1
|
Prabhu A, Baliga V, Shenoy R, Dessai AD, Nayak UY. 3D printed microneedles: revamping transdermal drug delivery systems. Drug Deliv Transl Res 2025; 15:436-454. [PMID: 39103595 PMCID: PMC11683023 DOI: 10.1007/s13346-024-01679-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2024] [Indexed: 08/07/2024]
Abstract
One of the advancements of the transdermal drug delivery system (TDDS) is the development of microneedles (MNs). These micron-sized needles are used for delivering various types of drugs to address the disadvantage of other transdermal techniques as well as oral drug delivery systems. MNs have high patient acceptance due to self-administration with minimally invasive and pain compared to the parenteral drug delivery. Over the years, various methods have been adopted to evolve the MNs and make them more cost-effective, accurate, and suitable for multiple applications. One such method is the 3D printing of MNs. The development of MN platforms using 3D printing has been made possible by improved features like precision, printing resolution, and the feasibility of using low-cost raw materials. In this review, we have tried to explain various types of MNs, fabrication methods, materials used in the formulation of MNs, and the recent applications that utilize 3D-printed MNs.
Collapse
Affiliation(s)
- Ashlesh Prabhu
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Vishal Baliga
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Raghavendra Shenoy
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Akanksha D Dessai
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Usha Y Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
2
|
Ma Y, Dong J, Li M, Du X, Yan Z, Tian W. An antimicrobial microneedle patch promotes functional healing of infected wounds through controlled release of adipose tissue-derived apoptotic vesicles. J Nanobiotechnology 2024; 22:579. [PMID: 39304913 DOI: 10.1186/s12951-024-02845-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/07/2024] [Indexed: 09/22/2024] Open
Abstract
The high incidence and mortality rates associated with acute and chronic wound infections impose a significant burden on global healthcare systems. In terms of the management of wound infection, the reconstruction and regeneration of skin appendages are essential for the recovery of mechanical strength and physiological function in the regenerated skin tissue. Novel therapeutic approaches are a requisite for enhancing the healing of infected wounds and promoting the regeneration of skin appendages. Herein, a novel antimicrobial microneedle patch has been fabricated for the transdermal controlled delivery of adipose tissue-derived apoptotic vesicles (ApoEVs-AT@MNP) for the treatment of infected wounds, which is expected to achieve high-quality scarless healing of the wound skin while inhibiting the bacteria in the infected wound. The microneedle patch (MNP) system possesses adequate mechanical strength to penetrate the skin, allowing the tips to remain inside tissue for continuous active release of biomolecules, and subsequently degrades safely within the host body. In vivo transplantation demonstrates that ApoEVs-AT@MNP not only inhibits bacterial proliferation in infected wounds but also significantly promotes effective and rapid scarless wound healing. Particularly noteworthy is the ability of ApoEVs-AT@MNP to promote the rapid formation of mature, evenly arranged hair follicles in infected wounds, observed as early as 8 days following implantation, which is essential for the restoration of skin function. This rapid development of skin appendages has not been reported this early in previous studies. Therefore, ApoEVs-AT@MNP has emerged as an excellent, painless, non-invasive, and highly promising treatment for infected wounds.
Collapse
Affiliation(s)
- Yue Ma
- Department of Stomatology, People's Hospital of Longhua Shenzhen, Shenzhen, Guangdong, China.
| | - Jia Dong
- Department of Stomatology, People's Hospital of Longhua Shenzhen, Shenzhen, Guangdong, China
| | - Maojiao Li
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xinya Du
- Department of Stomatology, People's Hospital of Longhua Shenzhen, Shenzhen, Guangdong, China
| | - Zhengbin Yan
- Department of Stomatology, People's Hospital of Longhua Shenzhen, Shenzhen, Guangdong, China.
| | - Weidong Tian
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Verana G, Tijani AO, Puri A. Nanosuspension-based microneedle skin patch of baclofen for sustained management of multiple sclerosis-related spasticity. Int J Pharm 2023; 644:123352. [PMID: 37647979 DOI: 10.1016/j.ijpharm.2023.123352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
Baclofen (BAC) is the first-line recommendation to treat spasticity in people with multiple sclerosis whose treatment goals include improving mobility or easing pain. The short half-life of BAC calls for multiple daily dosing which may be eliminated by the development of a transdermal system. This study aimed to assess the effect of transdermal microneedle patches on improving the skin permeation of BAC. Nanosuspension-loaded microneedle patch containing BAC was fabricated and characterized. In vitro permeation of BAC across intact and microneedle-treated dermatomed porcine ear skin was evaluated. In vitro passive permeation of BAC solution after 72 h was observed to be 92.56 ± 11.24 µg/cm2. A near 9-fold enhancement was observed when employing the strategy of microneedle-mediated delivery of the solution. To increase drug loading, two strategies, nanosizing and microneedle-mediated delivery, were combined and permeation of BAC after 72 h resulted to be 1951.95 ± 82.01 µg/cm2 (p < 0.05). Microneedle-mediated transdermal delivery of BAC holds potential for sustained management of multiple sclerosis-related spasticity. Nanosizing of BAC particles facilitated higher drug loading in MN patches and an eventual increase in cumulative drug permeation from the patches.
Collapse
Affiliation(s)
- Gabrielle Verana
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN 37614, United States
| | - Akeemat O Tijani
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN 37614, United States
| | - Ashana Puri
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN 37614, United States.
| |
Collapse
|
4
|
Zhao W, Zheng L, Yang J, Li Y, Zhang Y, Ma T, Wang Q. Dissolving microneedle patches-mediated percutaneous delivery of tetramethylpyrazine for rheumatoid arthritis treatment. Eur J Pharm Sci 2023; 184:106409. [PMID: 36871810 DOI: 10.1016/j.ejps.2023.106409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/28/2023] [Accepted: 02/20/2023] [Indexed: 03/07/2023]
Abstract
Recently, transdermal treatment of rheumatoid arthritis (RA) has received increasing attention due to the advantages of improving patient compliance and avoiding gastrointestinal side effects. However, the stratum corneum (SC) barrier limits the transdermal delivery of most substances. Therefore, we constructed tetramethylpyrazine-loaded dissolving microneedle patches (TMP-DMNPs) and investigated its anti-rheumatoid arthritis effect. The cone-shaped dissolving microneedle patch had complete, neatly arranged needles and great mechanical strength. It could effectively penetrate the stratum corneum when applied to the skin. In vitro transdermal experiment showed that DMNPs could significantly promote the transdermal penetration of TMP compared with TMP-cream. The needles were completely dissolved within 18 min and the applied skin recovered completely within 3 h. The excipients and blank DMNP had good safety and biocompatibility to human rheumatoid arthritis fibroblast synovial cells. To compare the therapeutic effects, the animal model was established. The experiments of paw swelling, histopathology and X-ray examination showed that dissolving microneedles significantly alleviated paw condition, reduced the serum concentrations of proinflammatory cytokines, and inhibited synovial tissue damage in AIA rats. These results indicate that the DMNPs we prepared can deliver TMP safely, effectively and conveniently, providing a basis for the percutaneous treatment of RA.
Collapse
Affiliation(s)
- Weiman Zhao
- School of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Lijie Zheng
- School of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Jianhui Yang
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yingying Li
- School of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Yueyue Zhang
- School of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Tao Ma
- School of Pharmacy, Bengbu Medical College, Bengbu, China; Engineering Research Center for Biochemical Pharmaceuticals of Anhui Province, Bengbu Medical College, Bengbu, China
| | - Qingqing Wang
- School of Pharmacy, Bengbu Medical College, Bengbu, China; Engineering Research Center for Biochemical Pharmaceuticals of Anhui Province, Bengbu Medical College, Bengbu, China.
| |
Collapse
|
5
|
Glucose-Responsive Silk Fibroin Microneedles for Transdermal Delivery of Insulin. Biomimetics (Basel) 2023; 8:biomimetics8010050. [PMID: 36810381 PMCID: PMC9944804 DOI: 10.3390/biomimetics8010050] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Microneedles (MNs) have attracted great interest as a drug delivery alternative to subcutaneous injections for treating diabetes mellitus. We report MNs prepared from polylysine-modified cationized silk fibroin (SF) for responsive transdermal insulin delivery. Scanning electron microscopy analysis of MNs' appearance and morphology revealed that the MNs were well arranged and formed an array with 0.5 mm pitch, and the length of single MNs is approximately 430 μm. The average breaking force of an MN is above 1.25 N, which guarantees that it can pierce the skin quickly and reach the dermis. Cationized SF MNs are pH-responsive. MNs dissolution rate increases as pH decreases and the rate of insulin release are accelerated. The swelling rate reached 223% at pH = 4, while only 172% at pH = 9. After adding glucose oxidase, cationized SF MNs are glucose-responsive. As the glucose concentration increases, the pH inside the MNs decreases, the MNs' pore size increases, and the insulin release rate accelerates. In vivo experiments demonstrated that in normal Sprague Dawley (SD) rats, the amount of insulin released within the SF MNs was significantly smaller than that in diabetic rats. Before feeding, the blood glucose (BG) of diabetic rats in the injection group decreased rapidly to 6.9 mmol/L, and the diabetic rats in the patch group gradually reduced to 11.7 mmol/L. After feeding, the BG of diabetic rats in the injection group increased rapidly to 33.1 mmol/L and decreased slowly, while the diabetic rats in the patch group increased first to 21.7 mmol/L and then decreased to 15.3 mmol/L at 6 h. This demonstrated that the insulin inside the microneedle was released as the blood glucose concentration increased. Cationized SF MNs are expected to replace subcutaneous injections of insulin as a new modality for diabetes treatment.
