively studied for NSCLC treatments. Therefore, this review summarizes current knowledge in NSCLC tumorigenesis, focusing on its genetic and epigenetic intricacies, immune checkpoint dysregulation, and the evolving landscape of targeted therapies. In the context of current and future therapies, we emphasize the significance of antibodies targeting PD-1/PD-L1 and CTLA-4 interactions as the primary therapeutic strategy for immune system reactivation in NSCLC. Other approaches involving the promising potential of nanobodies, probodies, affibodies, and DARPINs targeting immune checkpoints are also described; these are under active research or clinical trials to mediate immune regulation and reduce cancer progression. This comprehensive review underscores the multifaceted nature, current state and future directions of NSCLC research and treatment.
Collapse
Affiliation(s)
- Leona Raskova Kafkova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czechia
- Department of Immunology, University Hospital Olomouc, Olomouc, Czechia
| | - Joanna M. Mierzwicka
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
| | - Prosenjit Chakraborty
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czechia
| | - Petr Jakubec
- Department of Respiratory Diseases and Tuberculosis, University Hospital Olomouc, Olomouc, Czechia
| | - Ondrej Fischer
- Department of Respiratory Diseases and Tuberculosis, University Hospital Olomouc, Olomouc, Czechia
| | - Jozef Skarda
- Institute of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czechia
- Department of Pathology, University Hospital Ostrava and Faculty of Medicine, University of Ostrava, Ostrava, Czechia
| | - Petr Maly
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
| | - Milan Raska
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czechia
- Department of Immunology, University Hospital Olomouc, Olomouc, Czechia
| |
Collapse
|
6
|
Pang G, Chen P, Cao X, Yu H, Zhang LW, Zhao J, Wang FJ. Improving combination cancer immunotherapy by manipulating dual immunomodulatory signals with enzyme-triggered, cell-penetrating peptide-mediated biomodulators. Biomater Sci 2024; 12:776-789. [PMID: 38167881 DOI: 10.1039/d3bm01605f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Immunosuppressive tumor microenvironments challenge the effectiveness of protein-based biopharmaceuticals in cancer immunotherapy. Reestablishing tumor cell immunogenicity by enhancing calreticulin (CRT) exposure is expected to improve tumor immunotherapy. Given that CRT translocation is inherently modulated by phosphorylated eIF2α, the selective inhibition of protein phosphatase 1 (PP1) emerges as an effective strategy to augment tumor immunogenicity. To harness the PP1-disrupting potential of GADD34-derived motifs and address their limited intracellular delivery, we integrated these sequences into an enzyme-triggered, cell-penetrating peptide-mediated chimeric protein scaffold. This design not only facilitates efficient cytoplasmic delivery of these immunostimulatory motifs to induce "eat-me" signaling, but also provides a versatile platform for combination immunotherapy. Fabrication of biomodulators with cytotoxic BLF1 provides additional "eat-me" signaling through phosphatidylserine exposure or that with an immunomodulatory designed ankyrin repeat protein disables "don't-find-me" signaling by antagonizing PD-L1. Notably, these bifunctional biomodulators exhibit remarkable ability to induce macrophage phagocytosis, dendritic cell maturation, and CD8+ T activation, ultimately substantially inhibiting tumor growth. This study presents a modular genetic coding strategy for PP1-centered therapies that enables seamless integration of immunostimulatory sequences into protein-based anti-tumor cocktail therapies, thereby offering novel alternatives for improving antitumor efficacy.
Collapse
Affiliation(s)
- Guibin Pang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China.
| | - Piao Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China.
| | - Xuewei Cao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China.
- ECUST-FONOW Joint Research Center for Innovative Medicines, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Huan Yu
- School for Radiological and Interdisciplinary Sciences (RAD-X), State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Leshuai W Zhang
- School for Radiological and Interdisciplinary Sciences (RAD-X), State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jian Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China.
- ECUST-FONOW Joint Research Center for Innovative Medicines, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Fu-Jun Wang
- New Drug R&D Center, Zhejiang Fonow Medicine Co., Ltd., 209 West Hulian Road, Dongyang 322100, Zhejiang, P. R. China
- ECUST-FONOW Joint Research Center for Innovative Medicines, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, P. R. China.
| |
Collapse
|
7
|
Campbell E, Luxton T, Kohl D, Goodchild SA, Walti C, Jeuken LJC. Chimeric Protein Switch Biosensors. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 187:1-35. [PMID: 38273207 DOI: 10.1007/10_2023_241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Rapid detection of protein and small-molecule analytes is a valuable technique across multiple disciplines, but most in vitro testing of biological or environmental samples requires long, laborious processes and trained personnel in laboratory settings, leading to long wait times for results and high expenses. Fusion of recognition with reporter elements has been introduced to detection methods such as enzyme-linked immunoassays (ELISA), with enzyme-conjugated secondary antibodies removing one of the many incubation and wash steps. Chimeric protein switch biosensors go further and provide a platform for homogenous mix-and-read assays where long wash and incubation steps are eradicated from the process. Chimeric protein switch biosensors consist of an enzyme switch (the reporter) coupled to a recognition element, where binding of the analyte results in switching the activity of the reporter enzyme on or off. Several chimeric protein switch biosensors have successfully been developed for analytes ranging from small molecule drugs to large protein biomarkers. There are two main formats of chimeric protein switch biosensor developed, one-component and multi-component, and these formats exhibit unique advantages and disadvantages. Genetically fusing a recognition protein to the enzyme switch has many advantages in the production and performance of the biosensor. A range of immune and synthetic binding proteins have been developed as alternatives to antibodies, including antibody mimetics or antibody fragments. These are mainly small, easily manipulated proteins and can be genetically fused to a reporter for recombinant expression or manipulated to allow chemical fusion. Here, aspects of chimeric protein switch biosensors will be reviewed with a comparison of different classes of recognition elements and switching mechanisms.
Collapse
Affiliation(s)
- Emma Campbell
- School of Biomedical Sciences, University of Leeds, Leeds, UK
| | - Timothy Luxton
- School of Biomedical Sciences, University of Leeds, Leeds, UK
| | - Declan Kohl
- School of Biomedical Sciences, University of Leeds, Leeds, UK
| | | | - Christoph Walti
- School of Electronic and Electrical Engineering, University of Leeds, Leeds, UK
| | - Lars J C Jeuken
- School of Biomedical Sciences, University of Leeds, Leeds, UK.
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
8
|
Sekhon H, Ha JH, Presti MF, Procopio SB, Jarvis AR, Mirsky PO, John AM, Loh SN. Adaptable, turn-on maturation (ATOM) fluorescent biosensors for multiplexed detection in cells. Nat Methods 2023; 20:1920-1929. [PMID: 37945909 PMCID: PMC11080272 DOI: 10.1038/s41592-023-02065-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 10/04/2023] [Indexed: 11/12/2023]
Abstract
A grand challenge in biosensor design is to develop a single-molecule, fluorescent protein-based platform that can be easily adapted to recognize targets of choice. Here, we created a family of adaptable, turn-on maturation (ATOM) biosensors consisting of a monobody (circularly permuted at one of two positions) or a nanobody (circularly permuted at one of three positions) inserted into a fluorescent protein at one of three surface loops. Multiplexed imaging of live human cells coexpressing cyan, yellow and red ATOM sensors detected biosensor targets that were specifically localized to various subcellular compartments. Fluorescence activation involved ligand-dependent chromophore maturation with turn-on ratios of up to 62-fold in cells and 100-fold in vitro. Endoplasmic reticulum- and mitochondria-localized ATOM sensors detected ligands that were targeted to those organelles. The ATOM design was validated with three monobodies and one nanobody inserted into distinct fluorescent proteins, suggesting that customized ATOM sensors can be generated quickly.
Collapse
Affiliation(s)
- Harsimranjit Sekhon
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Jeung-Hoi Ha
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Maria F Presti
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Spencer B Procopio
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Ava R Jarvis
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Paige O Mirsky
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Anna M John
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Stewart N Loh
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
9
|
Ehsasatvatan M, Baghban Kohnehrouz B. Designing and computational analyzing of chimeric long-lasting GLP-1 receptor agonists for type 2 diabetes. Sci Rep 2023; 13:17778. [PMID: 37853095 PMCID: PMC10584922 DOI: 10.1038/s41598-023-45185-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/17/2023] [Indexed: 10/20/2023] Open
Abstract
Glucagon-like peptide-1 (GLP-1) is an intestinally derived incretin that plays a vital role in engineering the biological circuit involved in treating type 2 diabetes. Exceedingly short half-life (1-2 min) of GLP-1 limits its therapeutic applicability, and the implication of its new variants is under question. Since albumin-binding DARPin as a mimetic molecule has been reported to increase the serum half-life of therapeutic compounds, the interaction of new variants of GLP-1 in fusion with DARPin needs to be examined against the GLP-1 receptor. This study was aimed to design stable and functional fusion proteins consisting of new protease-resistant GLP-1 mutants (mGLP1) genetically fused to DARPin as a critical step toward developing long-acting GLP-1 receptor agonists. The stability and solubility of the engineered fusion proteins were analyzed, and their secondary and tertiary structures were predicted and satisfactorily validated. Molecular dynamics simulation studies revealed that the predicted structures of engineered fusion proteins remained stable throughout the simulation. The relative binding affinity of the engineered fusion proteins' complex with human serum albumin and the GLP-1 receptor individually was assessed using molecular docking analyses. It revealed a higher affinity compared to the interaction of the individual GLP-1 and HSA-binding DARPin with the GLP-1 receptor and human serum albumin, respectively. The present study suggests that engineered fusion proteins can be used as a potential molecule in the treatment of type 2 diabetes, and this study provides insight into further experimental use of mimetic complexes as alternative molecules to be evaluated as new bio-breaks in the engineering of biological circuits in the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Maryam Ehsasatvatan
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, 51666, Iran
| | - Bahram Baghban Kohnehrouz
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, 51666, Iran.
| |
Collapse
|
10
|
Riva C, Vernarecci C, Minetto P, Goda R, Greppi M, Pesce S, Chies M, Zecchetti G, Ferro B, Maio E, Cea M, Lemoli RM, Marcenaro E, Guolo F. Harnessing Immune Response in Acute Myeloid Leukemia. J Clin Med 2023; 12:5824. [PMID: 37762763 PMCID: PMC10532363 DOI: 10.3390/jcm12185824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Despite the results achieved with the evolution of conventional chemotherapy and the inclusion of targeted therapies in the treatment of acute myeloid leukemia (AML), survival is still not satisfying, in particular in the setting of relapsed/refractory (R/R) disease or elderly/unfit patients. Among the most innovative therapeutic options, cellular therapy has shown great results in different hematological malignancies such as acute lymphoblastic leukemia and lymphomas, with several products already approved for clinical use. However, despite the great interest in also expanding the application of these new treatments to R/R AML, no product has been approved yet for clinical application. Furthermore, cellular therapy could indeed represent a powerful tool and an appealing alternative to allogeneic hematopoietic stem cell transplantation for ineligible patients. In this review, we aim to provide an overview of the most recent clinical research exploring the effectiveness of cellular therapy in AML, moving from consolidated approaches such as post- transplant donor's lymphocytes infusion, to modern adoptive immunotherapies such as alloreactive NK cell infusions, engineered T and NK cells (CAR-T, CAR-NK) and novel platforms of T and NK cells engaging (i.e., BiTEs, DARTs and ANKETTM).
