1
|
Liu S, Zhang C, Han Z, Huang H, Sun J. Organocatalytic enantio- and diastereoselective assembly of cyclopropane-incorporated polycyclic molecules via isobenzopyrylium ions. Chem Sci 2024; 15:d4sc03746d. [PMID: 39246368 PMCID: PMC11378009 DOI: 10.1039/d4sc03746d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/15/2024] [Indexed: 09/10/2024] Open
Abstract
A highly enantio- and diastereoselective organocatalytic formation of cyclopropanes embedded in a complex bridged polycyclic architecture is disclosed. In the presence of a chiral phosphoric acid catalyst, this reaction generates four new stereogenic centers and three new C-C bonds efficiently from isochromene acetals and vinylboronic acids under mild conditions. Different from conventional asymmetric cyclopropanation strategies, this process does not involve carbenes or carbenoids. The complex products can serve as precursors to useful homoenolate equivalents. Mechanistically, DFT studies provided insights into the key transition states of the enantiodetermining [4 + 2] cycloaddition, in which the enantioselectivity is induced by the chiral phosphate counter anion of the isobenzopyrylium intermediate.
Collapse
Affiliation(s)
- Shuxuan Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University Changzhou China
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong SAR China
| | - Chaoshen Zhang
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong SAR China
| | - Zhengyu Han
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University Changzhou China
| | - Hai Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University Changzhou China
| | - Jianwei Sun
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong SAR China
| |
Collapse
|
2
|
Zhang M, Chen T, Lu X, Lan X, Chen Z, Lu S. G protein-coupled receptors (GPCRs): advances in structures, mechanisms, and drug discovery. Signal Transduct Target Ther 2024; 9:88. [PMID: 38594257 PMCID: PMC11004190 DOI: 10.1038/s41392-024-01803-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/19/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024] Open
Abstract
G protein-coupled receptors (GPCRs), the largest family of human membrane proteins and an important class of drug targets, play a role in maintaining numerous physiological processes. Agonist or antagonist, orthosteric effects or allosteric effects, and biased signaling or balanced signaling, characterize the complexity of GPCR dynamic features. In this study, we first review the structural advancements, activation mechanisms, and functional diversity of GPCRs. We then focus on GPCR drug discovery by revealing the detailed drug-target interactions and the underlying mechanisms of orthosteric drugs approved by the US Food and Drug Administration in the past five years. Particularly, an up-to-date analysis is performed on available GPCR structures complexed with synthetic small-molecule allosteric modulators to elucidate key receptor-ligand interactions and allosteric mechanisms. Finally, we highlight how the widespread GPCR-druggable allosteric sites can guide structure- or mechanism-based drug design and propose prospects of designing bitopic ligands for the future therapeutic potential of targeting this receptor family.
Collapse
Affiliation(s)
- Mingyang Zhang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ting Chen
- Department of Cardiology, Changzheng Hospital, Affiliated to Naval Medical University, Shanghai, 200003, China
| | - Xun Lu
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaobing Lan
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Ziqiang Chen
- Department of Orthopedics, Changhai Hospital, Affiliated to Naval Medical University, Shanghai, 200433, China.
| | - Shaoyong Lu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China.
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
3
|
Lukenge M, Ignell R, Hill SR. Adenosine triphosphate overrides the aversive effect of antifeedants and toxicants: a model alternative phagostimulant for sugar-based vector control tools. Parasit Vectors 2023; 16:416. [PMID: 37964326 PMCID: PMC10647091 DOI: 10.1186/s13071-023-06039-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/30/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Sugar, when used as the phagostimulant in attractive toxic bait control tools, limits the efficacy and selectivity of this technology. Thus, more potent and selective phagostimulants than sugar are required to improve this technology. The potency of adenosine triphosphate (ATP) as an alternative model phagostimulant was assessed to determine its capacity to override the aversive effects of select antifeedants and toxicants. How ATP and sucrose modulate the rate of toxicity in the yellow fever mosquito Aedes aegypti was also examined. METHODS A no-choice feeding assay was used to investigate the phagostimulatory ability of ATP to override the aversive effects of structurally divergent antifeedant and toxicant compounds, and to modulate the rate of toxicity over 24 h. Binary combinations of antifeedant and toxicant compounds, at various concentrations, were similarly assessed for enhanced lethal potency. In comparison, no-choice open access and cotton wick feeding assays were used to determine the phagostimulatory role of sucrose in the ingestion of boric acid-laced diets. Dissections of the guts were performed to determine the diet destination as dependant on the phagostimulant. RESULTS ATP is a potent phagostimulant that dose dependently overrides aversion to antifeedant and toxicant tastants. Feeding on antifeedant- or toxicant-laced diets that was induced by ATP selectively resulted in rapid knockdown (nicotine, lobeline and caffeine) or death (boric acid and propylene glycol), with a combination of the two lethal compounds inducing a synergistic effect at lower concentrations. ATP- and sucrose-induced feeding predominantly directed the antifeedant- or toxicant-laced meals to the midgut and the crop, respectively. CONCLUSIONS ATP is an efficacious alternative model phagostimulant to sucrose that overrides the aversive effects of antifeedants and toxicants, resulting in rapid toxic effects. Furthermore, this study demonstrates that variation in the rate of toxicity between ATP- and sugar-induced feeding is at least partly regulated by the differential feeding response, volume imbibed and the destination of the meals. Additional research is needed to identify structurally related, stable analogues of ATP due to the ephemeral nature of this molecule. For future applications, the workflow presented in this study may be used to evaluate such analogues for their suitability for use in attractive bait stations designed to target a broad range of haematophagous arthropods and prevent off-target species' feeding.
Collapse
Affiliation(s)
- Matthew Lukenge
- Disease Vector Group, Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Rickard Ignell
- Disease Vector Group, Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Sharon Rose Hill
- Disease Vector Group, Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| |
Collapse
|
4
|
Saito F, Euteneuer S. One-Pot, Three-Component Assembly of Sulfides Using a Sulfoxide Reagent as a Sulfur Dication Equivalent. Org Lett 2023; 25:6057-6061. [PMID: 37551799 DOI: 10.1021/acs.orglett.3c02301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
We report a one-pot, three-component synthesis of sulfides by exploiting a sulfoxide reagent as a formal sulfur dication equivalent. Our protocol consists of three simple chemical operations involving two Grignard reagents and trimethylsilyl chloride (TMSCl) to sequentially form sulfenate anions, sulfenate esters, and sulfides. We demonstrate a wide range of Grignard reagents to be coupled, thereby allowing the modular, thiol-free synthesis of sulfides including dialkenyl and alkenyl-alkynyl sulfides.
Collapse
Affiliation(s)
- Fumito Saito
- Department of Chemistry, Ludwig Maximilian University, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Simon Euteneuer
- Department of Chemistry, Ludwig Maximilian University, Butenandtstr. 5-13, 81377 Munich, Germany
| |
Collapse
|
5
|
Chen X, Wang Q, Yang J, Zhang L, Liu TT, Liu J, Deng BL, Liu J. Diagnostic and therapeutic value of P2Y12R in epilepsy. Front Pharmacol 2023; 14:1179028. [PMID: 37234715 PMCID: PMC10206044 DOI: 10.3389/fphar.2023.1179028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
There lacks biomarkers in current epilepsy diagnosis, and epilepsy is thus exposed to inadequate treatment, making it necessarily important to conduct search on new biomarkers and drug targets. The P2Y12 receptor is primarily expressed on microglia in the central nervous system, and acts as intrinsic immune cells in the central nervous system mediating neuroinflammation. In previous studies, P2Y12R in epilepsy has been found capable of controlling neuroinflammation and regulating neurogenesis as well as immature neuronal projections, and its expression is altered. P2Y12R is involved in microglia inhibition of neuronal activity and timely termination of seizures in acute seizures. In status epilepticus, the failure of P2Y12R in the process of "brake buffering" may not terminate the neuronal hyperexcitability timely. In chronic epilepsy, neuroinflammation causes seizures, which can in turn induce neuroinflammation, while on the other hand, neuroinflammation leads to neurogenesis, thereby causing abnormal neuronal discharges that give rise to seizures. In this case, targeting P2Y12R may be a novel strategy for the treatment of epilepsy. The detection of P2Y12R and its expression changes can contribute to the diagnosis of epilepsy. Meanwhile, the P2Y12R single-nucleotide polymorphism is associated with epilepsy susceptibility and endowed with the potential to individualize epilepsy diagnosis. To this end, functions of P2Y12R in the central nervous system were hereby reviewed, the effects of P2Y12R in epilepsy were explored, and the potential of P2Y12R in the diagnosis and treatment of epilepsy was further demonstrated.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Neurology, School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Qi Wang
- Department of Neurology, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, Chengdu, China
| | - Jie Yang
- Zunyi Medical University, Zunyi, China
| | - Li Zhang
- Electrophysiology Unit, Department of Neurology, Chengdu Fourth People’s Hospital, Chengdu, China
| | - Ting-Ting Liu
- Department of Neurology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jun Liu
- Department of Geriatric Neurology, Qinglongchang Ward, Chengdu Sixth People’s Hospital, Chengdu, China
| | - Bin-Lu Deng
- Department of Neurology, School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Jie Liu
- Department of Neurology, School of Clinical Medicine, Southwest Medical University, Luzhou, China
- Department of Neurology, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, Chengdu, China
- Department of Neurology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
6
|
Hua Y, Liu Y, Li L, Liu G. Activation of hypermethylated P2RY1 mitigates gastric cancer by promoting apoptosis and inhibiting proliferation. Open Life Sci 2023; 18:20220078. [PMID: 36879646 PMCID: PMC9985447 DOI: 10.1515/biol-2022-0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/12/2022] [Accepted: 04/20/2022] [Indexed: 03/06/2023] Open
Abstract
The P2RY1 receptor is known to cause cancer by activating the ERK signal pathway, and its DNA methylation status and corresponding regulatory mechanism remain unknown. This study used the DNA methylation chip to profile the genome-wide DNA methylation level in gastric cancer tissues. The proliferation and apoptosis of the SGC7901 gastric cancer cell line were determined after treatment with a selective P2RY1 receptor agonist, MRS2365. The promoter region of P2RY1 was found to be highly methylated with four hypermethylated sites (|Δβ value| > 0.2) in diffuse gastric cancer and was validated by bioinformatics analysis in the TCGA database. Also, immunohistochemical staining data obtained from the HPA database demonstrated the downregulated expression of proteins encoded by P2RY1 in stomach cancer tissue. The analysis of MRS2365-treated cells by annexin V/propidium iodide staining and caspase-3 activity assays indicated the induction of apoptosis in SGC7901 cells. The P2RY1 receptor activation in human SGC7901 gastric cancer cells via the MRS2365 agonist induced apoptosis and reduced cell growth. High DNA methylation in the promoter region of P2RY1 might have contributed to the reduced expression of P2RY1's mRNA, which was likely responsible for the "aggressive" nature of the diffuse gastric cancer.
