1
|
Tenchov R, Sasso JM, Zhou QA. Polyglutamine (PolyQ) Diseases: Navigating the Landscape of Neurodegeneration. ACS Chem Neurosci 2024; 15:2665-2694. [PMID: 38996083 PMCID: PMC11311141 DOI: 10.1021/acschemneuro.4c00184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/02/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
Polyglutamine (polyQ) diseases are a group of inherited neurodegenerative disorders caused by expanded cytosine-adenine-guanine (CAG) repeats encoding proteins with abnormally expanded polyglutamine tract. A total of nine polyQ disorders have been identified, including Huntington's disease, six spinocerebellar ataxias, dentatorubral pallidoluysian atrophy (DRPLA), and spinal and bulbar muscular atrophy (SBMA). The diseases of this class are each considered rare, yet polyQ diseases constitute the largest group of monogenic neurodegenerative disorders. While each subtype of polyQ diseases has its own causative gene, certain pathologic molecular attributes have been implicated in virtually all of the polyQ diseases, including protein aggregation, proteolytic cleavage, neuronal dysfunction, transcription dysregulation, autophagy impairment, and mitochondrial dysfunction. Although animal models of polyQ disease are available helping to understand their pathogenesis and access disease-modifying therapies, there is neither a cure nor prevention for these diseases, with only symptomatic treatments available. In this paper, we analyze data from the CAS Content Collection to summarize the research progress in the class of polyQ diseases. We examine the publication landscape in the area in effort to provide insights into current knowledge advances and developments. We review the most discussed concepts and assess the strategies to combat these diseases. Finally, we inspect clinical applications of products against polyQ diseases with their development pipelines. The objective of this review is to provide a broad overview of the evolving landscape of current knowledge regarding the class of polyQ diseases, to outline challenges, and evaluate growth opportunities to further efforts in combating the diseases.
Collapse
Affiliation(s)
- Rumiana Tenchov
- CAS, a division of the American
Chemical Society, Columbus, Ohio 43210, United States
| | - Janet M. Sasso
- CAS, a division of the American
Chemical Society, Columbus, Ohio 43210, United States
| | | |
Collapse
|
2
|
Cheng Y, Zhang S, Shang H. Latest advances on new promising molecular-based therapeutic approaches for Huntington's disease. J Transl Int Med 2024; 12:134-147. [PMID: 38779119 PMCID: PMC11107186 DOI: 10.2478/jtim-2023-0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
Huntington's disease (HD) is a devastating, autosomal-dominant inherited, neurodegenerative disorder characterized by progressive motor deficits, cognitive impairments, and neuropsychiatric symptoms. It is caused by excessive cytosine-adenine-guanine (CAG) trinucleotide repeats within the huntingtin gene (HTT). Presently, therapeutic interventions capable of altering the trajectory of HD are lacking, while medications for abnormal movement and psychiatric symptoms are limited. Numerous pre-clinical and clinical studies have been conducted and are currently underway to test the efficacy of therapeutic approaches targeting some of these mechanisms with varying degrees of success. In this review, we update the latest advances on new promising molecular-based therapeutic strategies for this disorder, including DNA-targeting techniques such as zinc-finger proteins, transcription activator-like effector nucleases, and CRISPR/Cas9; post-transcriptional huntingtin-lowering approaches such as RNAi, antisense oligonucleotides, and small-molecule splicing modulators; and novel methods to clear the mHTT protein, such as proteolysis-targeting chimeras. We mainly focus on the ongoing clinical trials and the latest pre-clinical studies to explore the progress of emerging potential HD therapeutics.
Collapse
Affiliation(s)
- Yangfan Cheng
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu610041, Sichuan Province, China
| | - Sirui Zhang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu610041, Sichuan Province, China
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu610041, Sichuan Province, China
| |
Collapse
|
3
|
Bhat SA, Ahamad S, Dar NJ, Siddique YH, Nazir A. The Emerging Landscape of Natural Small-molecule Therapeutics for Huntington's Disease. Curr Neuropharmacol 2023; 21:867-889. [PMID: 36797612 PMCID: PMC10227909 DOI: 10.2174/1570159x21666230216104621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/12/2022] [Accepted: 11/18/2022] [Indexed: 02/18/2023] Open
Abstract
Huntington's disease (HD) is a rare and fatal neurodegenerative disorder with no diseasemodifying therapeutics. HD is characterized by extensive neuronal loss and is caused by the inherited expansion of the huntingtin (HTT) gene that encodes a toxic mutant HTT (mHTT) protein having expanded polyglutamine (polyQ) residues. Current HD therapeutics only offer symptomatic relief. In fact, Food and Drug Administration (FDA) approved two synthetic small-molecule VMAT2 inhibitors, tetrabenazine (1) and deutetrabenazine (2), for managing HD chorea and various other diseases in clinical trials. Therefore, the landscape of drug discovery programs for HD is evolving to discover disease- modifying HD therapeutics. Likewise, numerous natural products are being evaluated at different stages of clinical development and have shown the potential to ameliorate HD pathology. The inherent anti-inflammatory and antioxidant properties of natural products mitigate the mHTT-induced oxidative stress and neuroinflammation, improve mitochondrial functions, and augment the anti-apoptotic and pro-autophagic mechanisms for increased survival of neurons in HD. In this review, we have discussed HD pathogenesis and summarized the anti-HD clinical and pre-clinical natural products, focusing on their therapeutic effects and neuroprotective mechanism/s.
Collapse
Affiliation(s)
| | - Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh, U.P., India
| | - Nawab John Dar
- School of Medicine, UT Health San Antonio, Texas, TX, USA
| | | | - Aamir Nazir
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, U.P., India
- Academy of Scientific and Innovative Research, New Delhi, India
| |
Collapse
|
4
|
Ahamad S, Bhat SA. The Emerging Landscape of Small-Molecule Therapeutics for the Treatment of Huntington's Disease. J Med Chem 2022; 65:15993-16032. [PMID: 36490325 DOI: 10.1021/acs.jmedchem.2c00799] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene (HTT). The new insights into HD's cellular and molecular pathways have led to the identification of numerous potent small-molecule therapeutics for HD therapy. The field of HD-targeting small-molecule therapeutics is accelerating, and the approval of these therapeutics to combat HD may be expected in the near future. For instance, preclinical candidates such as naphthyridine-azaquinolone, AN1, AN2, CHDI-00484077, PRE084, EVP4593, and LOC14 have shown promise for further optimization to enter into HD clinical trials. This perspective aims to summarize the advent of small-molecule therapeutics at various stages of clinical development for HD therapy, emphasizing their structure and design, therapeutic effects, and specific mechanisms of action. Further, we have highlighted the key drivers involved in HD pathogenesis to provide insights into the basic principle for designing promising anti-HD therapeutic leads.