Collapse
|
6
|
Hoffman MSF, McKeage JW, Xu J, Ruddy BP, Nielsen PMF, Taberner AJ. Minimally invasive capillary blood sampling methods. Expert Rev Med Devices 2023; 20:5-16. [PMID: 36694960 DOI: 10.1080/17434440.2023.2170783] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Whole blood samples, including arterial, venous, and capillary blood, are regularly used for disease diagnosis and monitoring. The global Covid-19 pandemic has highlighted the need for a more resilient screening capacity. Minimally invasive sampling techniques, such as capillary blood sampling, are routinely used for point of care testing in the home healthcare setting and clinical settings such as the Intensive Care Unit with less pain and wounding than conventional venepuncture. AREAS COVERED In this manuscript, we aim to provide a overview of state-of-the-art of techniques for obtaining samples of capillary blood. We first review both established and novel methods for releasing blood from capillaries in the skin. Next, we provide a comparison of different capillary blood sampling methods based on their mechanism, testing site, puncture size, cost, wound geometry, healing, and perceptions of pain. Finally, we overview established and new methods for enhancing capillary blood collection. EXPERT OPINION We expect that microneedles will prove to be a preferred option for paediatric blood collection. The ability of microneedles to collect a capillary blood sample without pain will improve paediatric healthcare outcomes. Jet injection may prove to be a useful method for facilitating both blood collection and drug delivery.
Collapse
Affiliation(s)
| | - James W McKeage
- Auckland Bioengineering Institute, University of Auckland, New Zealand
| | - Jiali Xu
- Auckland Bioengineering Institute, University of Auckland, New Zealand
| | - Bryan P Ruddy
- Auckland Bioengineering Institute, University of Auckland, New Zealand.,Department of Engineering Science, University of Auckland, Auckland, New Zealand
| | - Poul M F Nielsen
- Auckland Bioengineering Institute, University of Auckland, New Zealand.,Department of Engineering Science, University of Auckland, Auckland, New Zealand
| | - Andrew J Taberner
- Auckland Bioengineering Institute, University of Auckland, New Zealand.,Department of Engineering Science, University of Auckland, Auckland, New Zealand
| |
Collapse
|
7
|
Enhanced Micro-Channeling System via Dissolving Microneedle to Improve Transdermal Serum Delivery for Various Clinical Skincare Treatments. Pharmaceutics 2022; 14:pharmaceutics14122804. [PMID: 36559297 PMCID: PMC9781352 DOI: 10.3390/pharmaceutics14122804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/24/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Topical liquid formulations, dissolving microneedles (DMNs), and microscale needles composed of biodegradable materials have been widely used for the transdermal delivery of active compounds for skincare. However, transdermal active compound delivery by topical liquid formulation application is inhibited by skin barriers, and the skincare efficacy of DMNs is restricted by the low encapsulation capacity and incomplete insertion. In this study, topical serum application via a dissolvable micro-channeling system (DMCS) was used to enhance serum delivery through micro-channels embedded with DMNs. Transdermal serum delivery was evaluated after the topical-serum-only application and combinatorial serum application by assessing the intensity of allophycocyanin (APC) loaded with the serum in the porcine skin. APC intensity was significantly higher in the skin layer at a depth of 120-270 μm upon combinatorial serum application as compared to topical-serum-only application. In addition, the combinatorial serum application showed significantly improved efficacy in the clinical assessment of skin hydration, depigmentation, improvement of wrinkles, elasticity, dermal density, skin pores, and skin soothing without any safety issues compared to the serum-only application. The results indicate that combinatorial serum application with DMCS is a promising candidate for improving skincare treatments with optimal transdermal delivery of active compounds.
Collapse
|
8
|
Gera AK, Burra RK. The Rise of Polymeric Microneedles: Recent Developments, Advances, Challenges, and Applications with Regard to Transdermal Drug Delivery. J Funct Biomater 2022; 13:81. [PMID: 35735936 PMCID: PMC9224958 DOI: 10.3390/jfb13020081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 12/31/2022] Open
Abstract
The current scenario of the quest for microneedles (MNs) with biodegradability and biocompatibility properties is a potential research area of interest. Microneedles are considered to be robust, can penetrate the skin's deep-seated layers, and are easy to manufacture, and their applications from the clinical perspective are still ongoing with standard escalation. This review paper focuses on some of the pivotal variants of polymeric microneedles which are specifically dissolvable and swell-based MNs. It further explores the drug dissolution kinetics and insertion behavior mechanisms with an emphasis on the need for mathematical modeling of MNs. This review further evaluates the multifarious fabrication methods, with an update on the advances in the fabrication of polymeric MNs, the choice of materials used for the fabrication, the challenges in polymeric MN fabrication, and the prospects of polymeric MNs with applications pertinent to healthcare, by exclusively focusing on the procurable literature over the last decade.
Collapse
Affiliation(s)
- Aswani Kumar Gera
- Department of Electrical, Electronics & Communication Engineering, School of Technology, GITAM, Deemed to Be University, Visakhapatnam 530045, India;
| | | |
Collapse
|
9
|
Zhang W, Zhang W, Li C, Zhang J, Qin L, Lai Y. Recent Advances of Microneedles and Their Application in Disease Treatment. Int J Mol Sci 2022; 23:2401. [PMID: 35269545 PMCID: PMC8909978 DOI: 10.3390/ijms23052401] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 12/21/2022] Open
Abstract
For decades, scientists have been doing a lot of research and exploration to find effective long-term analgesic and/or disease-modifying treatments. Microneedles (MNs) are a simple, effective, and painless transdermal drug delivery technology that has emerged in recent years, and exhibits great promise for realizing intelligent drug delivery. With the development of materials science and fabrication technology, the MN transdermal drug delivery technology has been applied and popularized in more and more fields, including chronic illnesses such as arthritis or diabetes, cancer, dermatocosmetology, family planning, and epidemic disease prevention, and has made fruitful achievements. This paper mainly reviews the latest research status of MNs and their fabrication methodology, and summarizes the application of MNs in the treatment of various diseases, as well as the potential to use nanotechnology to develop more intelligent MNs-based drug delivery systems.
Collapse
Affiliation(s)
- Wenjing Zhang
- Center for Translational Medicine Research and Development, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (W.Z.); (W.Z.); (C.L.); (J.Z.); (L.Q.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Zhang
- Center for Translational Medicine Research and Development, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (W.Z.); (W.Z.); (C.L.); (J.Z.); (L.Q.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cairong Li
- Center for Translational Medicine Research and Development, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (W.Z.); (W.Z.); (C.L.); (J.Z.); (L.Q.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianhua Zhang
- Center for Translational Medicine Research and Development, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (W.Z.); (W.Z.); (C.L.); (J.Z.); (L.Q.)
| | - Ling Qin
- Center for Translational Medicine Research and Development, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (W.Z.); (W.Z.); (C.L.); (J.Z.); (L.Q.)
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Hong Kong 999077, China
- CAS-HK Joint Lab of Biomaterials, Shenzhen 518055, China
| | - Yuxiao Lai
- Center for Translational Medicine Research and Development, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (W.Z.); (W.Z.); (C.L.); (J.Z.); (L.Q.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS-HK Joint Lab of Biomaterials, Shenzhen 518055, China
- Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
10
|
Choudhury SM, Ma X, Dang W, Li Y, Zheng H. Recent Development of Ruminant Vaccine Against Viral Diseases. Front Vet Sci 2021; 8:697194. [PMID: 34805327 PMCID: PMC8595237 DOI: 10.3389/fvets.2021.697194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 10/04/2021] [Indexed: 01/21/2023] Open
Abstract
Pathogens of viral origin produce a large variety of infectious diseases in livestock. It is essential to establish the best practices in animal care and an efficient way to stop and prevent infectious diseases that impact animal husbandry. So far, the greatest way to combat the disease is to adopt a vaccine policy. In the fight against infectious diseases, vaccines are very popular. Vaccination's fundamental concept is to utilize particular antigens, either endogenous or exogenous to induce immunity against the antigens or cells. In light of how past emerging and reemerging infectious diseases and pandemics were handled, examining the vaccination methods and technological platforms utilized for the animals may provide some useful insights. New vaccine manufacturing methods have evolved because of developments in technology and medicine and our broad knowledge of immunology, molecular biology, microbiology, and biochemistry, among other basic science disciplines. Genetic engineering, proteomics, and other advanced technologies have aided in implementing novel vaccine theories, resulting in the discovery of new ruminant vaccines and the improvement of existing ones. Subunit vaccines, recombinant vaccines, DNA vaccines, and vectored vaccines are increasingly gaining scientific and public attention as the next generation of vaccines and are being seen as viable replacements to conventional vaccines. The current review looks at the effects and implications of recent ruminant vaccine advances in terms of evolving microbiology, immunology, and molecular biology.
Collapse
Affiliation(s)
- Sk Mohiuddin Choudhury
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - XuSheng Ma
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Wen Dang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - YuanYuan Li
- Gansu Agricultural University, Lanzhou, China
| | - HaiXue Zheng
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
11
|
Yadav PR, Munni MN, Campbell L, Mostofa G, Dobson L, Shittu M, Pattanayek SK, Uddin MJ, Das DB. Translation of Polymeric Microneedles for Treatment of Human Diseases: Recent Trends, Progress, and Challenges. Pharmaceutics 2021; 13:1132. [PMID: 34452093 PMCID: PMC8401662 DOI: 10.3390/pharmaceutics13081132] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 12/14/2022] Open
Abstract
The ongoing search for biodegradable and biocompatible microneedles (MNs) that are strong enough to penetrate skin barriers, easy to prepare, and can be translated for clinical use continues. As such, this review paper is focused upon discussing the key points (e.g., choice polymeric MNs) for the translation of MNs from laboratory to clinical practice. The review reveals that polymers are most appropriately used for dissolvable and swellable MNs due to their wide range of tunable properties and that natural polymers are an ideal material choice as they structurally mimic native cellular environments. It has also been concluded that natural and synthetic polymer combinations are useful as polymers usually lack mechanical strength, stability, or other desired properties for the fabrication and insertion of MNs. This review evaluates fabrication methods and materials choice, disease and health conditions, clinical challenges, and the future of MNs in public healthcare services, focusing on literature from the last decade.
