1
|
Bastaki K, Velayutham D, Irfan A, Adnan M, Mohammed S, Mbarek H, Qoronfleh MW, Jithesh PV. Forging the path to precision medicine in Qatar: a public health perspective on pharmacogenomics initiatives. Front Public Health 2024; 12:1364221. [PMID: 38550311 PMCID: PMC10977610 DOI: 10.3389/fpubh.2024.1364221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 02/20/2024] [Indexed: 04/02/2024] Open
Abstract
Pharmacogenomics (PGx) is an important component of precision medicine that promises tailored treatment approaches based on an individual's genetic information. Exploring the initiatives in research that help to integrate PGx test into clinical setting, identifying the potential barriers and challenges as well as planning the future directions, are all important for fruitful PGx implementation in any population. Qatar serves as an exemplar case study for the Middle East, having a small native population compared to a diverse immigrant population, advanced healthcare system, national genome program, and several educational initiatives on PGx and precision medicine. This paper attempts to outline the current state of PGx research and implementation in Qatar within the global context, emphasizing ongoing initiatives and educational efforts. The inclusion of PGx in university curricula and healthcare provider training, alongside precision medicine conferences, showcase Qatar's commitment to advancing this field. However, challenges persist, including the requirement for population specific implementation strategies, complex genetic data interpretation, lack of standardization, and limited awareness. The review suggests policy development for future directions in continued research investment, conducting clinical trials for the feasibility of PGx implementation, ethical considerations, technological advancements, and global collaborations to overcome these barriers.
Collapse
Affiliation(s)
- Kholoud Bastaki
- Clinical and Pharmacy Practice Department, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Dinesh Velayutham
- College of Health & Life Sciences, Hamad Bin Khalifa University, Education City, Doha, Qatar
| | - Areeba Irfan
- College of Health & Life Sciences, Hamad Bin Khalifa University, Education City, Doha, Qatar
| | - Mohd Adnan
- College of Health & Life Sciences, Hamad Bin Khalifa University, Education City, Doha, Qatar
| | - Sawsan Mohammed
- College of Medicine, Pre-Clinical Education Department, QU Health, Qatar University, Doha, Qatar
| | | | - M. Waild Qoronfleh
- Q3 Research Institute (QRI), Research & Policy Division, Ann Arbor, MI, United States
| | - Puthen Veettil Jithesh
- College of Health & Life Sciences, Hamad Bin Khalifa University, Education City, Doha, Qatar
| |
Collapse
|
2
|
Barrett JE, Shekarabi A, Inan S. Oxycodone: A Current Perspective on Its Pharmacology, Abuse, and Pharmacotherapeutic Developments. Pharmacol Rev 2023; 75:1062-1118. [PMID: 37321860 PMCID: PMC10595024 DOI: 10.1124/pharmrev.121.000506] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 04/30/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023] Open
Abstract
Oxycodone, a semisynthetic derivative of naturally occurring thebaine, an opioid alkaloid, has been available for more than 100 years. Although thebaine cannot be used therapeutically due to the occurrence of convulsions at higher doses, it has been converted to a number of other widely used compounds that include naloxone, naltrexone, buprenorphine, and oxycodone. Despite the early identification of oxycodone, it was not until the 1990s that clinical studies began to explore its analgesic efficacy. These studies were followed by the pursuit of several preclinical studies to examine the analgesic effects and abuse liability of oxycodone in laboratory animals and the subjective effects in human volunteers. For a number of years oxycodone was at the forefront of the opioid crisis, playing a significant role in contributing to opioid misuse and abuse, with suggestions that it led to transitioning to other opioids. Several concerns were expressed as early as the 1940s that oxycodone had significant abuse potential similar to heroin and morphine. Both animal and human abuse liability studies have confirmed, and in some cases amplified, these early warnings. Despite sharing a similar structure with morphine and pharmacological actions also mediated by the μ-opioid receptor, there are several differences in the pharmacology and neurobiology of oxycodone. The data that have emerged from the many efforts to analyze the pharmacological and molecular mechanism of oxycodone have generated considerable insight into its many actions, reviewed here, which, in turn, have provided new information on opioid receptor pharmacology. SIGNIFICANCE STATEMENT: Oxycodone, a μ-opioid receptor agonist, was synthesized in 1916 and introduced into clinical use in Germany in 1917. It has been studied extensively as a therapeutic analgesic for acute and chronic neuropathic pain as an alternative to morphine. Oxycodone emerged as a drug with widespread abuse. This article brings together an integrated, detailed review of the pharmacology of oxycodone, preclinical and clinical studies of pain and abuse, and recent advances to identify potential opioid analgesics without abuse liability.
Collapse
Affiliation(s)
- James E Barrett
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University. Philadelphia, Pennsylvania
| | - Aryan Shekarabi
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University. Philadelphia, Pennsylvania
| | - Saadet Inan
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University. Philadelphia, Pennsylvania
| |
Collapse
|
3
|
Turolo S, Edefonti A, Syren ML, Montini G. Pharmacogenomics of Old and New Immunosuppressive Drugs for Precision Medicine in Kidney Transplantation. J Clin Med 2023; 12:4454. [PMID: 37445489 DOI: 10.3390/jcm12134454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/16/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Kidney transplantation is the preferred therapeutic option for end-stage kidney disease, but, despite major therapeutic advancements, allograft rejection continues to endanger graft survival. Every patient is unique due to his or her clinical history, drug metabolism, genetic background, and epigenetics. For this reason, examples of "personalized medicine" and "precision medicine" have steadily increased in recent decades. The final target of precision medicine is to maximize drug efficacy and minimize toxicity for each individual patient. Immunosuppressive drugs, in the setting of kidney transplantation, require a precise dosage to avoid either adverse events (overdosage) or a lack of efficacy (underdosage). In this review, we will explore the knowledge regarding the pharmacogenomics of the main immunosuppressive medications currently utilized in kidney transplantation. We will focus on clinically relevant pharmacogenomic data, that is, the polymorphisms of the genes that metabolize immunosuppressive drugs.
Collapse
Affiliation(s)
- Stefano Turolo
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Pediatric Nephrology, Dialysis and Transplant Unit, 20122 Milan, Italy
| | - Alberto Edefonti
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Pediatric Nephrology, Dialysis and Transplant Unit, 20122 Milan, Italy
| | - Marie Luise Syren
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Giovanni Montini
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Pediatric Nephrology, Dialysis and Transplant Unit, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| |
Collapse
|
4
|
Salas-Hernández A, Galleguillos M, Carrasco M, López-Cortés A, Redal MA, Fonseca-Mendoza D, Esperón P, González-Martínez F, Lares-Asseff I, Lazarowski A, Loera-Castañeda V, Remírez D, Martínez MF, Vargas R, Rios-Santos F, Macho A, Cayún JP, Perez GR, Gutierrez C, Cerpa LC, Leiva T, Calfunao S, Xajil L, Sandoval C, Suárez M, Gonzalez A, Echeverría-Garcés G, Sullón-Dextre L, Cordero-García E, Morales AR, Avendaño A, Sánchez E, Bastone LC, Lara C, Zuluaga-Arias P, Soler AM, Da Luz J, Burgueño-Rodríguez G, Vital M, Reyes-Reyes E, Huaccha A, Ariza YV, Tzul N, Rendón AL, Serrano R, Acosta L, Motta-Pardo A, Beltrán-Angarita L, Brand E, Jiménez MA, Hidalgo-Lozada GM, Romero-Prado MMJ, Escobar-Castro K, Umaña-Rivas M, Vivas JD, Lagos P, Martínez YB, Quesada S, Calfio C, Arias ML, Lavanderos MA, Cáceres DD, Salazar-Granara A, Varela NM, Quiñones LA. An updated examination of the perception of barriers for pharmacogenomics implementation and the usefulness of drug/gene pairs in Latin America and the Caribbean. Front Pharmacol 2023; 14:1175737. [PMID: 37251329 PMCID: PMC10213898 DOI: 10.3389/fphar.2023.1175737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/21/2023] [Indexed: 05/31/2023] Open
Abstract
Pharmacogenomics (PGx) is considered an emergent field in developing countries. Research on PGx in the Latin American and the Caribbean (LAC) region remains scarce, with limited information in some populations. Thus, extrapolations are complicated, especially in mixed populations. In this paper, we reviewed and analyzed pharmacogenomic knowledge among the LAC scientific and clinical community and examined barriers to clinical application. We performed a search for publications and clinical trials in the field worldwide and evaluated the contribution of LAC. Next, we conducted a regional structured survey that evaluated a list of 14 potential barriers to the clinical implementation of biomarkers based on their importance. In addition, a paired list of 54 genes/drugs was analyzed to determine an association between biomarkers and response to genomic medicine. This survey was compared to a previous survey performed in 2014 to assess progress in the region. The search results indicated that Latin American and Caribbean countries have contributed 3.44% of the total publications and 2.45% of the PGx-related clinical trials worldwide thus far. A total of 106 professionals from 17 countries answered the survey. Six major groups of barriers were identified. Despite the region's continuous efforts in the last decade, the primary barrier to PGx implementation in LAC remains the same, the "need for guidelines, processes, and protocols for the clinical application of pharmacogenetics/pharmacogenomics". Cost-effectiveness issues are considered critical factors in the region. Items related to the reluctance of clinicians are currently less relevant. Based on the survey results, the highest ranked (96%-99%) gene/drug pairs perceived as important were CYP2D6/tamoxifen, CYP3A5/tacrolimus, CYP2D6/opioids, DPYD/fluoropyrimidines, TMPT/thiopurines, CYP2D6/tricyclic antidepressants, CYP2C19/tricyclic antidepressants, NUDT15/thiopurines, CYP2B6/efavirenz, and CYP2C19/clopidogrel. In conclusion, although the global contribution of LAC countries remains low in the PGx field, a relevant improvement has been observed in the region. The perception of the usefulness of PGx tests in biomedical community has drastically changed, raising awareness among physicians, which suggests a promising future in the clinical applications of PGx in LAC.