Collapse
Affiliation(s)
- Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh202002, India
| | - Shahnawaz A Bhat
- Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh202002, India
| |
Collapse
|
5
|
Lo CH, Pandey NK, Lim CKW, Ding Z, Tao M, Thomas DD, Langen R, Sachs JN. Discovery of Small Molecule Inhibitors of Huntingtin Exon 1 Aggregation by FRET-Based High-Throughput Screening in Living Cells. ACS Chem Neurosci 2020; 11:2286-2295. [PMID: 32568514 DOI: 10.1021/acschemneuro.0c00226] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Huntington's disease (HD) is the most common inherited neurodegenerative disorder and one of the nine polyglutamine (polyQ) diseases. HD is characterized by the pathological aggregation of the misfolded huntingtin exon 1 protein (Httex1) with abnormally long polyQ expansion due to genetic mutation. While there is currently no effective treatment for HD, inhibition of aggregate formation represents a direct approach in mediating the toxicity associated with Httex1 misfolding. To exploit this therapeutic window, we engineered two fluorescence resonance energy transfer (FRET) based biosensors that monitor the aggregation of Httex1 with different expanded Q-lengths (Q39 and Q72) in living cells. These FRET biosensors, together with a high-precision fluorescence lifetime detection platform, enable high-throughput screening of small molecules that target Httex1 aggregation. We found six small molecules that decreased the FRET of the biosensors and reduced Httex1-Q72-induced neuronal cytotoxicity in N2a cells with nanomolar potency. Using advanced SPR and EPR techniques, we confirmed that the compounds directly bind to Httex1 fibrils and inhibit aggregate formation. This strategy in targeting the Httex1 aggregates can be applicable to other proteins involved in polyQ related diseases.
Collapse
Affiliation(s)
- Chih Hung Lo
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Nitin K. Pandey
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
| | - Colin Kin-Wye Lim
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Zhipeng Ding
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Meixin Tao
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
| | - David D. Thomas
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Photonic Pharma LLC, Minneapolis, Minnesota 55410, United States
| | - Ralf Langen
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
| | - Jonathan N. Sachs
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
6
|
Joshi AS, Singh V, Gahane A, Thakur AK. Biodegradable Nanoparticles Containing Mechanism Based Peptide Inhibitors Reduce Polyglutamine Aggregation in Cell Models and Alleviate Motor Symptoms in a Drosophila Model of Huntington's Disease. ACS Chem Neurosci 2019; 10:1603-1614. [PMID: 30452227 DOI: 10.1021/acschemneuro.8b00545] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Detailed study of the molecular mechanism behind the pathogenesis of Huntington's disease (HD) suggests that polyglutamine aggregation is one of the fundamental reasons for HD. Despite the discovery of many potential molecules, HD therapy is still limited to symptomatic relief. Among these molecules, few mechanism based peptide inhibitors of polyglutamine aggregation (QBP1, NT17 and PGQ9P2) have shown promising activity; however, poor blood-brain barrier (BBB) penetration, low bioavailability, and low half-life may hinder their therapeutic potential. Hence, to deliver them to the brain for assessing their efficacy, we have designed and synthesized peptide loaded poly-d,l-lactide- co-glycolide (PLGA) nanoparticles of less than 200 nm in size by carbodiimide chemistry and nanoprecipitation protocols. For brain delivery, PLGA nanoparticles were coated with polysorbate 80 which aids receptor mediated internalization. Using the in vitro BBB model of Madin-Darby canine kidney cells and healthy mice, the translocation of polysorbate 80 coated fluorescent nanoparticles was confirmed. Moreover, QBP1, NT17, and PGQ9P2 loaded PLGA nanoparticles showed dose dependent inhibition of polyglutamine aggregation in cell models of HD (Neuro 2A and PC12 cells) and improved motor performance in Drosophila model of HD. Additionally, no toxicity in cells and animals confirmed biocompatibility of the nanoparticulate formulations. Based on this work, future studies can be designed in higher animal models to test peptide loaded nanoparticles in HD and other polyglutamine expansion related diseases.
Collapse
Affiliation(s)
- Abhayraj S. Joshi
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur (IIT Kanpur), Kanpur, Uttar Pradesh, India 208016
| | - Virender Singh
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur (IIT Kanpur), Kanpur, Uttar Pradesh, India 208016
| | - Avinash Gahane
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur (IIT Kanpur), Kanpur, Uttar Pradesh, India 208016
| | - Ashwani Kumar Thakur
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur (IIT Kanpur), Kanpur, Uttar Pradesh, India 208016
| |
Collapse
|
7
|
N6-Furfuryladenine is protective in Huntington's disease models by signaling huntingtin phosphorylation. Proc Natl Acad Sci U S A 2018; 115:E7081-E7090. [PMID: 29987005 DOI: 10.1073/pnas.1801772115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The huntingtin N17 domain is a modulator of mutant huntingtin toxicity and is hypophosphorylated in Huntington's disease (HD). We conducted high-content analysis to find compounds that could restore N17 phosphorylation. One lead compound from this screen was N6-furfuryladenine (N6FFA). N6FFA was protective in HD model neurons, and N6FFA treatment of an HD mouse model corrects HD phenotypes and eliminates cortical mutant huntingtin inclusions. We show that N6FFA restores N17 phosphorylation levels by being salvaged to a triphosphate form by adenine phosphoribosyltransferase (APRT) and used as a phosphate donor by casein kinase 2 (CK2). N6FFA is a naturally occurring product of oxidative DNA damage. Phosphorylated huntingtin functionally redistributes and colocalizes with CK2, APRT, and N6FFA DNA adducts at sites of induced DNA damage. We present a model in which this natural product compound is salvaged to provide a triphosphate substrate to signal huntingtin phosphorylation via CK2 during low-ATP stress under conditions of DNA damage, with protective effects in HD model systems.