Collapse
Affiliation(s)
- Prateek Ranjan Yadav
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK; (P.R.Y.); (L.C.); (L.D.); (M.S.)
- Chemical Engineering Department, Indian Institute of Technology, Delhi 110016, India;
| | | | - Lauryn Campbell
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK; (P.R.Y.); (L.C.); (L.D.); (M.S.)
| | - Golam Mostofa
- Drug Delivery & Therapeutics Lab, Dhaka 1212, Bangladesh; (M.N.M.); (G.M.)
| | - Lewis Dobson
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK; (P.R.Y.); (L.C.); (L.D.); (M.S.)
| | - Morayo Shittu
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK; (P.R.Y.); (L.C.); (L.D.); (M.S.)
| | | | - Md. Jasim Uddin
- Drug Delivery & Therapeutics Lab, Dhaka 1212, Bangladesh; (M.N.M.); (G.M.)
- Department of Pharmacy, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Diganta Bhusan Das
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK; (P.R.Y.); (L.C.); (L.D.); (M.S.)
| |
Collapse
|
12
|
Mdanda S, Ubanako P, Kondiah PPD, Kumar P, Choonara YE. Recent Advances in Microneedle Platforms for Transdermal Drug Delivery Technologies. Polymers (Basel) 2021; 13:polym13152405. [PMID: 34372008 PMCID: PMC8348894 DOI: 10.3390/polym13152405] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/25/2022] Open
Abstract
In many clinical applications, the transdermal route is used as an alternative approach to avoid the significant limitations associated with oral drug delivery. There is a long history for drug delivery through the skin utilizing transdermal microneedle arrays. Microneedles are reported to be versatile and very efficient devices. This technique has spurred both industrial and scientific curiosity, due to its outstanding characteristics such as painless penetration, affordability, excellent medicinal efficiency, and relative protection. Microneedles possess outstanding properties for diverse biomedical uses such as the delivery of very large substances with ionic and hydrophilic physicochemical properties. Importantly, microneedles are applicable in numerous biomedical fields such as therapy, diagnosis, and vaccine administration. Microneedles are emerging tools that have shown profound potential for biomedical applications. Transdermal microneedle technologies are likely to become a preferred route of therapeutic substances administration in the future since they are effective, painless, and affordable. In this review, we summarize recent advances in microneedles for therapeutic applications. We explore their constituent materials and fabrication methods that improve the delivery of critical therapeutic substances through the skin. We further discuss the practicality of advanced microneedles used as drug delivery tools.
Collapse
|
13
|
Korkmaz E, Balmert SC, Sumpter TL, Carey CD, Erdos G, Falo LD. Microarray patches enable the development of skin-targeted vaccines against COVID-19. Adv Drug Deliv Rev 2021; 171:164-186. [PMID: 33539853 PMCID: PMC8060128 DOI: 10.1016/j.addr.2021.01.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/10/2021] [Accepted: 01/27/2021] [Indexed: 12/13/2022]
Abstract
The COVID-19 pandemic is a serious threat to global health and the global economy. The ongoing race to develop a safe and efficacious vaccine to prevent infection by SARS-CoV-2, the causative agent for COVID-19, highlights the importance of vaccination to combat infectious pathogens. The highly accessible cutaneous microenvironment is an ideal target for vaccination since the skin harbors a high density of antigen-presenting cells and immune accessory cells with broad innate immune functions. Microarray patches (MAPs) are an attractive intracutaneous biocargo delivery system that enables safe, reproducible, and controlled administration of vaccine components (antigens, with or without adjuvants) to defined skin microenvironments. This review describes the structure of the SARS-CoV-2 virus and relevant antigenic targets for vaccination, summarizes key concepts of skin immunobiology in the context of prophylactic immunization, and presents an overview of MAP-mediated cutaneous vaccine delivery. Concluding remarks on MAP-based skin immunization are provided to contribute to the rational development of safe and effective MAP-delivered vaccines against emerging infectious diseases, including COVID-19.
Collapse
Affiliation(s)
- Emrullah Korkmaz
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Stephen C Balmert
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Tina L Sumpter
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Cara Donahue Carey
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Geza Erdos
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Louis D Falo
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA; The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| |
Collapse
|
14
|
Dabbagh SR, Sarabi MR, Rahbarghazi R, Sokullu E, Yetisen AK, Tasoglu S. 3D-printed microneedles in biomedical applications. iScience 2021; 24:102012. [PMID: 33506186 PMCID: PMC7814162 DOI: 10.1016/j.isci.2020.102012] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Conventional needle technologies can be advanced with emerging nano- and micro-fabrication methods to fabricate microneedles. Nano-/micro-fabricated microneedles seek to mitigate penetration pain and tissue damage, as well as providing accurately controlled robust channels for administrating bioagents and collecting body fluids. Here, design and 3D printing strategies of microneedles are discussed with emerging applications in biomedical devices and healthcare technologies. 3D printing offers customization, cost-efficiency, a rapid turnaround time between design iterations, and enhanced accessibility. Increasing the printing resolution, the accuracy of the features, and the accessibility of low-cost raw printing materials have empowered 3D printing to be utilized for the fabrication of microneedle platforms. The development of 3D-printed microneedles has enabled the evolution of pain-free controlled release drug delivery systems, devices for extracting fluids from the cutaneous tissue, biosignal acquisition, and point-of-care diagnostic devices in personalized medicine.
Collapse
Affiliation(s)
- Sajjad Rahmani Dabbagh
- Department of Mechanical Engineering, Koç University, Sariyer, Istanbul 34450, Turkey
- Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Sariyer, Istanbul 34450, Turkey
| | | | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5166653431, Iran
| | - Emel Sokullu
- Koc University School of Medicine, Koç University, Sariyer, Istanbul 34450, Turkey
| | - Ali K. Yetisen
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Savas Tasoglu
- Department of Mechanical Engineering, Koç University, Sariyer, Istanbul 34450, Turkey
- Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Sariyer, Istanbul 34450, Turkey
- Koc University Research Center for Translational Medicine, Koç University, Sariyer, Istanbul 34450, Turkey
- Boğaziçi Institute of Biomedical Engineering, Boğaziçi University, Çengelköy, Istanbul 34684, Turkey
| |
Collapse
|
15
|
Yang Q, Zhong W, Xu L, Li H, Yan Q, She Y, Yang G. Recent progress of 3D-printed microneedles for transdermal drug delivery. Int J Pharm 2021; 593:120106. [DOI: 10.1016/j.ijpharm.2020.120106] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/19/2022]
|
16
|
Li D, Hu D, Xu H, Patra HK, Liu X, Zhou Z, Tang J, Slater N, Shen Y. Progress and perspective of microneedle system for anti-cancer drug delivery. Biomaterials 2020; 264:120410. [PMID: 32979655 DOI: 10.1016/j.biomaterials.2020.120410] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023]
Abstract
Transdermal drug delivery exhibited encouraging prospects, especially through superficial drug administration routes. However, only a few limited lipophilic drug molecules could cross the skin barrier, those are with low molecular weight and rational Log P value. Microneedles (MNs) can overcome these limitations to deliver numerous drugs into the dermal layer by piercing the outermost skin layer of the body. In the case of superficial cancer treatments, topical drug administration faces severely low transfer efficiency, and systemic treatments are always associated with side effects and premature drug degradation. MN-based systems have achieved excellent technical capabilities and been tested for pre-clinical chemotherapy, photothermal therapy, photodynamic therapy, and immunotherapy. In this review, we will focus on the features, progress, and opportunities of MNs in the anticancer drug delivery system. Then, we will discuss the strategies and advantages in these works and summarize challenges, perspectives, and translational potential for future applications.