Collapse
Affiliation(s)
- Yinggang Hua
- Department of Basic Medicine, Medical College of Xiamen University, Xiamen, Fujian, China
| | - Yanling Liu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Long Li
- Department of Basic Medicine, Medical College of Xiamen University, Xiamen, Fujian, China
| | - Guoyan Liu
- Department of Gastrointestinal Surgery, Zhongshan Hospital Xiamen University, Xiamen, China
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
- Department of Basic Medicine, Medical College of Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
7
|
3-Aryl-5-aminobiphenyl Substituted [1,2,4]triazolo[4,3- c]quinazolines: Synthesis and Photophysical Properties. Molecules 2023; 28:molecules28041937. [PMID: 36838924 PMCID: PMC9963873 DOI: 10.3390/molecules28041937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Amino-[1,1']-biphenyl-containing 3-aryl-[1,2,4]triazolo[4,3-c]quinazoline derivatives with fluorescent properties have been designed and synthesized. The type of annelation of the triazole ring to the pyrimidine one has been unambiguously confirmed by means of an X-ray diffraction (XRD) method; the molecules are non-planar, and the aryl substituents form the pincer-like conformation. The UV/Vis and photoluminescent properties of target compounds were investigated in two solvents of different polarities and in a solid state. The samples emit a broad range of wavelengths and display fluorescent quantum yields of up to 94% in toluene solutions. 5-(4'-Diphenylamino-[1,1']-biphenyl-4-yl)-3-(4-(trifluoromethyl)phenyl)-[1,2,4]triazolo[4,3-c]quinazoline exhibits the strongest emission in toluene and a solid state. Additionally, the solvatochromic properties were studied for the substituted [1,2,4]triazolo[4,3-c]quinazolines. Moreover, the changes in absorption and emission spectra have been demonstrated upon the addition of water to MeCN solutions, which confirms aggregate formation, and some samples were found to exhibit aggregation-induced emission enhancement. Further, the ability of triazoloquinazolines to detect trifluoroacetic acid has been analyzed; the presence of TFA induces changes in both absorption and emission spectra, and acidochromic behavvior was observed for some triazoloquinazoline compounds. Finally, electronic-structure calculations with the use of quantum-chemistry methods were performed for synthesized compounds.
Collapse
|
8
|
Aref HM, El-Khawas H, Elbassiouny A, Shokri HM, Zeinhom MG, Roushdy TM. A randomized pilot study of the efficacy and safety of loading ticagrelor in acute ischemic stroke. Neurol Sci 2023; 44:765-771. [PMID: 36446950 PMCID: PMC9842543 DOI: 10.1007/s10072-022-06525-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/20/2022] [Indexed: 12/02/2022]
Abstract
BACKGROUND Ticagrelor is one of the most recent antiplatelet drugs to be approved to treat ischemic heart disease. Its efficacy may exceed aspirin in improving clinical outcomes in patients with acute ischemic stroke who are ineligible for rt-PA. OBJECTIVES We evaluated the safety regarding hemorrhagic complications (as a primary endpoint) and the efficacy (as a secondary endpoint) of a 180-mg loading dose of ticagrelor given within 9 h from the onset of the first-ever non-cardioembolic ischemic stroke. METHODS We conducted our study on patients aged 18-75 years who presented with their first clinically manifested non-cardioembolic ischemic stroke and were recruited from the emergency department OF Kafr El-Sheik University Hospitals, Egypt. Eligible patients randomly received ticagrelor or aspirin loading and maintenance doses. Screening, randomization, and initiation of treatment all occurred within the first 9 h of stroke onset. RESULTS Eighty-five patients received ticagrelor, and 84 received aspirin. Patients who received ticagrelor had a better clinical outcome in terms of NIHSS improvement at 2 days and 1 week of discharge and a favorable mRS score after 1 week of discharge and at 90-day follow-up. There was no significant difference between the two groups regarding hemorrhagic adverse effects. CONCLUSION This pilot study found that ticagrelor had a better clinical outcome than aspirin based on NIHSS and mRS in acute ischemic stroke patients who received it within 9 h from symptom onset and had a shorter hospital stay duration. Ticagrelor was non-inferior to aspirin regarding hemorrhagic complications. TRIAL REGISTRATION We registered our trial on ClinicalTrials.gov, named after "ticagrelor versus aspirin in ischemic stroke," and with a clinical trial number (NCT03884530)-March 21, 2019.
Collapse
Affiliation(s)
- Hany M. Aref
- Neurology Department, Faculty of Medicine, Ain Shams University, Al Khalifa Elmamon St., Cairo, Egypt
| | - Hala El-Khawas
- Neurology Department, Faculty of Medicine, Ain Shams University, Al Khalifa Elmamon St., Cairo, Egypt
| | - Ahmed Elbassiouny
- Neurology Department, Faculty of Medicine, Ain Shams University, Al Khalifa Elmamon St., Cairo, Egypt
| | - Hossam M. Shokri
- Neurology Department, Faculty of Medicine, Ain Shams University, Al Khalifa Elmamon St., Cairo, Egypt
| | - Mohamed G. Zeinhom
- Neurology Department, Faculty of Medicine, Kafr El-Sheikh University, Elgeish St., Kafr El-Sheikh, Egypt
| | - Tamer M. Roushdy
- Neurology Department, Faculty of Medicine, Ain Shams University, Al Khalifa Elmamon St., Cairo, Egypt
| |
Collapse
|
9
|
Alberto AVP, Ferreira NCDS, Bonavita AGC, Nihei OK, de Farias FP, Bisaggio RDC, de Albuquerque C, Savino W, Coutinho‐Silva R, Persechini PM, Alves LA. Physiologic roles of P2 receptors in leukocytes. J Leukoc Biol 2022; 112:983-1012. [PMID: 35837975 PMCID: PMC9796137 DOI: 10.1002/jlb.2ru0421-226rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/13/2022] [Indexed: 01/01/2023] Open
Abstract
Since their discovery in the 1970s, purinergic receptors have been shown to play key roles in a wide variety of biologic systems and cell types. In the immune system, purinergic receptors participate in innate immunity and in the modulation of the adaptive immune response. In particular, P2 receptors, which respond to extracellular nucleotides, are widely expressed on leukocytes, causing the release of cytokines and chemokines and the formation of inflammatory mediators, and inducing phagocytosis, degranulation, and cell death. The activity of these receptors is regulated by ectonucleotidases-expressed in these same cell types-which regulate the availability of nucleotides in the extracellular environment. In this article, we review the characteristics of the main purinergic receptor subtypes present in the immune system, focusing on the P2 family. In addition, we describe the physiologic roles of the P2 receptors already identified in leukocytes and how they can positively or negatively modulate the development of infectious diseases, inflammation, and pain.
Collapse
Affiliation(s)
- Anael Viana Pinto Alberto
- Laboratory of Cellular Communication, Oswaldo Cruz InstituteOswaldo Cruz FoundationRio de JaneiroRJBrazil
| | | | | | - Oscar Kenji Nihei
- Center of Education and LetterState University of the West of ParanáFoz do IguaçuPRBrazil
| | | | - Rodrigo da Cunha Bisaggio
- Laboratory of Cellular Communication, Oswaldo Cruz InstituteOswaldo Cruz FoundationRio de JaneiroRJBrazil,Federal Institute of Education, Science, and Technology of Rio de JaneiroRio de JaneiroRJBrazil
| | | | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz InstituteOswaldo Cruz FoundationRio de JaneiroRJBrazil,Brazilian National Institute of Science and Technology on NeuroimmunomodulationRio de Janeiro Research Network on NeuroinflammationRio de JaneiroRJBrazil
| | - Robson Coutinho‐Silva
- Laboratory of Immunophysiology, Carlos Chagas Filho Biophysics InstituteFederal University of Rio de JaneiroRio de JaneiroRJBrazil
| | - Pedro Muanis Persechini
- Laboratory of Immunobiophysics, Carlos Chagas Filho Biophysics InstituteFederal University of Rio de JaneiroRio de JaneiroRJBrazil
| | - Luiz Anastacio Alves
- Laboratory of Cellular Communication, Oswaldo Cruz InstituteOswaldo Cruz FoundationRio de JaneiroRJBrazil
| |
Collapse
|
10
|
Akki M, Reddy DS, Katagi KS, Kumar A, Devarajegowda HC, M SK, Babagond V, Mane S, Joshi SD. Synthesis of coumarin-thioether conjugates as potential anti-tubercular agents: Their molecular docking and X-ray crystal studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
11
|
Eze CC, Ezeokonkwo AM, Ugwu ID, Eze UF, Onyeyilim EL, Attah IS, Okonkwo IV. Azole-pyrimidine Hybrid Anticancer Agents: A Review of Molecular Structure, Structure Activity Relationship and Molecular Docking. Anticancer Agents Med Chem 2022; 22:2822-2851. [PMID: 35306990 DOI: 10.2174/1871520622666220318090147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/07/2021] [Accepted: 01/18/2022] [Indexed: 11/22/2022]
Abstract
Cancer has emerged as one of the leading causes of deaths globally partly due to the steady rise in anticancer drug resistance. Pyrimidine and pyrimidine-fused heterocycles are some of the privileged scaffolds in medicine, as they possess diverse biological properties. Pyrimidines containing azole nucleus possesses inestimable anticancer potency and has enormous potential to conduct the regulation of cellular pathways for selective anticancer activity. The present review outlines the molecular structure of pyrimidine-fused azoles with significant anticancer activity. The structure activity relationship and molecular docking studies have also been discussed. The current review is the first complete compilation of significant literature on the proposed topic from 2016 to 2020. The information contained in this review offers a useful insight to chemists in the design of new and potent anticancer azole-pyrimidine analogues.
Collapse
Affiliation(s)
- Chinweike Cosmas Eze
- Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria
| | | | - Izuchukwu David Ugwu
- Department of Pure & Industrial Chemistry, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria
| | - Uchenna Florence Eze
- Department of Pure & Industrial Chemistry, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria
| | - Ebuka Leonard Onyeyilim
- Department of Pure & Industrial Chemistry, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria
| | - Izuchi Solomon Attah
- Department of Pure & Industrial Chemistry, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria
| | - Ifeoma Vivian Okonkwo
- Department of Science Laboratory Technology, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria
| |
Collapse
|
12
|
Yuan J, Jiang C, Wang J, Chen CJ, Hao Y, Zhao G, Feng Z, Xie XQ. In Silico Prediction and Validation of CB2 Allosteric Binding Sites to Aid the Design of Allosteric Modulators. Molecules 2022; 27:molecules27020453. [PMID: 35056767 PMCID: PMC8781014 DOI: 10.3390/molecules27020453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 11/16/2022] Open
Abstract
Although the 3D structures of active and inactive cannabinoid receptors type 2 (CB2) are available, neither the X-ray crystal nor the cryo-EM structure of CB2-orthosteric ligand-modulator has been resolved, prohibiting the drug discovery and development of CB2 allosteric modulators (AMs). In the present work, we mainly focused on investigating the potential allosteric binding site(s) of CB2. We applied different algorithms or tools to predict the potential allosteric binding sites of CB2 with the existing agonists. Seven potential allosteric sites can be observed for either CB2-CP55940 or CB2-WIN 55,212-2 complex, among which sites B, C, G and K are supported by the reported 3D structures of Class A GPCRs coupled with AMs. Applying our novel algorithm toolset-MCCS, we docked three known AMs of CB2 including Ec2la (C-2), trans-β-caryophyllene (TBC) and cannabidiol (CBD) to each site for further comparisons and quantified the potential binding residues in each allosteric binding site. Sequentially, we selected the most promising binding pose of C-2 in five allosteric sites to conduct the molecular dynamics (MD) simulations. Based on the results of docking studies and MD simulations, we suggest that site H is the most promising allosteric binding site. We plan to conduct bio-assay validations in the future.
Collapse
Affiliation(s)
- Jiayi Yuan
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.Y.); (C.J.); (J.W.); (C.-J.C.); (Y.H.); (G.Z.)
- Department of Pharmaceutical Sciences and National Center of Excellence for Computational Drug Abuse Research, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Chen Jiang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.Y.); (C.J.); (J.W.); (C.-J.C.); (Y.H.); (G.Z.)
- Department of Pharmaceutical Sciences and National Center of Excellence for Computational Drug Abuse Research, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Junmei Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.Y.); (C.J.); (J.W.); (C.-J.C.); (Y.H.); (G.Z.)
- Department of Pharmaceutical Sciences and National Center of Excellence for Computational Drug Abuse Research, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Chih-Jung Chen
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.Y.); (C.J.); (J.W.); (C.-J.C.); (Y.H.); (G.Z.)
- Department of Pharmaceutical Sciences and National Center of Excellence for Computational Drug Abuse Research, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yixuan Hao
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.Y.); (C.J.); (J.W.); (C.-J.C.); (Y.H.); (G.Z.)