Collapse
|
8
|
Recombinant Adeno Associated Viral (AAV) vector type 9 delivery of Ex1-Q138-mutant huntingtin in the rat striatum as a short-time model for in vivo studies in drug discovery. Neurobiol Dis 2016; 86:41-51. [DOI: 10.1016/j.nbd.2015.11.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/30/2015] [Accepted: 11/23/2015] [Indexed: 11/18/2022] Open
|
9
|
Liu L, Huang JS, Han C, Zhang GX, Xu XY, Shen Y, Li J, Jiang HY, Lin ZC, Xiong N, Wang T. Induced Pluripotent Stem Cells in Huntington's Disease: Disease Modeling and the Potential for Cell-Based Therapy. Mol Neurobiol 2015; 53:6698-6708. [PMID: 26659595 DOI: 10.1007/s12035-015-9601-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 12/01/2015] [Indexed: 12/31/2022]
Abstract
Huntington's disease (HD) is an incurable neurodegenerative disorder that is characterized by motor dysfunction, cognitive impairment, and behavioral abnormalities. It is an autosomal dominant disorder caused by a CAG repeat expansion in the huntingtin gene, resulting in progressive neuronal loss predominately in the striatum and cortex. Despite the discovery of the causative gene in 1993, the exact mechanisms underlying HD pathogenesis have yet to be elucidated. Treatments that slow or halt the disease process are currently unavailable. Recent advances in induced pluripotent stem cell (iPSC) technologies have transformed our ability to study disease in human neural cells. Here, we firstly review the progress made to model HD in vitro using patient-derived iPSCs, which reveal unique insights into illuminating molecular mechanisms and provide a novel human cell-based platform for drug discovery. We then highlight the promises and challenges for pluripotent stem cells that might be used as a therapeutic source for cell replacement therapy of the lost neurons in HD brains.
Collapse
Affiliation(s)
- Ling Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jin-Sha Huang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chao Han
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guo-Xin Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiao-Yun Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yan Shen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jie Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hai-Yang Jiang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhi-Cheng Lin
- Department of Psychiatry, Harvard Medical School; Division of Alcohol and Drug Abuse, and Mailman Neuroscience Research Center, McLean Hospital, Belmont, MA, USA
| | - Nian Xiong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
10
|
Abstract
Many human diseases, particularly neurodegenerative diseases, are associated with protein misfolding. Cellular protein quality control includes all processes that ensure proper protein folding and thus prevent the toxic consequences of protein misfolding. The heat shock response (HSR) and the unfolded protein response (UPR) are major stress response pathways within protein quality control that antagonize protein misfolding in the cytosol and the endoplasmic reticulum, respectively. Huntington's disease is an inherited neurodegenerative disease caused by the misfolding of an abnormally expanded polyglutamine (polyQ) region in the protein huntingtin (Htt), polyQHtt. Using Huntington's disease as a paradigm, I review here the central role of both the HSR and the UPR in defining the toxicity associated with polyQHtt in Huntington's disease. These findings may begin to unravel a previously unappreciated cooperation between different stress response pathways in cells expressing misfolded proteins and consequently in neurodegenerative diseases.
Collapse
|
11
|
Fiszer A, Krzyzosiak WJ. Oligonucleotide-based strategies to combat polyglutamine diseases. Nucleic Acids Res 2014; 42:6787-810. [PMID: 24848018 PMCID: PMC4066792 DOI: 10.1093/nar/gku385] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Considerable advances have been recently made in understanding the molecular aspects of pathogenesis and in developing therapeutic approaches for polyglutamine (polyQ) diseases. Studies on pathogenic mechanisms have extended our knowledge of mutant protein toxicity, confirmed the toxicity of mutant transcript and identified other toxic RNA and protein entities. One very promising therapeutic strategy is targeting the causative gene expression with oligonucleotide (ON) based tools. This straightforward approach aimed at halting the early steps in the cascade of pathogenic events has been widely tested for Huntington's disease and spinocerebellar ataxia type 3. In this review, we gather information on the use of antisense oligonucleotides and RNA interference triggers for the experimental treatment of polyQ diseases in cellular and animal models. We present studies testing non-allele-selective and allele-selective gene silencing strategies. The latter include targeting SNP variants associated with mutations or targeting the pathologically expanded CAG repeat directly. We compare gene silencing effectors of various types in a number of aspects, including their design, efficiency in cell culture experiments and pre-clinical testing. We discuss advantages, current limitations and perspectives of various ON-based strategies used to treat polyQ diseases.
Collapse
Affiliation(s)
- Agnieszka Fiszer
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Wlodzimierz J Krzyzosiak
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| |
Collapse
|
12
|
Dominguez C, Munoz-Sanjuan I. Foundation-Directed Therapeutic Development in Huntington’s Disease. J Med Chem 2014; 57:5479-88. [DOI: 10.1021/jm4009295] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Celia Dominguez
- CHDI Management, Inc.,
Advisors to CHDI Foundation, Inc., 6080 Center Drive, Los Angeles, California 90045, United States
| | - Ignacio Munoz-Sanjuan
- CHDI Management, Inc.,
Advisors to CHDI Foundation, Inc., 6080 Center Drive, Los Angeles, California 90045, United States
| |
Collapse
|
13
|
Arribat Y, Bonneaud N, Talmat-Amar Y, Layalle S, Parmentier ML, Maschat F. A huntingtin peptide inhibits polyQ-huntingtin associated defects. PLoS One 2013; 8:e68775. [PMID: 23861941 PMCID: PMC3701666 DOI: 10.1371/journal.pone.0068775] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 06/06/2013] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Huntington's disease (HD) is caused by the abnormal expansion of the polyglutamine tract in the human Huntingtin protein (polyQ-hHtt). Although this mutation behaves dominantly, huntingtin loss of function also contributes to HD pathogenesis. Indeed, wild-type Huntingtin plays a protective role with respect to polyQ-hHtt induced defects. METHODOLOGY/PRINCIPAL FINDINGS The question that we addressed here is what part of the wild-type Huntingtin is responsible for these protective properties. We first screened peptides from the Huntingtin protein in HeLa cells and identified a 23 aa peptide (P42) that inhibits polyQ-hHtt aggregation. P42 is part of the endogenous Huntingtin protein and lies within a region rich in proteolytic sites that plays a critical role in the pathogenesis process. Using a Drosophila model of HD, we tested the protective properties of this peptide on aggregation, as well as on different polyQ-hHtt induced neuronal phenotypes: eye degeneration (an indicator of cell death), impairment of vesicular axonal trafficking, and physiological behaviors such as larval locomotion and adult survival. Together, our results demonstrate high protective properties for P42 in vivo, in whole animals. These data also demonstrate a specific role of P42 on Huntington's disease model, since it has no effect on other models of polyQ-induced diseases, such as spinocerebellar ataxias. CONCLUSIONS/SIGNIFICANCE Altogether our data show that P42, a 23 aa-long hHtt peptide, plays a protective role with respect to polyQ-hHtt aggregation as well as cellular and behavioral dysfunctions induced by polyQ-hHtt in vivo. Our study also confirms the correlation between polyQ-hHtt aggregation and neuronal defects. Finally, these results strongly suggest a therapeutic potential for P42, specific of Huntington's disease.