Collapse
Affiliation(s)
- Dongdong Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Doudou Hu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hongxia Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hirak K Patra
- Wolfson College, University of Cambridge, Cambridge, CB3 9BB, United Kingdom; Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, United Kingdom
| | - Xiangrui Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhuxian Zhou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jianbin Tang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Nigel Slater
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, United Kingdom
| | - Youqing Shen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
17
|
Silvestre SL, Araújo D, Marques AC, Pires C, Matos M, Alves V, Martins R, Freitas F, Reis MAM, Fortunato E. Microneedle Arrays of Polyhydroxyalkanoate by Laser-Based Micromolding Technique. ACS APPLIED BIO MATERIALS 2020; 3:5856-5864. [DOI: 10.1021/acsabm.0c00570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sara L. Silvestre
- Departamento de Ciência dos Materiais, CENIMAT
- I3N and CEMOP/UNINOVA, Faculdade de Ciências e Tecnologia—Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- Departamento de Química, UCIBIO-REQUIMTE, Faculdade de Ciências e Tecnologia—Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Diana Araújo
- Departamento de Química, UCIBIO-REQUIMTE, Faculdade de Ciências e Tecnologia—Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Ana C. Marques
- Departamento de Ciência dos Materiais, CENIMAT
- I3N and CEMOP/UNINOVA, Faculdade de Ciências e Tecnologia—Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Carolina Pires
- Departamento de Ciência dos Materiais, CENIMAT
- I3N and CEMOP/UNINOVA, Faculdade de Ciências e Tecnologia—Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- Departamento de Química, UCIBIO-REQUIMTE, Faculdade de Ciências e Tecnologia—Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Mariana Matos
- Departamento de Química, UCIBIO-REQUIMTE, Faculdade de Ciências e Tecnologia—Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Vítor Alves
- CEER—Biosystems Engineering, Departamento de Ciências e Engenharia de Biossistemas, Instituto Superior de Agronomia, Universidade Técnica de Lisboa, 1349-017 Lisboa, Portugal
| | - Rodrigo Martins
- Departamento de Ciência dos Materiais, CENIMAT
- I3N and CEMOP/UNINOVA, Faculdade de Ciências e Tecnologia—Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Filomena Freitas
- Departamento de Química, UCIBIO-REQUIMTE, Faculdade de Ciências e Tecnologia—Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Maria A. M. Reis
- Departamento de Química, UCIBIO-REQUIMTE, Faculdade de Ciências e Tecnologia—Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Elvira Fortunato
- Departamento de Ciência dos Materiais, CENIMAT
- I3N and CEMOP/UNINOVA, Faculdade de Ciências e Tecnologia—Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
18
|
Kim E, Erdos G, Huang S, Kenniston TW, Balmert SC, Carey CD, Raj VS, Epperly MW, Klimstra WB, Haagmans BL, Korkmaz E, Falo LD, Gambotto A. Microneedle array delivered recombinant coronavirus vaccines: Immunogenicity and rapid translational development. EBioMedicine 2020; 55:102743. [PMID: 32249203 PMCID: PMC7128973 DOI: 10.1016/j.ebiom.2020.102743] [Citation(s) in RCA: 244] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Coronaviruses pose a serious threat to global health as evidenced by Severe Acute Respiratory Syndrome (SARS), Middle East Respiratory Syndrome (MERS), and COVID-19. SARS Coronavirus (SARS-CoV), MERS Coronavirus (MERS-CoV), and the novel coronavirus, previously dubbed 2019-nCoV, and now officially named SARS-CoV-2, are the causative agents of the SARS, MERS, and COVID-19 disease outbreaks, respectively. Safe vaccines that rapidly induce potent and long-lasting virus-specific immune responses against these infectious agents are urgently needed. The coronavirus spike (S) protein, a characteristic structural component of the viral envelope, is considered a key target for vaccines for the prevention of coronavirus infection. METHODS We first generated codon optimized MERS-S1 subunit vaccines fused with a foldon trimerization domain to mimic the native viral structure. In variant constructs, we engineered immune stimulants (RS09 or flagellin, as TLR4 or TLR5 agonists, respectively) into this trimeric design. We comprehensively tested the pre-clinical immunogenicity of MERS-CoV vaccines in mice when delivered subcutaneously by traditional needle injection, or intracutaneously by dissolving microneedle arrays (MNAs) by evaluating virus specific IgG antibodies in the serum of vaccinated mice by ELISA and using virus neutralization assays. Driven by the urgent need for COVID-19 vaccines, we utilized this strategy to rapidly develop MNA SARS-CoV-2 subunit vaccines and tested their pre-clinical immunogenicity in vivo by exploiting our substantial experience with MNA MERS-CoV vaccines. FINDINGS Here we describe the development of MNA delivered MERS-CoV vaccines and their pre-clinical immunogenicity. Specifically, MNA delivered MERS-S1 subunit vaccines elicited strong and long-lasting antigen-specific antibody responses. Building on our ongoing efforts to develop MERS-CoV vaccines, promising immunogenicity of MNA-delivered MERS-CoV vaccines, and our experience with MNA fabrication and delivery, including clinical trials, we rapidly designed and produced clinically-translatable MNA SARS-CoV-2 subunit vaccines within 4 weeks of the identification of the SARS-CoV-2 S1 sequence. Most importantly, these MNA delivered SARS-CoV-2 S1 subunit vaccines elicited potent antigen-specific antibody responses that were evident beginning 2 weeks after immunization. INTERPRETATION MNA delivery of coronaviruses-S1 subunit vaccines is a promising immunization strategy against coronavirus infection. Progressive scientific and technological efforts enable quicker responses to emerging pandemics. Our ongoing efforts to develop MNA-MERS-S1 subunit vaccines enabled us to rapidly design and produce MNA SARS-CoV-2 subunit vaccines capable of inducing potent virus-specific antibody responses. Collectively, our results support the clinical development of MNA delivered recombinant protein subunit vaccines against SARS, MERS, COVID-19, and other emerging infectious diseases.
Collapse
Affiliation(s)
- Eun Kim
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, W1148 Biomedical Science Tower, 200 Lothrop St., Pennsylvania, PA 15213, USA
| | - Geza Erdos
- Department of Dermatology, University of Pittsburgh School of Medicine, W1150 Biomedical Science Tower, 200 Lothrop St., Pittsburgh, PA 15213, USA
| | - Shaohua Huang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, W1148 Biomedical Science Tower, 200 Lothrop St., Pennsylvania, PA 15213, USA
| | - Thomas W Kenniston
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, W1148 Biomedical Science Tower, 200 Lothrop St., Pennsylvania, PA 15213, USA
| | - Stephen C Balmert
- Department of Dermatology, University of Pittsburgh School of Medicine, W1150 Biomedical Science Tower, 200 Lothrop St., Pittsburgh, PA 15213, USA
| | - Cara Donahue Carey
- Department of Dermatology, University of Pittsburgh School of Medicine, W1150 Biomedical Science Tower, 200 Lothrop St., Pittsburgh, PA 15213, USA
| | - V Stalin Raj
- Department of Viroscience, Erasmus Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Michael W Epperly
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - William B Klimstra
- Center for Vaccine Research, Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Bart L Haagmans
- Department of Viroscience, Erasmus Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Emrullah Korkmaz
- Department of Dermatology, University of Pittsburgh School of Medicine, W1150 Biomedical Science Tower, 200 Lothrop St., Pittsburgh, PA 15213, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15231, USA
| | - Louis D Falo
- Department of Dermatology, University of Pittsburgh School of Medicine, W1150 Biomedical Science Tower, 200 Lothrop St., Pittsburgh, PA 15213, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15231, USA; Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA; The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| | - Andrea Gambotto
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, W1148 Biomedical Science Tower, 200 Lothrop St., Pennsylvania, PA 15213, USA.
| |
Collapse
|
19
|
Balmert SC, Carey CD, Falo GD, Sethi SK, Erdos G, Korkmaz E, Falo LD. Dissolving undercut microneedle arrays for multicomponent cutaneous vaccination. J Control Release 2020; 317:336-346. [PMID: 31756393 PMCID: PMC8237702 DOI: 10.1016/j.jconrel.2019.11.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/08/2019] [Accepted: 11/18/2019] [Indexed: 01/21/2023]
Abstract
The skin is an attractive tissue target for vaccination, as it is readily accessible and contains a dense population of antigen-presenting and immune-accessory cells. Microneedle arrays (MNAs) are emerging as an effective tool for in situ engineering of the cutaneous microenvironment to enable diverse immunization strategies. Here, we present novel dissolving undercut MNAs and demonstrate their application for effective multicomponent cutaneous vaccination. The MNAs are composed of micron-scale needles featuring pyramidal heads supported by undercut stem regions with filleted bases to ensure successful skin penetration and retention during application. Prior efforts to fabricate dissolving undercut microstructures were limited and required complex and lengthy processing and assembly steps. In the current study, we strategically combine three-dimensional (3D) laser lithography, an emerging micro-additive manufacturing method with unique geometric capabilities and nanoscale resolution, and micromolding with favorable materials. This approach enables reproducible production of dissolving MNAs with undercut microneedles that can be tip-loaded with multiple biocargos, such as antigen (ovalbumin) and adjuvant (Poly(I:C)). The resulting MNAs fulfill the geometric (sharp tips and smooth edges) and mechanical-strength requirements for failure-free penetration of human and murine skin to simultaneously deliver multicomponent (antigen plus adjuvant) vaccines to the same cutaneous microenvironment. Cutaneous vaccination of mice using these MNAs induces more potent antigen-specific cellular and humoral immune responses than those elicited by traditional intramuscular injection. Together, the unique geometric features of these undercut MNAs and the associated manufacturing strategy, which is compatible with diverse drugs and biologics, could enable a broad range of non-cutaneous and cutaneous drug delivery applications, including multicomponent vaccination.
Collapse
Affiliation(s)
- Stephen C Balmert
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, United States
| | - Cara Donahue Carey
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, United States
| | - Gabriel D Falo
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, United States
| | - Shiv K Sethi
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, United States
| | - Geza Erdos
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, United States
| | - Emrullah Korkmaz
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, United States.
| | - Louis D Falo
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, United States; Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA 15261, United States; Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA 15213, United States; UPMC Hillman Cancer Center, Pittsburgh, PA 15232, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, United States.
| |
Collapse
|
20
|
Thakkar H, Pandya K, Patel B. Microneedle-Mediated Transdermal Delivery of Tizanidine Hydrochloride. Methods Mol Biol 2020; 2059:239-258. [PMID: 31435926 DOI: 10.1007/978-1-4939-9798-5_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Tizanidine hydrochloride is a skeletal muscle relaxant used for the treatment of spasm, a sudden involuntary muscle contraction leading to pain. The presently available oral dosage form has limitations such as high first pass metabolism resulting in low oral bioavailability. The short half-life necessitates its frequent administration to maintain the required plasma concentration. Transdermal delivery of drug avoids its first pass hepatic metabolism and gives controlled release, making it possible for reduction in dosing frequency. Drug delivery through transdermal route is severely limited by the presence of a tough stratum corneum barrier. A penetration enhancement approach is often necessary to achieve desired plasma concentrations. Microneedles are very short and sharp needles which do not cause pain. Thus, in the present investigation, preparation and evaluation of a transdermal delivery system for tizanidine hydrochloride based on microneedles are described.
