1
|
Meena SN, Wajs-Bonikowska A, Girawale S, Imran M, Poduwal P, Kodam KM. High-Throughput Mining of Novel Compounds from Known Microbes: A Boost to Natural Product Screening. Molecules 2024; 29:3237. [PMID: 38999189 PMCID: PMC11243205 DOI: 10.3390/molecules29133237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024] Open
Abstract
Advanced techniques can accelerate the pace of natural product discovery from microbes, which has been lagging behind the drug discovery era. Therefore, the present review article discusses the various interdisciplinary and cutting-edge techniques to present a concrete strategy that enables the high-throughput screening of novel natural compounds (NCs) from known microbes. Recent bioinformatics methods revealed that the microbial genome contains a huge untapped reservoir of silent biosynthetic gene clusters (BGC). This article describes several methods to identify the microbial strains with hidden mines of silent BGCs. Moreover, antiSMASH 5.0 is a free, accurate, and highly reliable bioinformatics tool discussed in detail to identify silent BGCs in the microbial genome. Further, the latest microbial culture technique, HiTES (high-throughput elicitor screening), has been detailed for the expression of silent BGCs using 500-1000 different growth conditions at a time. Following the expression of silent BGCs, the latest mass spectrometry methods are highlighted to identify the NCs. The recently emerged LAESI-IMS (laser ablation electrospray ionization-imaging mass spectrometry) technique, which enables the rapid identification of novel NCs directly from microtiter plates, is presented in detail. Finally, various trending 'dereplication' strategies are emphasized to increase the effectiveness of NC screening.
Collapse
Affiliation(s)
- Surya Nandan Meena
- Department of Chemistry, Savitribai Phule Pune University, Pune 411007, India; (S.N.M.); (K.M.K.)
| | - Anna Wajs-Bonikowska
- Institute of Natural Products and Cosmetics, Faculty of Biotechnology and Food Sciences, Łódz University of Technology, Stefanowskiego Street 2/22, 90-537 Łódz, Poland
| | - Savita Girawale
- Department of Chemistry, Savitribai Phule Pune University, Pune 411007, India; (S.N.M.); (K.M.K.)
| | - Md Imran
- Department of Botany, University of Delhi, Delhi 110007, India
| | - Preethi Poduwal
- Department of Biotechnology, Dhempe College of Arts and Science, Miramar, Goa 403001, India;
| | - Kisan M. Kodam
- Department of Chemistry, Savitribai Phule Pune University, Pune 411007, India; (S.N.M.); (K.M.K.)
| |
Collapse
|
2
|
Wang W, Tang J, Zaliani A. Outline and background for the EU-OS solubility prediction challenge. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100155. [PMID: 38518955 DOI: 10.1016/j.slasd.2024.100155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/27/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
In June 2022, EU-OS came to the decision to make public a solubility data set of 100+K compounds obtained from several of the EU-OS proprietary screening compound collections. Leveraging on the interest of SLAS for screening scientific development it was decided to launch a joint EUOS-SLAS competition within the chemoinformatics and machine learning (ML) communities. The competition was open to real world computation experts, for the best, most predictive, classification model of compound solubility. The aim of the competition was multiple: from a practical side, the winning model should then serve as a cornerstone for future solubility predictions having used the largest training set so far publicly available. From a higher project perspective, the intent was to focus the energies and experiences, even if professionally not precisely coming from Pharma R&D; to address the issue of how to predict compound solubility. Here we report how the competition was ideated and the practical aspects of conducting it within the Kaggle framework, leveraging of the versatility and the open-source nature of this data science platform. Consideration on results and challenges encountered have been also examined.