- Department of Pharmaceutical Sciences and National Center of Excellence for Computational Drug Abuse Research, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Guangyi Zhao
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.Y.); (C.J.); (J.W.); (C.-J.C.); (Y.H.); (G.Z.)
- Department of Pharmaceutical Sciences and National Center of Excellence for Computational Drug Abuse Research, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Zhiwei Feng
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.Y.); (C.J.); (J.W.); (C.-J.C.); (Y.H.); (G.Z.)
- Department of Pharmaceutical Sciences and National Center of Excellence for Computational Drug Abuse Research, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Correspondence: (Z.F.); (X.-Q.X.)
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.Y.); (C.J.); (J.W.); (C.-J.C.); (Y.H.); (G.Z.)
- Department of Pharmaceutical Sciences and National Center of Excellence for Computational Drug Abuse Research, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Correspondence: (Z.F.); (X.-Q.X.)
| |
Collapse
|
13
|
Kondo M, Nishiyama K, Nishimura A, Kato Y, Nishida M. [Covalent drug discovery targeting G protein-coupled receptors]. Nihon Yakurigaku Zasshi 2022; 157:356-360. [PMID: 36047153 DOI: 10.1254/fpj.22045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
G protein-coupled receptors (GPCRs) play pivotal roles in converting physicochemical stimuli due to environmental changes to intracellular responses. After ligand stimulation, many GPCRs are desensitized and then recycled or degraded through phosphorylation and β-arrestin-dependent internalization, an important process to maintain protein quality control of GPCRs. However, it is unknown how GPCRs with low β-arrestin sensitivity are controlled. Here we unmasked a β-arrestin-independent GPCR internalization, named Redox-dependent Alternative Internalization (REDAI), focusing on β-arrestin-resistant purinergic P2Y6 receptor (P2Y6R). P2Y6R is highly expressed in macrophage and pathologically contributes to the development of colitis in mice. Natural electrophiles including in functional foods induce REDAI-mediated P2Y6R degradation leading to anti-inflammation in macrophages. Prevention of Cys220 modification on P2Y6R resulted in aggravation of the colitis. These results strongly suggest that targeting REDAI on GPCRs will be a breakthrough strategy for the prevention and treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Moe Kondo
- Department of Physiology, Graduate School of Pharmaceutical Sciences Kyushu University
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences
| | - Kazuhiro Nishiyama
- Department of Physiology, Graduate School of Pharmaceutical Sciences Kyushu University
| | - Akiyuki Nishimura
- Division of Cardiocirculatory Signaling, National Institute for Physiological Sciences (Exploratory Research Center on Life and Living Systems), National Institutes of Natural Sciences
| | - Yuri Kato
- Department of Physiology, Graduate School of Pharmaceutical Sciences Kyushu University
| | - Motohiro Nishida
- Department of Physiology, Graduate School of Pharmaceutical Sciences Kyushu University
- Division of Cardiocirculatory Signaling, National Institute for Physiological Sciences (Exploratory Research Center on Life and Living Systems), National Institutes of Natural Sciences
| |
Collapse
|
14
|
Shihan M, Novoyatleva T, Lehmeyer T, Sydykov A, Schermuly RT. Role of the Purinergic P2Y2 Receptor in Pulmonary Hypertension. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111009. [PMID: 34769531 PMCID: PMC8582672 DOI: 10.3390/ijerph182111009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 11/29/2022]
Abstract
Pulmonary arterial hypertension (PAH), group 1 pulmonary hypertension (PH), is a fatal disease that is characterized by vasoconstriction, increased pressure in the pulmonary arteries, and right heart failure. PAH can be described by abnormal vascular remodeling, hyperproliferation in the vasculature, endothelial cell dysfunction, and vascular tone dysregulation. The disease pathomechanisms, however, are as yet not fully understood at the molecular level. Purinergic receptors P2Y within the G-protein-coupled receptor family play a major role in fluid shear stress transduction, proliferation, migration, and vascular tone regulation in systemic circulation, but less is known about their contribution in PAH. Hence, studies that focus on purinergic signaling are of great importance for the identification of new therapeutic targets in PAH. Interestingly, the role of P2Y2 receptors has not yet been sufficiently studied in PAH, whereas the relevance of other P2Ys as drug targets for PAH was shown using specific agonists or antagonists. In this review, we will shed light on P2Y receptors and focus more on the P2Y2 receptor as a potential novel player in PAH and as a new therapeutic target for disease management.
Collapse
|
15
|
Zeinhom MG, Aref HM, El-Khawas H, Roushdy TM, Shokri HM, Elbassiouny A. A pilot study of the ticagrelor role in ischemic stroke secondary prevention. Eur Neurol 2021; 85:50-55. [PMID: 34515113 DOI: 10.1159/000518786] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/25/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Ticagrelor is one of the most recent antiplatelet drugs used to treat ischemic heart disease. Its efficacy may equal or exceed aspirin in improving clinical outcomes in patients with acute ischemic stroke who are ineligible for rt-PA. AIM OF THE WORK We aimed at evaluating the safety (as a primary endpoint) and efficacy (as a secondary endpoint) of a 180 mg loading dose of ticagrelor given within 9 h from the onset of first-ever ischemic stroke. METHODS We conducted an open-label, randomized prospective controlled clinical trial between May 2019 and September 2020 on patients who presented with their first-ever ischemic stroke and were recruited from the emergency department, of Kafr el-sheik University Hospitals, Egypt. Eligible patients randomly received aspirin or ticagrelor loading and maintenance doses. Treatment began within 9 h of stroke onset. RESULTS Aspirin was given to 84 patients; ticagrelor was given to 85. There was no significant difference between the 2 groups regarding the hemorrhagic and nonhemorrhagic complications. Patients who received ticagrelor had a better outcome regarding NIHSS improvement at 2 days and 1 week or discharge and a favorable mRS score after 1 week or discharge and at 90-day follow-up. CONCLUSION Ticagrelor was noninferior to aspirin regarding safety profile. Compared with aspirin, ticagrelor had a better clinical outcome based on NIHSS and mRS in first-ever acute ischemic stroke patients who received it within 9 h from symptom onset, leading to a shorter hospital stay.
Collapse
Affiliation(s)
- Mohamed G Zeinhom
- Department of Neurology, Faculty of Medicine, Kafr el-sheikh University, Kafr el-sheikh, Egypt
| | - Hany M Aref
- Department of Neurology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hala El-Khawas
- Department of Neurology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Tamer M Roushdy
- Department of Neurology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hossam M Shokri
- Department of Neurology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Ahmed Elbassiouny
- Department of Neurology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
16
|
Engel T, Smith J, Alves M. Targeting Neuroinflammation via Purinergic P2 Receptors for Disease Modification in Drug-Refractory Epilepsy. J Inflamm Res 2021; 14:3367-3392. [PMID: 34305404 PMCID: PMC8298823 DOI: 10.2147/jir.s287740] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/12/2021] [Indexed: 12/27/2022] Open
Abstract
Treatment of epilepsy remains a clinical challenge, with >30% of patients not responding to current antiseizure drugs (ASDs). Moreover, currently available ASDs are merely symptomatic without altering significantly the progression of the disease. Inflammation is increasingly recognized as playing an important role during the generation of hyperexcitable networks in the brain. Accordingly, the suppression of chronic inflammation has been suggested as a promising therapeutic strategy to prevent epileptogenesis and to treat drug-refractory epilepsy. As a consequence, a strong focus of ongoing research is identification of the mechanisms that contribute to sustained inflammation in the brain during epilepsy and whether these can be targeted. ATP is released in response to several pathological stimuli, including increased neuronal activity within the central nervous system, where it functions as a neuro- and gliotransmitter. Once released, ATP activates purinergic P2 receptors, which are divided into metabotropic P2Y and ionotropic P2X receptors, driving inflammatory processes. Evidence from experimental models and patients demonstrates widespread expression changes of both P2Y and P2X receptors during epilepsy, and critically, drugs targeting both receptor subtypes, in particular the P2Y1 and P2X7 subtypes, have been shown to possess both anticonvulsive and antiepileptic potential. This review provides a detailed summary of the current evidence suggesting ATP-gated receptors as novel drug targets for epilepsy and discusses how P2 receptor–driven inflammation may contribute to the generation of seizures and the development of epilepsy.
Collapse
Affiliation(s)
- Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland.,FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
| | - Jonathon Smith
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland.,FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
| | - Mariana Alves
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
| |
Collapse
|
17
|
Oliveira NF, Silva CLM. Unveiling the Potential of Purinergic Signaling in Schistosomiasis Treatment. Curr Top Med Chem 2021; 21:193-204. [PMID: 32972342 DOI: 10.2174/1568026620666200924115113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/15/2020] [Accepted: 08/24/2020] [Indexed: 11/22/2022]
Abstract
Schistosomiasis is a neglected tropical disease. It is related to long-lasting granulomatous fibrosis and inflammation of target organs, and current sub-optimal pharmacological treatment creates global public health concerns. Intravascular worms and eggs release antigens and extracellular vesicles that target host endothelial cells, modulate the immune system, and stimulate the release of damageassociated molecular patterns (DAMPs). ATP, one of the most studied DAMPs, triggers a cascade of autocrine and paracrine actions through purinergic P2X and P2Y receptors, which are shaped by ectonucleotidases (CD39). Both P2 receptor families, and in particular P2Y1, P2Y2, P2Y12, and P2X7 receptors, have been attracting increasing interest in several inflammatory diseases and drug development. Current data obtained from the murine model unveiled a CD39-ADP-P2Y1/P2Y12 receptors signaling pathway linked to the liver and mesenteric exacerbations of schistosomal inflammation. Therefore, we proposed that members of this purinergic signaling could be putative pharmacological targets to reduce schistosomal morbidity.
Collapse
Affiliation(s)
- Nathália Ferreira Oliveira
- Laboratory of Molecular and Biochemical Pharmacology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudia Lucia Martins Silva
- Laboratory of Molecular and Biochemical Pharmacology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
18
|
Beamer E, Kuchukulla M, Boison D, Engel T. ATP and adenosine-Two players in the control of seizures and epilepsy development. Prog Neurobiol 2021; 204:102105. [PMID: 34144123 DOI: 10.1016/j.pneurobio.2021.102105] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/07/2021] [Accepted: 06/09/2021] [Indexed: 02/08/2023]
Abstract
Despite continuous advances in understanding the underlying pathogenesis of hyperexcitable networks and lowered seizure thresholds, the treatment of epilepsy remains a clinical challenge. Over one third of patients remain resistant to current pharmacological interventions. Moreover, even when effective in suppressing seizures, current medications are merely symptomatic without significantly altering the course of the disease. Much effort is therefore invested in identifying new treatments with novel mechanisms of action, effective in drug-refractory epilepsy patients, and with the potential to modify disease progression. Compelling evidence has demonstrated that the purines, ATP and adenosine, are key mediators of the epileptogenic process. Extracellular ATP concentrations increase dramatically under pathological conditions, where it functions as a ligand at a host of purinergic receptors. ATP, however, also forms a substrate pool for the production of adenosine, via the action of an array of extracellular ATP degrading enzymes. ATP and adenosine have assumed largely opposite roles in coupling neuronal excitability to energy homeostasis in the brain. This review integrates and critically discusses novel findings regarding how ATP and adenosine control seizures and the development of epilepsy. This includes purine receptor P1 and P2-dependent mechanisms, release and reuptake mechanisms, extracellular and intracellular purine metabolism, and emerging receptor-independent effects of purines. Finally, possible purine-based therapeutic strategies for seizure suppression and disease modification are discussed.
Collapse
Affiliation(s)
- Edward Beamer
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; Centre for Bioscience, Manchester Metropolitan University, John Dalton Building, All Saints Campus, Manchester M15 6BH, UK
| | - Manvitha Kuchukulla
- Department of Neurosurgery, Robert Wood Johnson & New Jersey Medical Schools, Rutgers University, Piscataway, NJ 08854, USA
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson & New Jersey Medical Schools, Rutgers University, Piscataway, NJ 08854, USA.