Collapse
Affiliation(s)
- Carola Riva
- Clinic of Hematology, Department of Internal Medicine, University of Genova, 16132 Genova, Italy; (C.R.); (C.V.); (M.C.); (G.Z.); (B.F.); (E.M.); (M.C.); (R.M.L.); (F.G.)
| | - Chiara Vernarecci
- Clinic of Hematology, Department of Internal Medicine, University of Genova, 16132 Genova, Italy; (C.R.); (C.V.); (M.C.); (G.Z.); (B.F.); (E.M.); (M.C.); (R.M.L.); (F.G.)
| | - Paola Minetto
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
| | - Rayan Goda
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (R.G.); (M.G.); (S.P.)
| | - Marco Greppi
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (R.G.); (M.G.); (S.P.)
| | - Silvia Pesce
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (R.G.); (M.G.); (S.P.)
| | - Maria Chies
- Clinic of Hematology, Department of Internal Medicine, University of Genova, 16132 Genova, Italy; (C.R.); (C.V.); (M.C.); (G.Z.); (B.F.); (E.M.); (M.C.); (R.M.L.); (F.G.)
| | - Giada Zecchetti
- Clinic of Hematology, Department of Internal Medicine, University of Genova, 16132 Genova, Italy; (C.R.); (C.V.); (M.C.); (G.Z.); (B.F.); (E.M.); (M.C.); (R.M.L.); (F.G.)
| | - Beatrice Ferro
- Clinic of Hematology, Department of Internal Medicine, University of Genova, 16132 Genova, Italy; (C.R.); (C.V.); (M.C.); (G.Z.); (B.F.); (E.M.); (M.C.); (R.M.L.); (F.G.)
| | - Elena Maio
- Clinic of Hematology, Department of Internal Medicine, University of Genova, 16132 Genova, Italy; (C.R.); (C.V.); (M.C.); (G.Z.); (B.F.); (E.M.); (M.C.); (R.M.L.); (F.G.)
| | - Michele Cea
- Clinic of Hematology, Department of Internal Medicine, University of Genova, 16132 Genova, Italy; (C.R.); (C.V.); (M.C.); (G.Z.); (B.F.); (E.M.); (M.C.); (R.M.L.); (F.G.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
| | - Roberto Massimo Lemoli
- Clinic of Hematology, Department of Internal Medicine, University of Genova, 16132 Genova, Italy; (C.R.); (C.V.); (M.C.); (G.Z.); (B.F.); (E.M.); (M.C.); (R.M.L.); (F.G.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
| | - Emanuela Marcenaro
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (R.G.); (M.G.); (S.P.)
| | - Fabio Guolo
- Clinic of Hematology, Department of Internal Medicine, University of Genova, 16132 Genova, Italy; (C.R.); (C.V.); (M.C.); (G.Z.); (B.F.); (E.M.); (M.C.); (R.M.L.); (F.G.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
| |
Collapse
|
11
|
Hang A, Feldman S, Amin AP, Ochoa JAR, Park SS. Intravitreal Anti-Vascular Endothelial Growth Factor Therapies for Retinal Disorders. Pharmaceuticals (Basel) 2023; 16:1140. [PMID: 37631054 PMCID: PMC10458692 DOI: 10.3390/ph16081140] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/06/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Vascular endothelial growth factors (VEGFs) are key mediator of retinal and choroidal neovascularization as well as retinal vascular leakage leading to macular edema. As such, VEGF plays an important role in mediating visually significant complications associated with common retinal disorders such as diabetic retinopathy, retinal vein occlusion, and age-related macular degeneration. Various drugs that inhibit vascular endothelial growth factors (anti-VEGF therapies) have been developed to minimize vision loss associated with these disorders. These drugs are injected into the vitreous cavity in a clinic setting at regular intervals. This article provides an overview of the various anti-VEGF drugs used in ophthalmology and the common retinal conditions that benefit from this therapy.
Collapse
Affiliation(s)
- Abraham Hang
- Department of Ophthalmology & Vision Science, Ernest E. Tschannen Eye Institute, University of California Davis Eye Center, 4860 Y Street, Sacramento, CA 95817, USA; (A.H.); (S.F.)
| | - Samuel Feldman
- Department of Ophthalmology & Vision Science, Ernest E. Tschannen Eye Institute, University of California Davis Eye Center, 4860 Y Street, Sacramento, CA 95817, USA; (A.H.); (S.F.)
| | - Aana P. Amin
- School of Medicine, University of California Davis, Sacramento, CA 95817, USA; (A.P.A.); (J.A.R.O.)
| | - Jorge A. Rivas Ochoa
- School of Medicine, University of California Davis, Sacramento, CA 95817, USA; (A.P.A.); (J.A.R.O.)
| | - Susanna S. Park
- Department of Ophthalmology & Vision Science, Ernest E. Tschannen Eye Institute, University of California Davis Eye Center, 4860 Y Street, Sacramento, CA 95817, USA; (A.H.); (S.F.)
| |
Collapse
|
12
|
Tomazini A, Shifman JM. Targeting Ras with protein engineering. Oncotarget 2023; 14:672-687. [PMID: 37395750 DOI: 10.18632/oncotarget.28469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023] Open
Abstract
Ras proteins are small GTPases that regulate cell growth and division. Mutations in Ras genes are associated with many types of cancer, making them attractive targets for cancer therapy. Despite extensive efforts, targeting Ras proteins with small molecules has been extremely challenging due to Ras's mostly flat surface and lack of small molecule-binding cavities. These challenges were recently overcome by the development of the first covalent small-molecule anti-Ras drug, sotorasib, highlighting the efficacy of Ras inhibition as a therapeutic strategy. However, this drug exclusively inhibits the Ras G12C mutant, which is not a prevalent mutation in most cancer types. Unlike the G12C variant, other Ras oncogenic mutants lack reactive cysteines, rendering them unsuitable for targeting via the same strategy. Protein engineering has emerged as a promising method to target Ras, as engineered proteins have the ability to recognize various surfaces with high affinity and specificity. Over the past few years, scientists have engineered antibodies, natural Ras effectors, and novel binding domains to bind to Ras and counteract its carcinogenic activities via a variety of strategies. These include inhibiting Ras-effector interactions, disrupting Ras dimerization, interrupting Ras nucleotide exchange, stimulating Ras interaction with tumor suppressor genes, and promoting Ras degradation. In parallel, significant advancements have been made in intracellular protein delivery, enabling the delivery of the engineered anti-Ras agents into the cellular cytoplasm. These advances offer a promising path for targeting Ras proteins and other challenging drug targets, opening up new opportunities for drug discovery and development.
Collapse
Affiliation(s)
- Atilio Tomazini
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Julia M Shifman
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
13
|
Sekhon H, Ha JH, Presti MF, Procopio SB, Mirsky PO, John AM, Loh SN. Adaptable, Turn-On Monobody (ATOM) Fluorescent Biosensors for Multiplexed Detection in Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.28.534597. [PMID: 37034669 PMCID: PMC10081266 DOI: 10.1101/2023.03.28.534597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
A grand challenge in biosensor design is to develop a single molecule, fluorescent protein-based platform that can be easily adapted to recognize targets of choice. Conceptually, this can be achieved by fusing a small, antibody-like binding domain to a fluorescent protein in such a way that target binding activates fluorescence. Although this design is simple to envision, its execution is not obvious. Here, we created a family of adaptable, turn-on monobody (ATOM) biosensors consisting of a monobody, circularly permuted at one of two positions, inserted into a fluorescent protein at one of three surface loops. Multiplexed imaging of live human cells co-expressing cyan, yellow, and red ATOM sensors detected the biosensor targets (WDR5, SH2, and hRAS proteins) that were localized to the nucleus, cytoplasm, and plasma membrane, respectively, with high specificity. ER- and mitochondria-localized ATOM sensors also detected ligands that were targeted to those organelles. Fluorescence activation involved ligand-dependent chromophore maturation with fluorescence turn-on ratios of >20-fold in cells and up to 100-fold in vitro . The sensing mechanism was validated with three arbitrarily chosen monobodies inserted into jellyfish as well as anemone lineages of fluorescent proteins, suggesting that ATOM sensors with different binding specificities and additional colors can be generated relatively quickly.
Collapse
|
14
|
Xia J, Gao G, Zhang C, Ying J, Li J. Albumin-binding DARPins as scaffold improve the hypoglycemic and anti-obesity effects of exendin-4 in vivo. Eur J Pharm Sci 2023; 185:106422. [PMID: 36906110 DOI: 10.1016/j.ejps.2023.106422] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 02/17/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023]
Abstract
Type 2 diabetes mellitus (T2DM) and obesity have been considered epidemics and threats to public health worldwide. Exendin-4 (Ex), a GLP-1R agonist, has potential for treating T2DM and obesity. However, Ex has a half-life of only 2.4 h in humans and needs to be administered twice daily, which hampers its clinical application. In this study, we synthesized four new GLP-1R agonists by genetically fusing Ex to the N-terminus of HSA-binding ankyrin repeat proteins (DARPins) via linkers of different lengths, denoted as Ex-DARPin-GSx fusion proteins (x = 0, 1, 2, and 3). The Ex-DARPin fusion proteins were substantially stable, resulting in incomplete denaturation even at 80 °C. The in vitro bioactivity results demonstrated that Ex-DARPin fusion proteins could bind to HSA and activate GLP-1R. The Ex-DARPin fusion proteins had a comparable half-life (29-32 h), which is much longer than that of native Ex (0.5 h in rats). Subcutaneous injection of 25 nmol/kg Ex-DARPin fusion protein normalized blood glucose (BG) levels for at least 72 h in mice. The Ex-DARPin fusion proteins, injected at 25 nmol/kg every three days, significantly lowered BG, inhibited food consumption, and reduced body weight (BW) for 30 days in STZ-induced diabetic mice. Histological analysis of pancreatic tissues using H&E staining revealed that Ex-DARPin fusion proteins significantly improved the survival of pancreatic islets in diabetic mice. The differences in in vivo bioactivity of fusion proteins with different linker lengths were not significant. According to the findings in this study, long-acting Ex-DARPin fusion proteins designed by us hold promise for further development as antidiabetic and antiobesity therapeutic agents. Our findings also indicate that DARPins are a universal platform for generating long-acting therapeutic proteins via genetic fusion, thus broadening the application scope of DARPins.