Collapse
Affiliation(s)
- Hetal Thakkar
- Pharmacy Department, Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India.
| | - Kartik Pandya
- Pharmacy Department, Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Brijesh Patel
- Pharmacy Department, Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| |
Collapse
|
21
|
Rodgers AM, Cordeiro AS, Donnelly RF. Technology update: dissolvable microneedle patches for vaccine delivery. MEDICAL DEVICES-EVIDENCE AND RESEARCH 2019; 12:379-398. [PMID: 31572025 PMCID: PMC6756839 DOI: 10.2147/mder.s198220] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/08/2019] [Indexed: 12/17/2022] Open
Abstract
Despite vaccination representing one of the greatest advances of modern preventative medicine, there remain significant challenges in vaccine distribution, delivery and compliance. Dissolvable microarray patches or dissolving microneedles (DMN) have been proposed as an innovative vaccine delivery platform that could potentially revolutionize vaccine delivery and circumvent many of the challenges faced with current vaccine strategies. DMN, due to their ease of use, lack of elicitation of pain response, self-disabling nature and ease of transport and distribution, offer an attractive delivery option for vaccines. Additionally, as DMN inherently targets the uppermost skin layers, they facilitate improved vaccine efficacy, due to direct targeting of skin antigen-presenting cells. A plethora of publications have demonstrated the efficacy of DMN vaccination for a range of vaccines, with influenza receiving particular attention. However, before the viable adoption of DMN for vaccination purposes in a clinical setting, a number of fundamental questions must be addressed. Accordingly, this review begins by introducing some of the key barriers faced by current vaccination approaches and how DMN can overcome these challenges. We introduce some of the recent advances in the field of DMN technology, highlighting the potential impact DMN could have, particularly in countries of the developing world. We conclude by reflecting on some of the key questions that remain unanswered and which warrant further investigation before DMNs can be utilized in clinical settings.
Collapse
Affiliation(s)
- Aoife M Rodgers
- School of Pharmacy, Queen’s University Belfast, Belfast, BT9 7BL, UK
| | - Ana Sara Cordeiro
- School of Pharmacy, Queen’s University Belfast, Belfast, BT9 7BL, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen’s University Belfast, Belfast, BT9 7BL, UK
| |
Collapse
|
22
|
Kinetic stability studies of HBV vaccine in a microneedle patch. Int J Pharm 2019; 567:118489. [DOI: 10.1016/j.ijpharm.2019.118489] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/13/2019] [Accepted: 06/30/2019] [Indexed: 02/02/2023]
|
23
|
Yang J, Liu X, Fu Y, Song Y. Recent advances of microneedles for biomedical applications: drug delivery and beyond. Acta Pharm Sin B 2019; 9:469-483. [PMID: 31193810 PMCID: PMC6543086 DOI: 10.1016/j.apsb.2019.03.007] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/29/2019] [Accepted: 02/16/2019] [Indexed: 12/22/2022] Open
Abstract
The microneedle (MN), a highly efficient and versatile device, has attracted extensive scientific and industrial interests in the past decades due to prominent properties including painless penetration, low cost, excellent therapeutic efficacy, and relative safety. The robust microneedle enabling transdermal delivery has a paramount potential to create advanced functional devices with superior nature for biomedical applications. In this review, a great effort has been made to summarize the advance of microneedles including their materials and latest fabrication method, such as three-dimensional printing (3DP). Importantly, a variety of representative biomedical applications of microneedles such as disease treatment, immunobiological administration, disease diagnosis and cosmetic field, are highlighted in detail. At last, conclusions and future perspectives for development of advanced microneedles in biomedical fields have been discussed systematically. Taken together, as an emerging tool, microneedles have showed profound promise for biomedical applications.
Collapse
|
24
|
Leone M, Priester MI, Romeijn S, Nejadnik MR, Mönkäre J, O'Mahony C, Jiskoot W, Kersten G, Bouwstra JA. Hyaluronan-based dissolving microneedles with high antigen content for intradermal vaccination: Formulation, physicochemical characterization and immunogenicity assessment. Eur J Pharm Biopharm 2018; 134:49-59. [PMID: 30453025 DOI: 10.1016/j.ejpb.2018.11.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 02/06/2023]
Abstract
The purpose of this study was to optimize the manufacturing of dissolving microneedles (dMNs) and to increase the antigen loading in dMNs to investigate the effect on their physicochemical properties. To achieve this, a novel single-array wells polydimethylsiloxane mold was designed, minimizing antigen wastage during fabrication and achieving homogeneous antigen distribution among the dMN arrays. Using this mold, hyaluronan (HA)-based dMNs were fabricated and tested for maximal ovalbumin (OVA) content. dMNs could be fabricated with an OVA:HA ratio as high as 1:1 (w/w), without compromising their properties such as shape and penetration into the ex vivo human skin, even after storage at high humidity and temperature. High antigen loading did not induce protein aggregation during dMN fabrication as demonstrated by complementary analytical methods. However, the dissolution rate in ex vivo human skin decreased with increasing antigen loading. About 2.7 µg OVA could be delivered in mice by using a single array with an OVA:HA ratio of 1:3 (w/w). Intradermal vaccination with dMNs induced an immune response similar as subcutaneous injection and faster than after hollow microneedle injection. In conclusion, results suggest that (i) the polydimethylsiloxane mold design has an impact on the manufacturing of dMNs, (ii) the increase in antigen loading in dMNs affects the microneedle dissolution and (iii) dMNs are a valid alternative for vaccine administration over conventional injection.
Collapse
Affiliation(s)
- Mara Leone
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 2300, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Marjolein I Priester
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 2300, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Stefan Romeijn
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 2300, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - M Reza Nejadnik
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 2300, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Juha Mönkäre
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 2300, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Conor O'Mahony
- Tyndall National Institute, University College Cork, Cork T12 R5CP, Ireland
| | - Wim Jiskoot
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 2300, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Gideon Kersten
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 2300, Einsteinweg 55, 2333 CC Leiden, the Netherlands; Institute for Translational Vaccinology (Intravacc), Antonie van Leeuwenhoeklaan 9, 3721MA Bilthoven, the Netherlands
| | - Joke A Bouwstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 2300, Einsteinweg 55, 2333 CC Leiden, the Netherlands.
| |
Collapse
|
25
|
Nanotherapeutic Anti-influenza Solutions: Current Knowledge and Future Challenges. J CLUST SCI 2018. [DOI: 10.1007/s10876-018-1417-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
26
|
Universal Applicator for Digitally-Controlled Pressing Force and Impact Velocity Insertion of Microneedles into Skin. Pharmaceutics 2018; 10:pharmaceutics10040211. [PMID: 30388786 PMCID: PMC6321443 DOI: 10.3390/pharmaceutics10040211] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 10/26/2018] [Accepted: 10/28/2018] [Indexed: 11/17/2022] Open
Abstract
Microneedle technologies have been developed for dermal drug and vaccine delivery, including hollow-, solid-, coated-, and dissolving microneedles. Microneedles have been made in many different geometries and of many different materials, all of which may influence their skin-penetrating ability. To ensure reproducible and effective drug and vaccine delivery via microneedles, the optimal insertion parameters should be known. Therefore, a digitally-controlled microneedle applicator was developed to insert microneedles into the skin via impact insertion (velocity) or via pressing force insertion. Six microneedle arrays with different geometries and/or materials were applied onto ex vivo human skin with varying velocities or pressing forces. Penetration efficiency and delivered antigen dose into the skin after application of microneedles were determined. In general, microneedles pierced the skin more efficiently when applied by impact application as compared to application via pressing force. However, the angle of application of the applicator on the skin can affect the velocity of the impact, influencing the penetration efficiency of microneedles. Regarding the antigen delivery into the skin, the delivered dose was increasing by increasing the velocity or pressure, and thus, increasing the penetration efficiency. These data demonstrate that an applicator is an important tool to determine optimal application conditions with ex vivo human skin.
Collapse
|
27
|
Affiliation(s)
- Ryan F Donnelly
- a School of Pharmacy, Queen's University Belfast , Belfast , UK
| |
Collapse
|
28
|
Leone M, Mönkäre J, Bouwstra JA, Kersten G. Dissolving Microneedle Patches for Dermal Vaccination. Pharm Res 2017; 34:2223-2240. [PMID: 28718050 PMCID: PMC5643353 DOI: 10.1007/s11095-017-2223-2] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 06/26/2017] [Indexed: 12/31/2022]
Abstract
The dermal route is an attractive route for vaccine delivery due to the easy skin accessibility and a dense network of immune cells in the skin. The development of microneedles is crucial to take advantage of the skin immunization and simultaneously to overcome problems related to vaccination by conventional needles (e.g. pain, needle-stick injuries or needle re-use). This review focuses on dissolving microneedles that after penetration into the skin dissolve releasing the encapsulated antigen. The microneedle patch fabrication techniques and their challenges are discussed as well as the microneedle characterization methods and antigen stability aspects. The immunogenicity of antigens formulated in dissolving microneedles are addressed. Finally, the early clinical development is discussed.