Collapse
Affiliation(s)
- Aimeé Salas-Hernández
- Department of Pharmacology, Toxicology and Pharmaco-Dependence, Faculty of Pharmacy, University of Costa Rica, San Jose, Costa Rica
| | - Macarena Galleguillos
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics, Department of Basic-Clinical Oncology (DOBC), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Matías Carrasco
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics, Department of Basic-Clinical Oncology (DOBC), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Andrés López-Cortés
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | - María Ana Redal
- Molecular Diagnostic Laboratory, Genetics Division, Faculty of Medicine, Hospital de Clínicas José de San Martín, University of Buenos Aires, Buenos Aires, Argentina
| | - Dora Fonseca-Mendoza
- Universidad del Rosario, School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), Bogotá, Colombia
| | - Patricia Esperón
- Molecular Genetic Unit, School of Chemistry, Universidad de la República, General Flores, CP 1800 2124, Montevideo, Uruguay
| | - Farith González-Martínez
- Toxicology and Public Health Research Laboratory, Department of Research, Faculty of Dentistry, University of Cartagena, Cartagena, Colombia
| | - Ismael Lares-Asseff
- Academy of Genomics and Laboratory of Pharmacogenomics and Molecular Biomedicine, Instituto Politécnico Nacional, CIIDIR-Unidad Durango, Durango, Mexico
| | - Alberto Lazarowski
- Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires- Argentina, Buenos Aires, Argentina
| | - Verónica Loera-Castañeda
- Academy of Genomics and Laboratory of Pharmacogenomics and Molecular Biomedicine, Instituto Politécnico Nacional, CIIDIR-Unidad Durango, Durango, Mexico
| | | | - Matías F. Martínez
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics, Department of Basic-Clinical Oncology (DOBC), Faculty of Medicine, University of Chile, Santiago, Chile
- Department of Pharmaceutical Sciences and Technology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Rodrigo Vargas
- Department of Molecular Biology, Galileo University, Guatemala City, Guatemala
| | - Fabricio Rios-Santos
- Department of Health. Faculty of Medicine, Federal University of Mato Grosso (UFMT), Cuibá, Brazil
| | - Antonio Macho
- Morphology and Applied Immunology Research Center (NuPMIA), University of Brasilia (UnB), Brasília, Brazil
| | - Juan P. Cayún
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics, Department of Basic-Clinical Oncology (DOBC), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Germán R. Perez
- Department of Microbiology, Faculty of Biochemical and Pharmaceutical Sciences. National University of Rosario, Rosario, Argentina
| | - Carolina Gutierrez
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics, Department of Basic-Clinical Oncology (DOBC), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Leslie C. Cerpa
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics, Department of Basic-Clinical Oncology (DOBC), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Tamara Leiva
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics, Department of Basic-Clinical Oncology (DOBC), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Susan Calfunao
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics, Department of Basic-Clinical Oncology (DOBC), Faculty of Medicine, University of Chile, Santiago, Chile
- Laboratory Pathological Anatomy, Hospital Luis Calvo Mackenna, Santiago, Chile
| | - Lesly Xajil
- Department of Research in Pharmacogenomics, Faculty of Chemical Sciences and Pharmacy, University of San Carlos de Guatemala, Guatemala, Guatemala
| | - Christopher Sandoval
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics, Department of Basic-Clinical Oncology (DOBC), Faculty of Medicine, University of Chile, Santiago, Chile
- Clinical Laboratory Blood Biochemistry and Immunoassay Section, Hospital Clínico Félix Bulnes Cerda, Santiago, Chile
| | - Marcelo Suárez
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics, Department of Basic-Clinical Oncology (DOBC), Faculty of Medicine, University of Chile, Santiago, Chile
- Pharmacy Service, Hospital UC-Christus, Santiago, Chile
| | | | | | | | - Eugenia Cordero-García
- Department of Pharmacology, Toxicology and Pharmaco-Dependence, Faculty of Pharmacy, University of Costa Rica, San Jose, Costa Rica
| | - Alexis R. Morales
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Bioanalisis, University of Los Andes, Merida, Venezuela
| | - Andrea Avendaño
- Department of Pediatrics, Medical Genetics Unity, Faculty of Medicine, University of Los Andes, Mérida, Venezuela
| | | | - Laura C. Bastone
- Laboratorio de Medicina Genómica, Gammalab, Grupo Gamma, Rosario, Argentina
| | - Cesar Lara
- Betesda La Alternativa Natural, San José, Costa Rica
| | | | - Ana María Soler
- Laboratorio de Genética Molecular Humana, Departamento de Ciencias Biológicas, Universidad de La República, Montevideo, Uruguay
| | - Julio Da Luz
- Laboratorio de Genética Molecular Humana, Departamento de Ciencias Biológicas, Universidad de La República, Montevideo, Uruguay
| | - Gabriela Burgueño-Rodríguez
- Laboratorio de Genética Molecular Humana, Departamento de Ciencias Biológicas, Universidad de La República, Montevideo, Uruguay
| | - Marcelo Vital
- Molecular Genetic Unit, School of Chemistry, Universidad de la República, General Flores 2124, Montevideo, Uruguay
| | - Elizabeth Reyes-Reyes
- Clinical Experimental Pharmacology Section, Teaching and Research Department, Institute of Oncology and Radiobiology, Havana, Cuba
| | | | - Yeimy V. Ariza
- Pharmaceutical Chemistry Program, El Bosque University, Bogotá, Colombia
| | - Naomi Tzul
- Drug Inspectorate Unit, Ministry of Health and Wellness, Belmopan, Belize
| | - Ana L. Rendón
- Department of Pharmaceutical Technology, National Autonomous University of Honduras, Tegucigalpa, Honduras
| | | | - Larissa Acosta
- Faculty of Biology, Chemistry and Pharmacy, Galileo University, Guatemala, Guatemala
| | - Angelo Motta-Pardo
- GENOBIDC, Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos (UNMSM), CIGBM, Faculty of Medicine, Universidad de San Martin de Porres (USMP), Lima, Peru
| | - Leonardo Beltrán-Angarita
- Faculty of Heath Sciences, Central Unit of Valle del Cauca, Tuluá, Colombia
- Chemistry School, Universidad Tecnológica de Pereira, Pereira, Colombia
| | - Erika Brand
- Postgraduate Department, Master’s Degree in Immunology, Universidad Cayetano Heredia, Lima, Perú
| | | | | | - Marina M. J. Romero-Prado
- Department of Physiology, Health Sciences University Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Karla Escobar-Castro
- Laboratory of Histocompatibility and Immunogenetics, Department of Nephrology and Transplant, Hospital General San Juan de Dios, Guatemala, Guatemala
| | - Mariel Umaña-Rivas
- Department of Tropical Medicine, Faculty of Medicine, University of Brasília, Brasília, Brazil
| | - Juan D. Vivas
- Department of Clinical Pharmacology, Faculty of Medicine, University of La Sabana, Chía, Colombia
| | - Paola Lagos
- Recombinant Biopharmaceutical Laboratory, Department of Pharmacology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Yineth Ballén Martínez
- Medical Specialist in Epidemiology Clinical Pharmacology Teacher; Medical Scientific and Pharmacovigilance Advisor in the Pharmaceutical Industry, Bogotá, Colombia
| | - Sharleth Quesada
- Faculty of Pharmacy, University of Costa Rica, San Jose, Costa Rica
| | - Camila Calfio
- International Center for Biomedicine ICC, Santiago, Chile
| | - Maria L. Arias
- Tropical Diseases Research Center and Microbiology Faculty, University of Costa Rica, San José, Costa Rica
| | - María A. Lavanderos
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics, Department of Basic-Clinical Oncology (DOBC), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Dante D. Cáceres
- Environmental Health Programme, School of Public Health, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Alberto Salazar-Granara
- Universidad de San Martín de Porres, Facultad de Medicina Humana, Centro de Investigación de Medicina Tradicional y Farmacología, Lima, Perú
| | - Nelson M. Varela
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics, Department of Basic-Clinical Oncology (DOBC), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Luis A. Quiñones
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics, Department of Basic-Clinical Oncology (DOBC), Faculty of Medicine, University of Chile, Santiago, Chile
- Department of Pharmaceutical Sciences and Technology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| |
Collapse
|
5
|
Asiimwe IG, Pirmohamed M. Ethnic Diversity and Warfarin Pharmacogenomics. Front Pharmacol 2022; 13:866058. [PMID: 35444556 PMCID: PMC9014219 DOI: 10.3389/fphar.2022.866058] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/14/2022] [Indexed: 12/23/2022] Open
Abstract
Warfarin has remained the most commonly prescribed vitamin K oral anticoagulant worldwide since its approval in 1954. Dosing challenges including having a narrow therapeutic window and a wide interpatient variability in dosing requirements have contributed to making it the most studied drug in terms of genotype-phenotype relationships. However, most of these studies have been conducted in Whites or Asians which means the current pharmacogenomics evidence-base does not reflect ethnic diversity. Due to differences in minor allele frequencies of key genetic variants, studies conducted in Whites/Asians may not be applicable to underrepresented populations such as Blacks, Hispanics/Latinos, American Indians/Alaska Natives and Native Hawaiians/other Pacific Islanders. This may exacerbate health inequalities when Whites/Asians have better anticoagulation profiles due to the existence of validated pharmacogenomic dosing algorithms which fail to perform similarly in the underrepresented populations. To examine the extent to which individual races/ethnicities are represented in the existing body of pharmacogenomic evidence, we review evidence pertaining to published pharmacogenomic dosing algorithms, including clinical utility studies, cost-effectiveness studies and clinical implementation guidelines that have been published in the warfarin field.
Collapse
Affiliation(s)
- Innocent G Asiimwe
- The Wolfson Centre for Personalized Medicine, MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Munir Pirmohamed
- The Wolfson Centre for Personalized Medicine, MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
6
|
Sex- and Genotype-Dependent Nicotine-Induced Behaviors in Adolescent Rats with a Human Polymorphism (rs2304297) in the 3'-UTR of the CHRNA6 Gene. Int J Mol Sci 2022; 23:ijms23063145. [PMID: 35328565 PMCID: PMC8948824 DOI: 10.3390/ijms23063145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 12/04/2022] Open
Abstract
In human adolescents, a single nucleotide polymorphism (SNP), rs2304297, in the 3′-UTR of the nicotinic receptor subunit gene, CHRNA6, has been associated with increased smoking. To study the effects of the human CHRNA6 3′-UTR SNP, our lab generated knock-in rodent lines with either C or G SNP alleles. The objective of this study was to determine if the CHRNA6 3′-UTR SNP is functional in the knock-in rat lines. We hypothesized that the human CHRNA6 3′-UTR SNP knock-in does not impact baseline but enhances nicotine-induced behaviors. For baseline behaviors, rats underwent food self-administration at escalating schedules of reinforcement followed by a locomotor assay and a series of anxiety tests (postnatal day (PN) 25-39). In separate cohorts, adolescent rats underwent 1- or 4-day nicotine pretreatment (2×, 30 μg/kg/0.1 mL, i.v.). After the last nicotine injection (PN 31), animals were assessed behaviorally in an open-field chamber, and brain tissue was collected. We show the human CHRNA6 3′-UTR SNP knock-in does not affect food reinforcement, locomotor activity, or anxiety. Further, 4-day, but not 1-day, nicotine exposure enhances locomotion and anxiolytic behavior in a genotype- and sex-specific manner. These findings demonstrate that the human CHRNA6 3′-UTR SNP is functional in our in vivo model.
Collapse
|
7
|
Kuruvilla R, Scott K, Pirmohamed SM. Pharmacogenomics of Drug Hypersensitivity. Immunol Allergy Clin North Am 2022; 42:335-355. [DOI: 10.1016/j.iac.2022.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Di Nunno N, Esposito M, Argo A, Salerno M, Sessa F. Pharmacogenetics and Forensic Toxicology: A New Step towards a Multidisciplinary Approach. TOXICS 2021; 9:292. [PMID: 34822683 PMCID: PMC8620299 DOI: 10.3390/toxics9110292] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/20/2021] [Accepted: 11/02/2021] [Indexed: 01/24/2023]
Abstract
Pharmacogenetics analyzes the individual behavior of DNA genes after the administration of a drug. Pharmacogenetic research has been implemented in recent years thanks to the improvement in genome sequencing techniques and molecular genetics. In addition to medical purposes, pharmacogenetics can constitute an important tool for clarifying the interpretation of toxicological data in post-mortem examinations, sometimes crucial for determining the cause and modality of death. The purpose of this systematic literature review is not only to raise awareness among the forensic community concerning pharmacogenetics, but also to provide a workflow for forensic toxicologists to follow in cases of unknown causes of death related to drug use/abuse. The scientific community is called on to work hard in order to supply evidence in forensic practice, demonstrating that this investigation could become an essential tool both in civil and forensic contexts. The following keywords were used for the search engine: (pharmacogenetics) AND (forensic toxicology); (pharmacogenetics) AND (post-mortem); (pharmacogenetics) AND (forensic science); and (pharmacogenetics) AND (autopsy). A total of 125 articles were collected. Of these, 29 articles were included in this systematic review. A total of 75% of the included studies were original articles (n = 21) and 25% were case reports (n = 7). A total of 78% (n = 22) of the studies involved deceased people for whom a complete autopsy was performed, while 22% (n = 6) involved people in good health who were given a drug with a subsequent pharmacogenetic study. The most studied drugs were opioids (codeine, morphine, and methadone), followed by antidepressants (tricyclic antidepressants and venlafaxine). Furthermore, all studies highlighted the importance of a pharmacogenetics study in drug-related deaths, especially in cases of non-overdose of drugs of abuse. This study highlights the importance of forensic pharmacogenetics, a field of toxicology still not fully understood, which is of great help in cases of sudden death, deaths from overdose, deaths after the administration of a drug, and also in cases of complaint of medical malpractice.