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin D02 YN77, Ireland.
| |
Collapse
|
19
|
Felicetti T, Pismataro MC, Cecchetti V, Tabarrini O, Massari S. Triazolopyrimidine Nuclei: Privileged Scaffolds for Developing Antiviral Agents with a Proper Pharmacokinetic Profile. Curr Med Chem 2021; 29:1379-1407. [PMID: 34042030 DOI: 10.2174/0929867328666210526120534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 11/22/2022]
Abstract
Viruses are a continuing threat to global health. The lack or limited therapeutic armamentarium against some viral infections and increasing drug resistance issues make the search for new antiviral agents urgent. In recent years, a growing literature highlighted the use of triazolopyrimidine (TZP) heterocycles in the development of antiviral agents, with numerous compounds that showed potent antiviral activities against different RNA and DNA viruses. TZP core represents a privileged scaffold for achieving biologically active molecules, thanks to: i) the synthetic feasibility that allows to variously functionalize TZPs in the different positions of the nucleus, ii) the ability of TZP core to establish multiple interactions with the molecular target, and iii) its favorable pharmacokinetic properties. In the present review, after mentioning selected examples of TZP-based compounds with varied biological activities, we will focus on those antivirals that appeared in the literature in the last 10 years. Approaches used for their identification, the hit-to-lead studies, and the emerged structure-activity relationship will be described. A mention of the synthetic methodologies to prepare TZP nuclei will also be given. In addition, their mechanism of action, the binding mode within the biological target, and pharmacokinetic properties will be analyzed, highlighting the strengths and weaknesses of compounds based on the TZP scaffold, which is increasingly used in medicinal chemistry.
Collapse
Affiliation(s)
- Tommaso Felicetti
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy
| | | | - Violetta Cecchetti
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy
| | - Oriana Tabarrini
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy
| | - Serena Massari
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
20
|
A novel mechanism of rotavirus infection involving purinergic signaling. Purinergic Signal 2021; 17:169-171. [PMID: 33604766 PMCID: PMC7891116 DOI: 10.1007/s11302-021-09773-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 02/02/2021] [Indexed: 01/16/2023] Open
|
21
|
Kang GJ, Kim EJ, Lee CH. Therapeutic Effects of Specialized Pro-Resolving Lipids Mediators on Cardiac Fibrosis via NRF2 Activation. Antioxidants (Basel) 2020; 9:antiox9121259. [PMID: 33321955 PMCID: PMC7764646 DOI: 10.3390/antiox9121259] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/19/2022] Open
Abstract
Heart disease is the number one mortality disease in the world. In particular, cardiac fibrosis is considered as a major factor causing myocardial infarction and heart failure. In particular, oxidative stress is a major cause of heart fibrosis. In order to control such oxidative stress, the importance of nuclear factor erythropoietin 2 related factor 2 (NRF2) has recently been highlighted. In this review, we will discuss the activation of NRF2 by docosahexanoic acid (DHA), eicosapentaenoic acid (EPA), and the specialized pro-resolving lipid mediators (SPMs) derived from polyunsaturated lipids, including DHA and EPA. Additionally, we will discuss their effects on cardiac fibrosis via NRF2 activation.
Collapse
Affiliation(s)
- Gyeoung Jin Kang
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA; (G.J.K.); (E.J.K.)
| | - Eun Ji Kim
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA; (G.J.K.); (E.J.K.)
- College of Pharmacy, Dongguk University, Seoul 04620, Korea
| | - Chang Hoon Lee
- College of Pharmacy, Dongguk University, Seoul 04620, Korea
- Correspondence: ; Tel.: +82-31-961-5213
| |
Collapse
|
22
|
Menéndez Méndez A, Smith J, Engel T. Neonatal Seizures and Purinergic Signalling. Int J Mol Sci 2020; 21:ijms21217832. [PMID: 33105750 PMCID: PMC7660091 DOI: 10.3390/ijms21217832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023] Open
Abstract
Neonatal seizures are one of the most common comorbidities of neonatal encephalopathy, with seizures aggravating acute injury and clinical outcomes. Current treatment can control early life seizures; however, a high level of pharmacoresistance remains among infants, with increasing evidence suggesting current anti-seizure medication potentiating brain damage. This emphasises the need to develop safer therapeutic strategies with a different mechanism of action. The purinergic system, characterised by the use of adenosine triphosphate and its metabolites as signalling molecules, consists of the membrane-bound P1 and P2 purinoreceptors and proteins to modulate extracellular purine nucleotides and nucleoside levels. Targeting this system is proving successful at treating many disorders and diseases of the central nervous system, including epilepsy. Mounting evidence demonstrates that drugs targeting the purinergic system provide both convulsive and anticonvulsive effects. With components of the purinergic signalling system being widely expressed during brain development, emerging evidence suggests that purinergic signalling contributes to neonatal seizures. In this review, we first provide an overview on neonatal seizure pathology and purinergic signalling during brain development. We then describe in detail recent evidence demonstrating a role for purinergic signalling during neonatal seizures and discuss possible purine-based avenues for seizure suppression in neonates.
Collapse
Affiliation(s)
- Aida Menéndez Méndez
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; (A.M.M.); (J.S.)
| | - Jonathon Smith
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; (A.M.M.); (J.S.)
- FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Tobias Engel
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; (A.M.M.); (J.S.)
- FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
- Correspondence: ; Tel.: +35-314-025-199
| |
Collapse
|
23
|
Sun X, Gu P, Qin J, Su Y. Rhodium-catalysed diastereo- and enantio-selective cyclopropanation of α-boryl styrenes. Chem Commun (Camb) 2020; 56:12379-12382. [PMID: 32930681 DOI: 10.1039/d0cc02549f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A rhodium-catalyzed diastereo- and enantio-selective cyclopropanation of α-boryl styrenes with α-diazoarylacetates was established. Rh2(S-PTTL)4 (0.2 mol%) was found to be effective for the conversion, and 21 diastereopure cyclopropylboronates were prepared in high yields with excellent enantioselectivity (ee up to 99%).
Collapse
Affiliation(s)
- Xiao Sun
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | | | | | | |
Collapse
|
24
|
Alberto AVP, da Silva Ferreira NC, Soares RF, Alves LA. Molecular Modeling Applied to the Discovery of New Lead Compounds for P2 Receptors Based on Natural Sources. Front Pharmacol 2020; 11:01221. [PMID: 33117147 PMCID: PMC7553047 DOI: 10.3389/fphar.2020.01221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/27/2020] [Indexed: 12/24/2022] Open
Abstract
P2 receptors are a family of transmembrane receptors activated by nucleotides and nucleosides. Two classes have been described in mammals, P2X and P2Y, which are implicated in various diseases. Currently, only P2Y12 has medicines approved for clinical use as antiplatelet agents and natural products have emerged as a source of new drugs with action on P2 receptors due to the diversity of chemical structures. In drug discovery, in silico virtual screening (VS) techniques have become popular because they have numerous advantages, which include the evaluation of thousands of molecules against a target, usually proteins, faster and cheaper than classical high throughput screening (HTS). The number of studies using VS techniques has been growing in recent years and has led to the discovery of new molecules of natural origin with action on different P2X and P2Y receptors. Using different algorithms it is possible to obtain information on absorption, distribution, metabolism, toxicity, as well as predictions on biological activity and the lead-likeness of the selected hits. Selected biomolecules may then be tested by molecular dynamics and, if necessary, rationally designed or modified to improve their interaction for the target. The algorithms of these in silico tools are being improved to permit the precision development of new drugs and, in the future, this process will take the front of drug development against some central nervous system (CNS) disorders. Therefore, this review discusses the methodologies of in silico tools concerning P2 receptors, as well as future perspectives and discoveries, such as the employment of artificial intelligence in drug discovery.
Collapse
Affiliation(s)
- Anael Viana Pinto Alberto
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Rafael Ferreira Soares
- Laboratory of Functional Genomics and Bioinformatics, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Luiz Anastacio Alves
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
25
|
Zhu F, Chen Z, Walczak MA. Ligand-Free Copper(I)-Mediated Cross-Coupling Reactions of Organostannanes with Sulfur Electrophiles. J Org Chem 2020; 85:11942-11951. [PMID: 32902269 DOI: 10.1021/acs.joc.0c01399] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The synthesis of aryl thioether through the cross-coupling of C-S bond is a highly attractive area of research due to the prevalence of aryl thioether in bioactive natural products, functional materials, agrochemicals, and pharmaceutically active compounds. Herein, we report a ligand-free Cu(I) mediated electrophilic thiolation of organostannanes with sulfur electrophiles. A selective transfer of alkyl groups was achieved in reactions with alkyl carbastannatranes affording congested thioethers. This study offers a unified method to access diaryl and aryl alkyl thioethers and was demonstrated in the context of late-stage modifications..
Collapse
Affiliation(s)
- Feng Zhu
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Zhenhao Chen
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Maciej A Walczak
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
26
|
Shimoda K, Nishimura A, Sunggip C, Ito T, Nishiyama K, Kato Y, Tanaka T, Tozaki-Saitoh H, Tsuda M, Nishida M. Modulation of P2Y 6R expression exacerbates pressure overload-induced cardiac remodeling in mice. Sci Rep 2020; 10:13926. [PMID: 32811872 PMCID: PMC7434875 DOI: 10.1038/s41598-020-70956-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/30/2020] [Indexed: 12/19/2022] Open
Abstract
Cardiac tissue remodeling caused by hemodynamic overload is a major clinical outcome of heart failure. Uridine-responsive purinergic P2Y6 receptor (P2Y6R) contributes to the progression of cardiovascular remodeling in rodents, but it is not known whether inhibition of P2Y6R prevents or promotes heart failure. We demonstrate that inhibition of P2Y6R promotes pressure overload-induced sudden death and heart failure in mice. In neonatal cardiomyocytes, knockdown of P2Y6R significantly attenuated hypertrophic growth and cell death caused by hypotonic stimulation, indicating the involvement of P2Y6R in mechanical stress-induced myocardial dysfunction. Unexpectedly, compared with wild-type mice, deletion of P2Y6R promoted pressure overload-induced sudden death, as well as cardiac remodeling and dysfunction. Mice with cardiomyocyte-specific overexpression of P2Y6R also exhibited cardiac dysfunction and severe fibrosis. In contrast, P2Y6R deletion had little impact on oxidative stress-mediated cardiac dysfunction induced by doxorubicin treatment. These findings provide overwhelming evidence that systemic inhibition of P2Y6R exacerbates pressure overload-induced heart failure in mice, although P2Y6R in cardiomyocytes contributes to the progression of cardiac fibrosis.