Collapse
Affiliation(s)
- Yoan Arribat
- Institut de Génomique Fonctionnelle (IGF), CNRS-UMR5203, INSERM-U661, University of Montpellier, Montpellier, France
| | - Nathalie Bonneaud
- Institut de Génomique Fonctionnelle (IGF), CNRS-UMR5203, INSERM-U661, University of Montpellier, Montpellier, France
| | - Yasmina Talmat-Amar
- Institut de Génomique Fonctionnelle (IGF), CNRS-UMR5203, INSERM-U661, University of Montpellier, Montpellier, France
| | - Sophie Layalle
- Institut de Génomique Fonctionnelle (IGF), CNRS-UMR5203, INSERM-U661, University of Montpellier, Montpellier, France
| | - Marie-Laure Parmentier
- Institut de Génomique Fonctionnelle (IGF), CNRS-UMR5203, INSERM-U661, University of Montpellier, Montpellier, France
- * E-mail: (FM); (MLP)
| | - Florence Maschat
- Institut de Génomique Fonctionnelle (IGF), CNRS-UMR5203, INSERM-U661, University of Montpellier, Montpellier, France
- * E-mail: (FM); (MLP)
| |
Collapse
|
14
|
Calamini B, Lo DC, Kaltenbach LS. Experimental models for identifying modifiers of polyglutamine-induced aggregation and neurodegeneration. Neurotherapeutics 2013; 10:400-15. [PMID: 23700210 PMCID: PMC3701774 DOI: 10.1007/s13311-013-0195-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Huntington's disease (HD) typifies a class of inherited neurodegenerative disorders in which a CAG expansion in a single gene leads to an extended polyglutamine tract and misfolding of the expressed protein, driving cumulative neural dysfunction and degeneration. HD is invariably fatal with symptoms that include progressive neuropsychiatric and cognitive impairments, and eventual motor disability. No curative therapies yet exist for HD and related polyglutamine diseases; therefore, substantial efforts have been made in the drug discovery field to identify potential drug and drug target candidates for disease-modifying treatment. In this context, we review here a range of early-stage screening approaches based in in vitro, cellular, and invertebrate models to identify pharmacological and genetic modifiers of polyglutamine aggregation and induced neurodegeneration. In addition, emerging technologies, including high-content analysis, three-dimensional culture models, and induced pluripotent stem cells are increasingly being incorporated into drug discovery screening pipelines for protein misfolding disorders. Together, these diverse screening strategies are generating novel and exciting new probes for understanding the disease process and for furthering development of therapeutic candidates for eventual testing in the clinical setting.
Collapse
Affiliation(s)
- Barbara Calamini
- Department of Neurobiology and Center for Drug Discovery, Duke University Medical Center, 4321 Medical Park Drive, Durham, NC 27704 USA
| | - Donald C. Lo
- Department of Neurobiology and Center for Drug Discovery, Duke University Medical Center, 4321 Medical Park Drive, Durham, NC 27704 USA
| | - Linda S. Kaltenbach
- Department of Neurobiology and Center for Drug Discovery, Duke University Medical Center, 4321 Medical Park Drive, Durham, NC 27704 USA
| |
Collapse
|
15
|
Lazzeroni G, Benicchi T, Heitz F, Magnoni L, Diamanti D, Rossini L, Massai L, Federico C, Fecke W, Caricasole A, La Rosa S, Porcari V. A Phenotypic Screening Assay for Modulators of Huntingtin-Induced Transcriptional Dysregulation. ACTA ACUST UNITED AC 2013; 18:984-96. [DOI: 10.1177/1087057113484802] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Huntington’s Disease is a rare neurodegenerative disease caused by an abnormal expansion of CAG repeats encoding polyglutamine in the first exon of the huntingtin gene. N-terminal fragments containing polyglutamine (polyQ) sequences aggregate and can bind to cellular proteins, resulting in several pathophysiological consequences for affected neurons such as changes in gene transcription. One transcriptional pathway that has been implicated in HD pathogenesis is the CREB binding protein (CBP)/cAMP responsive element binding (CREB) pathway. We developed a phenotypic assay to screen for compounds that can reverse the transcriptional dysregulation of the pathway caused by induced mutated huntingtin protein (µHtt). 293/T-REx cells were stably co-transfected with an inducible full-length mutated huntingtin gene containing 138 glutamine repeats and with a reporter gene under control of the cAMP responsive element (CRE). One clone, which showed reversible inhibition of µHtt-induced reporter activity upon treatment with the neuroprotective Rho kinase inhibitor Y27632, was used for the development of a high-throughput phenotypic assay suitable for a primary screening campaign, which was performed on a library of 24,000 compounds. Several hit compounds were identified and validated further in a cell viability adenosine triphosphate assay. The assay has the potential for finding new drug candidates for the treatment of HD.