Collapse
Affiliation(s)
- Nunzio Di Nunno
- Department of History, Society and Studies on Humanity, University of Salento, 73100 Lecce, Italy
| | - Massimiliano Esposito
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, 95121 Catania, Italy
| | - Antonina Argo
- Department of Health Promotion Sciences, Section of Legal Medicine, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Via del Vespro, 129, 90127 Palermo, Italy
| | - Monica Salerno
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, 95121 Catania, Italy
| | - Francesco Sessa
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| |
Collapse
|
9
|
Bakhchova L, Jantaree P, Gupta A, Isermann B, Steinmann U, Naumann M. On-a-Chip-Based Sensitive Detection of Drug-Induced Apoptosis in Polarized Gastric Epithelial Cells. ACS Biomater Sci Eng 2021; 7:5474-5483. [PMID: 34704732 DOI: 10.1021/acsbiomaterials.1c01094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Microfluidic devices for culturing cells have been successfully utilized for biomedical applications, including drug screening. Several cell lines could be cultivated in microengineered environments with promising results, but gastric cell lines have not yet been widely used or studied. Therefore, this study focuses on establishing a polarized gastric epithelial monolayer on-a-chip and describes a general-purpose methodology applicable for bonding any porous material to PDMS through an adhesive sublayer. The fully transparent microfluidic chip consists of two microfluidic channels separated by a collagen-coated porous membrane and lined by human polarized gastric epithelial (NCI-N87) cells. We present considerations on how to ensure continuous and stable flow through the channels. The continuous flow rate was achieved using a pressure-driven pump. Media flow at a constant rate (0.5 μL/min) rapidly led the gastric epithelial cells to develop into a polarized monolayer. The barrier integrity was assessed by the FITC-dextran test. The generation of a monolayer was faster than in the static Boyden chamber. Moreover, fluorescence microscopy was used to monitor the apoptotic cell death of gastric epithelial monolayers on-a-chip in response to camptothecin, a therapeutic gastric cancer drug.
Collapse
Affiliation(s)
- Liubov Bakhchova
- Institute for Automation Technology, Otto von Guericke University, Universitätsplatz 2, Magdeburg 39106, Germany.,Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, Leipziger Straße 44, Magdeburg 39120, Germany
| | - Phatcharida Jantaree
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, Leipziger Straße 44, Magdeburg 39120, Germany
| | - Anubhuti Gupta
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, Leipziger Straße 44, Magdeburg 39120, Germany.,Institute for Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, Universitätsklinikum Leipzig, Paul-List-Straße 13-15, Leipzig 04103, Germany
| | - Berend Isermann
- Institute for Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, Universitätsklinikum Leipzig, Paul-List-Straße 13-15, Leipzig 04103, Germany
| | - Ulrike Steinmann
- Institute for Automation Technology, Otto von Guericke University, Universitätsplatz 2, Magdeburg 39106, Germany
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, Leipziger Straße 44, Magdeburg 39120, Germany
| |
Collapse
|
10
|
Linskey DW, Linskey DC, McLeod HL, Luzum JA. The need to shift pharmacogenetic research from candidate gene to genome-wide association studies. Pharmacogenomics 2021; 22:1143-1150. [PMID: 34608812 DOI: 10.2217/pgs-2021-0108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The primary research approach in pharmacogenetics has been candidate gene association studies (CGAS), but pharmacogenomic genome-wide association studies (GWAS) are becoming more common. We are now at a critical juncture when the results of those two research approaches, CGAS and GWAS, can be compared in pharmacogenetics. We analyzed publicly available databases of pharmacogenetic CGAS and GWAS (i.e., the Pharmacogenomics Knowledgebase [PharmGKB®] and the NHGRI-EBI GWAS catalog) and the vast majority of variants (98%) and genes (94%) discovered in pharmacogenomic GWAS were novel (i.e., not previously studied CGAS). Therefore, pharmacogenetic researchers are not selecting the right candidate genes in the vast majority of CGAS, highlighting a need to shift pharmacogenetic research efforts from CGAS to GWAS.
Collapse
Affiliation(s)
- Derek W Linskey
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI 48109, USA
| | | | - Howard L McLeod
- Precision Medicine, Geriatric Oncology Consortium, Tampa, FL 33609, USA
| | - Jasmine A Luzum
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI 48109, USA
| |
Collapse
|
11
|
Chen X, Guo Y, Chen X. iGMDR: Integrated Pharmacogenetic Resource Guide to Cancer Therapy and Research. GENOMICS PROTEOMICS & BIOINFORMATICS 2020; 18:150-160. [PMID: 32916316 PMCID: PMC7646137 DOI: 10.1016/j.gpb.2019.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 09/27/2019] [Accepted: 11/29/2019] [Indexed: 10/25/2022]
Abstract
Current pharmacogenetic studies have obtained many genetic models that can predict the therapeutic efficacy of anticancer drugs. Although some of these models are of crucial importance and have been used in clinical practice, these very valuable models have not been well adopted into cancer research to promote the development of cancer therapies due to the lack of integration and standards for the existing data of the pharmacogenetic studies. For this purpose, we built a resource investigating genetic model of drug response (iGMDR), which integrates the models from in vitro and in vivo pharmacogenetic studies with different omics data from a variety of technical systems. In this study, we introduced a standardized process for all integrations, and described how users can utilize these models to gain insights into cancer. iGMDR is freely accessible at https://igmdr.modellab.cn.
Collapse
Affiliation(s)
- Xiang Chen
- Institute of Pharmaceutical Biotechnology and the First Affiliated Hospital Department of Radiation Oncology, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Yi Guo
- Department of Polymer Science and Engineering and Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| | - Xin Chen
- Institute of Pharmaceutical Biotechnology and the First Affiliated Hospital Department of Radiation Oncology, Zhejiang University School of Medicine, Hangzhou 310058, China; Joint Institute for Genetics and Genome Medicine between Zhejiang University and University of Toronto, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
12
|
Kim WY, Kim HS, Oh M, Shin JG. Survey of physicians' views on the clinical implementation of pharmacogenomics-based personalized therapy. Transl Clin Pharmacol 2020; 28:34-42. [PMID: 32274379 PMCID: PMC7136078 DOI: 10.12793/tcp.2020.28.e6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 12/11/2022] Open
Abstract
Despite quantitative increases and qualitative advances in pharmacogenomics (PGx) research, the clinical implementation of PGx-based personalized therapy has still been limited. The objective of this study was to assess physicians' self-reported knowledge of PGx-based personalized therapy, and to explore the most problematic and highest priority barriers preventing physicians from applying PGx into clinical practice under the Korean healthcare system. A 36-question survey was distributed to 53 physicians with various specialties in Korea. In the physicians' self-perceived knowledge, twenty-eight physicians (53%) reported a lack sufficient knowledge about PGx. The perceived largest barrier to clinical implementation of PGx was the high cost of PGx testing, followed by a lack of PGx education for healthcare providers or lack of clinical PGx experts. Physicians without clinical PGx experience or with indirect experience reported that the largest barrier to clinical implementation of PGx was the high cost of PGx testing, while physicians with clinical PGx experience pointed out that a lack of patients' education was the major concern, followed by a lack of PGx education for healthcare providers or lack of clinical PGx experts. The highest priority problem was reported to be a lack of actionable guidelines for drug selection and dosing using PGx. In conclusion, we should increase and expand extensive educational programs for healthcare providers and patients, and to develop and establish a clinical decision support systems for PGx-based personalized therapy in Korea.
Collapse
Affiliation(s)
- Woo-Young Kim
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Korea
| | - Ho-Sook Kim
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Korea.,Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Korea.,Department of Clinical Pharmacology, Inje University Busan Paik Hospital, Busan, Korea
| | - Minkyung Oh
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Korea.,Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Korea
| | - Jae-Gook Shin
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Korea.,Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Korea.,Department of Clinical Pharmacology, Inje University Busan Paik Hospital, Busan, Korea
| |
Collapse
|
13
|
Müller DJ, Brandl EJ, Degenhardt F, Domschke K, Grabe H, Gruber O, Hebebrand J, Maier W, Menke A, Riemenschneider M, Rietschel M, Rujescu D, Schulze TG, Tebartz van Elst L, Tüscher O, Deckert J. [Pharmacogenetics in psychiatry: state of the art]. DER NERVENARZT 2019; 89:290-299. [PMID: 29383410 DOI: 10.1007/s00115-017-0479-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this article, the current literature on pharmacogenetics of antidepressants, antipsychotics and lithium are summarized by the section of Neurobiology and Genetics of the German Society of Psychiatry, Psychotherapy and Neurology (DGPPN). The publications of international expert groups and regulatory authorities are reviewed and discussed. In Germany, a statement on pharmacogenetics was also made by the gene diagnostics committee of the Ministry of Health. The DGPPN supports two recommendations: 1) to perform CYP2D6 genetic testing prior to prescription of tricyclic antidepressants and 2) to determine the HLA-B*1502 genotype in patients of Asian origin before using carbamazepine. The main obstacle for a broad application of pharmacogenetic tests in psychiatry remains the lack of large prospective studies, for both single gene-drug pair and cobinatorial pharmacogenetic tests, to evaluate the benefits of genetic testing. Psychiatrists, geneticists and funding agencies are encouraged to increase their efforts for the future benefit of psychiatric patients.
Collapse
Affiliation(s)
- D J Müller
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., R132, Toronto, ON, M5T 1R8, Kanada. .,Department of Psychiatry, University of Toronto, Toronto, ON, Kanada.
| | - E J Brandl
- Klinik für Psychiatrie und Psychotherapie, Charité-Universitätsmedizin Berlin, Campus Mitte, Berlin, Deutschland.,Berlin Institute of Health, Berlin, Deutschland
| | - F Degenhardt
- Institut für Humangenetik, Universitätsklinikum Bonn, Bonn, Deutschland
| | - K Domschke
- Klinik für Psychiatrie und Psychotherapie, Universität Freiburg, Freiburg, Deutschland
| | - H Grabe
- Klinik und Poliklinik für Psychiatrie und Psychotherapie an der Universitätsmedizin Greifswald, Universität Greifswald, Greifswald, Deutschland
| | - O Gruber
- Klinik für Allgemeine Psychiatrie, Zentrum für Psychosoziale Medizin, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
| | - J Hebebrand
- Klinik für Psychiatrie, Psychosomatik und Psychotherapie des Kindes- und Jugendalters, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Deutschland
| | - W Maier
- Klinik und Poliklinik für Psychiatrie und Psychotherapie, Universitätsklinikum Bonn, Bonn, Deutschland
| | - A Menke
- Klinik und Poliklinik für Psychiatrie, Psychosomatik und Psychotherapie, Zentrum für Psychische Gesundheit, Universitätsklinikum Würzburg, Würzburg, Deutschland
| | - M Riemenschneider
- Klinik für Psychiatrie, Universitätsklinikum des Saarlandes, Homburg/Saar, Deutschland
| | - M Rietschel
- Zentralinstitut für Seelische Gesundheit, Mannheim, Deutschland
| | - D Rujescu
- Klinik und Poliklinik für Psychiatrie, Psychotherapie und Psychosomatik, Martin-Luther-Universität Halle-Wittenberg, Halle, Deutschland
| | - T G Schulze
- Institut für Psychiatrische Phänomik und Genomik (IPPG), Klinikum der Universität München, LMU München, München, Deutschland
| | - L Tebartz van Elst
- Klinik für Psychiatrie und Psychotherapie, Universität Freiburg, Freiburg, Deutschland
| | - O Tüscher
- Klinik für Psychiatrie und Psychotherapie, Universitätsmedizin der Johannes-Gutenberg Universität, Mainz, Deutschland
| | - J Deckert
- Klinik und Poliklinik für Psychiatrie, Psychosomatik und Psychotherapie, Zentrum für Psychische Gesundheit, Universitätsklinikum Würzburg, Würzburg, Deutschland
| | | |
Collapse
|
14
|
Abstract
Microfluidic organ-on-a-chip models of human intestine have been developed and used to study intestinal physiology and pathophysiology. In this article, we review this field and describe how microfluidic Intestine Chips offer new capabilities not possible with conventional culture systems or organoid cultures, including the ability to analyze contributions of individual cellular, chemical, and physical control parameters one-at-a-time; to coculture human intestinal cells with commensal microbiome for extended times; and to create human-relevant disease models. We also discuss potential future applications of human Intestine Chips, including how they might be used for drug development and personalized medicine.