Collapse
Affiliation(s)
- M Leone
- Division of Drug Delivery Technology, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, P.O. Box 9502, 2300 RA, Leiden, the Netherlands
| | - J Mönkäre
- Division of Drug Delivery Technology, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, P.O. Box 9502, 2300 RA, Leiden, the Netherlands
| | - J A Bouwstra
- Division of Drug Delivery Technology, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, P.O. Box 9502, 2300 RA, Leiden, the Netherlands.
| | - G Kersten
- Division of Drug Delivery Technology, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, P.O. Box 9502, 2300 RA, Leiden, the Netherlands.,Department of Analytical Development and Formulation, Intravacc, Bilthoven, the Netherlands
| |
Collapse
|
29
|
Kim S, Dangol M, Kang G, Lahiji SF, Yang H, Jang M, Ma Y, Li C, Lee SG, Kim CH, Choi YW, Kim SJ, Ryu JH, Baek JH, Koh J, Jung H. Enhanced Transdermal Delivery by Combined Application of Dissolving Microneedle Patch on Serum-Treated Skin. Mol Pharm 2017; 14:2024-2031. [DOI: 10.1021/acs.molpharmaceut.7b00111] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Suyong Kim
- Department
of Biotechnology, Yonsei University, Building 123, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
- Juvic
Inc., Yonsei Engineering Research Park, Building 102, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Manita Dangol
- Department
of Biotechnology, Yonsei University, Building 123, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Geonwoo Kang
- Department
of Biotechnology, Yonsei University, Building 123, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Shayan F. Lahiji
- Department
of Biotechnology, Yonsei University, Building 123, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Huisuk Yang
- Department
of Biotechnology, Yonsei University, Building 123, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Mingyu Jang
- Department
of Biotechnology, Yonsei University, Building 123, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
- Juvic
Inc., Yonsei Engineering Research Park, Building 102, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Yonghao Ma
- Department
of Biotechnology, Yonsei University, Building 123, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Chengguo Li
- Department
of Biotechnology, Yonsei University, Building 123, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Sang Gon Lee
- College
of Pharmacy, Chung-Ang University, 84 Heuksuk-ro,
Dongjak-gu, Seoul 06974, Korea
| | - Chang Hyun Kim
- College
of Pharmacy, Chung-Ang University, 84 Heuksuk-ro,
Dongjak-gu, Seoul 06974, Korea
| | - Young Wook Choi
- College
of Pharmacy, Chung-Ang University, 84 Heuksuk-ro,
Dongjak-gu, Seoul 06974, Korea
| | - So Jeong Kim
- Dermapro
Skin Research Center, Dermapro Ltd., 30 Bangbaejoongang-ro, Seocho-gu, Seoul 06684, Korea
| | - Ja Hyun Ryu
- Dermapro
Skin Research Center, Dermapro Ltd., 30 Bangbaejoongang-ro, Seocho-gu, Seoul 06684, Korea
| | - Ji Hwoon Baek
- Dermapro
Skin Research Center, Dermapro Ltd., 30 Bangbaejoongang-ro, Seocho-gu, Seoul 06684, Korea
| | - Jaesuk Koh
- Dermapro
Skin Research Center, Dermapro Ltd., 30 Bangbaejoongang-ro, Seocho-gu, Seoul 06684, Korea
| | - Hyungil Jung
- Department
of Biotechnology, Yonsei University, Building 123, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
- Juvic
Inc., Yonsei Engineering Research Park, Building 102, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| |
Collapse
|
30
|
Tran KT, Nguyen TD. Lithography-based methods to manufacture biomaterials at small scales. JOURNAL OF SCIENCE: ADVANCED MATERIALS AND DEVICES 2017; 2:1-14. [DOI: 10.1016/j.jsamd.2016.12.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
31
|
Meliga SC, Coffey JW, Crichton ML, Flaim C, Veidt M, Kendall MA. The hyperelastic and failure behaviors of skin in relation to the dynamic application of microscopic penetrators in a murine model. Acta Biomater 2017; 48:341-356. [PMID: 27746361 DOI: 10.1016/j.actbio.2016.10.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 09/25/2016] [Accepted: 10/12/2016] [Indexed: 12/20/2022]
Abstract
In-depth understanding of skin elastic and rupture behavior is fundamental to enable next-generation biomedical devices to directly access areas rich in cells and biomolecules. However, the paucity of skin mechanical characterization and lack of established fracture models limits their rational design. We present an experimental and numerical study of skin mechanics during dynamic interaction with individual and arrays of micro-penetrators. Initially, micro-indentation of individual skin strata revealed hyperelastic moduli were dramatically rate-dependent, enabling extrapolation of stiffness properties at high velocity regimes (>1ms-1). A layered finite-element model satisfactorily predicted the penetration of micro-penetrators using characteristic fracture energies (∼10pJμm-2) significantly lower than previously reported (≫100pJμm-2). Interestingly, with our standard application conditions (∼2ms-1, 35gpistonmass), ∼95% of the application kinetic energy was transferred to the backing support rather than the skin ∼5% (murine ear model). At higher velocities (∼10ms-1) strain energy accumulated in the top skin layers, initiating fracture before stress waves transmitted deformation to the backing material, increasing energy transfer efficiency to 55%. Thus, the tools developed provide guidelines to rationally engineer skin penetrators to increase depth targeting consistency and payload delivery across patients whilst minimizing penetration energy to control skin inflammation, tolerability and acceptability. STATEMENT OF SIGNIFICANCE The mechanics of skin penetration by dynamically-applied microscopic tips is investigated using a combined experimental-computational approach. A FE model of skin is parameterized using indentation tests and a ductile-failure implementation validated against penetration assays. The simulations shed light on skin elastic and fracture properties, and elucidate the interaction with microprojection arrays for vaccine delivery allowing rational design of next-generation devices.
Collapse
|
32
|
Zaric M, Ibarzo Yus B, Kalcheva PP, Klavinskis LS. Microneedle-mediated delivery of viral vectored vaccines. Expert Opin Drug Deliv 2016; 14:1177-1187. [PMID: 27591122 DOI: 10.1080/17425247.2017.1230096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Microneedle array platforms are a promising technology for vaccine delivery, due to their ease of administration with no sharp waste generated, small size, possibility of targeted delivery to the specified skin depth and efficacious delivery of different vaccine formulations, including viral vectors. Areas covered: Attributes and challenges of the most promising viral vector candidates that have advanced to the clinic and that have been leveraged for skin delivery by microneedles; The importance of understanding the immunobiology of antigen-presenting cells in the skin, in particular dendritic cells, in order to generate further improved skin vaccination strategies; recent studies where viral vectors expressing various antigens have been coupled with microneedle technology to examine their potential for improved vaccination. Expert opinion: Simple, economic and efficacious vaccine delivery methods are needed to improve health outcomes and manage possible outbreaks of new emerging viruses. Understanding what innate/inflammatory signals are required to induce both immediate and long-term responses remains a major hurdle in the development of the effective vaccines. One approach to meet these needs is microneedle-mediated viral vector vaccination. In order for this technology to fulfil this potential the industry must invest significantly to further develop its design, production, biosafety, delivery and large-scale manufacturing.
Collapse
Affiliation(s)
- Marija Zaric
- a Peter Gorer Department of Immunobiology , King's College London , London , UK
| | - Bárbara Ibarzo Yus
- a Peter Gorer Department of Immunobiology , King's College London , London , UK
| | | | | |
Collapse
|
33
|
Korkmaz E, Friedrich EE, Ramadan MH, Erdos G, Mathers AR, Burak Ozdoganlar O, Washburn NR, Falo LD. Therapeutic intradermal delivery of tumor necrosis factor-alpha antibodies using tip-loaded dissolvable microneedle arrays. Acta Biomater 2015; 24:96-105. [PMID: 26093066 DOI: 10.1016/j.actbio.2015.05.036] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/29/2015] [Accepted: 05/28/2015] [Indexed: 12/19/2022]
Abstract
Tumor necrosis factor-alpha (TNF-α) specific antibodies (anti-TNF-α Ab) have been shown to be potent TNF inhibitors and effective therapeutics for a range of inflammatory diseases. Typically, these drugs are administered systemically, but systemic dosing sufficient to achieve locally effective concentrations in peripheral tissues has been associated with systemic immunosuppression and related adverse events. Here, we evaluated the use of tip-loaded dissolvable microneedle arrays (MNAs) for localized intradermal delivery of anti-TNF-α Ab. MNAs with obelisk shape microneedles that incorporate the antibody cargo in the needle tips were created from carboxymethylcellulose (CMC) using a micromilling/spin-casting fabrication method. We found that anti-TNF-α Ab integrated into MNAs using this room temperature fabrication process maintained conformationally dependent TNF-α binding activity. Further, these MNAs efficiently delivered anti-TNF-α antibodies to the dermis of human skin with clinically applicable release profiles. To evaluate MNA delivered anti-TNF-α Ab function, we applied anti-TNF-α Ab containing MNAs to established psoriasiform lesions on the skin of mice. MNA anti-TNF-α Ab treatment reduced key biomarkers of psoriasiform inflammation including epidermal thickness and IL-1β expression. Taken together, these results demonstrate efficient and biologically effective MNA delivery of anti-TNF-α Ab to the intradermal microenvironment of the skin in mice and humans, and support the development of MNA mediated antibody delivery for clinical applications. STATEMENT OF SIGNIFICANCE Tumor necrosis factor-alpha (TNF-α) specific antibodies (anti-TNF-α Ab) have been shown to be potent TNF inhibitors and effective therapeutics for a range of inflammatory diseases. Typically, these drugs are administered systemically, but systemic dosing sufficient to achieve locally effective concentrations in peripheral tissues has been associated with systemic immunosuppression and related adverse events. Here we demonstrate efficient and biologically effective MNA delivery of anti-TNF-α Ab to the intradermal microenvironment of the skin in mice and humans. These results support the development of MNA mediated antibody delivery of therapeutic antibodies for clinical applications.