Collapse
Affiliation(s)
| | | | - Freddy Heitz
- Biomolecular Screening Unit, Siena Biotech Spa, Siena, Italy
- GenKyotex SA, Geneva, Switzerland
| | | | | | - Lara Rossini
- Department of Pharmacology, Siena Biotech Spa, Siena, Italy
| | - Luisa Massai
- Department of Pharmacology, Siena Biotech Spa, Siena, Italy
| | - Cesare Federico
- Department of Medicinal Chemistry, Siena Biotech Spa, Siena, Italy
| | - Wolfgang Fecke
- UCB Celltech, Slough, United Kingdom
- Hansabiomed OU, Tallinn, Estonia
| | | | | | | |
Collapse
|
16
|
Im J, Kim S, Jeong YH, Kim W, Lee D, Lee WS, Chang YT, Kim KT, Chung SK. Preparation and evaluation of BBB-permeable trehalose derivatives as potential therapeutic agents for Huntington's disease. MEDCHEMCOMM 2013. [DOI: 10.1039/c2md20112g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
17
|
MacLeod R, Tibben A, Frontali M, Evers-Kiebooms G, Jones A, Martinez-Descales A, Roos RA. Recommendations for the predictive genetic test in Huntington's disease. Clin Genet 2012; 83:221-31. [PMID: 22642570 DOI: 10.1111/j.1399-0004.2012.01900.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 05/08/2012] [Accepted: 05/22/2012] [Indexed: 01/27/2023]
Affiliation(s)
- R MacLeod
- Genetic Medicine, Manchester Academic Health Science Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Targeting mutant huntingtin for the development of disease-modifying therapy. Drug Discov Today 2012; 17:1217-23. [PMID: 22772050 DOI: 10.1016/j.drudis.2012.06.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 06/09/2012] [Accepted: 06/27/2012] [Indexed: 12/31/2022]
Abstract
Huntington's disease (HD) is a progressive and fatal neurodegenerative disease, and the most common inherited CAG repeat disorder. A polyglutamine expansion in the N-terminus of the huntingtin protein (HTT) leads to protein misfolding and downstream pathogenic processes culminating in widespread functional impairment and neurodegeneration in the striatum, cortex and other brain areas. To date, only symptomatic treatments are available that address motor, psychiatric and cognitive deficits. Here we review recent strategies for developing disease-modifying therapies designed to limit or abolish the pathogenic activities of the primary molecular target in HD, the mutant HTT protein itself.
Collapse
|
19
|
Carter RL, Chan AW. Pluripotent stem cells models for Huntington's disease: prospects and challenges. J Genet Genomics 2012; 39:253-9. [PMID: 22749012 PMCID: PMC4075320 DOI: 10.1016/j.jgg.2012.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 04/23/2012] [Accepted: 04/25/2012] [Indexed: 11/28/2022]
Abstract
Pluripotent cellular models have shown great promise in the study of a number of neurological disorders. Several advantages of using a stem cell model include the potential for cells to derive disease relevant neuronal cell types, providing a system for researchers to monitor disease progression during neurogenesis, along with serving as a platform for drug discovery. A number of stem cell derived models have been employed to establish in vitro research models of Huntington's disease that can be used to investigate cellular pathology and screen for drug and cell-based therapies. Although some progress has been made, there are a number of challenges and limitations that must be overcome before the true potential of this research strategy is achieved. In this article we review current stem cell models that have been reported, as well as discuss the issues that impair these studies. We also highlight the prospective application of Huntington's disease stem cell models in the development of novel therapeutic strategies and advancement of personalized medicine.
Collapse
Affiliation(s)
- Richard L. Carter
- Yerkes National Primate Research Center, 954 Gatewood Rd., N.E. Atlanta, GA 39329
- Genetic and Molecular Biology Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322, USA
- Department of Human Genetics, Emory University School of Medicine, 615 Michael St., Atlanta, GA 30322, USA
| | - Anthony W.S. Chan
- Yerkes National Primate Research Center, 954 Gatewood Rd., N.E. Atlanta, GA 39329
- Genetic and Molecular Biology Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322, USA
- Department of Human Genetics, Emory University School of Medicine, 615 Michael St., Atlanta, GA 30322, USA
| |
Collapse
|
20
|
Majid DSA, Aron AR, Thompson W, Sheldon S, Hamza S, Stoffers D, Holland D, Goldstein J, Corey-Bloom J, Dale AM. Basal ganglia atrophy in prodromal Huntington's disease is detectable over one year using automated segmentation. Mov Disord 2011; 26:2544-51. [PMID: 21932302 PMCID: PMC5615846 DOI: 10.1002/mds.23912] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 06/10/2011] [Accepted: 07/18/2011] [Indexed: 12/31/2022] Open
Abstract
Future clinical trials of neuroprotection in prodromal Huntington's (known as preHD) will require sensitive in vivo imaging biomarkers to track disease progression over the shortest period. Since basal ganglia atrophy is the most prominent structural characteristic of Huntington's pathology, systematic assessment of longitudinal subcortical atrophy holds great potential for future biomarker development. We studied 36 preHD and 22 age-matched controls using a novel method to quantify regional change from T(1) -weighted structural images acquired 1 year apart. We assessed cross-sectional volume differences and longitudinal volumetric change in 7 subcortical structures-the accumbens, amygdala, caudate, hippocampus, pallidum, putamen, and thalamus. At baseline, accumbens, caudate, pallidum, and putamen volumes were reduced in preHD versus controls (all P < .01). Longitudinally, atrophy was greater in preHD than controls in the caudate, pallidum, and putamen (all P < .01). Each structure showed a large between-group effect size, especially the pallidum where Cohen's d was 1.21. Using pallidal atrophy as a biomarker, we estimate that a hypothetical 1-year neuroprotection study would require only 35 preHD per arm to detect a 50% slowing in atrophy and only 138 preHD per arm to detect a 25% slowing in atrophy. The effect sizes calculated for preHD basal ganglia atrophy over 1 year are some of the largest reported to date. Consequently, this translates to strikingly small sample size estimates that will greatly facilitate any future neuroprotection study. This underscores the utility of this automatic image segmentation and longitudinal nonlinear registration method for upcoming studies of preHD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- DS Adnan Majid
- Department of Psychology, University of California, San Diego (UCSD) USA
- the Neurosciences Graduate Program, University of California, San Diego (UCSD) USA
| | - Adam R Aron
- Department of Psychology, University of California, San Diego (UCSD) USA
- the Neurosciences Graduate Program, University of California, San Diego (UCSD) USA
| | - Wesley Thompson
- Department of Psychiatry, University of California, San Diego (UCSD) USA
| | - Sarah Sheldon
- Department of Psychology, University of California, San Diego (UCSD) USA
| | - Samar Hamza
- Department of Psychology, University of California, San Diego (UCSD) USA
| | | | - Dominic Holland
- Department of Neurosciences, University of California, San Diego (UCSD) USA
| | - Jody Goldstein
- Department of Neurosciences, University of California, San Diego (UCSD) USA
| | - Jody Corey-Bloom
- Department of Neurosciences, University of California, San Diego (UCSD) USA
| | - Anders M Dale
- Department of Neurosciences, University of California, San Diego (UCSD) USA
- Department of Radiology, University of California, San Diego (UCSD) USA
| |
Collapse
|
21
|
Baldo B, Weiss A, Parker CN, Bibel M, Paganetti P, Kaupmann K. A screen for enhancers of clearance identifies huntingtin as a heat shock protein 90 (Hsp90) client protein. J Biol Chem 2011; 287:1406-14. [PMID: 22123826 DOI: 10.1074/jbc.m111.294801] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mechanisms to reduce the cellular levels of mutant huntingtin (mHtt) provide promising strategies for treating Huntington disease (HD). To identify compounds enhancing the degradation of mHtt, we performed a high throughput screen using a hippocampal HN10 cell line expressing a 573-amino acid mHtt fragment. Several hit structures were identified as heat shock protein 90 (Hsp90) inhibitors. Cell treatment with these compounds reduced levels of mHtt without overt toxic effects as measured by time-resolved Förster resonance energy transfer assays and Western blots. To characterize the mechanism of mHtt degradation, we used the potent and selective Hsp90 inhibitor NVP-AUY922. In HdhQ150 embryonic stem (ES) cells and in ES cell-derived neurons, NVP-AUY922 treatment substantially reduced soluble full-length mHtt levels. In HN10 cells, Hsp90 inhibition by NVP-AUY922 enhanced mHtt clearance in the absence of any detectable Hsp70 induction. Furthermore, inhibition of protein synthesis with cycloheximide or overexpression of dominant negative heat shock factor 1 (Hsf1) in HdhQ150 ES cells attenuated Hsp70 induction but did not affect NVP-AUY922-mediated mHtt clearance. Together, these data provided evidence that direct inhibition of Hsp90 chaperone function was crucial for mHtt degradation rather than heat shock response induction and Hsp70 up-regulation. Co-immunoprecipitation experiments revealed a physical interaction of mutant and wild-type Htt with the Hsp90 chaperone. Hsp90 inhibition disrupted the interaction and induced clearance of Htt through the ubiquitin-proteasome system. Our data suggest that Htt is an Hsp90 client protein and that Hsp90 inhibition may provide a means to reduce mHtt in HD.