Collapse
|
15
|
Osanlou O, Pirmohamed M, Daly AK. Pharmacogenetics of Adverse Drug Reactions. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2018; 83:155-190. [PMID: 29801574 DOI: 10.1016/bs.apha.2018.03.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Adverse drug reactions (ADRs) are an important cause of morbidity and mortality. Genetic factors predispose to many ADRs, affecting susceptibility to both type A and type B reactions. The overall contribution of genetics will vary according to drug and ADR, and should be considered when attempting to predict and prevent ADRs. Genetic risk factors are considered in detail for a number of type A ADRs, especially those relating to warfarin and thiopurines, and type B ADRs affecting skin, the liver, and the heart. As the availability of whole genome sequencing increases, it is likely that prospective genotype for particular ADRs prior to drug prescription will become more common in the future. Current examples of genetic testing to prevent ADRs which have already been implemented and future prospects for developments in the field are discussed in detail.
Collapse
Affiliation(s)
- Orod Osanlou
- Department of Molecular and Clinical Pharmacology, The University of Liverpool, Liverpool, United Kingdom
| | - Munir Pirmohamed
- Department of Molecular and Clinical Pharmacology, The University of Liverpool, Liverpool, United Kingdom
| | - Ann K Daly
- Institute of Cellular Medicine, Newcastle University, Medical School, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
16
|
Kowalec K, Kingwell E, Carruthers R, Marrie RA, Bernatsky S, Traboulsee A, Ross CJD, Carleton B, Tremlett H. Application of pharmacogenomics to investigate adverse drug reactions to the disease-modifying treatments for multiple sclerosis: a case-control study protocol for dimethyl fumarate-induced lymphopenia. BMJ Open 2017; 7:e016276. [PMID: 28576902 PMCID: PMC5623385 DOI: 10.1136/bmjopen-2017-016276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
INTRODUCTION Adverse drug reactions (ADRs) are a global public health issue. The potential for pharmacogenomic biomarkers has been demonstrated in several therapeutical areas, including HIV infection and oncology. Dimethyl fumarate (DMF) is a licensed disease-modifying therapy for the treatment of multiple sclerosis (MS). The use of DMF in MS has been associated with a severe reduction in lymphocyte counts and reports of progressive multifocal leukoencephalopathy. Here, we outline the protocol for a case-control study designed to discover genomic variants associated with DMF-induced lymphopenia. The ultimate goal is to replicate these findings and create an efficient and adaptable approach towards the identification of genomic markers that could assist in mitigating adverse drug reactions in MS. METHODS AND ANALYSIS The population sample will comprise DMF-exposed patients with MS, with cases representing those who developed lymphopenia and controls who did not. DNA genotyping will take place using a high-throughput genome-wide array. Fine mapping and imputation will be performed to focus in on the potentially causal variants associated with lymphopenia. Multivariable logistic regression will be used to compare genotype and allele frequencies between the cases and the controls, with consideration of potential confounders. The association threshold will be set at p<1.0×10-5 for the discovery of genomic association analyses to select variants for replication. ETHICS AND DISSEMINATION Ethics approval has been obtained from the respective research ethics board, which includes written informed consent. Findings will be disseminated widely, including at scientific conferences, via podcasts (targeted at both healthcare professionals as well as patients and the wider community), through patient engagement and other outreach community events, written lay summaries for all participants and formal publication in peer-reviewed scientific journals.
Collapse
Affiliation(s)
- Kaarina Kowalec
- Faculty of Medicine, Division of Neurology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancover, British Columbia, Canada
| | - Elaine Kingwell
- Faculty of Medicine, Division of Neurology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancover, British Columbia, Canada
| | - Robert Carruthers
- Faculty of Medicine, Division of Neurology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancover, British Columbia, Canada
| | - Ruth Ann Marrie
- Departments of Internal Medicine and Community Health Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Sasha Bernatsky
- Division of Rheumatology, McGill University, Montreal, Quebec, Canada
| | - Anthony Traboulsee
- Faculty of Medicine, Division of Neurology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancover, British Columbia, Canada
| | - Colin J D Ross
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancover, British Columbia, Canada
- B.C. Childrens Hospital Research Institute, Vancouver, Canada
| | - Bruce Carleton
- B.C. Childrens Hospital Research Institute, Vancouver, Canada
- Faculty of Medicine, Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | - Helen Tremlett
- Faculty of Medicine, Division of Neurology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancover, British Columbia, Canada
| |
Collapse
|
17
|
Pistono C, Osera C, Boiocchi C, Mallucci G, Cuccia M, Bergamaschi R, Pascale A. What's new about oral treatments in Multiple Sclerosis? Immunogenetics still under question. Pharmacol Res 2017; 120:279-293. [PMID: 28396093 DOI: 10.1016/j.phrs.2017.03.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/27/2017] [Accepted: 03/29/2017] [Indexed: 02/06/2023]
Abstract
Multiple Sclerosis (MS) is a chronic pathology affecting the Central Nervous System characterized by inflammatory processes that lead to demyelination and neurodegeneration. In MS treatment, disease modifying therapies (DMTs) are essential to reduce disease progression by suppressing the inflammatory response responsible for promoting lesion formation. Recently, in addition to the classical injectable DMTs like Interferons and Glatiramer acetate, new orally administered drugs have been approved for MS therapy: dimethyl fumarate, teriflunomide and fingolimod. These drugs act with different mechanisms on the immune system, in order to suppress the harmful inflammatory process. An additional layer of complexity is introduced by the influence of polymorphic gene variants in the Human Leukocyte Antigen region on the risk of developing MS and its progression. To date, pharmacogenomic studies have mainly focused on the patient's response following admission of injectable drugs. Therefore, greater consideration must be made to pharmacogenomics with a view to developing more effective and personalized therapies. This review aims to shed light on the mechanism of action of the new oral drugs dimethyl fumarate, teriflunomide and fingolimod, taking into account both the importance of immunogenetics in drug response and pharmacogenomic studies.
Collapse
Affiliation(s)
- Cristiana Pistono
- Laboratory of Immunogenetics, Department of Biology & Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy.
| | - Cecilia Osera
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy.
| | - Chiara Boiocchi
- Laboratory of Immunogenetics, Department of Biology & Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Giulia Mallucci
- Inter-Department Multiple Sclerosis Research Centre, National Neurological Institute "C. Mondino", Pavia, Italy
| | - Mariaclara Cuccia
- Laboratory of Immunogenetics, Department of Biology & Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Roberto Bergamaschi
- Inter-Department Multiple Sclerosis Research Centre, National Neurological Institute "C. Mondino", Pavia, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| |
Collapse
|
18
|
Dickmann LJ, Ware JA. Pharmacogenomics in the age of personalized medicine. DRUG DISCOVERY TODAY. TECHNOLOGIES 2017; 21-22:11-16. [PMID: 27978982 DOI: 10.1016/j.ddtec.2016.11.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/07/2016] [Accepted: 11/08/2016] [Indexed: 12/23/2022]
Abstract
The aim of personalized medicine is to offer the right treatment to the right person at the right dose, thus maximizing efficacy and minimizing toxicity for each individual patient. Pharmacogenomic approaches attempt to refine the aim of personalized medicine by utilizing an individual's germline and somatic DNA signatures to guide treatment. In this review, we highlight the current use of pharmacogenomic based biomarker information in drug labeling. We also present several case studies on the implementation of pharmacogenomic strategies in drug discovery and development. Lastly, we comment on current challenges to implementing pharmacogenomic based testing in the clinic.
Collapse
Affiliation(s)
- Leslie J Dickmann
- Department of Clinical Pharmacology, Genentech, 1 DNA Way, South San Francisco, CA 94080, United States.
| | - Joseph A Ware
- Department of Clinical Pharmacology, Genentech, 1 DNA Way, South San Francisco, CA 94080, United States
| |
Collapse
|
19
|
Stingl JC, Just KS, Kaumanns K, Schurig-Urbaniak M, Scholl C, von Mallek D, Brockmöller J. [Personalized drug therapy based on genetics. Possibilities and examples from clinical practice]. Internist (Berl) 2016; 57:289-97. [PMID: 26830424 DOI: 10.1007/s00108-015-0013-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Pharmacogenetics are an important component in the individualization of treatment; however, pharmacogenetic diagnostics have so far not been used to any great extent in clinical practice. A consistent consideration of individual patient factors, such as pharmacogenetics may help to improve drug therapy and increase individual safety and efficacy aspects. OBJECTIVE A brief summary of structures and effects of genetic variations on drug efficacy is presented. Some frequently prescribed pharmaceuticals are specified. Furthermore, the feasibility of pharmacogenetic diagnostics and dose recommendations in the clinical practice are described. CURRENT DATA The European Medicines Agency (EMA) as the European approval authority has already extended the drug labels of more than 70 pharmaceuticals by information on pharmacogenetic biomarkers and the U.S. Food and Drug Administration (FDA) more than 150. This is a crucial step towards targeted medicine. Guidelines on dose and therapy adjustments are provided by the Clinical Pharmacogenetics Implementation Consortium of the Pharmacogenomics Research Network. CONCLUSION It is fundamental to consider individual patient factors for successful drug therapy. Dose and therapy recommendations based on pharmacogenetic diagnostics are highly important for individualization as well as improvement of safety and efficiency of drug therapy.
Collapse
Affiliation(s)
- J C Stingl
- Abteilung Forschung, Bundesinstitut für Arzneimittel und Medizinprodukte, Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Deutschland.
- Zentrum für Translationale Medizin, Medizinische Fakultät, Universität Bonn, Bonn, Deutschland.
| | - K S Just
- Abteilung Forschung, Bundesinstitut für Arzneimittel und Medizinprodukte, Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Deutschland
- Zentrum für Translationale Medizin, Medizinische Fakultät, Universität Bonn, Bonn, Deutschland
| | - K Kaumanns
- Abteilung Forschung, Bundesinstitut für Arzneimittel und Medizinprodukte, Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Deutschland
- Zentrum für Translationale Medizin, Medizinische Fakultät, Universität Bonn, Bonn, Deutschland
| | - M Schurig-Urbaniak
- Abteilung Forschung, Bundesinstitut für Arzneimittel und Medizinprodukte, Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Deutschland
- Zentrum für Translationale Medizin, Medizinische Fakultät, Universität Bonn, Bonn, Deutschland
| | - C Scholl
- Abteilung Forschung, Bundesinstitut für Arzneimittel und Medizinprodukte, Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Deutschland
- Zentrum für Translationale Medizin, Medizinische Fakultät, Universität Bonn, Bonn, Deutschland
| | - D von Mallek
- Abteilung Forschung, Bundesinstitut für Arzneimittel und Medizinprodukte, Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Deutschland
- Zentrum für Translationale Medizin, Medizinische Fakultät, Universität Bonn, Bonn, Deutschland
| | - J Brockmöller
- Institut für Klinische Pharmakologie, Universität Göttingen, Göttingen, Deutschland
| |
Collapse
|
20
|
Collins SL, Carr DF, Pirmohamed M. Advances in the Pharmacogenomics of Adverse Drug Reactions. Drug Saf 2016; 39:15-27. [PMID: 26650062 DOI: 10.1007/s40264-015-0367-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Rapid developments in pharmacogenomics have been noticeable in recent years, and much of this knowledge has improved understanding of adverse drug reactions. This improved knowledge has largely been the result of improved sequencing technologies and falling costs in this area, as well as improved statistical techniques to analyse the data derived from studies. While the genetic reasons behind adverse drug reactions are becoming better understood, translation of this knowledge, particularly in terms of biomarkers that might be clinically applicable at the bedside, has been more difficult. Understanding of the technologies and their application is limited among practising clinicians. The cost of some of the technologies available may also be prohibitive in stretched healthcare economies. As education about the potential for applying pharmacogenomics improves and costs fall, understanding of adverse drug reactions and application of this knowledge in a clinical setting should improve.