Collapse
Affiliation(s)
- Jinying Xia
- Department of Endocrinology, Ningbo No. 2 Hospital, Ningbo, China; Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| | - Guosheng Gao
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China; Department of Clinical Laboratory, Ningbo No. 2 Hospital, Ningbo, China
| | - Changzhen Zhang
- Department of Pharmacy, Ningbo No. 2 Hospital, Ningbo, China
| | - Jingjing Ying
- Department of Pharmacy, Ningbo No. 2 Hospital, Ningbo, China
| | - Jianhui Li
- Department of Endocrinology, Ningbo No. 2 Hospital, Ningbo, China; Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China.
| |
Collapse
|
15
|
Hamad M, AlKhamach DMH, Alsayadi LM, Sarhan SA, Saeed BQ, Sokovic M, Ben Hadda T, Soliman SSM. Alpha to Omicron (Variants of Concern): Mutation Journey, Vaccines, and Therapy. Viral Immunol 2023; 36:83-100. [PMID: 36695729 DOI: 10.1089/vim.2022.0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Coronavirus disease 2019 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) initially emerged in December 2019 and has subsequently expanded globally, leading to the ongoing pandemic. The extensive spread of various SARS-CoV-2 variants possesses a serious public health threat. An extensive literature search along with deep analysis was performed to describe and evaluate the characteristics of SARS-CoV-2 variants of concern in relation to the effectiveness of the current vaccines and therapeutics. The obtained results showed that several significant mutations have evolved during the COVID-19 pandemic. The developed variants and their various structural mutations can compromise the effectiveness of several vaccines, escape the neutralizing antibodies, and limit the efficiency of available therapeutics. Furthermore, deep analysis of the available data enables the prediction of the future impact of virus mutations on the ongoing pandemic along with the selection of appropriate vaccines and therapeutics.
Collapse
Affiliation(s)
- Mohamad Hamad
- College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Dana M H AlKhamach
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | | | | | | | - Marina Sokovic
- Institute for Biological Research "Siniša Stanković," National Institute of the Republic of Serbia, University of Belgrade, Beograd, Serbia
| | - Taibi Ben Hadda
- Laboratory of Applied Chemistry & Environment, Faculty of Sciences, Mohammed Premier University, Oujda, Morocco
| | - Sameh S M Soliman
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
16
|
Eliminating oncogenic RAS: back to the future at the drawing board. Biochem Soc Trans 2023; 51:447-456. [PMID: 36688434 PMCID: PMC9987992 DOI: 10.1042/bst20221343] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/24/2023]
Abstract
RAS drug development has made enormous strides in the past ten years, with the first direct KRAS inhibitor being approved in 2021. However, despite the clinical success of covalent KRAS-G12C inhibitors, we are immediately confronted with resistances as commonly found with targeted drugs. Previously believed to be undruggable due to its lack of obvious druggable pockets, a couple of new approaches to hit this much feared oncogene have now been carved out. We here concisely review these approaches to directly target four druggable sites of RAS from various angles. Our analysis focuses on the lessons learnt during the development of allele-specific covalent and non-covalent RAS inhibitors, the potential of macromolecular binders to facilitate the discovery and validation of targetable sites on RAS and finally an outlook on a future that may engage more small molecule binders to become drugs. We foresee that the latter could happen mainly in two ways: First, non-covalent small molecule inhibitors may be derived from the development of covalent binders. Second, reversible small molecule binders could be utilized for novel targeting modalities, such as degraders of RAS. Provided that degraders eliminate RAS by recruiting differentially expressed E3-ligases, this approach could enable unprecedented tissue- or developmental stage-specific destruction of RAS with potential advantages for on-target toxicity. We conclude that novel creative ideas continue to be important to exterminate RAS in cancer and other RAS pathway-driven diseases, such as RASopathies.
Collapse
|
17
|
Lam KK, Wong SH, Cheah PY. Targeting the 'Undruggable' Driver Protein, KRAS, in Epithelial Cancers: Current Perspective. Cells 2023; 12:cells12040631. [PMID: 36831298 PMCID: PMC9954350 DOI: 10.3390/cells12040631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/30/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
This review summarizes recent development in synthetic drugs and biologics targeting intracellular driver genes in epithelial cancers, focusing on KRAS, and provides a current perspective and potential leads for the field. Compared to biologics, small molecule inhibitors (SMIs) readily penetrate cells, thus being able to target intracellular proteins. However, SMIs frequently suffer from pleiotropic effects, off-target cytotoxicity and invariably elicit resistance. In contrast, biologics are much larger molecules limited by cellular entry, but if this is surmounted, they may have more specific effects and less therapy-induced resistance. Exciting breakthroughs in the past two years include engineering of non-covalent KRAS G12D-specific inhibitor, probody bispecific antibodies, drug-peptide conjugate as MHC-restricted neoantigen to prompt immune response by T-cells, and success in the adoptive cell therapy front in both breast and pancreatic cancers.
Collapse
Affiliation(s)
- Kuen Kuen Lam
- Department of Colorectal Surgery, Singapore General Hospital, Singapore 169856, Singapore
| | | | - Peh Yean Cheah
- Department of Colorectal Surgery, Singapore General Hospital, Singapore 169856, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117549, Singapore
- Duke-NUS Medical School, National University of Singapore, Singapore 169857, Singapore
- Correspondence:
| |
Collapse
|
18
|
Arrigo A, Aragona E, Bandello F. VEGF-targeting drugs for the treatment of retinal neovascularization in diabetic retinopathy. Ann Med 2022; 54:1089-1111. [PMID: 35451900 PMCID: PMC9891228 DOI: 10.1080/07853890.2022.2064541] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Diabetic retinopathy (DR) is the most common microangiopathic complication of diabetes mellitus, representing a major cause of visual impairment in developed countries. Proliferative DR (PDR) represents the last stage of this extremely complex retinal disease, characterized by the development of neovascularization induced by the abnormal production and release of vascular endothelial growth factor (VEGF). The term VEGF includes different isoforms; VEGF-A represents one of the most important pathogenic factors of DR. Anti-VEGF intravitreal therapies radically changed the outcome of DR, due to combined anti-angiogenic and anti-edematous activities. Nowadays, several anti-VEGF molecules exist, characterized by different pharmacological features and duration. With respect to PDR, although anti-VEGF treatments represented a fundamental step forward in the management of this dramatic complication, a big debate is present in the literature regarding the role of anti-VEGF as substitute of panretinal photocoagulation or if these two approaches may be used in combination. In the present review, we provided an update on VEGF isoforms and their role in DR pathogenesis, on current anti-VEGF molecules and emerging new drugs, and on the current management strategies of PDR. There is an overall agreement regarding the relative advantage provided by anti-VEGF, especially looking at the management of PDR patients requiring vitrectomy, with respect to laser. Based on the current data, laser approaches might be avoided when a perfectly planned anti-VEGF therapeutic strategy can be adopted. Conversely, laser treatment may have a role for those patients unable to guarantee enough compliance to anti-VEGF injections.Key messagesVEGF increased production, stimulated by retinal hypoperfusion and ischaemia, is a major pathogenic factor of neovascular complication onset in diabetic retinopathy and of DR stages progression.Nowadays, several anti-VEGF molecules are available in clinical practice and other molecules are currently under investigation. Each anti-VEGF molecule is characterized by different targets and may interact with multiple biochemical pathways within the eye.All the data agreed in considering anti-VEGF molecules as a first line choice for the management of diabetic retinopathy. Laser treatments may have a role in selected advanced cases and for those patients unable to guarantee enough compliance to intravitreal treatments schemes.
Collapse
Affiliation(s)
- Alessandro Arrigo
- IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Emanuela Aragona
- IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Francesco Bandello
- IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
19
|
Walser M, Mayor J, Rothenberger S. Designed Ankyrin Repeat Proteins: A New Class of Viral Entry Inhibitors. Viruses 2022; 14:2242. [PMID: 36298797 PMCID: PMC9611651 DOI: 10.3390/v14102242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 08/08/2023] Open
Abstract
Designed ankyrin repeat proteins (DARPins) are engineered proteins comprising consensus designed ankyrin repeats as scaffold. Tightly packed repeats form a continuous hydrophobic core and a large groove-like solvent-accessible surface that creates a binding surface. DARPin domains recognizing a target of interest with high specificity and affinity can be generated using a synthetic combinatorial library and in vitro selection methods. They can be linked together in a single molecule to build multispecific and multifunctional proteins without affecting expression or function. The modular architecture of DARPins offers unprecedented possibilities of design and opens avenues for innovative antiviral strategies.
Collapse
Affiliation(s)
- Marcel Walser
- Molecular Partners AG, Wagistrasse 14, 8952 Zurich-Schlieren, Switzerland
| | - Jennifer Mayor
- Spiez Laboratory, Federal Office for Civil Protection, Austrasse, 3700 Spiez, Switzerland
- Institute of Microbiology, University Hospital Center and University of Lausanne, Rue du Bugnon 48, 1011 Lausanne, Switzerland
| | - Sylvia Rothenberger
- Spiez Laboratory, Federal Office for Civil Protection, Austrasse, 3700 Spiez, Switzerland
- Institute of Microbiology, University Hospital Center and University of Lausanne, Rue du Bugnon 48, 1011 Lausanne, Switzerland
| |
Collapse
|
20
|
Miclot T, Bignon E, Terenzi A, Grandemange S, Barone G, Monari A. G-Quadruplex Recognition by DARPIns through Epitope/Paratope Analogy. Chemistry 2022; 28:e202201824. [PMID: 35791808 PMCID: PMC9804223 DOI: 10.1002/chem.202201824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Indexed: 01/05/2023]
Abstract
We investigated the mechanisms leading to the specific recognition of Guanine Guadruplex (G4) by DARPins peptides, which can lead to the design of G4 s specific sensors. To this end we carried out all-atom molecular dynamic simulations to unravel the interactions between specific nucleic acids, including human-telomeric (h-telo), Bcl-2, and c-Myc, with different peptides, forming a DARPin/G4 complex. By comparing the sequences of DARPin with that of a peptide known for its high affinity for c-Myc, we show that the recognition cannot be ascribed to sequence similarity but, instead, depends on the complementarity between the three-dimensional arrangement of the molecular fragments involved: the α-helix/loops domain of DARPin and the G4 backbone. Our results reveal that DARPins tertiary structure presents a charged hollow region in which G4 can be hosted, thus the more complementary the structural shapes, the more stable the interaction.
Collapse
Affiliation(s)
- Tom Miclot
- Department of Biological, Chemical and Pharmaceutical Sciences and TechnologiesUniversità degli Studi di PalermoViale delle Scienze90128PalermoItaly,Université de Lorraine and CNRS LPCT UMR 701954000NancyFrance
| | | | - Alessio Terenzi
- Department of Biological, Chemical and Pharmaceutical Sciences and TechnologiesUniversità degli Studi di PalermoViale delle Scienze90128PalermoItaly
| | | | - Giampaolo Barone
- Department of Biological, Chemical and Pharmaceutical Sciences and TechnologiesUniversità degli Studi di PalermoViale delle Scienze90128PalermoItaly
| | - Antonio Monari
- Université de Lorraine and CNRS LPCT UMR 701954000NancyFrance,Université Paris Cité and CNRS, ITODYS75006ParisFrance
| |
Collapse
|
21
|
Jacob B, Vogelaar A, Cadenas E, Camarero JA. Using the Cyclotide Scaffold for Targeting Biomolecular Interactions in Drug Development. Molecules 2022; 27:molecules27196430. [PMID: 36234971 PMCID: PMC9570680 DOI: 10.3390/molecules27196430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/21/2022] [Accepted: 09/24/2022] [Indexed: 11/28/2022] Open
Abstract
This review provides an overview of the properties of cyclotides and their potential for developing novel peptide-based therapeutics. The selective disruption of protein–protein interactions remains challenging, as the interacting surfaces are relatively large and flat. However, highly constrained polypeptide-based molecular frameworks with cell-permeability properties, such as the cyclotide scaffold, have shown great promise for targeting those biomolecular interactions. The use of molecular techniques, such as epitope grafting and molecular evolution employing the cyclotide scaffold, has shown to be highly effective for selecting bioactive cyclotides.