Collapse
Affiliation(s)
- Barbara Baldo
- Neuroscience Pathway, Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4002 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
22
|
Towards a more robust approach to selecting and prosecuting promising targets and compounds. Future Med Chem 2011; 2:25-34. [PMID: 21426044 DOI: 10.4155/fmc.09.135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
There are many factors that influence predictivity in drug discovery and impact on productivity within the pharmaceutical industry. This article will concentrate on just two aspects; first, the role of investigating target modulation within a (human) disease setting, from target selection through screening to animal models, and second, potential developments in the analysis and probing of the chemical space appropriate for drug discovery and, in particular, steps to improve predictivity thus moving to a more forward-looking process. The activities associated with target selection should develop significantly over the next 5-10 years leading to a more robust association of target modulation with disease modification. In addition, better understanding of the opportunities for target modulators should drive and improve the selection of ligands suitable for therapeutic applications. Within these areas it will be important to move away from a retrospective consideration of druggable targets towards a forward-looking approach based on holistic (disease context) profiling of both (progressable) targets and subsequently their ligands. Improvements in the predictive analysis and probing of the chemical space will be needed to confront both safety and efficacy end points that currently remain major reasons for failure in the clinic. It is hoped that improvements in data visualization together with chemocentric mining of the literature will facilitate better interrogation of development and clinical data, potentially modifying research project plans to better address these key issues.
Collapse
|
23
|
Ladiwala ARA, Mora-Pale M, Lin JC, Bale SS, Fishman ZS, Dordick JS, Tessier PM. Polyphenolic glycosides and aglycones utilize opposing pathways to selectively remodel and inactivate toxic oligomers of amyloid β. Chembiochem 2011; 12:1749-58. [PMID: 21671331 DOI: 10.1002/cbic.201100123] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Indexed: 12/27/2022]
Abstract
Substantial evidence suggests that soluble prefibrillar oligomers of the Aβ42 peptide associated with Alzheimer's disease are the most cytotoxic aggregated Aβ isoform. Limited previous work has revealed that aromatic compounds capable of remodeling Aβ oligomers into nontoxic conformers typically do so by converting them into off-pathway aggregates instead of dissociating them into monomers. Towards identifying small-molecule antagonists capable of selectively dissociating toxic Aβ oligomers into soluble peptide at substoichiometric concentrations, we have investigated the pathways used by polyphenol aglycones and their glycosides to remodel Aβ soluble oligomers. We find that eleven polyphenol aglycones of variable size and structure utilize the same remodeling pathway whereby Aβ oligomers are rapidly converted into large, off-pathway aggregates. Strikingly, we find that glycosides of these polyphenols all utilize a distinct remodeling pathway in which Aβ oligomers are rapidly dissociated into soluble, disaggregated peptide. This disaggregation activity is a synergistic combination of the aglycone and glycone moieties because combinations of polyphenols and sugars fail to disaggregate Aβ oligomers. We also find that polyphenolic glycosides and aglycones use the same opposing pathways to remodel Aβ fibrils. Importantly, both classes of polyphenols fail to remodel nontoxic Aβ oligomers (which are indistinguishable in size and morphology to Aβ soluble oligomers) or promote aggregation of freshly disaggregated Aβ peptide; thus revealing that they are specific for remodeling toxic Aβ conformers. We expect that these and related small molecules will be powerful chemical probes for investigating the conformational and cellular underpinnings of Aβ-mediated toxicity.
Collapse
Affiliation(s)
- Ali Reza A Ladiwala
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Majid DSA, Stoffers D, Sheldon S, Hamza S, Thompson WK, Goldstein J, Corey-Bloom J, Aron AR. Automated structural imaging analysis detects premanifest Huntington's disease neurodegeneration within 1 year. Mov Disord 2011; 26:1481-8. [PMID: 21484871 DOI: 10.1002/mds.23656] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 11/30/2010] [Accepted: 01/03/2011] [Indexed: 11/09/2022] Open
Abstract
Intense efforts are underway to evaluate neuroimaging measures as biomarkers for neurodegeneration in premanifest Huntington's disease (preHD). We used a completely automated longitudinal analysis method to compare structural scans in preHD individuals and controls. Using a 1-year longitudinal design, we analyzed T(1) -weighted structural scans in 35 preHD individuals and 22 age-matched controls. We used the SIENA (Structural Image Evaluation, using Normalization, of Atrophy) software tool to yield overall percentage brain volume change (PBVC) and voxel-level changes in atrophy. We calculated sample sizes for a hypothetical disease-modifying (neuroprotection) study. We found significantly greater yearly atrophy in preHD individuals versus controls (mean PBVC controls, -0.149%; preHD, -0.388%; P = .031, Cohen's d = .617). For a preHD subgroup closest to disease onset, yearly atrophy was more than 3 times that of controls (mean PBVC close-to-onset preHD, -0.510%; P = .019, Cohen's d = .920). This atrophy was evident at the voxel level in periventricular regions, consistent with well-established preHD basal ganglia atrophy. We estimated that a neuroprotection study using SIENA would only need 74 close-to-onset individuals in each arm (treatment vs placebo) to detect a 50% slowing in yearly atrophy with 80% power. Automated whole-brain analysis of structural MRI can reliably detect preHD disease progression in 1 year. These results were attained with a readily available imaging analysis tool, SIENA, which is observer independent, automated, and robust with respect to image quality, slice thickness, and different pulse sequences. This MRI biomarker approach could be used to evaluate neuroprotection in preHD.