Collapse
Affiliation(s)
- Susannah L Collins
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Daniel F Carr
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Munir Pirmohamed
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK.
| |
Collapse
|
21
|
MacKenzie M, Hall R. Pharmacogenomics and pharmacogenetics for the intensive care unit: a narrative review. Can J Anaesth 2016; 64:45-64. [PMID: 27752976 DOI: 10.1007/s12630-016-0748-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 08/31/2016] [Accepted: 09/30/2016] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Knowledge of how alterations in pharmacogenomics and pharmacogenetics may affect drug therapy in the intensive care unit (ICU) has received little study. We review the clinically relevant application of pharmacogenetics and pharmacogenomics to drugs and conditions encountered in the ICU. SOURCE We selected relevant literature to illustrate the important concepts contained within. PRINCIPAL FINDINGS Two main approaches have been used to identify genetic abnormalities - the candidate gene approach and the genome-wide approach. Genetic variability in response to drugs may occur as a result of alterations of drug-metabolizing (cytochrome P [CYP]) enzymes, receptors, and transport proteins leading to enhancement or delay in the therapeutic response. Of relevance to the ICU, genetic variation in CYP-450 isoenzymes results in altered effects of midazolam, fentanyl, morphine, codeine, phenytoin, clopidogrel, warfarin, carvedilol, metoprolol, HMG-CoA reductase inhibitors, calcineurin inhibitors, non-steroidal anti-inflammatory agents, proton pump inhibitors, and ondansetron. Changes in cholinesterase enzyme function may affect the disposition of succinylcholine, benzylisoquinoline muscle relaxants, remifentanil, and hydralazine. Genetic variation in transport proteins leads to differences in the response to opioids and clopidogrel. Polymorphisms in drug receptors result in altered effects of β-blockers, catecholamines, antipsychotic agents, and opioids. Genetic variation also contributes to the diversity and incidence of diseases and conditions such as sepsis, malignant hyperthermia, drug-induced hypersensitivity reactions, cardiac channelopathies, thromboembolic disease, and congestive heart failure. CONCLUSION Application of pharmacogenetics and pharmacogenomics has seen improvements in drug therapy. Ongoing study and incorporation of these concepts into clinical decision making in the ICU has the potential to affect patient outcomes.
Collapse
Affiliation(s)
- Meghan MacKenzie
- Pharmacy Department, Nova Scotia Health Authority, Halifax, NS, Canada.,College of Pharmacy, Dalhousie University, Halifax, NS, Canada
| | - Richard Hall
- Departments of Anesthesia, Pain Management and Perioperative Medicine and Critical Care Medicine and Pharmacology, Dalhousie University and the Nova Scotia Health Authority, Halifax, NS, B3H 3A7, Canada.
| |
Collapse
|
22
|
Abstract
TNF-blocking agents, non-biological disease-modifying anti-rheumatic drugs (nbDMARDs) and non-steroidal anti-inflammatory drugs (NSAIDs) are commonly prescribed treatments in psoriatic arthritis. A large proportion of patients do not respond to these medications, although unfortunately clinically useful biomarkers that predict future response are currently lacking. Several candidate gene polymorphisms have been associated with responses to biologic therapies and nbDMARDs; however, replication and validation of these variants in large prospective psoriatic arthritis cohorts are required before translating these to clinical practice. In this review, we discuss the advances made in pharmacogenetics of treatment response in psoriatic arthritis to date, with focus on biologic therapies approved for use, nbDMARDs and NSAIDs, as well as outline emerging methodologies to obtain data that will help inform a future precision medicine approach in this condition.
Collapse
Affiliation(s)
- Meghna Jani
- Arthritis Research UK Centre for Genetics and Genomics; Centre for Musculoskeletal Research, University of Manchester, Room 2.704, Stopford Building, Oxford Road, Manchester, M13 9PT, UK,
| | | | | |
Collapse
|
23
|
Vizirianakis IS, Mystridis GA, Avgoustakis K, Fatouros DG, Spanakis M. Enabling personalized cancer medicine decisions: The challenging pharmacological approach of PBPK models for nanomedicine and pharmacogenomics (Review). Oncol Rep 2016; 35:1891-904. [PMID: 26781205 DOI: 10.3892/or.2016.4575] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 10/27/2015] [Indexed: 11/05/2022] Open
Abstract
The existing tumor heterogeneity and the complexity of cancer cell biology critically demand powerful translational tools with which to support interdisciplinary efforts aiming to advance personalized cancer medicine decisions in drug development and clinical practice. The development of physiologically based pharmacokinetic (PBPK) models to predict the effects of drugs in the body facilitates the clinical translation of genomic knowledge and the implementation of in vivo pharmacology experience with pharmacogenomics. Such a direction unequivocally empowers our capacity to also make personalized drug dosage scheme decisions for drugs, including molecularly targeted agents and innovative nanoformulations, i.e. in establishing pharmacotyping in prescription. In this way, the applicability of PBPK models to guide individualized cancer therapeutic decisions of broad clinical utility in nanomedicine in real-time and in a cost-affordable manner will be discussed. The latter will be presented by emphasizing the need for combined efforts within the scientific borderlines of genomics with nanotechnology to ensure major benefits and productivity for nanomedicine and personalized medicine interventions.
Collapse
Affiliation(s)
- Ioannis S Vizirianakis
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki GR‑54124, Greece
| | - George A Mystridis
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki GR‑54124, Greece
| | - Konstantinos Avgoustakis
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Patras, Patras GR-26504, Greece
| | - Dimitrios G Fatouros
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece
| | - Marios Spanakis
- Computational BioMedicine Laboratory, Institute of Computer Science, Foundation for Research and Technology-Hellas, Heraklion GR-71110, Crete, Greece
| |
Collapse
|
24
|
Clarke NJ. Mass Spectrometry in Precision Medicine: Phenotypic Measurements Alongside Pharmacogenomics. Clin Chem 2016; 62:70-6. [DOI: 10.1373/clinchem.2015.239475] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/30/2015] [Indexed: 11/06/2022]
Abstract
Abstract
BACKGROUND
Precision medicine is becoming a major topic within the medical community and is gaining traction as a standard approach in many disciplines. This approach typically revolves around the use of a patient's genetic makeup to allow the physician to choose the appropriate course of treatment. In many cases the genetic information directs the drug to be used to treat the patient. In other cases the genetic markers associated with enzyme function may inform dosage recommendations. However there is a second way in which precision medicine can be practiced—that is, by therapeutic drug monitoring (TDM).
CONTENT
A review of the use of mass spectrometry for TDM in the arena of precision medicine is undertaken. Because the measurement of a drug or its metabolites provides the physician with a snapshot of the therapeutic exposure the patient is undergoing, these concentrations can be thought of as an actual phenotype measurement based around the patient's genetics coupled with all of the environmental, pharmacological, and nutritional variables. The outcome of a TDM measurement by mass spectrometry provides the patient's current phenotype vs the potential phenotype imputed by the genetics.
SUMMARY
The use of mass spectrometry can provide an understanding of how a drug is interacting with the patient, and is orthoganol to the information provided by pharmacogenomic assays. Further, the speed and relatively low expense of drug monitoring by mass spectrometry makes it an ideal test for precision medicine patient management.
Collapse
Affiliation(s)
- Nigel J Clarke
- Mass Spectrometry R&D Department, Quest Diagnostics Nichols Institute, San Juan Capistrano, CA
| |
Collapse
|
25
|
Leusink M, Onland-Moret NC, de Bakker PIW, de Boer A, Maitland-van der Zee AH. Seventeen years of statin pharmacogenetics: a systematic review. Pharmacogenomics 2015; 17:163-80. [PMID: 26670324 DOI: 10.2217/pgs.15.158] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
AIM We evaluated the evidence of pharmacogenetic associations with statins in a systematic review. METHODS Two separate outcomes were considered of interest: modification of low-density lipoprotein cholesterol (LDL-C) response and modification of risk for cardiovascular events. RESULTS In candidate gene studies, 141 loci were claimed to be associated with LDL-C response. Only 5% of these associations were positively replicated. In addition, six genome-wide association studies of LDL-C response identified common SNPs in APOE, LPA, SLCO1B1, SORT1 and ABCG2 at genome-wide significance. None of the investigated SNPs consistently affected the risk reduction for cardiovascular events. CONCLUSION Only five genetic loci were consistently associated with LDL-C response. However, as effect sizes are modest, there is no evidence for the value of genetic testing in clinical practice.
Collapse
Affiliation(s)
- Maarten Leusink
- Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands.,Julius Center for Health Sciences & Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - N Charlotte Onland-Moret
- Julius Center for Health Sciences & Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Paul I W de Bakker
- Julius Center for Health Sciences & Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Medical Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Anthonius de Boer
- Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Anke H Maitland-van der Zee
- Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
26
|
Pharmacogenetics and anaesthetic drugs: Implications for perioperative practice. Ann Med Surg (Lond) 2015; 4:470-4. [PMID: 26779337 PMCID: PMC4685230 DOI: 10.1016/j.amsu.2015.11.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 11/01/2015] [Accepted: 11/04/2015] [Indexed: 12/13/2022] Open
Abstract
Pharmacogenetics seeks to elucidate the variations in individual's genetic sequences in order to better understand the differences seen in pharmacokinetics, drug metabolism, and efficacy between patients. This area of research is rapidly accelerating, aided by the use of novel and more economical molecular technologies. A substantial evidence base is being generated with the hopes that in the future it may be used to generate personalised treatment regimens in order to improve patient comfort and safety and reduce incidences of morbidity and mortality. Anaesthetics is an area of particular interest in this field, with previous research leading to better informed practice, specifically with regards to pseudocholinesterase deficiency and malignant hyperthermia. In this review, recent pharmacogenetic data pertaining to anaesthetic drugs will be presented and possible future applications and implications for practice will be discussed. Pharmacogenetic variations in anaesthetic drugs affect enzymes, transport proteins and drug receptors. Genotyping may provide more clues as to aetiology of conditions related to usage of anaesthetic drugs e.g. propofol infusion syndrome. Improved and more economical molecular technology will lead to increase in quantity of pharmacogenetic data.