Collapse
Affiliation(s)
- Binu Jacob
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 9033, USA
| | - Alicia Vogelaar
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 9033, USA
| | - Enrique Cadenas
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 9033, USA
| | - Julio A. Camarero
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 9033, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 9033, USA
- Correspondence:
| |
Collapse
|
22
|
Positron Emission Tomography Probes for Imaging Cytotoxic Immune Cells. Pharmaceutics 2022; 14:pharmaceutics14102040. [PMID: 36297474 PMCID: PMC9610635 DOI: 10.3390/pharmaceutics14102040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Non-invasive positron emission tomography (PET) imaging of immune cells is a powerful approach for monitoring the dynamics of immune cells in response to immunotherapy. Despite the clinical success of many immunotherapeutic agents, their clinical efficacy is limited to a subgroup of patients. Conventional imaging, as well as analysis of tissue biopsies and blood samples do not reflect the complex interaction between tumour and immune cells. Consequently, PET probes are being developed to capture the dynamics of such interactions, which may improve patient stratification and treatment evaluation. The clinical efficacy of cancer immunotherapy relies on both the infiltration and function of cytotoxic immune cells at the tumour site. Thus, various immune biomarkers have been investigated as potential targets for PET imaging of immune response. Herein, we provide an overview of the most recent developments in PET imaging of immune response, including the radiosynthesis approaches employed in their development.
Collapse
|
23
|
Nanobody-based RFP-dependent Cre recombinase for selective anterograde tracing in RFP-expressing transgenic animals. Commun Biol 2022; 5:979. [PMID: 36114373 PMCID: PMC9481622 DOI: 10.1038/s42003-022-03944-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 09/05/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractTransgenic animals expressing fluorescent proteins are widely used to label specific cells and proteins. By using a split Cre recombinase fused with mCherry-binding nanobodies or designed ankyrin repeat proteins, we created Cre recombinase dependent on red fluorescent protein (RFP) (Cre-DOR). Functional binding units for monomeric RFPs are different from those for polymeric RFPs. We confirmed selective target RFP-dependent gene expression in the mouse cerebral cortex using stereotaxic injection of adeno-associated virus vectors. In estrogen receptor-beta (Esr2)-mRFP1 mice and gastrin-releasing peptide receptor (Grpr)-mRFP1 rats, we confirmed that Cre-DOR can be used for selective tracing of the neural projection from RFP-expressing specific neurons. Cellular localization of RFPs affects recombination efficiency of Cre-DOR, and light and chemical-induced nuclear translocation of an RFP-fused protein can modulate Cre-DOR efficiency. Our results provide a method for manipulating gene expression in specific cells expressing RFPs and expand the repertory of nanobody-based genetic tools.
Collapse
|
24
|
Fé LXSGM, Cipolatti EP, Pinto MCC, Branco S, Nogueira FCS, Ortiz GMD, Pinheiro ADS, Manoel EA. Enzymes in the time of COVID-19: An overview about the effects in the human body, enzyme market, and perspectives for new drugs. Med Res Rev 2022; 42:2126-2167. [PMID: 35762498 PMCID: PMC9350392 DOI: 10.1002/med.21919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 01/27/2022] [Accepted: 06/08/2022] [Indexed: 12/11/2022]
Abstract
The rising pandemic caused by a coronavirus, resulted in a scientific quest to discover some effective treatments against its etiologic agent, the severe acute respiratory syndrome‐coronavirus 2 (SARS‐CoV‐2). This research represented a significant scientific landmark and resulted in many medical advances. However, efforts to understand the viral mechanism of action and how the human body machinery is subverted during the infection are still ongoing. Herein, we contributed to this field with this compilation of the roles of both viral and human enzymes in the context of SARS‐CoV‐2 infection. In this sense, this overview reports that proteases are vital for the infection to take place: from SARS‐CoV‐2 perspective, the main protease (Mpro) and papain‐like protease (PLpro) are highlighted; from the human body, angiotensin‐converting enzyme‐2, transmembrane serine protease‐2, and cathepsins (CatB/L) are pointed out. In addition, the influence of the virus on other enzymes is reported as the JAK/STAT pathway and the levels of lipase, enzymes from the cholesterol metabolism pathway, amylase, aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase, and glyceraldehyde 3‐phosphate dehydrogenase are also be disturbed in SARS‐CoV‐2 infection. Finally, this paper discusses the importance of detailed enzymatic studies for future treatments against SARS‐CoV‐2, and how some issues related to the syndrome treatment can create opportunities in the biotechnological market of enzymes and the development of new drugs.
Collapse
Affiliation(s)
- Luana Xavier Soares Gomes Moura Fé
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ)-Cidade Universitária, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eliane Pereira Cipolatti
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ)-Cidade Universitária, Rio de Janeiro, Rio de Janeiro, Brazil.,Departamento de Engenharia Química, Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, Rio de Janeiro, Brazil
| | - Martina Costa Cerqueira Pinto
- Departamento de Bioquímica, Instituto de Química, Centro de Tecnologia (CT), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil.,Chemical Engineering Program, Instituto Alberto Luiz Coimbra de Pós-graduação e Pesquisa de Engenharia (COPPE), Centro de Tecnologia (CT), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Suema Branco
- Biofísica Ambiental, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fábio César Sousa Nogueira
- Departamento de Bioquímica, Instituto de Química, Centro de Tecnologia (CT), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gisela Maria Dellamora Ortiz
- Departamento de Fármacos e Medicamentos, Faculdade de Farmácia, Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ)-Cidade Universitária, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anderson de Sá Pinheiro
- Departamento de Bioquímica, Instituto de Química, Centro de Tecnologia (CT), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Evelin Andrade Manoel
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ)-Cidade Universitária, Rio de Janeiro, Rio de Janeiro, Brazil.,Departamento de Bioquímica, Instituto de Química, Centro de Tecnologia (CT), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
25
|
Siegel PM, Przewosnik AS, Wrobel J, Heidt T, Moser M, Peter K, Bode C, Diehl P, Bojti I. An activation specific anti-Mac-1 designed ankyrin repeat protein improves survival in a mouse model of acute lung injury. Sci Rep 2022; 12:6296. [PMID: 35428807 PMCID: PMC9012056 DOI: 10.1038/s41598-022-10090-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 04/01/2022] [Indexed: 12/15/2022] Open
Abstract
The acute respiratory distress syndrome (ARDS) is a life-threatening clinical condition. The number of ARDS cases has risen dramatically recently but specific treatment options are limited. ARDS is associated with an overshooting inflammatory response and neutrophils play a central role in its pathogenesis. Neutrophils express the integrin Mac-1 on their surface which adopts a resting and activated conformation depending on leukocyte activation. The aim of this study was to investigate the anti-inflammatory effects of the unique activation-specific anti-Mac-1 DARPin 'F7' in a mouse model of ARDS. ARDS was induced by intratracheal lipopolysaccharide (LPS) instillation and the acute (day 1-4) and chronic phase (day 5-10) were studied. After expression and purification, F7, a control DARPin and PBS, were applied daily via the intraperitoneal route. Survival and weight loss were recorded. Histological analysis of lung sections, flow cytometric leukocyte analysis of blood and bronchioalveolar lavage (BALF) were performed. Moreover, protein concentration and cytokine levels were determined in the BALF. Treatment with F7 improved survival and reduced weight loss significantly compared to treatment with the control DARPin or PBS. Neutrophil count in the BALF and peripheral blood were significantly reduced in mice treated with F7. Histology revealed significantly reduced pulmonary inflammation in the F7 treated group. Treatment with DARPin F7 inhibited neutrophil accumulation, reduced signs of local and systemic inflammation and improved survival in a mouse model of ARDS. F7 may be a novel anti-inflammatory drug candidate for the treatment of severe ARDS.
Collapse
Affiliation(s)
- Patrick M Siegel
- Department of Cardiology and Angiology I, University Heart Center Freiburg - Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Anne-Sophie Przewosnik
- Department of Cardiology and Angiology I, University Heart Center Freiburg - Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Jan Wrobel
- Department of Cardiology and Angiology I, University Heart Center Freiburg - Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Timo Heidt
- Department of Cardiology and Angiology I, University Heart Center Freiburg - Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Martin Moser
- Department of Cardiology and Angiology I, University Heart Center Freiburg - Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia.,Department of Medicine, Central Clinical School, Monash University, Melbourne, Australia.,Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia
| | - Christoph Bode
- Department of Cardiology and Angiology I, University Heart Center Freiburg - Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Philipp Diehl
- Department of Cardiology and Angiology I, University Heart Center Freiburg - Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - István Bojti
- Department of Cardiology and Angiology I, University Heart Center Freiburg - Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany.
| |
Collapse
|
26
|
Nagata Y, Suzuki R. FcεRI: A Master Regulator of Mast Cell Functions. Cells 2022; 11:cells11040622. [PMID: 35203273 PMCID: PMC8870323 DOI: 10.3390/cells11040622] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/29/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023] Open
Abstract
Mast cells (MCs) perform multiple functions thought to underlie different manifestations of allergies. Various aspects of antigens (Ags) and their interactions with immunoglobulin E (IgE) cause diverse responses in MCs. FcεRI, a high-affinity IgE receptor, deciphers the Ag–IgE interaction and drives allergic responses. FcεRI clustering is essential for signal transduction and, therefore, determines the quality of MC responses. Ag properties precisely regulate FcεRI dynamics, which consequently initiates differential outcomes by switching the intracellular-signaling pathway, suggesting that Ag properties can control MC responses, both qualitatively and quantitatively. Thus, the therapeutic benefits of FcεRI-targeting strategies have long been examined. Disrupting IgE–FcεRI interactions is a potential therapeutic strategy because the binding affinity between IgE and FcεRI is extremely high. Specifically, FcεRI desensitization, due to internalization, is also a potential therapeutic target that is involved in the mechanisms of allergen-specific immunotherapy. Several recent findings have suggested that silent internalization is strongly associated with FcεRI dynamics. A comprehensive understanding of the role of FcεRI may lead to the development of novel therapies for allergies. Here, we review the qualitatively diverse responses of MCs that impact the attenuation/development of allergies with a focus on the role of FcεRI toward Ag exposure.