Collapse
|
34
|
Fogdell-Hahn A. Antidrug Antibodies: B Cell Immunity Against Therapy. Scand J Immunol 2015; 82:184-90. [DOI: 10.1111/sji.12327] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 06/18/2015] [Indexed: 01/19/2023]
Affiliation(s)
- A. Fogdell-Hahn
- Karolinska Institutet; Department of Clinical Neuroscience; Clinical Neuroimmunology; Center for Molecular Medicine (CMM); Karolinska University Hospital; Solna Stockholm Sweden
| |
Collapse
|
35
|
Donadei A, Gallorini S, Berti F, O’Hagan DT, Adamo R, Baudner BC. Rational Design of Adjuvant for Skin Delivery: Conjugation of Synthetic β-Glucan Dectin-1 Agonist to Protein Antigen. Mol Pharm 2015; 12:1662-72. [DOI: 10.1021/acs.molpharmaceut.5b00072] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Agnese Donadei
- Vaccine Chemistry & Formulation, Novartis Vaccines & Diagnostics, Via Fiorentina 1, 53100 Siena, Italy
| | - Simona Gallorini
- Vaccine Chemistry & Formulation, Novartis Vaccines & Diagnostics, Via Fiorentina 1, 53100 Siena, Italy
| | - Francesco Berti
- Vaccine Chemistry & Formulation, Novartis Vaccines & Diagnostics, Via Fiorentina 1, 53100 Siena, Italy
| | - Derek T. O’Hagan
- Vaccine Chemistry & Formulation, Novartis Vaccines & Diagnostics, 350 Massacchusetts Avenue, Cambridge, Massacchusetts 02319, United States
| | - Roberto Adamo
- Vaccine Chemistry & Formulation, Novartis Vaccines & Diagnostics, Via Fiorentina 1, 53100 Siena, Italy
| | - Barbara C. Baudner
- Vaccine Chemistry & Formulation, Novartis Vaccines & Diagnostics, Via Fiorentina 1, 53100 Siena, Italy
| |
Collapse
|
36
|
Nayak A, Babla H, Han T, Das DB. Lidocaine carboxymethylcellulose with gelatine co-polymer hydrogel delivery by combined microneedle and ultrasound. Drug Deliv 2014; 23:658-69. [DOI: 10.3109/10717544.2014.935985] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
37
|
Quinn HL, Kearney MC, Courtenay AJ, McCrudden MTC, Donnelly RF. The role of microneedles for drug and vaccine delivery. Expert Opin Drug Deliv 2014; 11:1769-80. [PMID: 25020088 DOI: 10.1517/17425247.2014.938635] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Transdermal drug delivery offers a number of advantages for the patient, not only due to its non-invasive and convenient nature, but also due to factors such as avoidance of first-pass metabolism and prevention of gastrointestinal degradation. It has been demonstrated that microneedles (MNs) can increase the number of compounds amenable to transdermal delivery by penetrating the skin's protective barrier, the stratum corneum, and creating a pathway for drug permeation to the dermal tissue below. AREAS COVERED MNs have been extensively investigated for drug and vaccine delivery. The different types of MN arrays and their delivery capabilities are discussed in terms of drugs, including biopharmaceutics and vaccines. Patient usage and effects on the skin are also considered. EXPERT OPINION MN research and development is now at the stage where commercialisation is a viable possibility. There are a number of long-term safety questions relating to patient usage which will need to be addressed moving forward. Regulatory guidance is awaited to direct the scale-up of the manufacturing process alongside provision of clearer patient instruction for safe and effective use of MN devices.
Collapse
Affiliation(s)
- Helen L Quinn
- Queen's University Belfast, School of Pharmacy , 97 Lisburn Road, Belfast, BT9 7BL , UK
| | | | | | | | | |
Collapse
|
38
|
Current advances in the fabrication of microneedles for transdermal delivery. J Control Release 2014; 185:130-8. [DOI: 10.1016/j.jconrel.2014.04.052] [Citation(s) in RCA: 233] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 04/24/2014] [Accepted: 04/28/2014] [Indexed: 11/17/2022]
|
39
|
Immunization with a Borrelia burgdorferi BB0172-derived peptide protects mice against lyme disease. PLoS One 2014; 9:e88245. [PMID: 24505447 PMCID: PMC3914939 DOI: 10.1371/journal.pone.0088245] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 01/08/2014] [Indexed: 12/15/2022] Open
Abstract
Lyme disease is the most prevalent arthropod borne disease in the US and it is caused by the bacterial spirochete Borrelia burgdorferi (Bb), which is acquired through the bite of an infected Ixodes tick. Vaccine development efforts focused on the von Willebrand factor A domain of the borrelial protein BB0172 from which four peptides (A, B, C and D) were synthesized and conjugated to Keyhole Limpet Hemocyanin, formulated in Titer Max® adjuvant and used to immunize C3H/HeN mice subcutaneously at days 0, 14 and 21. Sera were collected to evaluate antibody responses and some mice were sacrificed for histopathology to evaluate vaccine safety. Twenty-eight days post-priming, protection was evaluated by needle inoculation of half the mice in each group with 103 Bb/mouse, whereas the rest were challenged with 105Bb/mouse. Eight weeks post-priming, another four groups of similarly immunized mice were challenged using infected ticks. In both experiments, twenty-one days post-challenge, the mice were sacrificed to determine antibody responses, bacterial burdens and conduct histopathology. Results showed that only mice immunized with peptide B were protected against challenge with Bb. In addition, compared to the other the treatment groups, peptide B-immunized mice showed very limited inflammation in the heart and joint tissues. Peptide B-specific antibody titers peaked at 8 weeks post-priming and surprisingly, the anti-peptide B antibodies did not cross-react with Bb lysates. These findings strongly suggest that peptide B is a promising candidate for the development of a new DIVA vaccine (Differentiate between Infected and Vaccinated Animals) for protection against Lyme disease.
Collapse
|
40
|
Bediz B, Korkmaz E, Khilwani R, Donahue C, Erdos G, Falo LD, Ozdoganlar OB. Dissolvable microneedle arrays for intradermal delivery of biologics: fabrication and application. Pharm Res 2014; 31:117-35. [PMID: 23904139 PMCID: PMC3898465 DOI: 10.1007/s11095-013-1137-x] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 06/24/2013] [Indexed: 10/26/2022]
Abstract
PURPOSE Design and evaluate a new micro-machining based approach for fabricating dissolvable microneedle arrays (MNAs) with diverse geometries and from different materials for dry delivery to skin microenvironments. The aims are to describe the new fabrication method, to evaluate geometric and material capability as well as reproducibility of the method, and to demonstrate the effectiveness of fabricated MNAs in delivering bioactive molecules. METHODS Precise master molds were created using micromilling. Micromolding was used to create elastomer production molds from master molds. The dissolvable MNAs were then fabricated using the spin-casting method. Fabricated MNAs with different geometries were evaluated for reproducibility. MNAs from different materials were fabricated to show material capability. MNAs with embedded bioactive components were tested for functionality on human and mice skin. RESULTS MNAs with different geometries and from carboxymethyl cellulose, polyvinyl pyrrolidone and maltodextrin were created reproducibly using our method. MNAs successfully pierce the skin, precisely deliver their bioactive cargo to skin and induce specific immunity in mice. CONCLUSIONS We demonstrated that the new fabrication approach enables creating dissolvable MNAs with diverse geometries and from different materials reproducibly. We also demonstrated the application of MNAs for precise and specific delivery of biomolecules to skin microenvironments in vitro and in vivo.
Collapse
Affiliation(s)
- Bekir Bediz
- Department of Mechanical Engineering, Carnegie Mellon University Pittsburgh, Pennsylvania 15213, USA
| | - Emrullah Korkmaz
- Department of Mechanical Engineering, Carnegie Mellon University Pittsburgh, Pennsylvania 15213, USA
| | - Rakesh Khilwani
- Department of Mechanical Engineering, Carnegie Mellon University Pittsburgh, Pennsylvania 15213, USA
| | - Cara Donahue
- Department of Dermatology, University of Pittsburgh School of Medicine Pittsburgh, Pennsylvania 15213, USA
| | - Geza Erdos
- Department of Dermatology, University of Pittsburgh School of Medicine Pittsburgh, Pennsylvania 15213, USA
| | - Louis D. Falo
- Department of Dermatology; Department of Bioengineering, Pittsburgh Clinical and Translational Science Institute, The McGowan Institute for Regenerative Medicine, and the University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | - O. Burak Ozdoganlar
- Departments of Mechanical Engineering, Biomedical Engineering, and Materials Science and Engineering, Carnegie Mellon University, Pittsburgh Pennsylvania 15213, USA
| |
Collapse
|
41
|
Bayry J. Regulatory T cells as adjuvant target for enhancing the viral disease vaccine efficacy. Virusdisease 2013; 25:18-25. [PMID: 24426307 PMCID: PMC3889236 DOI: 10.1007/s13337-013-0187-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 11/14/2013] [Indexed: 12/20/2022] Open
Abstract
CD4+CD25+FoxP3+ regulatory T cells (Tregs) are critical for immune homeostasis and tolerance. However, because of their capacity to suppress antigen presenting cells (APC), T and B cells, Tregs could also inhibit protective immune responses to viruses and vaccines. Several viruses have been shown to exploit Tregs to evade immune response. By modulating APC and in particular by weakening the functions of dendritic cells such as their ability to secrete polarizing cytokines and expression of co-stimulatory molecules, viruses could support differentiation and expansion of Tregs. Of note, as a proof of concept, depletion of Tregs significantly enhanced the protective immune response to viruses and vaccines suggesting that Tregs are viable targets to enhance immunogenicity of vaccines. As Treg depletion or inhibition of their functions could lead to deleterious autoimmune and inflammatory disorders, any Treg-based approach for vaccination should not aim at depletion of Tregs and inhibition of their functions should be transient. Recent studies have targeted the interaction between CCR4 expressed on Tregs and its ligands CCL22 and CCL17 to inhibit transiently the recruitment of Tregs at the site of immunization. Importantly, use of CCR4 antagonists as ‘molecular adjuvants’ in vivo in experimental models, amplified cellular and humoral immune responses when injected in combination with various vaccine antigens. The significant adjuvant activity observed in diverse models without noticeable side effects provided strong evidence that CCR4 is a sustainable target for rational adjuvant design.