Collapse
|
27
|
Kaufman AL, Spitz J, Jacobs M, Sorrentino M, Yuen S, Danahey K, Saner D, Klein TE, Altman RB, Ratain MJ, O'Donnell PH. Evidence for Clinical Implementation of Pharmacogenomics in Cardiac Drugs. Mayo Clin Proc 2015; 90:716-29. [PMID: 26046407 PMCID: PMC4475352 DOI: 10.1016/j.mayocp.2015.03.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 03/01/2015] [Accepted: 03/05/2015] [Indexed: 12/29/2022]
Abstract
OBJECTIVE To comprehensively assess the pharmacogenomic evidence of routinely used drugs for clinical utility. METHODS Between January 2, 2011, and May 31, 2013, we assessed 71 drugs by identifying all drug/genetic variant combinations with published clinical pharmacogenomic evidence. Literature supporting each drug/variant pair was assessed for study design and methods, outcomes, statistical significance, and clinical relevance. Proposed clinical summaries were formally scored using a modified AGREE (Appraisal of Guidelines for Research and Evaluation) II instrument, including recommendation for or against guideline implementation. RESULTS Positive pharmacogenomic findings were identified for 51 of 71 cardiovascular drugs (71.8%), representing 884 unique drug/variant pairs from 597 publications. After analysis for quality and clinical relevance, 92 drug/variant pairs were proposed for translation into clinical summaries, encompassing 23 drugs (32.4% of drugs reviewed). All were recommended for clinical implementation using AGREE II, with mean ± SD overall quality scores of 5.18±0.91 (of 7.0; range, 3.67-7.0). Drug guidelines had highest mean ± SD scores in AGREE II domain 1 (Scope) (91.9±6.1 of 100) and moderate but still robust mean ± SD scores in domain 3 (Rigor) (73.1±11.1), domain 4 (Clarity) (67.8±12.5), and domain 5 (Applicability) (65.8±10.0). Clopidogrel (CYP2C19), metoprolol (CYP2D6), simvastatin (rs4149056), dabigatran (rs2244613), hydralazine (rs1799983, rs1799998), and warfarin (CYP2C9/VKORC1) were distinguished by the highest scores. Seven of the 9 most commonly prescribed drugs warranted translation guidelines summarizing clinical pharmacogenomic information. CONCLUSION Considerable clinically actionable pharmacogenomic information for cardiovascular drugs exists, supporting the idea that consideration of such information when prescribing is warranted.
Collapse
Affiliation(s)
- Amy L Kaufman
- Pritzker School of Medicine, The University of Chicago, Chicago, IL
| | - Jared Spitz
- Center for Personalized Therapeutics, The University of Chicago, Chicago, IL
| | - Michael Jacobs
- Center for Personalized Therapeutics, The University of Chicago, Chicago, IL
| | | | - Shennin Yuen
- Center for Personalized Therapeutics, The University of Chicago, Chicago, IL
| | - Keith Danahey
- Center for Research Informatics, The University of Chicago, Chicago, IL
| | - Donald Saner
- Center for Research Informatics, The University of Chicago, Chicago, IL
| | - Teri E Klein
- Department of Genetics, Stanford University, Palo Alto, CA
| | - Russ B Altman
- Department of Genetics, Stanford University, Palo Alto, CA; Department of Bioengineering, Stanford University, Palo Alto, CA; Department of Medicine, Stanford University, Palo Alto, CA
| | - Mark J Ratain
- Center for Personalized Therapeutics, The University of Chicago, Chicago, IL; Department of Medicine, The University of Chicago, Chicago, IL; Committee on Clinical Pharmacology and Pharmacogenomics, The University of Chicago, Chicago, IL
| | - Peter H O'Donnell
- Center for Personalized Therapeutics, The University of Chicago, Chicago, IL; Department of Medicine, The University of Chicago, Chicago, IL; Committee on Clinical Pharmacology and Pharmacogenomics, The University of Chicago, Chicago, IL.
| |
Collapse
|
28
|
Pharmacotherapy for alcohol dependence: A stratified approach. Pharmacol Ther 2015; 153:10-24. [PMID: 25985735 DOI: 10.1016/j.pharmthera.2015.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 05/07/2015] [Indexed: 12/20/2022]
Abstract
Alcohol dependence is a common disorder in many societies worldwide, and remains difficult to identify and treat. It is also a risk factor for many secondary non-communicable diseases. Pharmacotherapy is one available treatment option, but appears to be underutilised in practice. Major barriers to use of medications in this area include lack of clinical guidance and questionable efficacy. However, for each medication there appears to be a subpopulation that responds positively, and understanding the moderating factors to treatment efficacy is an important research goal. Thus, this review provides a narrative regarding potential stratification techniques in pharmacological treatment of alcohol dependence, with a specific focus on typologies and pharmacogenetics. In addition, we discuss the basic background of stratified medicine and recent studies on genetic predisposition to alcohol dependence. A growing repository of data exists for both approved and non-approved pharmacotherapies, but failure to replicate findings, inadequate sample sizes, and insufficient funding has resulted in a translational gap. Implementing evidence-based stratified/personalised therapy and identifying new therapeutic agents may lead to improved clinical outcomes and reduced financial burden. Despite some promising findings to date, much work is still required.
Collapse
|
29
|
Drozda K, Müller DJ, Bishop JR. Pharmacogenomic testing for neuropsychiatric drugs: current status of drug labeling, guidelines for using genetic information, and test options. Pharmacotherapy 2015; 34:166-84. [PMID: 24523097 DOI: 10.1002/phar.1398] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Advancements in pharmacogenomics have introduced an increasing number of opportunities to bring personalized medicine into clinical practice. Understanding how and when to use this technology to guide pharmacotherapy used to treat psychiatric and neurological (neuropsychiatric) conditions remains a challenge for many clinicians. Currently, guidelines exist to assist clinicians in the use of existing genetic information for drug selection and/or dosing for the tricyclic antidepressants, carbamazepine, and phenytoin. Additional language in the product labeling suggests that genetic information may also be useful for determining the starting and target doses, as well as drug interaction potential, for a number of other drugs. In this review, we outline the current status of pharmacogenomic testing for neuropsychiatric drugs as it pertains to information contained in drug labeling, consensus guidelines, and test panels, as well as considerations related to obtaining tests for patients.
Collapse
Affiliation(s)
- Katarzyna Drozda
- Department of Pharmacy Practice, University of Illinois at Chicago, Chicago, Illinois
| | | | | |
Collapse
|
30
|
Rasool M, Malik A, Naseer MI, Manan A, Ansari SA, Begum I, Qazi MH, Pushparaj PN, Abuzenadah AM, Al-Qahtani MH, Kamal MA, Natesan Pushparaj P, Gan SH. The role of epigenetics in personalized medicine: challenges and opportunities. BMC Med Genomics 2015; 8 Suppl 1:S5. [PMID: 25951941 PMCID: PMC4315318 DOI: 10.1186/1755-8794-8-s1-s5] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Epigenetic alterations are considered to be very influential in both the normal and disease states of an organism. These alterations include methylation, acetylation, phosphorylation, and ubiquitylation of DNA and histone proteins (nucleosomes) as well as chromatin remodeling. Many diseases, such as cancers and neurodegenerative disorders, are often associated with epigenetic alterations. DNA methylation is one important modification that leads to disease. Standard therapies are given to patients; however, few patients respond to these drugs, because of various molecular alterations in their cells, which may be partially due to genetic heterogeneity and epigenetic alterations. To realize the promise of personalized medicine, both genetic and epigenetic diagnostic testing will be required. This review will discuss the advances that have been made as well as the challenges for the future.
Collapse
Affiliation(s)
- Mahmood Rasool
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
- KACST Technology Innovation Center in Personalized Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Arif Malik
- Institute of Molecular Biology and Biotechnology, (IMBB), the University of Lahore, Lahore, Pakistan
| | - Muhammad Imran Naseer
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdul Manan
- Institute of Molecular Biology and Biotechnology, (IMBB), the University of Lahore, Lahore, Pakistan
| | - Shakeel Ahmed Ansari
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Irshad Begum
- Institute of Molecular Biology and Biotechnology, (IMBB), the University of Lahore, Lahore, Pakistan
| | - Mahmood Husain Qazi
- Center for Research in Molecular Medicine (CRiMM), The University of Lahore, Pakistan
| | - Peter Natesan Pushparaj
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Adel M Abuzenadah
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
- KACST Technology Innovation Center in Personalized Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | | | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Peter Natesan Pushparaj
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Siew Hua Gan
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
31
|
Vizirianakis IS. Harnessing pharmacological knowledge for personalized medicine and pharmacotyping: Challenges and lessons learned. World J Pharmacol 2014; 3:110-119. [DOI: 10.5497/wjp.v3.i4.110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/03/2014] [Accepted: 10/29/2014] [Indexed: 02/07/2023] Open
Abstract
The contribution of the genetic make-up to an individual’s capacity has long been recognized in modern pharmacology as a crucial factor leading to therapy inefficiency and toxicity, negatively impacting the economic burden of healthcare and restricting the monitoring of diseases. In practical terms, and in order for drug prescription to be improved toward meeting the personalized medicine concept in drug delivery, the maximum clinical outcome for most, if not all, patients must be achieved, i.e., pharmacotyping. Such a direction although promising and of high expectation from the society, it is however hardly to be afforded for healthcare worldwide. To overcome any existed hurdles, this means that practical clinical utility of personalized medicine decisions have to be documented and validated in the clinical setting. The latter implies for drug delivery the efficient implementation of previously gained in vivo pharmacology experience with pharmacogenomics knowledge. As an approach to work faster and in a more productive way, the elaboration of advanced physiologically based pharmacokinetics models is discussed. And in better clarifying this topic, the example of tamoxifen is thoroughly presented. Overall, pharmacotyping represents a major challenge in modern therapeutics for which pharmacologists need to work in successfully fulfilling this task.
Collapse
|
32
|
Kell DB. What would be the observable consequences if phospholipid bilayer diffusion of drugs into cells is negligible? Trends Pharmacol Sci 2014; 36:15-21. [PMID: 25458537 DOI: 10.1016/j.tips.2014.10.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 10/11/2014] [Accepted: 10/14/2014] [Indexed: 12/27/2022]
Abstract
For drug transport across (i.e., through) an intact biological membrane, two main routes are possible: drugs may cross (i) through the phospholipid bilayer portion of the membrane, and/or (ii) via proteinaceous pores or transporters. Perhaps surprisingly, there is in fact no direct scientific evidence that the first of these takes place at any significant rate because, in the experiments performed to date, it has neither been varied as an independent variable nor measured directly as a dependent variable. Using a standard hypothetico-deductive framework, I assess the intellectual and observable consequences of assuming that, for drugs, phospholipid bilayer diffusion is negligible - 'PBIN' - (i.e., may be neglected, relative to transporter-mediated transmembrane fluxes). Predictions and postdictions of the PBIN hypothesis are not refuted by available experimental evidence.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| |
Collapse
|
33
|
Kell DB, Oliver SG. How drugs get into cells: tested and testable predictions to help discriminate between transporter-mediated uptake and lipoidal bilayer diffusion. Front Pharmacol 2014; 5:231. [PMID: 25400580 PMCID: PMC4215795 DOI: 10.3389/fphar.2014.00231] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 09/29/2014] [Indexed: 12/12/2022] Open
Abstract
One approach to experimental science involves creating hypotheses, then testing them by varying one or more independent variables, and assessing the effects of this variation on the processes of interest. We use this strategy to compare the intellectual status and available evidence for two models or views of mechanisms of transmembrane drug transport into intact biological cells. One (BDII) asserts that lipoidal phospholipid Bilayer Diffusion Is Important, while a second (PBIN) proposes that in normal intact cells Phospholipid Bilayer diffusion Is Negligible (i.e., may be neglected quantitatively), because evolution selected against it, and with transmembrane drug transport being effected by genetically encoded proteinaceous carriers or pores, whose “natural” biological roles, and substrates are based in intermediary metabolism. Despite a recent review elsewhere, we can find no evidence able to support BDII as we can find no experiments in intact cells in which phospholipid bilayer diffusion was either varied independently or measured directly (although there are many papers where it was inferred by seeing a covariation of other dependent variables). By contrast, we find an abundance of evidence showing cases in which changes in the activities of named and genetically identified transporters led to measurable changes in the rate or extent of drug uptake. PBIN also has considerable predictive power, and accounts readily for the large differences in drug uptake between tissues, cells and species, in accounting for the metabolite-likeness of marketed drugs, in pharmacogenomics, and in providing a straightforward explanation for the late-stage appearance of toxicity and of lack of efficacy during drug discovery programmes despite macroscopically adequate pharmacokinetics. Consequently, the view that Phospholipid Bilayer diffusion Is Negligible (PBIN) provides a starting hypothesis for assessing cellular drug uptake that is much better supported by the available evidence, and is both more productive and more predictive.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry, The University of Manchester Manchester, UK ; Manchester Institute of Biotechnology, The University of Manchester Manchester, UK
| | - Stephen G Oliver
- Department of Biochemistry, University of Cambridge Cambridge, UK ; Cambridge Systems Biology Centre, University of Cambridge Cambridge, UK
| |
Collapse
|
34
|
Ng T, Chan M, Khor CC, Ho HK, Chan A. The genetic variants underlying breast cancer treatment-induced chronic and late toxicities: a systematic review. Cancer Treat Rev 2014; 40:1199-214. [PMID: 25458605 DOI: 10.1016/j.ctrv.2014.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 10/06/2014] [Indexed: 01/15/2023]
Abstract
A systematic review was performed to describe the findings from 19 genetic association studies that have examined the genetic variants underlying four common treatment-induced chronic and late toxicities in breast cancer patients, and to evaluate the quality of reporting. Three out of 5 studies found an association between HER2 lle655Val polymorphisms and trastuzumab-induced cardiotoxicity. Two studies found a positive association between cognitive impairment and the Val allele of the COMT gene and the ε4 allele of the apolipoprotein E gene. Genetic associations were established between fatigue and the G/G genotype of IL6-174 and TNF-308, and the Met allele of the COMT gene in 4 studies. Among studies (N=8) that evaluated the genetic associations underlying peripheral neuropathy, CYP2C8∗3 variant is commonly reported as the associated gene. Most studies failed to conform to the major criteria listed in the STREGA guidelines, with a lack of transparent reporting of methods and results.