Collapse
|
27
|
Non-Antibody-Based Binders for the Enrichment of Proteins for Analysis by Mass Spectrometry. Biomolecules 2021; 11:biom11121791. [PMID: 34944435 PMCID: PMC8698613 DOI: 10.3390/biom11121791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/24/2021] [Accepted: 11/27/2021] [Indexed: 02/07/2023] Open
Abstract
There is often a need to isolate proteins from body fluids, such as plasma or serum, prior to further analysis with (targeted) mass spectrometry. Although immunoglobulin or antibody-based binders have been successful in this regard, they possess certain disadvantages, which stimulated the development and validation of alternative, non-antibody-based binders. These binders are based on different protein scaffolds and are often selected and optimized using phage or other display technologies. This review focuses on several non-antibody-based binders in the context of enriching proteins for subsequent liquid chromatography-mass spectrometry (LC-MS) analysis and compares them to antibodies. In addition, we give a brief introduction to approaches for the immobilization of binders. The combination of non-antibody-based binders and targeted mass spectrometry is promising in areas, like regulated bioanalysis of therapeutic proteins or the quantification of biomarkers. However, the rather limited commercial availability of these binders presents a bottleneck that needs to be addressed.
Collapse
|
28
|
Markou GC, Ohoka A, Sarkar CA. Engineering a Minimal Leucine-rich Repeat IgG-binding Module. Appl Biochem Biotechnol 2021; 194:1636-1644. [PMID: 34837634 DOI: 10.1007/s12010-021-03768-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/16/2021] [Indexed: 12/27/2022]
Abstract
Sea lamprey immunization can yield leucine-rich repeat (LRR) protein binders analogous to globular antibodies developed from mammals. A novel minimal LRR was discovered through lamprey immunization with human immunoglobulin G Fc domain (IgG Fc). Initial attempts to solubly express this LRR protein, VLRB.IgGFc, in Escherichia coli proved challenging, so it was analyzed using the cell-free method ribosome display. In ribosome display, VLRB.IgGFc was found to bind specifically to the Fc domain of IgG, with little observed cross-reactivity to IgA or IgM. The minimal repeat protein architecture of VLRB.IgGFc may facilitate modular LRR extensions to incorporate additional or augmented functionality within a continuous, structurally defined scaffold. We exploited this modularity to design a chimera of a well-characterized, soluble LRR repebody and the initially insoluble VLRB.IgGFc to produce soluble Repe-VLRB.IgGFc. The minimal IgG Fc-binding module, Repe-VLRB.IgGFc, and future-engineered variants thereof should be useful additions to the biotechnological toolbox for detecting, purifying, or targeting IgGs. More generally, this two-step approach of minimal LRR binder discovery via sea lamprey immunization followed by modular augmentation of functionality may be of general utility in protein engineering.
Collapse
Affiliation(s)
- George C Markou
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Ayako Ohoka
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Casim A Sarkar
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
29
|
Akkapeddi P, Teng KW, Koide S. Monobodies as tool biologics for accelerating target validation and druggable site discovery. RSC Med Chem 2021; 12:1839-1853. [PMID: 34820623 PMCID: PMC8597423 DOI: 10.1039/d1md00188d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/26/2021] [Indexed: 12/21/2022] Open
Abstract
Despite increased investment and technological advancement, new drug approvals have not proportionally increased. Low drug approval rates, particularly for new targets, are linked to insufficient target validation at early stages. Thus, there remains a strong need for effective target validation techniques. Here, we review the use of synthetic binding proteins as tools for drug target validation, with focus on the monobody platform among several advanced synthetic binding protein platforms. Monobodies with high affinity and high selectivity can be rapidly developed against challenging targets, such as KRAS mutants, using protein engineering technologies. They have strong tendency to bind to functional sites and thus serve as drug-like molecules, and they can serve as targeting ligands for constructing bio-PROTACs. Genetically encoded monobodies are effective "tool biologics" for validating intracellular targets. They promote crystallization and help reveal the atomic structures of the monobody-target interface, which can inform drug design. Using case studies, we illustrate the potential of the monobody technology in accelerating target validation and small-molecule drug discovery.
Collapse
Affiliation(s)
- Padma Akkapeddi
- Perlmutter Cancer Center, New York University Langone Medical Center New York NY USA
| | - Kai Wen Teng
- Perlmutter Cancer Center, New York University Langone Medical Center New York NY USA
| | - Shohei Koide
- Perlmutter Cancer Center, New York University Langone Medical Center New York NY USA
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine New York NY USA
| |
Collapse
|
30
|
Eijkenboom L, Palacio-Castañeda V, Groenman F, Braat D, Beerendonk C, Brock R, Verdurmen W, Peek R. Assessing the use of tumor-specific DARPin-toxin fusion proteins for ex vivo purging of cancer metastases from human ovarian cortex before autotransplantation. F&S SCIENCE 2021; 2:330-344. [PMID: 35559858 DOI: 10.1016/j.xfss.2021.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To assess the use of tumor-specific designed ankyrin repeat proteins (DARPins) fused to a domain of Pseudomonas aeruginosa exotoxin A for purging of cancer metastases from the ovarian cortex. DESIGN Experimental study. SETTING University medical center. PATIENT(S) Human ovarian cortex. INTERVENTION(S) Ovarian cortex harboring artificially induced breast cancer metastases was treated with DARPins targeted to epithelial cell adhesion molecule (EpCAM) and human epidermal growth factor receptor 2 (HER2). MAIN OUTCOME MEASURE(S) The presence of any remaining cancer cells after purging was analyzed by (immuno)histochemistry and reverse transcriptase polymerase chain reaction. Effects on the viability of the ovarian cortex were determined by (immuno)histology, a follicular viability assay, and an assay to determine the in vitro growth capacity of small follicles. RESULT(S) After purging with EpCAM-targeted DARPin, all EpCAM-positive breast cancer cells were eradicated from the ovarian cortex. Although treatment had no effect on the morphology or viability of small follicles, a sharp decrease in oocyte viability during in vitro growth was observed, presumably due to low-level expression of EpCAM on oocytes. The HER2-targeted DARPins had no detrimental effects on the morphology, viability, or in vitro growth of small follicles. HER2-positive breast cancer foci were fully eliminated from the ovarian cortex, and the reverse transcriptase polymerase chain reaction showed a decrease to basal levels of HER2 mRNA after purging. CONCLUSION(S) Purging cancer metastases from ovarian cortex without impairing ovarian tissue integrity is possible by targeting tumor cell surface proteins with exotoxin A-fused DARPins. By adapting the target specificity of the cytotoxic DARPin fusions, it should be possible to eradicate metastases from all types of malignancies.
Collapse
Affiliation(s)
- Lotte Eijkenboom
- Department of Obstetrics and Gynaecology, Radboud University Medical Center, Nijmegen, Netherlands.
| | - Valentina Palacio-Castañeda
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Freek Groenman
- Department of Obstetrics and Gynecology, Amsterdam University Medical Center, Location Vrije Universiteit, Amsterdam, Netherlands
| | - Didi Braat
- Department of Obstetrics and Gynaecology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Catharina Beerendonk
- Department of Obstetrics and Gynaecology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Roland Brock
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands; Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Kingdom of Bahrain
| | - Wouter Verdurmen
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ronald Peek
- Department of Obstetrics and Gynaecology, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
31
|
Chen Y, Zhang D, Zhang X, Wang Z, Liu CF, Tam JP. Site-Specific Protein Modifications by an Engineered Asparaginyl Endopeptidase from Viola canadensis. Front Chem 2021; 9:768854. [PMID: 34746098 PMCID: PMC8568951 DOI: 10.3389/fchem.2021.768854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/06/2021] [Indexed: 12/04/2022] Open
Abstract
Asparaginyl endopeptidases (AEPs) or legumains are Asn/Asp (Asx)-specific proteases that break peptide bonds, but also function as peptide asparaginyl ligases (PALs) that make peptide bonds. This ligase activity can be used for site-specific protein modifications in biochemical and biotechnological applications. Although AEPs are common, PALs are rare. We previously proposed ligase activity determinants (LADs) of these enzymes that could determine whether they catalyze formation or breakage of peptide bonds. LADs are key residues forming the S2 and S1' substrate-binding pockets flanking the S1 active site. Here, we build on the LAD hypothesis with the engineering of ligases from proteases by mutating the S2 and S1' pockets of VcAEP, an AEP from Viola canadensis. Wild type VcAEP yields <5% cyclic product from a linear substrate at pH 6.5, whereas the single mutants VcAEP-V238A (Vc1a) and VcAEP-Y168A (Vc1b) targeting the S2 and S1' substrate-binding pockets yielded 34 and 61% cyclic products, respectively. The double mutant VcAEP-V238A/Y168A (Vc1c) targeting both the S2 and S1' substrate-binding pockets yielded >90% cyclic products. Vc1c had cyclization efficiency of 917,759 M-1s-1, which is one of the fastest rates for ligases yet reported. Vc1c is useful for protein engineering applications, including labeling of DARPins and cell surface MCF-7, as well as producing cyclic protein sfGFP. Together, our work validates the importance of LADs for AEP ligase activity and provides valuable tools for site-specific modification of proteins and biologics.
Collapse
Affiliation(s)
- Yu Chen
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Synzymes and Natural Products Center, Nanyang Technological University, Singapore, Singapore
| | - Dingpeng Zhang
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Synzymes and Natural Products Center, Nanyang Technological University, Singapore, Singapore
| | - Xiaohong Zhang
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Synzymes and Natural Products Center, Nanyang Technological University, Singapore, Singapore
| | - Zhen Wang
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Synzymes and Natural Products Center, Nanyang Technological University, Singapore, Singapore
| | - Chuan-Fa Liu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Synzymes and Natural Products Center, Nanyang Technological University, Singapore, Singapore
- Nanyang Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - James P. Tam
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Synzymes and Natural Products Center, Nanyang Technological University, Singapore, Singapore
- Nanyang Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
32
|
Benn JA, Mukadam AS, McEwan WA. Targeted protein degradation using intracellular antibodies and its application to neurodegenerative disease. Semin Cell Dev Biol 2021; 126:138-149. [PMID: 34654628 DOI: 10.1016/j.semcdb.2021.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 01/10/2023]
Abstract
Antibodies mediate the majority of their effects in the extracellular domain, or in intracellular compartments isolated from the cytosol. Under a growing list of circumstances, however, antibodies are found to gain access to the cytoplasm. Cytosolic immune complexes are bound by the atypical antibody receptor TRIM21, which mediates the rapid degradation of the immune complexes at the proteasome. These discoveries have informed the development of TRIM-Away, a technique to selectively deplete proteins using delivery of antibodies into cells. A range of related approaches that elicit selective protein degradation using intracellular constructs linking antibody fragments to degradative effector functions have also been developed. These methods hold promise for inducing the degradation of proteins as both research tools and as a novel therapeutic approach. Protein aggregates are a pathophysiological feature of neurodegenerative diseases and are considered to have a causal role in pathology. Immunotherapy is emerging as a promising route towards their selective targeting, and a role of antibodies in the cytosol has been demonstrated in cell-based assays. This review will explore the mechanisms by which therapeutic antibodies engage and eliminate intracellularly aggregated proteins. We will discuss how future developments in intracellular antibody technology may enhance the therapeutic potential of such antibody-derived therapies.