Collapse
Affiliation(s)
- Kakeru Shimoda
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan.,SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Okazaki, Aichi, 444-8787, Japan
| | - Akiyuki Nishimura
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan.,SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Okazaki, Aichi, 444-8787, Japan.,Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Caroline Sunggip
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan.,Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.,Faculty of Medicine and Health Sciences, University Malaysia Sabah, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Tomoya Ito
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
| | - Kazuhiro Nishiyama
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yuri Kato
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tomohiro Tanaka
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan.,SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Okazaki, Aichi, 444-8787, Japan.,Center for Novel Science Initiatives (CNSI), National Institutes of Natural Sciences, Tokyo, 105-0001, Japan
| | - Hidetoshi Tozaki-Saitoh
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Makoto Tsuda
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Motohiro Nishida
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan. .,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan. .,SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Okazaki, Aichi, 444-8787, Japan. .,Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan. .,Center for Novel Science Initiatives (CNSI), National Institutes of Natural Sciences, Tokyo, 105-0001, Japan.
| |
Collapse
|
27
|
da Silva Ferreira NC, Alves LA, Soares-Bezerra RJ. Potential Therapeutic Applications of P2 Receptor Antagonists: From Bench to Clinical Trials. Curr Drug Targets 2020; 20:919-937. [PMID: 30760187 DOI: 10.2174/1389450120666190213095923] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/30/2019] [Accepted: 02/06/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Extracellular purines and pyrimidines have important physiological functions in mammals. Purines and pyrimidines act on P1 and P2 purinergic receptors, which are widely expressed in the plasma membrane in various cell types. P2 receptors act as important therapeutic targets and are associated with several disorders, such as pain, neurodegeneration, cancer, inflammation, and thrombosis. However, the use of antagonists for P2 receptors in clinical therapy, with the exception of P2Y12, is a great challenge. Currently, many research groups and pharmaceutical companies are working on the development of specific antagonist molecules for each receptor subtype that could be used as new medicines to treat their respective disorders. OBJECTIVE The present review compiles some interesting findings on the application of P2 receptor antagonists in different in vitro and in vivo experimental models as well as the progress of advanced clinical trials with these compounds. CONCLUSION Despite all of the exciting results obtained on the bench, few antagonists of P2 receptors advanced to the clinical trials, and once they reach this stage, the effectiveness of the therapy is not guaranteed, as in the example of P2X7 antagonists. Despite this, P2Y12 receptor antagonists have a history of success and have been used in therapy for at least two decades to prevent thrombosis in patients at risk for myocardial infarctions. This breakthrough is the motivation for scientists to develop new drugs with antagonistic activity for the other P2 receptors; thus, in a matter of years, we will have an evolution in the field of purinergic therapy.
Collapse
Affiliation(s)
- Natiele C da Silva Ferreira
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, 21040- 360, Brazil
| | - Luiz A Alves
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, 21040- 360, Brazil
| | - Rômulo J Soares-Bezerra
- Laboratory of Technological Development in Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, 21040-360, Brazil
| |
Collapse
|
28
|
Vivas Díaz JJ, Niño Rojas LM, Castro Clavijo JA. Reacción de hipersensibilidad a ticagrelor. REPERTORIO DE MEDICINA Y CIRUGÍA 2020. [DOI: 10.31260/repertmedcir.01217273.907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
El ticagrelor es un medicamento antiagregante plaquetario utilizado como prevención secundaria en pacientes con síndrome coronario agudo. Dentro de las reacciones adversas reportadas secundarias a su administración se encuentran hemorragias, cefalea, disnea, epistaxis, pausas ventriculares o bradicardia, hiperuricemia y elevación de la creatinina. No obstante, las reacciones de hipersensibilidad han sido raras. Presentamos un paciente masculino de 63 años con infarto agudo del miocardio, elevación de ST y documentándose en cateterismo cardíaco ectasia y enfermedad de flujos lentos. Requirió terapia de antiagregación dual con ácido acetilsalicílico (ASA) y ticagrelor, con posterior urticaria de origen medicamentoso según concepto de dermatología. Se manejó con esteroide tópico, antihistamínico oral y retiro de ticagrelor. Se considera un caso raro de reacción al antiagregante plaquetario descrito.
Collapse
|
29
|
Nassir M, Mirza S, Arad U, Lee S, Rafehi M, Yaw Attah I, Renn C, Zimmermann H, Pelletier J, Sévigny J, Müller CE, Fischer B. Adenine-(methoxy)-ethoxy-P α,α-dithio-triphosphate inhibits pathologic calcium pyrophosphate deposition in osteoarthritic human chondrocytes. Org Biomol Chem 2019; 17:9913-9923. [PMID: 31720670 DOI: 10.1039/c9ob02199j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nucleotide pyrophosphatase/phosphodiesterase-1 (NPP1) inhibitors have been suggested as a potential treatment for calcium pyrophosphate dihydrate (CPPD) deposition disease. Here, we targeted the development of improved NPP1 inhibitors based on acyclic mimics of Pα,α-phosphorodithioate-substituted adenine nucleotides, 7-10. The latter were obtained in a facile two-step synthesis from adenine-(methoxy)ethanol. Among analogs 7-10, adenine-(methoxy)ethoxy-Pα,α-dithio-triphosphate, 8, was the most potent NPP1 inhibitor both with purified enzyme (IC50 0.645 μM) and in osteoarthritic human chondrocytes (IC50 0.033 μM). Furthermore, it efficaciously (10-fold vs. control) inhibited ATP-induced CPPD in human articular chondrocytes. Importantly, 8 was a highly selective NPP1 inhibitor which showed only minor inhibition of NPP3, CD39 and CD73, and did not inhibit TNAP (tissue nonspecific alkaline phosphatase) activity in human chondrocytes. Furthermore, 8 did not activate P2Y1,2,6 receptors. Analog 8 was not toxic to cultured chondrocytes at 100 μM. Therefore, 8 may be suitable for further development as a drug candidate for the treatment of CPPD arthritis and other NPP1-related diseases.
Collapse
Affiliation(s)
- Molhm Nassir
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel. bilha.fischer@ biu.ac.il
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Attah IY, Neumann A, Al-Hroub H, Rafehi M, Baqi Y, Namasivayam V, Müller CE. Ligand binding and activation of UTP-activated G protein-coupled P2Y 2 and P2Y 4 receptors elucidated by mutagenesis, pharmacological and computational studies. Biochim Biophys Acta Gen Subj 2019; 1864:129501. [PMID: 31812541 DOI: 10.1016/j.bbagen.2019.129501] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/17/2019] [Accepted: 12/03/2019] [Indexed: 12/18/2022]
Abstract
The nucleotide receptors P2Y2 and P2Y4 are the most closely related G protein-coupled receptors (GPCRs) of the P2Y receptor (P2YR) family. Both subtypes couple to Gq proteins and are activated by the pyrimidine nucleotide UTP, but only P2Y2R is also activated by the purine nucleotide ATP. Agonists and antagonists of both receptor subtypes have potential as drugs e.g. for neurodegenerative and inflammatory diseases. So far, potent and selective, "drug-like" ligands for both receptors are scarce, but would be required for target validation and as lead structures for drug development. Structural information on the receptors is lacking since no X-ray structures or cryo-electron microscopy images are available. Thus, we performed receptor homology modeling and docking studies combined with mutagenesis experiments on both receptors to address the question how ligand binding selectivity for these closely related P2YR subtypes can be achieved. The orthosteric binding site of P2Y2R appeared to be more spacious than that of P2Y4R. Mutation of Y197 to alanine in P2Y4R resulted in a gain of ATP sensitivity. Anthraquinone-derived antagonists are likely to bind to the orthosteric or an allosteric site depending on their substitution pattern and the nature of the orthosteric binding site of the respective P2YR subtype. These insights into the architecture of P2Y2- and P2Y4Rs and their interactions with structurally diverse agonists and antagonist provide a solid basis for the future design of potent and selective ligands.
Collapse
Affiliation(s)
- Isaac Y Attah
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical & Medicinal Chemistry, University of Bonn, Germany
| | - Alexander Neumann
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical & Medicinal Chemistry, University of Bonn, Germany
| | - Haneen Al-Hroub
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical & Medicinal Chemistry, University of Bonn, Germany
| | - Muhammad Rafehi
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical & Medicinal Chemistry, University of Bonn, Germany
| | - Younis Baqi
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical & Medicinal Chemistry, University of Bonn, Germany; Department of Chemistry, Faculty of Science, Sultan Qaboos University, PO Box 36, Postal Code 123 Muscat, Oman
| | - Vigneshwaran Namasivayam
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical & Medicinal Chemistry, University of Bonn, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical & Medicinal Chemistry, University of Bonn, Germany.
| |
Collapse
|
31
|
Xu J, Liu RY, Yeung CS, Buchwald SL. Monophosphine Ligands Promote Pd-Catalyzed C-S Cross-Coupling Reactions at Room Temperature with Soluble Bases. ACS Catal 2019; 9:6461-6466. [PMID: 31929949 DOI: 10.1021/acscatal.9b01913] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The Pd-catalyzed cross-coupling of thiols with aromatic electrophiles is a reliable method for the synthesis of aryl thioethers, which are important compounds for pharmaceutical and agricultural applications. Since thiols and thiolates strongly bind late transition metals, previous research has focused on catalysts supported by chelating, bisphosphine ligands, which were considered less likely to be displaced during the course of the reaction. We show that by using monophosphine ligands instead, more effective catalysis can be achieved. Notably, compared to previous methods, this increased reactivity allows for the use of much lower reaction temperature, soluble bases, and base-sensitive substrates. In contrast to conventional wisdom, our mechanistic data suggest that the extent of displacement of phosphine ligands by thiols is, firstly, not correlated with the ligand bulk or thiol nucleophilicity, and secondly, not predictive of the effectiveness of a given ligand in combination with palladium.
Collapse
Affiliation(s)
- Jessica Xu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Richard Y. Liu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Charles S. Yeung
- Department of Discovery Chemistry, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Stephen L. Buchwald
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
32
|
Brockmann N, Sureechatchaiyan P, Müller D, Hennicke T, Hausmann R, Fritz G, Hamacher A, Kassack MU. Profiling of a suramin-derived compound library at recombinant human P2Y receptors identifies NF272 as a competitive but non-selective P2Y 2 receptor antagonist. Purinergic Signal 2019; 15:287-298. [PMID: 31270713 DOI: 10.1007/s11302-019-09663-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/04/2019] [Indexed: 12/21/2022] Open
Abstract
Extracellular nucleotides mediate multiple physiological effects such as proliferation, differentiation, or induction of apoptosis through G protein-coupled P2Y receptors or P2X ion channels. Evaluation of the complete physiological role of nucleotides has long been hampered by a lack of potent and selective ligands for all P2 subtypes. Meanwhile, for most of the P2 receptors, selective ligands are available, but only a few potent and selective P2Y2 receptor antagonists are described. This limits the understanding of the role of P2Y2 receptors. The purpose of this study was to search for P2Y2 receptor antagonists by a combinatorial screening of a library of around 415 suramin-derived compounds. Calcium fluorescence measurements at P2Y2 receptors recombinantly expressed in human 1321N1 astrocytoma cells identified NF272 [8-(4-methyl-3-(3-phenoxycarbonylimino-benzamido)benzamido)-naphthalene-1,3,5-trisulfonic acid trisodium salt] as a competitive P2Y2 receptor antagonist with a Ki of 19 μM which is 14-fold more potent than suramin at this receptor subtype. The SCHILD analysis of competitive inhibition resulted in a pA2 value of 5.03 ± 0.22 (mean ± SEM) with a slope not significantly different from unity. Among uracil-nucleotide-preferring P2Y receptors, NF272 shows a moderate selectivity over P2Y4 (3.6-fold) and P2Y6 (5.7-fold). However, NF272 is equipotent at P2Y1, and even more potent at P2Y11 and P2Y12 receptors. Up to 250 μM, NF272 showed no cytotoxicity in MTT cell viability assays in 1321N1, HEK293, and OVCAR-3 cells. Further, NF272 was able to inhibit the ATP-induced calcium signal in OVCAR-3 cells demonstrated to express P2Y2 receptors. In conclusion, NF272 is a competitive but non-selective P2Y2 receptor antagonist with 14-fold higher potency than suramin lacking cytotoxic effects. Therefore, NF272 may serve as a lead structure for further development of P2Y2 receptor antagonists.