Collapse
Affiliation(s)
- Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale, Unité 872, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Université Paris Descartes, 15 rue de l’Ecole de Médicine, 75006 Paris, France
| |
Collapse
|
42
|
Bayry J. Emerging viral diseases of livestock in the developing world. INDIAN JOURNAL OF VIROLOGY : AN OFFICIAL ORGAN OF INDIAN VIROLOGICAL SOCIETY 2013; 24:291-4. [PMID: 24426290 PMCID: PMC3832702 DOI: 10.1007/s13337-013-0164-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 09/11/2013] [Indexed: 11/02/2022]
Abstract
Emerging and reemerging viral diseases of livestock and human beings are in sharp rise in recent years. Importantly, many of these viruses, including influenza, Hendra, Nipah and corona are of zoonotic importance. Several viral diseases of livestock such as bluetongue, peste des petits ruminants, camel pox, equine infectious anaemia, chicken anaemia and sheep-associated malignant catarrhal fever are crossing their traditional boundaries. Emergence of new serotypes and variant forms of viruses as in the case of blue tongue virus, avian infectious bronchitis virus, Newcastle disease virus adds additional level of complexity. The increased incidence of emerging and reemerging viral diseases could be attributed to several factors including deforestation and surge in direct contact of livestock and humans with wild animals and birds. This special issue of "Indian Journal of Virology" is focused on diverse aspects of above diseases: isolation and characterization of viruses, epidemiology, pathogenesis, diagnosis, prevention measures and vaccine development.
Collapse
Affiliation(s)
- Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale, Unité 872, Centre de Recherche des Cordeliers, Equipe 16-Immunopathology and Therapeutic Immunointervention, 75006 Paris, France
| |
Collapse
|
43
|
Zaric M, Lyubomska O, Touzelet O, Poux C, Al-Zahrani S, Fay F, Wallace L, Terhorst D, Malissen B, Henri S, Power UF, Scott CJ, Donnelly RF, Kissenpfennig A. Skin dendritic cell targeting via microneedle arrays laden with antigen-encapsulated poly-D,L-lactide-co-glycolide nanoparticles induces efficient antitumor and antiviral immune responses. ACS NANO 2013; 7:2042-55. [PMID: 23373658 PMCID: PMC3936823 DOI: 10.1021/nn304235j] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 02/01/2013] [Indexed: 05/19/2023]
Abstract
The efficacious delivery of antigens to antigen-presenting cells (APCs), in particular, to dendritic cells (DCs), and their subsequent activation remains a significant challenge in the development of effective vaccines. This study highlights the potential of dissolving microneedle (MN) arrays laden with nanoencapsulated antigen to increase vaccine immunogenicity by targeting antigen specifically to contiguous DC networks within the skin. Following in situ uptake, skin-resident DCs were able to deliver antigen-encapsulated poly-d,l-lactide-co-glycolide (PGLA) nanoparticles to cutaneous draining lymph nodes where they subsequently induced significant expansion of antigen-specific T cells. Moreover, we show that antigen-encapsulated nanoparticle vaccination via microneedles generated robust antigen-specific cellular immune responses in mice. This approach provided complete protection in vivo against both the development of antigen-expressing B16 melanoma tumors and a murine model of para-influenza, through the activation of antigen-specific cytotoxic CD8(+) T cells that resulted in efficient clearance of tumors and virus, respectively. In addition, we show promising findings that nanoencapsulation facilitates antigen retention into skin layers and provides antigen stability in microneedles. Therefore, the use of biodegradable polymeric nanoparticles for selective targeting of antigen to skin DC subsets through dissolvable MNs provides a promising technology for improved vaccination efficacy, compliance, and coverage.
Collapse
Affiliation(s)
- Marija Zaric
- The Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, University Road, Belfast BT9 7AE, United Kingdom
| | - Oksana Lyubomska
- The Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, University Road, Belfast BT9 7AE, United Kingdom
| | - Olivier Touzelet
- The Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, University Road, Belfast BT9 7AE, United Kingdom
| | - Candice Poux
- The Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, University Road, Belfast BT9 7AE, United Kingdom
| | - Sharifah Al-Zahrani
- School of Pharmacy, Queen’s University Belfast, Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Francois Fay
- School of Pharmacy, Queen’s University Belfast, Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Leah Wallace
- The Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, University Road, Belfast BT9 7AE, United Kingdom
| | - Dorothea Terhorst
- Centre d’Immunologie de Marseille-Luminy (CIML), Aix Marseille Université, UM2, Marseille, France
- INSERM U1104, Marseille, France
- CNRS UMR7280, Marseille, France
| | - Bernard Malissen
- Centre d’Immunologie de Marseille-Luminy (CIML), Aix Marseille Université, UM2, Marseille, France
- INSERM U1104, Marseille, France
- CNRS UMR7280, Marseille, France
| | - Sandrine Henri
- Centre d’Immunologie de Marseille-Luminy (CIML), Aix Marseille Université, UM2, Marseille, France
- INSERM U1104, Marseille, France
- CNRS UMR7280, Marseille, France
| | - Ultan F. Power
- The Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, University Road, Belfast BT9 7AE, United Kingdom
| | - Christopher J. Scott
- School of Pharmacy, Queen’s University Belfast, Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Ryan F. Donnelly
- School of Pharmacy, Queen’s University Belfast, Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Adrien Kissenpfennig
- The Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, University Road, Belfast BT9 7AE, United Kingdom
- Address correspondence to
| |
Collapse
|
44
|
Kommareddy S, Bonificio A, Gallorini S, Baudner B, Singh M, O'hagan D. Preparation of Highly Concentrated Influenza Vaccine for Use in Novel Delivery Approaches. J Pharm Sci 2013; 102:866-75. [DOI: 10.1002/jps.23444] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 11/27/2012] [Accepted: 12/14/2012] [Indexed: 12/17/2022]
|
45
|
Stanek O, Linhartova I, Majlessi L, Leclerc C, Sebo P. Complexes of streptavidin-fused antigens with biotinylated antibodies targeting receptors on dendritic cell surface: a novel tool for induction of specific T-cell immune responses. Mol Biotechnol 2012; 51:221-32. [PMID: 22006508 DOI: 10.1007/s12033-011-9459-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The choice of tools that enable efficient targeting of exogenous antigens (Ag) for processing and presentation by professional Ag-presenting cells (APC) remains limited. This represents, indeed, a bottleneck in development of vaccines inducing specific T-cell responses. Here, we describe a novel strategy of Ag delivery into APCs. The Ag of choice is fused to the N- or C-terminus of streptavidin (SA) and tetrameric Ag-SA or SA-Ag fusion proteins are produced in E. coli and purified by 2-Iminobiotin-Agarose affinity chromatography. Alternatively, Ag-SA proteins are purified from urea extracts of E. coli inclusion bodies and refolded in vitro into functional tetramers. Complexes with biotinylated antibodies targeting cell surface receptors are formed and used to deliver the Ags of choice for processing and presentation by APCs and induction of Ag-specific CD4+ and CD8+ T-cell responses in vitro and in vivo.
Collapse
Affiliation(s)
- Ondrej Stanek
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology of the ASCR, Videnska 1083, 14220 Prague, Czech Republic
| | | | | | | | | |
Collapse
|
46
|
Al-Zahrani S, Zaric M, McCrudden C, Scott C, Kissenpfennig A, Donnelly RF. Microneedle-mediated vaccine delivery: harnessing cutaneous immunobiology to improve efficacy. Expert Opin Drug Deliv 2012; 9:541-50. [PMID: 22475249 DOI: 10.1517/17425247.2012.676038] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Breaching the skin's stratum corneum barrier raises the possibility of the administration of vaccines, gene vectors, antibodies and even nanoparticles, all of which have at least their initial effect on populations of skin cells. AREAS COVERED Intradermal vaccine delivery holds enormous potential for improved therapeutic outcomes for patients, particularly those in the developing world. Various vaccine-delivery strategies have been employed, which are discussed in this review. The importance of cutaneous immunobiology on the effect produced by microneedle-mediated intradermal vaccination is also discussed. EXPERT OPINION Microneedle-mediated vaccines hold enormous potential for patient benefit. However, in order for microneedle vaccine strategies to fulfill their potential, the proportion of an immune response that is due to the local action of delivered vaccines on skin antigen-presenting cells, and what is due to a systemic effect from vaccines reaching the systemic circulation, must be determined. Moreover, industry will need to invest significantly in new equipment and instrumentation in order to mass-produce microneedle vaccines consistently. Finally, microneedles will need to demonstrate consistent dose delivery across patient groups and match this to reliable immune responses before they will replace tried-and-tested needle-and-syringe-based approaches.
Collapse
|