Collapse
Affiliation(s)
- Jonathan A Benn
- UK Dementia Research Institute at the University of Cambridge, Department of Clinical Neurosciences, Cambridge, UK
| | - Aamir S Mukadam
- UK Dementia Research Institute at the University of Cambridge, Department of Clinical Neurosciences, Cambridge, UK
| | - William A McEwan
- UK Dementia Research Institute at the University of Cambridge, Department of Clinical Neurosciences, Cambridge, UK.
| |
Collapse
|
33
|
Ban D, Rice CT, McCoy MA. Quantification of natural abundance NMR data differentiates the solution behavior of monoclonal antibodies and their fragments. MAbs 2021; 13:1978132. [PMID: 34612804 PMCID: PMC8496538 DOI: 10.1080/19420862.2021.1978132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Biotherapeutics are an important class of molecules for the treatment of a wide range of diseases. They include low molecular weight peptides, highly engineered protein scaffolds and monoclonal antibodies. During their discovery and development, assessments of the biophysical attributes is critical to understanding the solution behavior of therapeutic proteins and for de-risking liabilities. Thus, methods that can quantify, characterize, and provide a basis to inform risks and drive the selection of more optimal antibody and alternative scaffolds are needed. Nuclear Magnetic Resonance (NMR) spectroscopy is a technique that provides a means to probe antibody and antibody-like molecules in solution, at atomic resolution, under any formulated conditions. Here, all samples were profiled at natural abundance requiring no isotope enrichment. We present a numerical approach that quantitates two-dimensional methyl spectra. The approach was tested with a reference dataset that contained different types of antibody and antibody-like molecules. This dataset was processed through a procedure we call a Random Sampling of NMR Peaks for Covariance Analysis. This analysis revealed that the first two components were well correlated with the hydrodynamic radius of the molecules included in the reference set. Higher-order principal components were also linked to dynamic features between different tethered antibody-like molecules and contributed to decisions around candidate selection. The reference set provides a basis to characterize molecules with unknown solution behavior and is sensitive to the behavior of a molecule formulated under different conditions. The approach is independent of protein design, scaffold, formulation and provides a facile method to quantify solution behavior.
Collapse
Affiliation(s)
- David Ban
- Department of Computational and Structural Chemistry, Merck & Co., Inc, Kenilworth, NJ, USA
| | - Cory T Rice
- Department of Computational and Structural Chemistry, Merck & Co., Inc, Kenilworth, NJ, USA
| | - Mark A McCoy
- Department of Computational and Structural Chemistry, Merck & Co., Inc, Kenilworth, NJ, USA
| |
Collapse
|
34
|
Tan H, Su W, Zhang W, Zhang J, Sattler M, Zou P. Generation of novel long-acting GLP-1R agonists using DARPins as a scaffold. Int J Pharm 2021; 607:121043. [PMID: 34450223 DOI: 10.1016/j.ijpharm.2021.121043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/10/2021] [Accepted: 08/21/2021] [Indexed: 10/20/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) has been considered to be a promising peptide for treatment of type 2 diabetes mellitus (T2DM). However, the extremely short half-life (minutes) of native GLP-1 limits its clinical application potential. Here, we designed two GLP-1 analogues by genetic fusion of GLP-1 to one or two tandem human serum albumin-binding designed ankyrin repeat proteins (DARPins), denoted as GLP-DARPin or GLP-2DARPin. The two DARPin-fusion GLP-1 proteins were expressed in E. coli and purified, followed by measurements of their bioactivities and half-lives in mice. The results revealed that the half-life of GLP-2DARPin, binding two HSA molecules, was approximately 3-fold longer than GLP-DARPin (52.3 h versus 18.0 h). In contrast, the bioactivity results demonstrated that the blood glucose-lowering effect of GLP-DARPin was more potent than that of GLP-2DARPin. The oral glucose tolerance tests indicated that blood glucose levels were significantly reduced for at least 48 h by GLP-DARPin, but were reduced for only 24 h by GLP-2DARPin. Injected once every two days, GLP-DARPin substantially reduced blood glucose levels in streptozotocin (STZ)-induced diabetic mice to the same levels as normal mice. During the treatment course, GLP-DARPin significantly reduced the food intake and body weight of diabetic mice up to approximately 17% compared with the control group. A histological analysis revealed that GLP-DARPin alleviated islet loss in diabetic mice. These findings suggest that long-acting GLP-DARPin holds great potential for further development into drugs for the treatment of T2DM and obesity. Meanwhile, our data indicate that albumin-binding DARPins can be used as a universal scaffold to improve the pharmacokinetic profiles and pharmacological activities of therapeutic peptides and proteins.
Collapse
Affiliation(s)
- Huanbo Tan
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Wencheng Su
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Wenyu Zhang
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jie Zhang
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Michael Sattler
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; Institute of Structural Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Bavarian NMR Centre, Department Chemie, Technische Universität München, Garching, Germany
| | - Peijian Zou
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; Institute of Structural Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Bavarian NMR Centre, Department Chemie, Technische Universität München, Garching, Germany.
| |
Collapse
|
35
|
Protein-Protein Interactions: Insight from Molecular Dynamics Simulations and Nanoparticle Tracking Analysis. Molecules 2021; 26:molecules26185696. [PMID: 34577167 PMCID: PMC8472368 DOI: 10.3390/molecules26185696] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 11/23/2022] Open
Abstract
Protein-protein interaction plays an essential role in almost all cellular processes and biological functions. Coupling molecular dynamics (MD) simulations and nanoparticle tracking analysis (NTA) assay offered a simple, rapid, and direct approach in monitoring the protein-protein binding process and predicting the binding affinity. Our case study of designed ankyrin repeats proteins (DARPins)—AnkGAG1D4 and the single point mutated AnkGAG1D4-Y56A for HIV-1 capsid protein (CA) were investigated. As reported, AnkGAG1D4 bound with CA for inhibitory activity; however, it lost its inhibitory strength when tyrosine at residue 56 AnkGAG1D4, the most key residue was replaced by alanine (AnkGAG1D4-Y56A). Through NTA, the binding of DARPins and CA was measured by monitoring the increment of the hydrodynamic radius of the AnkGAG1D4-gold conjugated nanoparticles (AnkGAG1D4-GNP) and AnkGAG1D4-Y56A-GNP upon interaction with CA in buffer solution. The size of the AnkGAG1D4-GNP increased when it interacted with CA but not AnkGAG1D4-Y56A-GNP. In addition, a much higher binding free energy (∆GB) of AnkGAG1D4-Y56A (−31 kcal/mol) obtained from MD further suggested affinity for CA completely reduced compared to AnkGAG1D4 (−60 kcal/mol). The possible mechanism of the protein-protein binding was explored in detail by decomposing the binding free energy for crucial residues identification and hydrogen bond analysis.
Collapse
|
36
|
Mahmoudi R, Dianat-Moghadam H, Poorebrahim M, Siapoush S, Poortahmasebi V, Salahlou R, Rahmati M. Recombinant immunotoxins development for HER2-based targeted cancer therapies. Cancer Cell Int 2021; 21:470. [PMID: 34488747 PMCID: PMC8422749 DOI: 10.1186/s12935-021-02182-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/26/2021] [Indexed: 01/07/2023] Open
Abstract
Understanding the molecular mechanisms of cancer biology introduces targeted therapy as a complementary method along with other conventional therapies. Recombinant immunotoxins are tumor specific antibodies that their recognizing fragment is utilized for delivering modified toxins into tumor cells. These molecules have been considered as a targeted strategy in the treatment of human cancers. HER2 tumor biomarker is a transmembrane tyrosine kinase receptor that can be used for targeted therapies in the forms of anti-HER2 monoclonal antibodies, antibody-drug conjugates and immunotoxins. There have been many studies on HER2-based immunotoxins in recent years, however, little progress has been made in the clinical field which demanded more improvements. Here, we summarized the HER2 signaling and it's targeting using immunotherapeutic agents in human cancers. Then, we specifically reviewed anti-HER2 immunotoxins, and their strengths and drawbacks to highlight their promising clinical impact.
Collapse
Affiliation(s)
- Reza Mahmoudi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Dianat-Moghadam
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mansour Poorebrahim
- Targeted Tumor Vaccines Group, Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Samaneh Siapoush
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahdat Poortahmasebi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Salahlou
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Rahmati
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Clinical Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
37
|
Abstract
RAS proteins represent critical drivers of tumor development and thus are the focus of intense efforts to pharmacologically inhibit these proteins in human cancer. Although recent success has been attained in developing clinically efficacious inhibitors to KRASG12C, there remains a critical need for developing approaches to inhibit additional mutant RAS proteins. A number of anti-RAS biologics have been developed which reveal novel and potentially therapeutically targetable vulnerabilities in oncogenic RAS. This review will discuss the growing field of anti-RAS biologics and potential development of these reagents into new anti-RAS therapies.
Collapse
Affiliation(s)
- Michael Whaby
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Imran Khan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States; Ralph H. Johnson VA Medical Center, Charleston, SC, United States
| | - John P O'Bryan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States; Ralph H. Johnson VA Medical Center, Charleston, SC, United States.
| |
Collapse
|
38
|
Utgés JS, Tsenkov MI, Dietrich NJM, MacGowan SA, Barton GJ. Ankyrin repeats in context with human population variation. PLoS Comput Biol 2021; 17:e1009335. [PMID: 34428215 PMCID: PMC8415598 DOI: 10.1371/journal.pcbi.1009335] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/03/2021] [Accepted: 08/10/2021] [Indexed: 11/19/2022] Open
Abstract
Ankyrin protein repeats bind to a wide range of substrates and are one of the most common protein motifs in nature. Here, we collate a high-quality alignment of 7,407 ankyrin repeats and examine for the first time, the distribution of human population variants from large-scale sequencing of healthy individuals across this family. Population variants are not randomly distributed across the genome but are constrained by gene essentiality and function. Accordingly, we interpret the population variants in context with evolutionary constraint and structural features including secondary structure, accessibility and protein-protein interactions across 383 three-dimensional structures of ankyrin repeats. We find five positions that are highly conserved across homologues and also depleted in missense variants within the human population. These positions are significantly enriched in intra-domain contacts and so likely to be key for repeat packing. In contrast, a group of evolutionarily divergent positions are found to be depleted in missense variants in human and significantly enriched in protein-protein interactions. Our analysis also suggests the domain has three, not two surfaces, each with different patterns of enrichment in protein-substrate interactions and missense variants. Our findings will be of interest to those studying or engineering ankyrin-repeat containing proteins as well as those interpreting the significance of disease variants.