Collapse
Affiliation(s)
- Nicole Brockmann
- Institute of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Biochemistry, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Parichat Sureechatchaiyan
- Institute of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Biochemistry, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - David Müller
- Institute of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Biochemistry, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Tatiana Hennicke
- Institute of Toxicology, Heinrich-Heine-University of Duesseldorf, Duesseldorf, Germany
| | - Ralf Hausmann
- Molecular Pharmacology, Rheinisch-Westfaelische Technische Hochschule Aachen, RWTH Aachen University, Aachen, Germany
| | - Gerhard Fritz
- Institute of Toxicology, Heinrich-Heine-University of Duesseldorf, Duesseldorf, Germany
| | - Alexandra Hamacher
- Institute of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Biochemistry, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Matthias U Kassack
- Institute of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Biochemistry, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany.
| |
Collapse
|
33
|
Shi Y, Gao Q, Xu S. Chiral Bidentate Boryl Ligand Enabled Iridium-Catalyzed Enantioselective C(sp3)–H Borylation of Cyclopropanes. J Am Chem Soc 2019; 141:10599-10604. [DOI: 10.1021/jacs.9b04549] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yongjia Shi
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Gao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Senmiao Xu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
34
|
An Effective and Convenient Process for the Preparation of Ticagrelor: Optimized by Response Surface Methodology and One-Pot Reaction. Pharm Chem J 2019. [DOI: 10.1007/s11094-019-1906-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
35
|
Ferreira NCDS, Soares-Bezerra RJ, da Silveira RFC, da Silva CM, de Oliveira CS, Calheiros AS, Alves TM, Zani CL, Alves LA. New Insights in Purinergic Therapy: Novel Antagonists for Uridine 5'-Triphosphate-Activated P2Y Receptors from Brazilian Flora. J Med Food 2018; 22:211-224. [PMID: 30526214 DOI: 10.1089/jmf.2018.0087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
P2Y2 and P2Y4 receptors are physiologically activated by uridine 5'-triphosphate (UTP) and are widely expressed in many cell types in humans. P2Y2 plays an important role in inflammation and proliferation of tumor cells, which could be attenuated with the use of antagonists. However, little is known about the physiological functions related to P2Y4, due to the lack of selective ligands for these receptors. This can be solved through the search for novel compounds with antagonistic activity. The aim of this study was to discover new potential antagonist candidates for P2Y2 and P2Y4 receptors from natural products. We applied a calcium measurement methodology to identify new antagonist candidates for these receptors. First, we established optimal conditions for the calcium assay using J774.G8, a murine macrophage cell line, which expresses functional P2Y2 and P2Y4 receptors and then, we performed the screening of plant extracts at a cutoff concentration of 50 μg/mL. ATP and ionomycin, known intracellular calcium inductors, were used to stimulate cells. The calculated EC50 were 11 μM and 103 nM, respectively. These cells also responded to the UTP stimulation with an EC50 of 1.021 μM. Screening assays were performed and a total of 100 extracts from Brazilian plants were tested. Joannesia princeps Vell. (stem) and Peixotoa A. Juss (flower and leaf) extracts stood out due to their ability to inhibit UTP-induced responses without causing cytotoxicity, and presented an IC50 of 32.32, 14.99, and 12.98 μg/mL, respectively. Collectively, our results point to the discovery of potential antagonist candidates from Brazilian flora for UTP-activated receptors.
Collapse
Affiliation(s)
| | - Rômulo José Soares-Bezerra
- 1 Laboratory of Cellular Communication, Oswaldo Cruz Institute , Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Clayton Menezes da Silva
- 1 Laboratory of Cellular Communication, Oswaldo Cruz Institute , Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Carla Santos de Oliveira
- 1 Laboratory of Cellular Communication, Oswaldo Cruz Institute , Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Andrea Surrage Calheiros
- 2 Laboratory of Immunopharmacology, Oswaldo Cruz Institute , Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Tânia Maria Alves
- 3 Laboratory of Chemistry of Natural Products, René Rachou Research Center , Oswaldo Cruz Foundation, Belo Horizonte, Brazil
| | - Carlos Leomar Zani
- 3 Laboratory of Chemistry of Natural Products, René Rachou Research Center , Oswaldo Cruz Foundation, Belo Horizonte, Brazil
| | - Luiz Anastacio Alves
- 1 Laboratory of Cellular Communication, Oswaldo Cruz Institute , Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
36
|
Kishore BK, Robson SC, Dwyer KM. CD39-adenosinergic axis in renal pathophysiology and therapeutics. Purinergic Signal 2018; 14:109-120. [PMID: 29332180 PMCID: PMC5940625 DOI: 10.1007/s11302-017-9596-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 11/28/2017] [Indexed: 12/12/2022] Open
Abstract
Extracellular ATP interacts with purinergic type 2 (P2) receptors and elicits many crucial biological functions. Extracellular ATP is sequentially hydrolyzed to ADP and AMP by the actions of defined nucleotidases, such as CD39, and AMP is converted to adenosine, largely by CD73, an ecto-5'-nucleotidase. Extracellular adenosine interacts with P1 receptors and often opposes the effects of P2 receptor activation. The balance between extracellular ATP and adenosine in the blood and extracellular fluid is regulated chiefly by the activities of CD39 and CD73, which constitute the CD39-adenosinergic axis. In recent years, several studies have shown this axis to play critical roles in transport of water/sodium, tubuloglomerular feedback, renin secretion, ischemia reperfusion injury, renal fibrosis, hypertension, diabetic nephropathy, transplantation, inflammation, and macrophage transformation. Important developments include global and targeted gene knockout and/or transgenic mouse models of CD39 or CD73, biological or small molecule inhibitors, and soluble engineered ectonucleotidases to directly impact the CD39-adenosinergic axis. This review presents a comprehensive picture of the multiple roles of CD39-adenosinergic axis in renal physiology, pathophysiology, and therapeutics. Scientific advances and greater understanding of the role of this axis in the kidney, in both health and illness, will direct development of innovative therapies for renal diseases.
Collapse
Affiliation(s)
- Bellamkonda K. Kishore
- Departments of Internal Medicine and Nutrition & Integrative Physiology, and Center on Aging, University of Utah Health, Salt Lake City, UT USA
- Nephrology Research, VA Salt Lake City Health Care System, 500 Foothill Drive (151M), Salt Lake City, UT 84148 USA
| | - Simon C. Robson
- Division of Gastroenterology/Hepatology and Transplant Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215 USA
| | - Karen M. Dwyer
- School of Medicine, Faculty of Health, Deakin University, Geelong, VIC 3220 Australia
| |
Collapse
|
37
|
Zelikman V, Pelletier J, Simhaev L, Sela A, Gendron FP, Arguin G, Senderowitz H, Sévigny J, Fischer B. Highly Selective and Potent Ectonucleotide Pyrophosphatase-1 (NPP1) Inhibitors Based on Uridine 5'-P α,α-Dithiophosphate Analogues. J Med Chem 2018; 61:3939-3951. [PMID: 29681152 DOI: 10.1021/acs.jmedchem.7b01906] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ectonucleotide pyrophosphatase/phosphodiesterase-1 (NPP1) hydrolyzes phosphodiester bonds of nucleotides such as ATP, resulting mainly in the formation of AMP and pyrophosphate. NPP1 activity plays a deleterious function in calcified aortic valve disease and calcium pyrophosphate deposition disease. Thus, inhibitors of NPP1 represent a medical need. We developed novel NPP1 inhibitors based on uridine 5'-Pα,α-dithiophosphate analogues, 9-12. All these analogues potently inhibited hNPP1 (80-100% inhibition) at 100 μM, with no, or minimal, inhibition of NPP3 and other ectonucleotidases (NTPDase1,2,3,8). These compounds showed nearly no activity at uracil-nucleotide sensitive P2Y2,4,6-receptors and thus represent highly selective NPP1 inhibitors. The most promising inhibitor was diuridine 5'-Pα,α,5″-Pα,α-tetrathiotetraphosphate, 12, exhibiting Ki of 27 nM. Analogues 9-12 proved to be highly stable to air oxidation and to acidic and basic pH. Docking simulations suggested that the enhanced NPP1 inhibitory activity and selectivity of analogue 12 could be attributed to the simultaneous occupancy of two sites (the AMP site and an alternative site) of NPP1 by this compound.
Collapse
Affiliation(s)
- Vadim Zelikman
- Department of Chemistry , Bar-Ilan University , Ramat-Gan 5290002 , Israel
| | - Julie Pelletier
- Centre de Recherche du CHU de Québec, Université Laval , Québec , QC , Canada
| | - Luba Simhaev
- Department of Chemistry , Bar-Ilan University , Ramat-Gan 5290002 , Israel
| | - Aviad Sela
- Department of Chemistry , Bar-Ilan University , Ramat-Gan 5290002 , Israel
| | - Fernand-Pierre Gendron
- Department of Anatomy and Cellular Biology , Université de Sherbrooke , 3201 Rue Jean-Mignault , Sherbrooke , QC J1E 4K8 , Canada
| | - Guillaume Arguin
- Department of Anatomy and Cellular Biology , Université de Sherbrooke , 3201 Rue Jean-Mignault , Sherbrooke , QC J1E 4K8 , Canada
| | - Hanoch Senderowitz
- Department of Chemistry , Bar-Ilan University , Ramat-Gan 5290002 , Israel
| | - Jean Sévigny
- Centre de Recherche du CHU de Québec, Université Laval , Québec , QC , Canada.,Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine , Université Laval , Pavillon CHUL, 2705 Boulevard Laurier, Local T1-49 , Québec , QC G1V 4G2 , Canada
| | - Bilha Fischer
- Department of Chemistry , Bar-Ilan University , Ramat-Gan 5290002 , Israel
| |
Collapse
|
38
|
Segal-Gavish H, Danino O, Barhum Y, Ben-Zur T, Shai E, Varon D, Offen D, Fischer B. A Multifunctional Biocompatible Drug Candidate is Highly Effective in Delaying Pathological Signs of Alzheimer's Disease in 5XFAD Mice. J Alzheimers Dis 2018; 58:389-400. [PMID: 28453480 DOI: 10.3233/jad-161236] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Metal-ion-chelation was suggested to prevent zinc and copper ions-induced amyloid-β (Aβ) aggregation and oxidative stress, both implicated in the pathophysiology of Alzheimer's disease (AD). In a quest for biocompatible metal-ion chelators potentially useful for AD therapy, we previously tested a series of nucleoside 5'-phosphorothioate derivatives as agents for decomposition of Cu(I)/Cu(II)/Zn(II)-Aβ-aggregates, and as inhibitors of OH radicals formation in Cu(I) or Fe(II) /H2O2 solution. Specifically, in our recent study we have identified 2-SMe-ADP(α-S), designated as SAS, as a most promising neuroprotectant. OBJECTIVE To further explore SAS ability to protect the brain from Aβ toxicity both in vitro and in vivo. METHODS We evaluated SAS ability to decompose or inhibit the formation of Aβ42-M(II) aggregates, and rescue primary neurons and astrocytes from Aβ42 toxicity. Furthermore, we aimed at exploring the therapeutic effect of SAS on behavioral and cognitive deficits in the 5XFAD mouse model of AD. RESULTS We found that SAS can rescue primary culture of neurons and astrocytes from Aβ42 toxicity and to inhibit the formation and dissolve Aβ42-Zn(II)/Cu(II) aggregates. Furthermore, we show that SAS treatment can prevent behavioral disinhibition and ameliorate spatial working memory deficits in 5XFAD mice. Notably, the mice were treated at the age of 2 months, before the onset of AD symptoms, for a duration of 2 months, while the effect was demonstrated at the age of 6 months. CONCLUSION Our results indicate that SAS has the potential to delay progression of core pathological characteristics of AD in the 5XFAD mouse model.