Collapse
Affiliation(s)
- Terence Ng
- Department of Pharmacy, National University of Singapore, Singapore
| | - Mint Chan
- Department of Pharmacy, National University of Singapore, Singapore
| | | | - Han Kiat Ho
- Department of Pharmacy, National University of Singapore, Singapore
| | - Alexandre Chan
- Department of Pharmacy, National University of Singapore, Singapore; Department of Pharmacy, National Cancer Centre Singapore, Singapore.
| |
Collapse
|
35
|
Pirmohamed M. Personalized pharmacogenomics: predicting efficacy and adverse drug reactions. Annu Rev Genomics Hum Genet 2014; 15:349-70. [PMID: 24898040 DOI: 10.1146/annurev-genom-090413-025419] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Drug response varies between individuals owing to disease heterogeneity, environmental factors, and genetic factors. Genetic factors can affect both the pharmacokinetics and pharmacodynamics of a drug, leading to changes in local and systemic drug exposure and/or changes in the function of the drug target, altering drug response. Several pharmacogenetic biomarkers are already utilized in clinical practice and have been shown to improve clinical outcomes. However, a large number of other biomarkers have never made it beyond the discovery stage. Concerted effort is needed to improve the translation of pharmacogenetic biomarkers into clinical practice, and this will involve the use of standardized phenotyping and genotyping strategies, collaborative work, multidisciplinary approaches to identifying and replicating associations, and cooperation with industry to facilitate translation and commercialization. Acceptance of these approaches by clinicians, regulators, patients, and the public will be important in determining future success.
Collapse
Affiliation(s)
- Munir Pirmohamed
- Wolfson Centre for Personalised Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GL, United Kingdom;
| |
Collapse
|
36
|
Pharmacogenomics: Current State-of-the-Art. Genes (Basel) 2014; 5:430-43. [PMID: 24865298 PMCID: PMC4094941 DOI: 10.3390/genes5020430] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 05/05/2014] [Accepted: 05/08/2014] [Indexed: 02/04/2023] Open
Abstract
The completion of the human genome project 10 years ago was met with great optimism for improving drug therapy through personalized medicine approaches, with the anticipation that an era of genotype-guided patient prescribing was imminent. To some extent this has come to pass and a number of key pharmacogenomics markers of inter-individual drug response, for both safety and efficacy, have been identified and subsequently been adopted in clinical practice as pre-treatment genetic tests. However, the universal application of genetics in treatment guidance is still a long way off. This review will highlight important pharmacogenomic discoveries which have been facilitated by the human genome project and other milestone projects such as the International HapMap and 1000 genomes, and by the continued development of genotyping and sequencing technologies, including rapid point of care pre-treatment genetic testing. However, there are still many challenges to implementation for the many other reported biomarkers which continue to languish within the discovery phase. As technology advances over the next 10 years, and the costs fall, the field will see larger genetic data sets, including affordable whole genome sequences, which will, it is hoped, improve patient outcomes through better diagnostic, prognostic and predictive biomarkers.
Collapse
|
37
|
Rieder MJ, Carleton B. Pharmacogenomics and adverse drug reactions in children. Front Genet 2014; 5:78. [PMID: 24795743 PMCID: PMC3997041 DOI: 10.3389/fgene.2014.00078] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 03/24/2014] [Indexed: 12/27/2022] Open
Abstract
Adverse drug reactions are a common and important complication of drug therapy in children. Over the past decade it has become increasingly apparent that genetically controlled variations in drug disposition and response are important determinants of adverse events for many important adverse events associated with drug therapy in children. While this research has been difficult to conduct over the past decade technical and ethical evolution has greatly facilitated the ability of investigators to conduct pharmacogenomic studies in children. Some of this research has already resulted in changes in public policy and clinical practice, for example in the case of codeine use by mothers and children. It is likely that the use of pharmacogenomics to enhance drug safety will first be realized among selected groups of children with high rates of drug use such as children with cancer, but it also likely that this research will be extended to other groups of children who have high rates of drug utilization and as well as providing insights into the mechanisms and pathophysiology of adverse drug reactions in children.
Collapse
Affiliation(s)
- Michael J. Rieder
- CIHR-GSK Chair in Paediatric Clinical Pharmacology, Schulich School of Medicine & Dentistry, Robart Research Institute, Western UniversityLondon, ON, Canada
| | - Bruce Carleton
- Pharmaceutical Outcomes Programme, Department of Pediatrics, University of British Columbia, BC Children's HospitalVancouver, BC, Canada
| |
Collapse
|
38
|
Witasp A, Ekstrom TJ, Schalling M, Lindholm B, Stenvinkel P, Nordfors L. How can genetics and epigenetics help the nephrologist improve the diagnosis and treatment of chronic kidney disease patients? Nephrol Dial Transplant 2014; 29:972-80. [DOI: 10.1093/ndt/gfu021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
39
|
Building pharmacogenetics into a pharmacovigilance program in Singapore: using serious skin rash as a pilot study. THE PHARMACOGENOMICS JOURNAL 2014; 14:316-21. [PMID: 24394201 DOI: 10.1038/tpj.2013.46] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/24/2013] [Accepted: 11/26/2013] [Indexed: 11/09/2022]
Abstract
To study the possible genetic associations with adverse drug reactions (ADR), the Singapore Health Sciences Authority (HSA) has piloted a program to collect DNA and phenotype data of ADR cases as part of its pharmacovigilance program. Between 2009 and 2012, HSA screened 158 cases of Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN). To assess the association between HLA-B*1502 and carbamazepine (CBZ)-induced SJS/TEN, 13 cases and 26 drug-tolerant controls were analyzed. All 13 CBZ-SJS/TEN cases and 3/26 controls were HLA-B*1502 positive (odds ratio 181, 95% confidence interval: 8.7-3785, P=6.9 × 10(-8)). Discussions of the finding with the Ministry of Health and an expert panel led to the decision to make HLA-B*1502 testing the standard of care prior to first use of CBZ in Asians and to subsidize the genotyping test at public hospitals. This program illustrates the role of a regulatory authority in advancing the use of pharmacogenetics for drug safety.
Collapse
|
40
|
Smith SA, French T, Hollingsworth SJ. The impact of germline mutations on targeted therapy. J Pathol 2013; 232:230-43. [DOI: 10.1002/path.4273] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 09/16/2013] [Accepted: 09/18/2013] [Indexed: 12/17/2022]
|
41
|
Development of predictive genetic tests for improving the safety of new medicines: the utilization of routinely collected electronic health records. Drug Discov Today 2013; 19:361-6. [PMID: 24239729 DOI: 10.1016/j.drudis.2013.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 10/03/2013] [Accepted: 11/04/2013] [Indexed: 11/22/2022]
Abstract
Serious adverse drug reactions are an important cause of hospitalization and can result in the withdrawal of licensed drugs. Genetic variation has been shown to influence adverse drug reaction susceptibility, and predictive genetic tests have been developed for a limited number of adverse drug reactions. The identification of patients with adverse drug reactions, obtaining samples for genetic analysis and rigorous evaluation of clinical test effectiveness represent significant challenges to predictive genetic test development. Using the example of serious drug-induced liver injury, we illustrate how a database of routinely collected electronic health records (EHRs) could be used to overcome these barriers by facilitating rapid recruitment to genome-wide association studies and supporting efficient randomized controlled trials of predictive genetic test effectiveness.
Collapse
|
42
|
Greek R, Hansen LA. Questions regarding the predictive value of one evolved complex adaptive system for a second: Exemplified by the SOD1 mouse. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2013; 113:231-53. [DOI: 10.1016/j.pbiomolbio.2013.06.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/07/2013] [Accepted: 06/11/2013] [Indexed: 11/25/2022]
|
43
|
Stingl J, Brockmöller J. Personalisierte Pharmakotherapie. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2013; 56:1509-21. [DOI: 10.1007/s00103-013-1822-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
44
|
State-of-the-Art Technologies to Interrogate Genetic/Genomic Components of Drug Response. CURRENT GENETIC MEDICINE REPORTS 2013. [DOI: 10.1007/s40142-013-0022-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Crommelin DJA, Sindelar RD, Meibohm B. Genomics, Other “Omic” Technologies, Personalized Medicine, and Additional Biotechnology-Related Techniques. PHARMACEUTICAL BIOTECHNOLOGY 2013. [PMCID: PMC7122419 DOI: 10.1007/978-1-4614-6486-0_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The products resulting for biotechnologies continue to grow at an exponential rate, and the expectations are that an even greater percentage of drug development will be in the area of the biologics. In 2011, worldwide there were over 800 new biotech drugs and treatments in development including 23 antisense, 64 cell therapy, 50 gene therapy, 300 monoclonal antibodies, 78 recombinant proteins, and 298 vaccines (PhRMA 2012). Pharmaceutical biotechnology techniques are at the core of most methodologies used today for drug discovery and development of both biologics and small molecules. While recombinant DNA technology and hybridoma techniques were the major methods utilized in pharmaceutical biotechnology through most of its historical timeline, our ever-widening understanding of human cellular function and disease processes and a wealth of additional and innovative biotechnologies have been, and will continue to be, developed in order to harvest the information found in the human genome. These technological advances will provide a better understanding of the relationship between genetics and biological function, unravel the underlying causes of disease, explore the association of genomic variation and drug response, enhance pharmaceutical research, and fuel the discovery and development of new and novel biopharmaceuticals. These revolutionary technologies and additional biotechnology-related techniques are improving the very competitive and costly process of drug development of new medicinal agents, diagnostics, and medical devices. Some of the technologies and techniques described in this chapter are both well established and commonly used applications of biotechnology producing potential therapeutic products now in development including clinical trials. New techniques are emerging at a rapid and unprecedented pace and their full impact on the future of molecular medicine has yet to be imagined.