Collapse
Affiliation(s)
- Javier S. Utgés
- Division of Computational Biology, School of Life Sciences, University of Dundee, Scotland, United Kingdom
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Maxim I. Tsenkov
- Division of Computational Biology, School of Life Sciences, University of Dundee, Scotland, United Kingdom
| | - Noah J. M. Dietrich
- Division of Computational Biology, School of Life Sciences, University of Dundee, Scotland, United Kingdom
| | - Stuart A. MacGowan
- Division of Computational Biology, School of Life Sciences, University of Dundee, Scotland, United Kingdom
| | - Geoffrey J. Barton
- Division of Computational Biology, School of Life Sciences, University of Dundee, Scotland, United Kingdom
| |
Collapse
|
39
|
Arrigo A, Bandello F. Molecular Features of Classic Retinal Drugs, Retinal Therapeutic Targets and Emerging Treatments. Pharmaceutics 2021; 13:pharmaceutics13071102. [PMID: 34371793 PMCID: PMC8309124 DOI: 10.3390/pharmaceutics13071102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/02/2021] [Indexed: 12/27/2022] Open
Abstract
The management of exudative retinal diseases underwent a revolution due to the introduction of intravitreal treatments. There are two main classes of intravitreal drugs, namely anti-vascular endothelial growth factors (anti-VEGF) and corticosteroids molecules. The clinical course and the outcome of retinal diseases radically changed thanks to the efficacy of these molecules in determining the regression of the exudation and the restoration of the macular profile. In this review, we described the molecular features of classic retinal drugs, highlighting the main therapeutic targets, and we provided an overview of new emerging molecules. We performed a systematic review of the current literature available in the MEDLINE library, focusing on current intravitreal molecules and on new emerging therapies. The anti-VEGF molecules include Bevacizumab, Pegaptanib, Ranibizumab, Aflibercept, Conbercept, Brolucizumab, Abicipar-pegol and Faricimab. The corticosteroids approach is mainly based on the employment of triamcinolone acetonide, dexamethasone and fluocinolone acetonide molecules. Many clinical trials and real-life reports demonstrated their efficacy in exudative retinal diseases, highlighting differences in terms of molecular targeting and pharmacologic profiles. Furthermore, several new molecules are currently under investigation. Intravitreal drugs focus their activity on a wide range of therapeutic targets and are safe and efficacy in managing retinal diseases.
Collapse
|
40
|
Abdelaal AM, Kasinski AL. Ligand-mediated delivery of RNAi-based therapeutics for the treatment of oncological diseases. NAR Cancer 2021; 3:zcab030. [PMID: 34316717 PMCID: PMC8291076 DOI: 10.1093/narcan/zcab030] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/21/2021] [Accepted: 06/28/2021] [Indexed: 12/19/2022] Open
Abstract
RNA interference (RNAi)-based therapeutics (miRNAs, siRNAs) have great potential for treating various human diseases through their ability to downregulate proteins associated with disease progression. However, the development of RNAi-based therapeutics is limited by lack of safe and specific delivery strategies. A great effort has been made to overcome some of these challenges resulting in development of N-acetylgalactosamine (GalNAc) ligands that are being used for delivery of siRNAs for the treatment of diseases that affect the liver. The successes achieved using GalNAc-siRNAs have paved the way for developing RNAi-based delivery strategies that can target extrahepatic diseases including cancer. This includes targeting survival signals directly in the cancer cells and indirectly through targeting cancer-associated immunosuppressive cells. To achieve targeting specificity, RNAi molecules are being directly conjugated to a targeting ligand or being packaged into a delivery vehicle engineered to overexpress a targeting ligand on its surface. In both cases, the ligand binds to a cell surface receptor that is highly upregulated by the target cells, while not expressed, or expressed at low levels on normal cells. In this review, we summarize the most recent RNAi delivery strategies, including extracellular vesicles, that use a ligand-mediated approach for targeting various oncological diseases.
Collapse
Affiliation(s)
- Ahmed M Abdelaal
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47906, USA
| | - Andrea L Kasinski
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47906, USA
| |
Collapse
|
41
|
Norouzi-Barough L, Bayat A. Validation strategies for identifying drug targets in dermal fibrotic disorders. Drug Discov Today 2021; 26:2474-2485. [PMID: 34229083 DOI: 10.1016/j.drudis.2021.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/19/2021] [Accepted: 06/29/2021] [Indexed: 11/16/2022]
Abstract
Fibrotic skin disorders, such as keloid disease (KD), are common clinically challenging disorders with unknown etiopathogenesis and ill-defined treatment strategies that affect millions of people worldwide. Thus, there is an urgent need to discover novel therapeutics. The validation of potential drug targets is an obligatory step in discovering and developing new therapeutic agents for the successful treatment of dermal fibrotic conditions, such as KD. The integration of multi-omics data with traditional and modern technological approaches, such as RNA interference (RNAi) and genome-editing tools, would provide unique opportunities to identify and validate novel targets in KD during early drug development. Thus, in this review, we summarize the current and emerging drug discovery process with a focus on validation strategies of potential drug targets identified in dermal fibrosis.
Collapse
Affiliation(s)
- Leyla Norouzi-Barough
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ardeshir Bayat
- Centre for Dermatology Research, NIHR Manchester Biomedical Research Centre, Stopford Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK; Medical Research Council-Wound Healing Unit, Division of Dermatology, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
42
|
Frutiger A, Tanno A, Hwu S, Tiefenauer RF, Vörös J, Nakatsuka N. Nonspecific Binding-Fundamental Concepts and Consequences for Biosensing Applications. Chem Rev 2021; 121:8095-8160. [PMID: 34105942 DOI: 10.1021/acs.chemrev.1c00044] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nature achieves differentiation of specific and nonspecific binding in molecular interactions through precise control of biomolecules in space and time. Artificial systems such as biosensors that rely on distinguishing specific molecular binding events in a sea of nonspecific interactions have struggled to overcome this issue. Despite the numerous technological advancements in biosensor technologies, nonspecific binding has remained a critical bottleneck due to the lack of a fundamental understanding of the phenomenon. To date, the identity, cause, and influence of nonspecific binding remain topics of debate within the scientific community. In this review, we discuss the evolution of the concept of nonspecific binding over the past five decades based upon the thermodynamic, intermolecular, and structural perspectives to provide classification frameworks for biomolecular interactions. Further, we introduce various theoretical models that predict the expected behavior of biosensors in physiologically relevant environments to calculate the theoretical detection limit and to optimize sensor performance. We conclude by discussing existing practical approaches to tackle the nonspecific binding challenge in vitro for biosensing platforms and how we can both address and harness nonspecific interactions for in vivo systems.
Collapse
Affiliation(s)
- Andreas Frutiger
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich CH-8092, Switzerland
| | - Alexander Tanno
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich CH-8092, Switzerland
| | - Stephanie Hwu
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich CH-8092, Switzerland
| | - Raphael F Tiefenauer
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich CH-8092, Switzerland
| | - János Vörös
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich CH-8092, Switzerland
| | - Nako Nakatsuka
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich CH-8092, Switzerland
| |
Collapse
|
43
|
Folding and Stability of Ankyrin Repeats Control Biological Protein Function. Biomolecules 2021; 11:biom11060840. [PMID: 34198779 PMCID: PMC8229355 DOI: 10.3390/biom11060840] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/25/2021] [Accepted: 06/01/2021] [Indexed: 01/04/2023] Open
Abstract
Ankyrin repeat proteins are found in all three kingdoms of life. Fundamentally, these proteins are involved in protein-protein interaction in order to activate or suppress biological processes. The basic architecture of these proteins comprises repeating modules forming elongated structures. Due to the lack of long-range interactions, a graded stability among the repeats is the generic properties of this protein family determining both protein folding and biological function. Protein folding intermediates were frequently found to be key for the biological functions of repeat proteins. In this review, we discuss most recent findings addressing this close relation for ankyrin repeat proteins including DARPins, Notch receptor ankyrin repeat domain, IκBα inhibitor of NFκB, and CDK inhibitor p19INK4d. The role of local folding and unfolding and gradual stability of individual repeats will be discussed during protein folding, protein-protein interactions, and post-translational modifications. The conformational changes of these repeats function as molecular switches for biological regulation, a versatile property for modern drug discovery.
Collapse
|
44
|
Mujtaba J, Liu J, Dey KK, Li T, Chakraborty R, Xu K, Makarov D, Barmin RA, Gorin DA, Tolstoy VP, Huang G, Solovev AA, Mei Y. Micro-Bio-Chemo-Mechanical-Systems: Micromotors, Microfluidics, and Nanozymes for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007465. [PMID: 33893682 DOI: 10.1002/adma.202007465] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/27/2020] [Indexed: 06/12/2023]
Abstract
Wireless nano-/micromotors powered by chemical reactions and/or external fields generate motive forces, perform tasks, and significantly extend short-range dynamic responses of passive biomedical microcarriers. However, before micromotors can be translated into clinical use, several major problems, including the biocompatibility of materials, the toxicity of chemical fuels, and deep tissue imaging methods, must be solved. Nanomaterials with enzyme-like characteristics (e.g., catalase, oxidase, peroxidase, superoxide dismutase), that is, nanozymes, can significantly expand the scope of micromotors' chemical fuels. A convergence of nanozymes, micromotors, and microfluidics can lead to a paradigm shift in the fabrication of multifunctional micromotors in reasonable quantities, encapsulation of desired subsystems, and engineering of FDA-approved core-shell structures with tuneable biological, physical, chemical, and mechanical properties. Microfluidic methods are used to prepare stable bubbles/microbubbles and capsules integrating ultrasound, optoacoustic, fluorescent, and magnetic resonance imaging modalities. The aim here is to discuss an interdisciplinary approach of three independent emerging topics: micromotors, nanozymes, and microfluidics to creatively: 1) embrace new ideas, 2) think across boundaries, and 3) solve problems whose solutions are beyond the scope of a single discipline toward the development of micro-bio-chemo-mechanical-systems for diverse bioapplications.
Collapse
Affiliation(s)
- Jawayria Mujtaba
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Jinrun Liu
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Krishna K Dey
- Discipline of Physics, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382355, India
| | - Tianlong Li
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, P. R. China
| | - Rik Chakraborty
- Discipline of Physics, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382355, India
| | - Kailiang Xu
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
- School of Information Science and Technology, Fudan University, Shanghai, 200433, P. R. China
| | - Denys Makarov
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Roman A Barmin
- Center of Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 3 Nobelya Str, Moscow, 121205, Russia
| | - Dmitry A Gorin
- Center of Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 3 Nobelya Str, Moscow, 121205, Russia
| | - Valeri P Tolstoy
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii Prospect, Petergof, St. Petersburg, 198504, Russia
| | - Gaoshan Huang
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Alexander A Solovev
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yongfeng Mei
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
45
|
New and Innovative Treatments for Neovascular Age-Related Macular Degeneration (nAMD). J Clin Med 2021; 10:jcm10112436. [PMID: 34070899 PMCID: PMC8198303 DOI: 10.3390/jcm10112436] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 12/20/2022] Open
Abstract
Age-related macular degeneration (AMD) is one of the most common causes of vision loss. Advanced forms of AMD are seen in primarily two types—neovascular AMD (nAMD) with the presence of choroid neovascularization and non-neovascular AMD (nnAMD) with geographic atrophy. Neovascular AMD is characterized by choroidal neovascularization (CNV), which leads to a cascade of complications, including exudation, leakage, and ultimately fibrosis with photoreceptor loss. Inhibition of VEGF represents the current standard of care. However, there is a tremendous gap between the outcomes in randomized clinical trials and real-world settings. New agents for nAMD might offer the potential to improve treatment outcomes and reduce treatment of frequent intravitreal injections. We summarize all the newer molecules, their pivotal clinical trial results, and their unique mechanisms of action; these include longer-acting agents, combination strategies, sustained release, and genetic therapies.