Collapse
Affiliation(s)
- Hadar Segal-Gavish
- Laboratory of Neuroscience, Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ortal Danino
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, Israel
| | - Yael Barhum
- Laboratory of Neuroscience, Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tali Ben-Zur
- Laboratory of Neuroscience, Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ella Shai
- Department of Hematology, Hadassah University Hospital, Jerusalem, Israel
| | - David Varon
- Department of Hematology, Hadassah University Hospital, Jerusalem, Israel
| | - Daniel Offen
- Laboratory of Neuroscience, Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Bilha Fischer
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
39
|
Alves M, Beamer E, Engel T. The Metabotropic Purinergic P2Y Receptor Family as Novel Drug Target in Epilepsy. Front Pharmacol 2018; 9:193. [PMID: 29563872 PMCID: PMC5851315 DOI: 10.3389/fphar.2018.00193] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 02/20/2018] [Indexed: 12/21/2022] Open
Abstract
Epilepsy encompasses a heterogeneous group of neurological syndromes which are characterized by recurrent seizures affecting over 60 million people worldwide. Current anti-epileptic drugs (AEDs) are mainly designed to target ion channels and/or GABA or glutamate receptors. Despite recent advances in drug development, however, pharmacoresistance in epilepsy remains as high as 30%, suggesting the need for the development of new AEDs with a non-classical mechanism of action. Neuroinflammation is increasingly recognized as one of the key players in seizure generation and in the maintenance of the epileptic phenotype. Consequently, targeting signaling molecules involved in inflammatory processes may represent new avenues to improve treatment in epilepsy. Nucleotides such as adenosine-5′-triphosphate (ATP) and uridine-5′-triphosphate (UTP) are released in the brain into the extracellular space during pathological conditions such as increased neuronal firing or cell death. Once released, these nucleotides bind to and activate specific purinergic receptors termed P2 receptors where they mediate the release of gliotransmitters and drive neuronal hyperexcitation and neuroinflammatory processes. This includes the fast acting ionotropic P2X channels and slower-acting G-protein-coupled P2Y receptors. While the expression and function of P2X receptors has been well-established in experimental models of epilepsy, emerging evidence is now also suggesting a prominent role for the P2Y receptor subfamily in seizure generation and the maintenance of epilepsy. In this review we discuss data supporting a role for the P2Y receptor family in epilepsy and the most recent finding demonstrating their involvement during seizure-induced pathology and in epilepsy.
Collapse
Affiliation(s)
- Mariana Alves
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Edward Beamer
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Tobias Engel
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
40
|
Analysis of mononucleotides by tandem mass spectrometry: investigation of fragmentation pathways for phosphate- and ribose-modified nucleotide analogues. Sci Rep 2017; 7:8931. [PMID: 28827558 PMCID: PMC5567097 DOI: 10.1038/s41598-017-09416-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/24/2017] [Indexed: 12/23/2022] Open
Abstract
Synthetic nucleotide and nucleic acid analogues are useful research tools and modern therapeutics. Hence, methods for the rapid and unambiguous identification of mononucleotides derived from organic syntheses or biological materials are of broad interest. Here, we analysed over 150 mononucleotides (mostly nucleoside 5′-mono-, 5′-di-, and 5′-triphosphates) and their structurally related nucleobase-, phosphate-, and ribose-modified analogues by electrospray tandem mass spectrometry (ESI/MS/MS), identifying characteristic fragmentation ions that may be helpful in structure determination. While positive-ion mode yielded fragments derived mainly from nucleobases, negative-ion mode provided insight into the structures of phosphoryl and phosphoribosyl moieties, enabling the determination of structural features such as the number of phosphate groups and the presence of ribose or phosphate substitutions. Based on these data, we proposed fragmentation pathways that were confirmed by experiments with [18O]-isotopologues. We demonstrated the utility of ESI(−)/MS/MS in the analysis of structurally related compounds by analysing isomeric and isobaric nucleotides and applying ESI(−)/MS/MS to rapid identification of nucleotide synthesis products. We formulated general rules regarding nucleotide structure–fragmentation pattern relationships and indicating characteristic fragmentation ions for the interpretation of ESI(−)/MS/MS spectra of nucleotides and their analogues. The ESI(−)/MS/MS spectra of all nucleotides are available in an on-line database, msTide, at www.msTide-db.com.
Collapse
|
41
|
Alves M, Gomez-Villafuertes R, Delanty N, Farrell MA, O'Brien DF, Miras-Portugal MT, Hernandez MD, Henshall DC, Engel T. Expression and function of the metabotropic purinergic P2Y receptor family in experimental seizure models and patients with drug-refractory epilepsy. Epilepsia 2017; 58:1603-1614. [PMID: 28733972 DOI: 10.1111/epi.13850] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2017] [Indexed: 12/14/2022]
Abstract
OBJECTIVE ATP is released into the extracellular space during pathologic processes including increased neuronal firing. Once released, ATP acts on P2 receptors including ionotropic P2X and metabotropic P2Y receptors, resulting in changes to glial function and neuronal network excitability. Evidence suggests an involvement of P2Y receptors in the pathogenesis of epilepsy, but there has been no systematic effort to characterize the expression and function of the P2Y receptor family during seizures and in experimental and human epilepsy. METHODS Status epilepticus was induced using either intra-amygdala kainic acid or pilocarpine to characterize the acute- and long-term changes in hippocampal P2Y expression. P2Y expression was also investigated in brain tissue from patients with temporal lobe epilepsy. Finally, we analyzed the effects of two specific P2Y agonists, ADP and UTP, on seizure severity and seizure-induced cell death. RESULTS Both intra-amygdala kainic acid and pilocarpine-induced status epilepticus increased the transcription of the uracil-sensitive P2Y receptors P2ry2 , P2ry4 , and P2ry6 and decreased the transcription of the adenine-sensitive P2Y receptors P2ry1 , P2ry12 , P2ry13 . Protein levels of P2Y1 , P2Y2 , P2Y4 , and P2Y6 were increased after status epilepticus, whereas P2Y12 expression was decreased. In the chronic phase, P2ry1 , P2ry2 , and P2ry6 transcription and P2Y1 , P2Y2 , and P2Y12 protein levels were increased with no changes for the other P2Y receptors. In hippocampal samples from patients with temporal lobe epilepsy, P2Y1 and P2Y2 protein expression was increased, whereas P2Y13 levels were lower. Demonstrating a functional contribution of P2Y receptors to seizures, central injection of ADP exacerbated seizure severity, whereas treatment with UTP decreased seizure severity during status epilepticus in mice. SIGNIFICANCE The present study is the first to establish the specific hippocampal expression profile and function of the P2Y receptor family after experimental status epilepticus and in human temporal lobe epilepsy and offers potential new targets for seizure control and disease modification.
Collapse
Affiliation(s)
- Mariana Alves
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Rosa Gomez-Villafuertes
- Department of Biochemistry and Molecular Biology IV, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Norman Delanty
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland.,Beaumont Hospital, Beaumont, Dublin, Ireland
| | | | | | - Maria Teresa Miras-Portugal
- Department of Biochemistry and Molecular Biology IV, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Miguel Diaz Hernandez
- Department of Biochemistry and Molecular Biology IV, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - David C Henshall
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Tobias Engel
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
42
|
Kam WR, Liu Y, Ding J, Sullivan DA. Do Cyclosporine A, an IL-1 Receptor Antagonist, Uridine Triphosphate, Rebamipide, and/or Bimatoprost Regulate Human Meibomian Gland Epithelial Cells? Invest Ophthalmol Vis Sci 2017; 57:4287-94. [PMID: 27552406 PMCID: PMC5015965 DOI: 10.1167/iovs.16-19937] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
PURPOSE Researchers have hypothesized that treatment with cyclosporine A (CyA), interleukin-1 receptor antagonists (IL-1RA; e.g., anakinra), P2Y2 receptor agonists (e.g., uridine triphosphate; UTP), and rebamipide may alleviate human meibomian gland dysfunction (MGD) and/or dry eye disease. Investigators have also proposed that prostaglandin analogues (e.g., bimatoprost) may induce MGD. Our goal was to determine whether these compounds directly influence human meibomian gland epithelial cell (HMGEC) function. METHODS Multiple concentrations of each compound were tested for effects on immortalized (I) HMGEC morphology and survival. Nontoxic dosages were used for our studies. Immortalized HMGEC were cultured in the presence of vehicle, CyA, IL-1RA, UTP, rebamipide, or bimatoprost for up to 6 days in various media. Experiments included positive controls for proliferation (epidermal growth factor and bovine pituitary extract), differentiation (azithromycin), and signaling pathway activation (insulin-like growth factor 1). Cells were analyzed for neutral lipid staining, lysosome accumulation, lipid composition, and phosphatidylinositol-3-kinase/Akt (AKT), phosphorylation. RESULTS Our findings demonstrate that CyA, IL-1RA, UTP, rebamipide, and bimatoprost had no effect on the proliferation; neutral lipid content; lysosome number; or levels of free cholesterol, triglycerides, or phospholipids in IHMGECs. Cylosporine A, IL-1RA, rebamipide, and bimatoprost significantly reduced the phosphorylation of AKT, as compared to control. Of interest, tested doses of CyA above 8 nM killed the IHMGECs. CONCLUSIONS Our results show that CyA, IL-1RA, UTP, rebamipide, and bimatoprost do not influence the proliferation or differentiation of IHMGEC. However, with the exception of UTP, these compounds do decrease the activity of the AKT signaling pathway, which is known to promote cell survival.
Collapse
|
43
|
Dai J, Lyu S, Ge C. Hypersensitivity to ticagrelor and low response to clopidogrel: a case report. Asia Pac Allergy 2017; 7:51-53. [PMID: 28154807 PMCID: PMC5287072 DOI: 10.5415/apallergy.2017.7.1.51] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 01/04/2017] [Indexed: 11/30/2022] Open
Abstract
Ticagrelor is widely used to treat acute coronary syndrome. Hypersensitivity reaction of ticagrelor is rarely recognized. A low response to clopidogrel, which occurs in up to 23% of patients, is an independent risk factor for stent thrombosis. Management of patients with a low response to clopidogrel and ticagrelor hypersensitivity who are undergoing antithrombotic therapy remains to be a challenge. Herein, we report a patient with low response to clopidogrel and ticagrelor hypersensitivity, who was successfully managed using aspirin and warfarin.
Collapse
Affiliation(s)
- Jing Dai
- Department of Cardiology, Capital Medical University Affiliated to Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Shuzheng Lyu
- Department of Cardiology, Capital Medical University Affiliated to Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Changjiang Ge
- Department of Cardiology, Capital Medical University Affiliated to Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| |
Collapse
|
44
|
Gündüz D, Tanislav C, Sedding D, Parahuleva M, Santoso S, Troidl C, Hamm CW, Aslam M. Uridine Triphosphate Thio Analogues Inhibit Platelet P2Y 12 Receptor and Aggregation. Int J Mol Sci 2017; 18:ijms18020269. [PMID: 28146050 PMCID: PMC5343805 DOI: 10.3390/ijms18020269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 01/23/2017] [Accepted: 01/23/2017] [Indexed: 11/25/2022] Open
Abstract
Platelet P2Y12 is an important adenosine diphosphate (ADP) receptor that is involved in agonist-induced platelet aggregation and is a valuable target for the development of anti-platelet drugs. Here we characterise the effects of thio analogues of uridine triphosphate (UTP) on ADP-induced platelet aggregation. Using human platelet-rich plasma, we demonstrate that UTP inhibits P2Y12 but not P2Y1 receptors and antagonises 10 µM ADP-induced platelet aggregation in a concentration-dependent manner with an IC50 value of ~250 µM. An eight-fold higher platelet inhibitory activity was observed with a 2-thio analogue of UTP (2S-UTP), with an IC50 of 30 µM. The 4-thio analogue (4S-UTP) with an IC50 of 7.5 µM was 33-fold more effective. A three-fold decrease in inhibitory activity, however, was observed by introducing an isobutyl group at the 4S- position. A complete loss of inhibition was observed with thio-modification of the γ phosphate of the sugar moiety, which yields an enzymatically stable analogue. The interaction of UTP analogues with P2Y12 receptor was verified by P2Y12 receptor binding and cyclic AMP (cAMP) assays. These novel data demonstrate for the first time that 2- and 4-thio analogues of UTP are potent P2Y12 receptor antagonists that may be useful for therapeutic intervention.