Collapse
Affiliation(s)
- D S Adnan Majid
- Department of Psychology, University of California, San Diego (UCSD), San Diego, California, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Reinhart PH, Kaltenbach LS, Essrich C, Dunn DE, Eudailey JA, DeMarco CT, Turmel GJ, Whaley JC, Wood A, Cho S, Lo DC. Identification of anti-inflammatory targets for Huntington's disease using a brain slice-based screening assay. Neurobiol Dis 2011; 43:248-56. [PMID: 21458569 DOI: 10.1016/j.nbd.2011.03.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 02/02/2011] [Accepted: 03/23/2011] [Indexed: 10/18/2022] Open
Abstract
Huntington's disease (HD) is a late-onset, neurodegenerative disease for which there are currently no cures nor disease-modifying treatments. Here we report the identification of several potential anti-inflammatory targets for HD using an ex vivo model of HD that involves the acute transfection of human mutant huntingtin-based constructs into rat brain slices. This model recapitulates key components of the human disease, including the formation of intracellular huntingtin protein (HTT)-containing inclusions and the progressive neurodegeneration of striatal neurons-both occurring within the native tissue context of these neurons. Using this "high-throughput biology" screening platform, we conducted a hypothesis-neutral screen of a collection of drug-like compounds which identified several anti-inflammatory targets that provided neuroprotection against HTT fragment-induced neurodegeneration. The nature of these targets provide further support for non-cell autonomous mechanisms mediating significant aspects of neuropathogenesis induced by mutant HTT fragment proteins.
Collapse
Affiliation(s)
- Peter H Reinhart
- Discovery Neuroscience, Wyeth Research, Princeton, NJ 08543, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Jorge CD, Ventura R, Maycock C, Outeiro TF, Santos H, Costa J. Assessment of the efficacy of solutes from extremophiles on protein aggregation in cell models of Huntington's and Parkinson's diseases. Neurochem Res 2011; 36:1005-11. [PMID: 21416120 DOI: 10.1007/s11064-011-0440-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 03/02/2011] [Indexed: 11/26/2022]
Abstract
Protein misfolding and deposition in the brain are implicated in the etiology of numerous neurodegenerative disorders. Here, organic solutes characteristic of microorganisms adapted to hot environments, were tested on experimental cell models of Huntington's and Parkinson's diseases. Diglycerol phosphate, di-myo-inositol phosphate, mannosylglycerate, and mannosylglyceramide were not toxic to the cells, at 10 mM concentration, but caused a decrease in cell density, which suggested an effect on proliferation. In contrast, mannosyl-lactate, an artificial analogue of mannosylglycerate, had a negative impact on cell viability. Concerning protein aggregation, inclusions of mutant huntingtin were reduced in the presence of diglycerol phosphate and di-myo-inositol phosphate, increased with mannosylglycerate, while mannosyl-lactate and mannosylglyceramide had no significant effect. α-Synuclein aggregation was not affected by the solutes tested, except for di-myo-inositol phosphate that led to a slight increased percentage of cells displaying visible aggregates. These solutes might be useful in the development of therapies for protein misfolding diseases.
Collapse
Affiliation(s)
- Carla D Jorge
- Instituto de Tecnologia Química e Biológica, Biology Division, Universidade Nova de Lisboa, Av da República, 2780-157 Oeiras, Portugal
| | | | | | | | | | | |
Collapse
|
27
|
Bradley CK, Scott HA, Chami O, Peura TT, Dumevska B, Schmidt U, Stojanov T. Derivation of Huntington's Disease-Affected Human Embryonic Stem Cell Lines. Stem Cells Dev 2011; 20:495-502. [DOI: 10.1089/scd.2010.0120] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
| | | | - Omar Chami
- Sydney IVF Stem Cells, Sydney, Australia
| | | | | | | | | |
Collapse
|
28
|
Sah DWY, Aronin N. Oligonucleotide therapeutic approaches for Huntington disease. J Clin Invest 2011; 121:500-7. [PMID: 21285523 DOI: 10.1172/jci45130] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Huntington disease is an autosomal dominant neurodegenerative disorder caused by a toxic expansion in the CAG repeat region of the huntingtin gene. Oligonucleotide approaches based on RNAi and antisense oligonucleotides provide promising new therapeutic strategies for direct intervention through reduced production of the causative mutant protein. Allele-specific and simultaneous mutant and wild-type allele-lowering strategies are being pursued with local delivery to the brain, each with relative merits. Delivery remains a key challenge for translational success, especially with chronic therapy. The potential of disease-modifying oligonucleotide approaches for Huntington disease will be revealed as they progress into clinical trials.
Collapse
Affiliation(s)
- Dinah W Y Sah
- Alnylam Pharmaceuticals Inc., Cambridge, Massachusetts, USA
| | | |
Collapse
|
29
|
Abstract
Huntington's disease is a progressive, fatal, neurodegenerative disorder caused by an expanded CAG repeat in the huntingtin gene, which encodes an abnormally long polyglutamine repeat in the huntingtin protein. Huntington's disease has served as a model for the study of other more common neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease. These disorders all share features including: delayed onset; selective neuronal vulnerability, despite widespread expression of disease-related proteins during the whole lifetime; abnormal protein processing and aggregation; and cellular toxic effects involving both cell autonomous and cell-cell interaction mechanisms. Pathogenic pathways of Huntington's disease are beginning to be unravelled, offering targets for treatments. Additionally, predictive genetic testing and findings of neuroimaging studies show that, as in some other neurodegenerative disorders, neurodegeneration in affected individuals begins many years before onset of diagnosable signs and symptoms of Huntington's disease, and it is accompanied by subtle cognitive, motor, and psychiatric changes (so-called prodromal disease). Thus, Huntington's disease is also emerging as a model for strategies to develop therapeutic interventions, not only to slow progression of manifest disease but also to delay, or ideally prevent, its onset.