Collapse
|
46
|
Levasseur MD, Mantri S, Hayashi T, Reichenbach M, Hehn S, Waeckerle-Men Y, Johansen P, Hilvert D. Cell-Specific Delivery Using an Engineered Protein Nanocage. ACS Chem Biol 2021; 16:838-843. [PMID: 33881303 DOI: 10.1021/acschembio.1c00007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nanoparticle-based delivery systems have shown great promise for theranostics and bioimaging on the laboratory scale due to favorable pharmacokinetics and biodistribution. In this study, we examine the utility of a cage-forming variant of the protein lumazine synthase, which was previously designed and evolved to encapsulate biomacromolecular cargo. Linking antibody-binding domains to the exterior of the cage enabled binding of targeting immunoglobulins and cell-specific uptake of encapsulated cargo. Protein nanocages displaying antibody-binding domains appear to be less immunogenic than their unmodified counterparts, but they also recruit serum antibodies that can mask the efficacy of the targeting antibody. Our study highlights the strengths and limitations of a common targeting strategy for practical nanoparticle-based delivery applications.
Collapse
Affiliation(s)
| | - Shiksha Mantri
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Takahiro Hayashi
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Maria Reichenbach
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Svenja Hehn
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Pål Johansen
- Department of Dermatology, University of Zurich, Zurich, Switzerland
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
47
|
Chen Z, Elowitz MB. Programmable protein circuit design. Cell 2021; 184:2284-2301. [PMID: 33848464 PMCID: PMC8087657 DOI: 10.1016/j.cell.2021.03.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/22/2021] [Accepted: 03/02/2021] [Indexed: 12/11/2022]
Abstract
A fundamental challenge in synthetic biology is to create molecular circuits that can program complex cellular functions. Because proteins can bind, cleave, and chemically modify one another and interface directly and rapidly with endogenous pathways, they could extend the capabilities of synthetic circuits beyond what is possible with gene regulation alone. However, the very diversity that makes proteins so powerful also complicates efforts to harness them as well-controlled synthetic circuit components. Recent work has begun to address this challenge, focusing on principles such as orthogonality and composability that permit construction of diverse circuit-level functions from a limited set of engineered protein components. These approaches are now enabling the engineering of circuits that can sense, transmit, and process information; dynamically control cellular behaviors; and enable new therapeutic strategies, establishing a powerful paradigm for programming biology.
Collapse
Affiliation(s)
- Zibo Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Michael B Elowitz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
48
|
Berland L, Kim L, Abousaway O, Mines A, Mishra S, Clark L, Hofman P, Rashidian M. Nanobodies for Medical Imaging: About Ready for Prime Time? Biomolecules 2021; 11:637. [PMID: 33925941 PMCID: PMC8146371 DOI: 10.3390/biom11050637] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/13/2022] Open
Abstract
Recent advances in medical treatments have been revolutionary in shaping the management and treatment landscape of patients, notably cancer patients. Over the last decade, patients with diverse forms of locally advanced or metastatic cancer, such as melanoma, lung cancers, and many blood-borne malignancies, have seen their life expectancies increasing significantly. Notwithstanding these encouraging results, the present-day struggle with these treatments concerns patients who remain largely unresponsive, as well as those who experience severely toxic side effects. Gaining deeper insight into the cellular and molecular mechanisms underlying these variable responses will bring us closer to developing more effective therapeutics. To assess these mechanisms, non-invasive imaging techniques provide valuable whole-body information with precise targeting. An example of such is immuno-PET (Positron Emission Tomography), which employs radiolabeled antibodies to detect specific molecules of interest. Nanobodies, as the smallest derived antibody fragments, boast ideal characteristics for this purpose and have thus been used extensively in preclinical models and, more recently, in clinical early-stage studies as well. Their merit stems from their high affinity and specificity towards a target, among other factors. Furthermore, their small size (~14 kDa) allows them to easily disperse through the bloodstream and reach tissues in a reliable and uniform manner. In this review, we will discuss the powerful imaging potential of nanobodies, primarily through the lens of imaging malignant tumors but also touching upon their capability to image a broader variety of nonmalignant diseases.
Collapse
Affiliation(s)
- Léa Berland
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (L.B.); (L.K.); (O.A.); (A.M.); (S.M.); (L.C.)
- Université Côte d’Azur, CNRS, INSERM, IRCAN, 06100 Nice, France;
| | - Lauren Kim
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (L.B.); (L.K.); (O.A.); (A.M.); (S.M.); (L.C.)
- Department of Chemistry and Bioengineering, Harvard University, Cambridge, MA 02138, USA
| | - Omar Abousaway
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (L.B.); (L.K.); (O.A.); (A.M.); (S.M.); (L.C.)
| | - Andrea Mines
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (L.B.); (L.K.); (O.A.); (A.M.); (S.M.); (L.C.)
| | - Shruti Mishra
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (L.B.); (L.K.); (O.A.); (A.M.); (S.M.); (L.C.)
| | - Louise Clark
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (L.B.); (L.K.); (O.A.); (A.M.); (S.M.); (L.C.)
| | - Paul Hofman
- Université Côte d’Azur, CNRS, INSERM, IRCAN, 06100 Nice, France;
- Laboratory of Clinical and Experimental Pathology, FHU OncoAge, Nice Center Hospital, 06100 Nice, France
| | - Mohammad Rashidian
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (L.B.); (L.K.); (O.A.); (A.M.); (S.M.); (L.C.)
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
49
|
Tessarollo NG, Domingues ACM, Antunes F, da Luz JCDS, Rodrigues OA, Cerqueira OLD, Strauss BE. Nonreplicating Adenoviral Vectors: Improving Tropism and Delivery of Cancer Gene Therapy. Cancers (Basel) 2021; 13:1863. [PMID: 33919679 PMCID: PMC8069790 DOI: 10.3390/cancers13081863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Recent preclinical and clinical studies have used viral vectors in gene therapy research, especially nonreplicating adenovirus encoding strategic therapeutic genes for cancer treatment. Adenoviruses were the first DNA viruses to go into therapeutic development, mainly due to well-known biological features: stability in vivo, ease of manufacture, and efficient gene delivery to dividing and nondividing cells. However, there are some limitations for gene therapy using adenoviral vectors, such as nonspecific transduction of normal cells and liver sequestration and neutralization by antibodies, especially when administered systemically. On the other hand, adenoviral vectors are amenable to strategies for the modification of their biological structures, including genetic manipulation of viral proteins, pseudotyping, and conjugation with polymers or biological membranes. Such modifications provide greater specificity to the target cell and better safety in systemic administration; thus, a reduction of antiviral host responses would favor the use of adenoviral vectors in cancer immunotherapy. In this review, we describe the structural and molecular features of nonreplicating adenoviral vectors, the current limitations to their use, and strategies to modify adenoviral tropism, highlighting the approaches that may allow for the systemic administration of gene therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bryan E. Strauss
- Viral Vector Laboratory, Center for Translational Investigation in Oncology, Cancer Institute of São Paulo/LIM24, University of São Paulo School of Medicine, São Paulo 01246-000, Brazil; (N.G.T.); (A.C.M.D.); (F.A.); (J.C.d.S.d.L.); (O.A.R.); (O.L.D.C.)
| |
Collapse
|
50
|
Siegel PM, Bojti I, Bassler N, Holien J, Flierl U, Wang X, Waggershauser P, Tonnar X, Vedecnik C, Lamprecht C, Stankova I, Li T, Helbing T, Wolf D, Anto-Michel N, Mitre LS, Ehrlich J, Orlean L, Bender I, Przewosnik A, Mauler M, Hollederer L, Moser M, Bode C, Parker MW, Peter K, Diehl P. A DARPin targeting activated Mac-1 is a novel diagnostic tool and potential anti-inflammatory agent in myocarditis, sepsis and myocardial infarction. Basic Res Cardiol 2021; 116:17. [PMID: 33721106 PMCID: PMC7960600 DOI: 10.1007/s00395-021-00849-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/18/2021] [Indexed: 12/15/2022]
Abstract
The monocyte β2-integrin Mac-1 is crucial for leukocyte–endothelium interaction, rendering it an attractive therapeutic target for acute and chronic inflammation. Using phage display, a Designed-Ankyrin-Repeat-Protein (DARPin) was selected as a novel binding protein targeting and blocking the αM I-domain, an activation-specific epitope of Mac-1. This DARPin, named F7, specifically binds to activated Mac-1 on mouse and human monocytes as determined by flow cytometry. Homology modelling and docking studies defined distinct interaction sites which were verified by mutagenesis. Intravital microscopy showed reduced leukocyte–endothelium adhesion in mice treated with this DARPin. Using mouse models of sepsis, myocarditis and ischaemia/reperfusion injury, we demonstrate therapeutic anti-inflammatory effects. Finally, the activated Mac-1-specific DARPin is established as a tool to detect monocyte activation in patients receiving extra-corporeal membrane oxygenation, as well as suffering from sepsis and ST-elevation myocardial infarction. The activated Mac-1-specific DARPin F7 binds preferentially to activated monocytes, detects inflammation in critically ill patients, and inhibits monocyte and neutrophil function as an efficient new anti-inflammatory agent.
Collapse
Affiliation(s)
- Patrick M Siegel
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - István Bojti
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nicole Bassler
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Jessica Holien
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Melbourne, Australia
| | - Ulrike Flierl
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Xiaowei Wang
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia.,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia.,Department of Medicine, Central Clinical School, Monash University, Melbourne, Australia
| | - Philipp Waggershauser
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Xavier Tonnar
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christopher Vedecnik
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Constanze Lamprecht
- BIOSS Centre for Biological Signalling Studies/Synthetic Biology of Signalling Processes, University of Freiburg, Freiburg, Germany
| | - Ivana Stankova
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tian Li
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas Helbing
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dennis Wolf
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nathaly Anto-Michel
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lucia Sol Mitre
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Julia Ehrlich
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lukas Orlean
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ileana Bender
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anne Przewosnik
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maximilian Mauler
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Laura Hollederer
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin Moser
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Bode
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael W Parker
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Melbourne, Australia.,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia.,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Australia
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia. .,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia. .,Department of Medicine, Central Clinical School, Monash University, Melbourne, Australia. .,Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, 3004, Australia.
| | - Philipp Diehl
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia.,Department of Medicine, Central Clinical School, Monash University, Melbourne, Australia
| |
Collapse
|