Collapse
Affiliation(s)
- Dursun Gündüz
- Department of Cardiology/Angiology, University Hospital Giessen, 35392 Giessen, Germany.
| | - Christian Tanislav
- Department of Neurology, University Hospital Giessen, 35392 Giessen, Germany.
| | - Daniel Sedding
- Department of Cardiology/Angiology, Hannover Medical School, 30625 Hannover, Germany.
| | - Mariana Parahuleva
- Department of Cardiology/Angiology, University Hospital Marburg, 35043 Marburg, Germany.
| | - Sentot Santoso
- Institute for Clinical Immunology and Transfusion Medicine, Justus Liebig University, 35392 Giessen, Germany.
| | - Christian Troidl
- Department of Cardiology/Angiology, University Hospital Giessen, 35392 Giessen, Germany.
| | - Christian W Hamm
- Department of Cardiology/Angiology, University Hospital Giessen, 35392 Giessen, Germany.
| | - Muhammad Aslam
- Department of Cardiology/Angiology, University Hospital Giessen, 35392 Giessen, Germany.
| |
Collapse
|
45
|
Kaczmarek R, Krakowiak A, Korczyński D, Baraniak J, Nawrot B. Phosphorothioate analogs of P1,P3-di(nucleosid-5′-yl) triphosphates: Synthesis, assignment of the absolute configuration at P-atoms and P-stereodependent recognition by Fhit hydrolase. Bioorg Med Chem 2016; 24:5068-5075. [DOI: 10.1016/j.bmc.2016.08.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 08/03/2016] [Accepted: 08/18/2016] [Indexed: 11/25/2022]
|
46
|
Botz B, Bölcskei K, Helyes Z. Challenges to develop novel anti-inflammatory and analgesic drugs. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 9. [PMID: 27576790 DOI: 10.1002/wnan.1427] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/21/2016] [Accepted: 07/30/2016] [Indexed: 12/11/2022]
Abstract
Chronic inflammatory diseases and persistent pain of different origin represent common medical, social, and economic burden, and their pharmacotherapy is still an unresolved issue. Therefore, there is a great and urgent need to develop anti-inflammatory and analgesic agents with novel mechanisms of action, but it is a very challenging task. The main problem is the relatively large translational gap between the preclinical experimental data and the clinical results due to characteristics of the models, difficulties with the investigational techniques particularly for pain, as well as species differences in the mechanisms. We summarize here the current state-of-the-art medication and related ongoing strategies, and the novel targets with lead molecules under clinical development. The first members of the gold-standard categories, such as nonsteroidal anti-inflammatory drugs, glucocorticoids, and opioids, were introduced decades ago, and since then very few drugs with novel mechanisms of action have been successfully taken to the clinics despite considerable development efforts. Several biologics targeting different key molecules have provided breakthrough in some autoimmune/inflammatory diseases, but they are expensive, only parenterally available, their long-term side effects often limit their administration, and they do not effectively reduce pain. Some kinase inhibitors and phosphodiesterase-4 blockers have recently been introduced as new directions. There are in fact some promising novel approaches at different clinical stages of drug development focusing on transient receptor potential vanilloid 1/ankyrin 1 channel antagonism, inhibition of voltage-gated sodium/calcium channels, several enzymes (kinases, semicarbazide-sensitive amine oxidases, and matrix metalloproteinases), cytokines/chemokines, transcription factors, nerve growth factor, and modulation of several G protein-coupled receptors (cannabinoids, purinoceptors, and neuropeptides). WIREs Nanomed Nanobiotechnol 2017, 9:e1427. doi: 10.1002/wnan.1427 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Bálint Botz
- Department of Radiology, Faculty of Medicine, University of Pécs, Pécs, Hungary.,János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Kata Bölcskei
- János Szentágothai Research Centre, University of Pécs, Pécs, Hungary.,Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs, Hungary
| | - Zsuzsanna Helyes
- János Szentágothai Research Centre, University of Pécs, Pécs, Hungary.,Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs, Hungary.,MTA-PTE NAP B Chronic Pain Research Group, Faculty of Medicine, University of Pécs, Pécs, Hungary
| |
Collapse
|
47
|
Carracedo G, Crooke A, Guzman-Aranguez A, Pérez de Lara MJ, Martin-Gil A, Pintor J. The role of dinucleoside polyphosphates on the ocular surface and other eye structures. Prog Retin Eye Res 2016; 55:182-205. [PMID: 27421962 DOI: 10.1016/j.preteyeres.2016.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 06/30/2016] [Accepted: 07/05/2016] [Indexed: 11/17/2022]
Abstract
Dinucleoside polyphosphates comprises a group of dinucleotides formed by two nucleosides linked by a variable number of phosphates, abbreviated NpnN (where n represents the number of phosphates). These compounds are naturally occurring substances present in tears, aqueous humour and in the retina. As the consequence of their presence, these dinucleotides contribute to many ocular physiological processes. On the ocular surface, dinucleoside polyphosphates can stimulate tear secretion, mucin release from goblet cells and they help epithelial wound healing by accelerating cell migration rate. These dinucleotides can also stimulate the presence of proteins known to protect the ocular surface against microorganisms, such as lysozyme and lactoferrin. One of the latest discoveries is the ability of some dinucleotides to facilitate the paracellular way on the cornea, therefore allowing the delivery of compounds, such as antiglaucomatous ones, more easily within the eye. The compound Ap4A has been described being abnormally elevated in patient's tears suffering of dry eye, Sjogren syndrome, congenital aniridia, or after refractive surgery, suggesting this molecule as biomarker for dry eye condition. At the intraocular level, some diadenosine polyphosphates are abnormally elevated in glaucoma patients, and this can be related to the stimulation of a P2Y2 receptor that increases the chloride efflux and water movement in the ciliary epithelium. In the retina, the dinucleotide dCp4U, has been proven to be useful to help in the recovery of retinal detachments. Altogether, dinucleoside polyphosphates are a group of compounds which present relevant physiological actions but which also can perform promising therapeutic benefits.
Collapse
Affiliation(s)
- Gonzalo Carracedo
- Department of Optics II (Optometry and Vision), Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Almudena Crooke
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Ana Guzman-Aranguez
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Maria J Pérez de Lara
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Alba Martin-Gil
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Jesús Pintor
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
48
|
Barna BF, Takakura AC, Mulkey DK, Moreira TS. Purinergic receptor blockade in the retrotrapezoid nucleus attenuates the respiratory chemoreflexes in awake rats. Acta Physiol (Oxf) 2016; 217:80-93. [PMID: 26647910 DOI: 10.1111/apha.12637] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/06/2015] [Accepted: 11/26/2015] [Indexed: 01/21/2023]
Abstract
AIM Recent evidence suggests that adenosine triphosfate (ATP)-mediated purinergic signalling at the level of the rostral ventrolateral medulla contributes to both central and peripheral chemoreceptor control of breathing and blood pressure: neurones in the retrotrapezoid nucleus (RTN) function as central chemoreceptors in part by responding to CO2 -evoked ATP release by activation of yet unknown P2 receptors, and nearby catecholaminergic C1 neurones regulate blood pressure responses to peripheral chemoreceptor activation by a P2Y1 receptor-dependent mechanism. However, potential contributions of purinergic signalling in the RTN to cardiorespiratory function in conscious animals have not been tested. METHODS Cardiorespiratory activity of unrestrained awake rats was measured in response to RTN injections of ATP, and during exposure to hypercapnia (7% CO2 ) or hypoxia (8% O2 ) under control conditions and after bilateral RTN injections of P2 receptor blockers (PPADS or MRS2179). RESULTS Unilateral injection of ATP into the RTN increased cardiorespiratory output by a P2-receptor-dependent mechanism. We also show that bilateral RTN injections of a non-specific P2 receptor blocker (pyridoxal-phosphate-6-azophenyl-2',4'-disulfonate (PPADS) reduced the ventilatory response to hypercapnia (7% CO2 ) and hypoxia (8% O2 ) in unanesthetized rats. Conversely, bilateral injections of a specific P2Y1 receptor blocker (MRS2179) into the RTN had no measurable effect on ventilatory responses elicited by hypercapnia or hypoxia. CONCLUSION These data exclude P2Y1 receptor involvement in the chemosensory control of breathing at the level of the RTN and show that ATP-mediated purinergic signalling contributes to central and peripheral chemoreflex control of breathing and blood pressure in awake rats.
Collapse
Affiliation(s)
- B. F. Barna
- Department of Physiology and Biophysics; Institute of Biomedical Science; University of São Paulo; São Paulo SP Brazil
| | - A. C. Takakura
- Department of Pharmacology; Institute of Biomedical Science; University of São Paulo; São Paulo SP Brazil
| | - D. K. Mulkey
- Department of Physiology and Neurobiology; University of Connecticut; Storrs CT USA
| | - T. S. Moreira
- Department of Physiology and Biophysics; Institute of Biomedical Science; University of São Paulo; São Paulo SP Brazil
| |
Collapse
|
49
|
Peng H, Hao Y, Mousawi F, Roger S, Li J, Sim JA, Ponnambalam S, Yang X, Jiang LH. Purinergic and Store-Operated Ca(2+) Signaling Mechanisms in Mesenchymal Stem Cells and Their Roles in ATP-Induced Stimulation of Cell Migration. Stem Cells 2016; 34:2102-14. [PMID: 27038239 DOI: 10.1002/stem.2370] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 02/10/2016] [Accepted: 03/14/2016] [Indexed: 12/19/2022]
Abstract
ATP is an extrinsic signal that can induce an increase in the cytosolic Ca(2+) level ([Ca(2+) ]c ) in mesenchymal stem cells (MSCs). However, the cognate intrinsic mechanisms underlying ATP-induced Ca(2+) signaling in MSCs is still contentious, and their importance in MSC migration remains unknown. In this study, we investigated the molecular mechanisms underlying ATP-induced Ca(2+) signaling and their roles in the regulation of cell migration in human dental pulp MSCs (hDP-MSCs). RT-PCR analysis of mRNA transcripts and interrogation of agonist-induced increases in the [Ca(2+) ]c support that P2X7, P2Y1 , and P2Y11 receptors participate in ATP-induced Ca(2+) signaling. In addition, following P2Y receptor activation, Ca(2+) release-activated Ca(2+) Orai1/Stim1 channel as a downstream mechanism also plays a significant role in ATP-induced Ca(2+) signaling. ATP concentration-dependently stimulates hDP-MSC migration. Pharmacological and genetic interventions of the expression or function of the P2X7, P2Y1 and P2Y11 receptors, and Orai1/Stim1 channel support critical involvement of these Ca(2+) signaling mechanisms in ATP-induced stimulation of hDP-MSC migration. Taken together, this study provide evidence to show that purinergic P2X7, P2Y1 , and P2Y11 receptors and store-operated Orai1/Stim1 channel represent important molecular mechanisms responsible for ATP-induced Ca(2+) signaling in hDP-MSCs and activation of these mechanisms stimulates hDP-MSC migration. Such information is useful in building a mechanistic understanding of MSC homing in tissue homeostasis and developing more efficient MSC-based therapeutic applications. Stem Cells 2016;34:2102-2114.
Collapse
Affiliation(s)
- Hongsen Peng
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Department of Oral Biology, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Yunjie Hao
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Fatema Mousawi
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | | | - Jing Li
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Joan A Sim
- Faculty of Life Science, University of Manchester, Manchester, United Kingdom
| | - Sreenivasan Ponnambalam
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Xuebin Yang
- Department of Oral Biology, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Lin-Hua Jiang
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, People's Republic of China
| |
Collapse
|
50
|
Zhou X, Chen LY, Sun Z. A Versatile Approach for the Synthesis of Thiobarbiturate Analogues. J Heterocycl Chem 2016. [DOI: 10.1002/jhet.2413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiaokun Zhou
- College of Chemistry and Chemical Engineering; Shanghai University of Engineering Science; Shanghai 201620 China
| | - Ling-Yan Chen
- College of Chemistry and Chemical Engineering; Shanghai University of Engineering Science; Shanghai 201620 China
| | - Zhihua Sun
- College of Chemistry and Chemical Engineering; Shanghai University of Engineering Science; Shanghai 201620 China
| |
Collapse
|