Collapse
Affiliation(s)
- Christopher A Ross
- Departments of Psychiatry, Neurology, Pharmacology, and Neuroscience, and Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | | |
Collapse
|
30
|
Joyner PM, Cichewicz RH. Bringing natural products into the fold – exploring the therapeutic lead potential of secondary metabolites for the treatment of protein-misfolding-related neurodegenerative diseases. Nat Prod Rep 2011; 28:26-47. [DOI: 10.1039/c0np00017e] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
31
|
Kaltenbach LS, Bolton MM, Shah B, Kanju PM, Lewis GM, Turmel GJ, Whaley JC, Trask OJ, Lo DC. Composite primary neuronal high-content screening assay for Huntington's disease incorporating non-cell-autonomous interactions. ACTA ACUST UNITED AC 2010; 15:806-19. [PMID: 20581077 DOI: 10.1177/1087057110373392] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Huntington's disease (HD) is a fatal neurodegenerative disease characterized by progressive cognitive, behavioral, and motor deficits and caused by expansion of a polyglutamine repeat in the Huntingtin protein (Htt). Despite its monogenic nature, HD pathogenesis includes obligatory non-cell-autonomous pathways involving both the cortex and the striatum, and therefore effective recapitulation of relevant HD disease pathways in cell lines and primary neuronal monocultures is intrinsically limited. To address this, the authors developed an automated high-content imaging screen in high-density primary cultures of cortical and striatal neurons together with supporting glial cells. Cortical and striatal neurons are transfected separately with different fluorescent protein markers such that image-based high-content analysis can be used to assay these neuronal populations separately but still supporting their intercellular interactions, including abundant synaptic interconnectivity. This assay was reduced to practice using transfection of a mutant N-terminal Htt domain and validated via a screen of ~400 selected small molecules. Both expected as well as novel candidate targets for HD emerged from this screen; of particular interest were target classes with close relative proximity to clinical testing. These findings suggest that composite primary cultures incorporating increased levels of biological complexity can be used for high-content imaging and "high-context" screening to represent molecular targets that otherwise may be operant only in the complex tissue environment found in vivo during disease pathogenesis.
Collapse
Affiliation(s)
- Linda S Kaltenbach
- Center for Drug Discovery and Department of Neurobiology, Duke University Medical Center, Durham, NC 27704, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Joyner PM, Matheke RM, Smith LM, Cichewicz RH. Probing the metabolic aberrations underlying mutant huntingtin toxicity in yeast and assessing their degree of preservation in humans and mice. J Proteome Res 2010; 9:404-12. [PMID: 19908918 PMCID: PMC2801778 DOI: 10.1021/pr900734g] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Metabolomics is a powerful multiparameter tool for evaluating phenotypic traits associated with disease processes. We have used (1)H NMR metabolome profiling to characterize metabolic aberrations in a yeast model of Huntington's disease that are attributable to the mutant huntingtin protein's gain-of-toxic-function effects. A group of 11 metabolites (alanine, acetate, galactose, glutamine, glycerol, histidine, proline, succinate, threonine, trehalose, and valine) exhibited significant concentration changes in yeast expressing the N-terminal fragment of a mutant human huntingtin gene. Correspondence analysis was used to compare results from our yeast model to data reported from transgenic mice expressing a mutant huntingtin gene fragment and Huntington's disease patients. This technique enabled us to identify a variety of both model-specific (pertaining to a single species) and conserved (observed in multiple species) biomarkers related to mutant huntingtin's toxicity. Among the 59 metabolites identified, four compounds (alanine, glutamine, glycerol, and valine) changed significantly in concentration in all three Huntington's disease systems. We propose that alanine, glutamine, glycerol, and valine should be considered as promising biomarkers for evaluating new Huntington's disease therapies, as well as for providing unique insight into the mechanisms associated with mutant huntingtin toxicity.
Collapse
Affiliation(s)
- P. Matthew Joyner
- Natural Products Discovery Group, Department of Chemistry and Biochemistry, 620 Parrington Oval, Room 208, University of Oklahoma, Norman, Oklahoma, 73019-3032, USA
| | - Ronni M. Matheke
- Natural Products Discovery Group, Department of Chemistry and Biochemistry, 620 Parrington Oval, Room 208, University of Oklahoma, Norman, Oklahoma, 73019-3032, USA
| | - Lindsey M. Smith
- Natural Products Discovery Group, Department of Chemistry and Biochemistry, 620 Parrington Oval, Room 208, University of Oklahoma, Norman, Oklahoma, 73019-3032, USA
| | - Robert H. Cichewicz
- Natural Products Discovery Group, Department of Chemistry and Biochemistry, 620 Parrington Oval, Room 208, University of Oklahoma, Norman, Oklahoma, 73019-3032, USA
- Cellular and Behavioral Neurobiology Graduate Program, University of Oklahoma, Norman, Oklahoma, 73019-3032, USA
| |
Collapse
|
33
|
Ghukasyan V, Hsu CC, Liu CR, Kao FJ, Cheng TH. Fluorescence lifetime dynamics of enhanced green fluorescent protein in protein aggregates with expanded polyglutamine. JOURNAL OF BIOMEDICAL OPTICS 2010; 15:016008. [PMID: 20210454 DOI: 10.1117/1.3290821] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Protein aggregation is one of the characteristic steps in a number of neurodegenerative diseases eventually leading to neuronal death and thorough study of aggregation is required for the development of effective therapy. We apply fluorescence lifetime imaging for the characterization of the fluorescence dynamics of the enhanced green fluorescent protein (eGFP) in fusion with the polyQ-expanded polyglutamine stretch. At the expansion of polyQ above 39 residues, it has an inherent propensity to form amyloid-like fibrils and aggregates, and is responsible for Huntington's disease. The results of the experiments show that expression of the eGFP in fusion with the 97Q protein leads to the decrease of the eGFP fluorescence lifetime by approximately 300 ps. This phenomenon does not appear in Hsp104-deficient cells, where the aggregation in polyQ is prevented. We demonstrate that the lifetime decrease observed is related to the aggregation per se and discuss the possible role of refractive index and homo-FRET in these dynamics.
Collapse
Affiliation(s)
- Vladimir Ghukasyan
- National Yang-Ming University, Institute of Biophotonics, Taipei, Taiwan
| | | | | | | | | |
Collapse
|