Collapse
Affiliation(s)
- Daan J. A. Crommelin
- Department of Pharmaceutical Sciences, Utrecht University, Utrecht, Utrecht The Netherlands
| | - Robert D. Sindelar
- Department of Pharmaceutical Sciences and Department of Medicine, The University of British Columbia, Vancouver, British Columbia Canada
| | - Bernd Meibohm
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, College of Pharmacy, Memphis, Tennessee USA
| |
Collapse
|
46
|
Godman B, Finlayson AE, Cheema PK, Zebedin-Brandl E, Gutiérrez-Ibarluzea I, Jones J, Malmström RE, Asola E, Baumgärtel C, Bennie M, Bishop I, Bucsics A, Campbell S, Diogene E, Ferrario A, Fürst J, Garuoliene K, Gomes M, Harris K, Haycox A, Herholz H, Hviding K, Jan S, Kalaba M, Kvalheim C, Laius O, Lööv SA, Malinowska K, Martin A, McCullagh L, Nilsson F, Paterson K, Schwabe U, Selke G, Sermet C, Simoens S, Tomek D, Vlahovic-Palcevski V, Voncina L, Wladysiuk M, van Woerkom M, Wong-Rieger D, Zara C, Ali R, Gustafsson LL. Personalizing health care: feasibility and future implications. BMC Med 2013; 11:179. [PMID: 23941275 PMCID: PMC3750765 DOI: 10.1186/1741-7015-11-179] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 07/09/2013] [Indexed: 01/11/2023] Open
Abstract
Considerable variety in how patients respond to treatments, driven by differences in their geno- and/ or phenotypes, calls for a more tailored approach. This is already happening, and will accelerate with developments in personalized medicine. However, its promise has not always translated into improvements in patient care due to the complexities involved. There are also concerns that advice for tests has been reversed, current tests can be costly, there is fragmentation of funding of care, and companies may seek high prices for new targeted drugs. There is a need to integrate current knowledge from a payer's perspective to provide future guidance. Multiple findings including general considerations; influence of pharmacogenomics on response and toxicity of drug therapies; value of biomarker tests; limitations and costs of tests; and potentially high acquisition costs of new targeted therapies help to give guidance on potential ways forward for all stakeholder groups. Overall, personalized medicine has the potential to revolutionize care. However, current challenges and concerns need to be addressed to enhance its uptake and funding to benefit patients.
Collapse
Affiliation(s)
- Brian Godman
- Department of Laboratory Medicine, Division of Clinical Pharmacology, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86, Stockholm, Sweden
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
- National Institute for Science and Technology on Innovation on Neglected Diseases, Centre for Technological Development in Health, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Alexander E Finlayson
- King’s Centre for Global Health, Global Health Offices, Weston Education Centre, Cutcombe Road, London SE5 9RJ, UK
| | - Parneet K Cheema
- Sunnybrook Odette Cancer Centre, 2075 Bayview Avenue, Toronto, ON, Canada
| | - Eva Zebedin-Brandl
- Hauptverband der Österreichischen Sozialversicherungsträger, 21 Kundmanngasse, AT-1031, Wien, Austria
- Institute of Pharmacology and Toxicology, Department for Biomedical Sciences, University of Vienna, Vienna, Austria
| | - Inaki Gutiérrez-Ibarluzea
- Osteba Basque Office for HTA, Ministry of Health of the Basque Country, Donostia-San Sebastian 1, 01010, Vitoria-Gasteiz, Basque Country, Spain
| | - Jan Jones
- NHS Tayside, Kings Cross, Dundee DD3 8EA, UK
| | - Rickard E Malmström
- Department of Medicine, Clinical Pharmacology Unit, Karolinska Institutet, Karolinska University Hospital Solna, SE-17176, Stockholm, Sweden
| | - Elina Asola
- Pharmaceutical Pricing Board, Ministry of Social Affairs and Health, PO Box 33, FI-00023 Government, Helsinki, Finland
| | | | - Marion Bennie
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
- Public Health & Intelligence Strategic Business Unit, NHS National Services Scotland, Edinburgh EH12 9EB, UK
| | - Iain Bishop
- Public Health & Intelligence Strategic Business Unit, NHS National Services Scotland, Edinburgh EH12 9EB, UK
| | - Anna Bucsics
- Hauptverband der Österreichischen Sozialversicherungsträger, 21 Kundmanngasse, AT-1031, Wien, Austria
| | - Stephen Campbell
- Centre for Primary Care, Institute of Population Health, University of Manchester, Manchester M13 9PL, UK
- NIHR Greater Manchester Primary Care Patient Safety Translational Research Centre, Manchester M13 9PL, UK
| | - Eduardo Diogene
- Unitat de Coordinació i Estratègia del Medicament, Direcció Adjunta d'Afers Assistencials, Catalan Institute of Health, Barcelona, Spain
| | - Alessandra Ferrario
- London School of Economics and Political Science, LSE Health, Houghton Street, London WC2A 2AE, UK
| | - Jurij Fürst
- Health Insurance Institute, Miklosiceva 24, SI-1507, Ljubljana, Slovenia
| | - Kristina Garuoliene
- Medicines Reimbursement Department, National Health Insurance Fund, Europas a. 1, Vilnius, Lithuania
| | - Miguel Gomes
- INFARMED, Parque da Saúde de Lisboa, Avenida do Brasil 53, 1749-004, Lisbon, Portugal
| | - Katharine Harris
- King’s Centre for Global Health, Global Health Offices, Weston Education Centre, Cutcombe Road, London SE5 9RJ, UK
| | - Alan Haycox
- Liverpool Health Economics Centre, University of Liverpool, Chatham Street, Liverpool L69 7ZH, UK
| | - Harald Herholz
- Kassenärztliche Vereinigung Hessen, 15 Georg Voigt Strasse, DE-60325, Frankfurt am Main, Germany
| | - Krystyna Hviding
- Norwegian Medicines Agency, Sven Oftedals vei 8, 0950, Oslo, Norway
| | - Saira Jan
- Clinical Programs, Pharmacy Management, Horizon Blue Cross Blue Shield of New Jersey, Newark, USA
| | - Marija Kalaba
- Republic Institute for Health Insurance, Jovana Marinovica 2, 11000, Belgrade, Serbia
| | | | - Ott Laius
- State Agency of Medicines, Nooruse 1, 50411, Tartu, Estonia
| | - Sven-Ake Lööv
- Department of Healthcare Development, Stockholm County Council, Stockholm, Sweden
| | - Kamila Malinowska
- HTA Consulting, Starowiślna Street, 17/3, 31-038, Cracow, Poland
- Public Health School, The Medical Centre of Postgraduate Education, Kleczewska Street, 61/63, 01-813, Warsaw, Poland
| | - Andrew Martin
- NHS Greater Manchester Commissioning Support Unit, Salford, Manchester, UK
| | - Laura McCullagh
- National Centre for Pharmacoeconomics, St James's Hospital, Dublin 8, Ireland
| | - Fredrik Nilsson
- Dental and Pharmaceuticals Benefits Agency (TLV), PO Box 22520 Flemingatan 7, SE-104, Stockholm, Sweden
| | | | - Ulrich Schwabe
- University of Heidelberg, Institute of Pharmacology, D-69120, Heidelberg, Germany
| | - Gisbert Selke
- Wissenschaftliches Institut der AOK (WIDO), Rosenthaler Straße 31, 10178, Berlin, Germany
| | | | - Steven Simoens
- KU Leuven Department of Pharmaceutical and Pharmacological Sciences, 3000, Leuven, Belgium
| | - Dominik Tomek
- Faculty of Pharmacy, Comenius University and Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Vera Vlahovic-Palcevski
- Unit for Clinical Pharmacology, University Hospital Rijeka, Krešimirova 42, 51000, Rijeka, Croatia
| | - Luka Voncina
- Ministry of Health, Republic of Croatia, Ksaver 200a, Zagreb, Croatia
| | | | - Menno van Woerkom
- Dutch Institute for Rational Use of Medicines, 3527 GV, Utrecht, Netherlands
| | - Durhane Wong-Rieger
- Institute for Optimizing Health Outcomes, 151 Bloor Street West, Suite 600, Toronto, ON M5S 1S4, Canada
| | - Corrine Zara
- Barcelona Health Region, Catalan Health Service, Esteve Terrades 30, 08023, Barcelona, Spain
| | - Raghib Ali
- INDOX Cancer Research Network, Cancer Epidemiology Unit, University of Oxford, Oxford, UK
| | - Lars L Gustafsson
- Department of Laboratory Medicine, Division of Clinical Pharmacology, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86, Stockholm, Sweden
| |
Collapse
|
47
|
Kowalec K, Carleton B, Tremlett H. The potential role of pharmacogenomics in the prevention of serious adverse drug reactions in multiple sclerosis. Mult Scler Relat Disord 2013; 2:183-92. [DOI: 10.1016/j.msard.2012.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 10/24/2012] [Accepted: 11/21/2012] [Indexed: 02/06/2023]
|
48
|
Shah RR, Shah DR. Personalized medicine: is it a pharmacogenetic mirage? Br J Clin Pharmacol 2013; 74:698-721. [PMID: 22591598 DOI: 10.1111/j.1365-2125.2012.04328.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The notion of personalized medicine has developed from the application of the discipline of pharmacogenetics to clinical medicine. Although the clinical relevance of genetically-determined inter-individual differences in pharmacokinetics is poorly understood, and the genotype-phenotype association data on clinical outcomes often inconsistent, officially approved drug labels frequently include pharmacogenetic information concerning the safety and/or efficacy of a number of drugs and refer to the availability of the pharmacogenetic test concerned. Regulatory authorities differ in their approach to these issues. Evidence emerging subsequently has generally revealed the pharmacogenetic information included in the label to be premature. Revised drugs labels, together with a flurry of other collateral activities, have raised public expectations of personalized medicine, promoted as 'the right drug at the right dose the first time.' These expectations place the prescribing physician in a dilemma and at risk of litigation, especially when evidence-based information on genotype-related dosing schedules is to all intent and purposes non-existent and guidelines, intended to improve the clinical utility of available pharmacogenetic information or tests, distance themselves from any responsibility. Lack of efficacy or an adverse drug reaction is frequently related to non-genetic factors. Phenoconversion, arising from drug interactions, poses another often neglected challenge to any potential success of personalized medicine by mimicking genetically-determined enzyme deficiency. A more realistic promotion of personalized medicine should acknowledge current limitations and emphasize that pharmacogenetic testing can only improve the likelihood of diminishing a specific toxic effect or increasing the likelihood of a beneficial effect and that application of pharmacogenetics to clinical medicine cannot adequately predict drug response in individual patients.
Collapse
|
49
|
Greek R, Menache A. Systematic reviews of animal models: methodology versus epistemology. Int J Med Sci 2013; 10:206-21. [PMID: 23372426 PMCID: PMC3558708 DOI: 10.7150/ijms.5529] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 12/30/2012] [Indexed: 01/24/2023] Open
Abstract
Systematic reviews are currently favored methods of evaluating research in order to reach conclusions regarding medical practice. The need for such reviews is necessitated by the fact that no research is perfect and experts are prone to bias. By combining many studies that fulfill specific criteria, one hopes that the strengths can be multiplied and thus reliable conclusions attained. Potential flaws in this process include the assumptions that underlie the research under examination. If the assumptions, or axioms, upon which the research studies are based, are untenable either scientifically or logically, then the results must be highly suspect regardless of the otherwise high quality of the studies or the systematic reviews. We outline recent criticisms of animal-based research, namely that animal models are failing to predict human responses. It is this failure that is purportedly being corrected via systematic reviews. We then examine the assumption that animal models can predict human outcomes to perturbations such as disease or drugs, even under the best of circumstances. We examine the use of animal models in light of empirical evidence comparing human outcomes to those from animal models, complexity theory, and evolutionary biology. We conclude that even if legitimate criticisms of animal models were addressed, through standardization of protocols and systematic reviews, the animal model would still fail as a predictive modality for human response to drugs and disease. Therefore, systematic reviews and meta-analyses of animal-based research are poor tools for attempting to reach conclusions regarding human interventions.
Collapse
Affiliation(s)
- Ray Greek
- Americans For Medical Advancement, 2251 Refugio Rd, Goleta, CA 93117, USA.
| | | |
Collapse
|
50
|
How the science of personalized medicines will change the clinical management of patients in the pharmacy. Future Med Chem 2012; 4:2023-7. [PMID: 23157235 DOI: 10.4155/fmc.12.129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|