Collapse
Affiliation(s)
- Wenyu Wang
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland; Institute for Molecular Medicine Finland-FIMM, Helsinki Institute of Life Science-HiLIFE, University of Helsinki, Helsinki 00290, Finland; iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki 00290, Finland
| | - Jing Tang
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland; iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki 00290, Finland.
| | - Andrea Zaliani
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Schnackenburgallee 114, Hamburg 22525, Germany; Fraunhofer Cluster of Excellence for Immune-Mediated Diseases (CIMD), Theodor Stern Kai 7, Frankfurt 60590, Germany.
| |
Collapse
|
3
|
Chan BWGL, Lynch NB, Tran W, Joyce JM, Savage GP, Meutermans W, Montgomery AP, Kassiou M. Fragment-based drug discovery for disorders of the central nervous system: designing better drugs piece by piece. Front Chem 2024; 12:1379518. [PMID: 38698940 PMCID: PMC11063241 DOI: 10.3389/fchem.2024.1379518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/12/2024] [Indexed: 05/05/2024] Open
Abstract
Fragment-based drug discovery (FBDD) has emerged as a powerful strategy to confront the challenges faced by conventional drug development approaches, particularly in the context of central nervous system (CNS) disorders. FBDD involves the screening of libraries that comprise thousands of small molecular fragments, each no greater than 300 Da in size. Unlike the generally larger molecules from high-throughput screening that limit customisation, fragments offer a more strategic starting point. These fragments are inherently compact, providing a strong foundation with good binding affinity for the development of drug candidates. The minimal elaboration required to transition the hit into a drug-like molecule is not only accelerated, but also it allows for precise modifications to enhance both their activity and pharmacokinetic properties. This shift towards a fragment-centric approach has seen commercial success and holds considerable promise in the continued streamlining of the drug discovery and development process. In this review, we highlight how FBDD can be integrated into the CNS drug discovery process to enhance the exploration of a target. Furthermore, we provide recent examples where FBDD has been an integral component in CNS drug discovery programs, enabling the improvement of pharmacokinetic properties that have previously proven challenging. The FBDD optimisation process provides a systematic approach to explore this vast chemical space, facilitating the discovery and design of compounds piece by piece that are capable of modulating crucial CNS targets.
Collapse
Affiliation(s)
| | - Nicholas B. Lynch
- School of Chemistry, The University of Sydney, Sydney, NSW, Australia
| | - Wendy Tran
- School of Chemistry, The University of Sydney, Sydney, NSW, Australia
| | - Jack M. Joyce
- School of Chemistry, The University of Sydney, Sydney, NSW, Australia
| | | | | | | | - Michael Kassiou
- School of Chemistry, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
4
|
Platonov M, Maximyuk O, Rayevsky A, Iegorova O, Hurmach V, Holota Y, Bulgakov E, Cherninskyi A, Karpov P, Ryabukhin S, Krishtal O, Volochnyuk D. Integrated workflow for the identification of new GABA A R positive allosteric modulators based on the in silico screening with further in vitro validation. Case study using Enamine's stock chemical space. Mol Inform 2024; 43:e202300156. [PMID: 37964718 DOI: 10.1002/minf.202300156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/16/2023]
Abstract
Numerous studies reported an association between GABAA R subunit genes and epilepsy, eating disorders, autism spectrum disorders, neurodevelopmental disorders, and bipolar disorders. This study was aimed to find some potential positive allosteric modulators and was performed by combining the in silico approach with further in vitro evaluation of its real activity. We started from the GABAA R-diazepam complexes and assembled a lipid embedded protein ensemble to refine it via molecular dynamics (MD) simulation. Then we focused on the interaction of α1β2γ2 with some Z-drugs (non-benzodiazepine compounds) using an Induced Fit Docking (IFD) into the relaxed binding site to generate a pharmacophore model. The pharmacophore model was validated with a reference set and applied to decrease the pre-filtered Enamine database before the main docking procedure. Finally, we succeeded in identifying a set of compounds, which met all features of the docking model. The aqueous solubility and stability of these compounds in mouse plasma were assessed. Then they were tested for the biological activity using the rat Purkinje neurons and CHO cells with heterologously expressed human α1β2γ2 GABAA receptors. Whole-cell patch clamp recordings were used to reveal the GABA induced currents. Our study represents a convenient and tunable model for the discovery of novel positive allosteric modulators of GABAA receptors. A High-throughput virtual screening of the largest available database of chemical compounds resulted in the selection of 23 compounds. Further electrophysiological tests allowed us to determine a set of 3 the most outstanding active compounds. Considering the structural features of leader compounds, the study can develop into the MedChem project soon.
Collapse
Affiliation(s)
- Maksym Platonov
- Institute of molecular biology and genetics, Natl. Academy of Sciences of Ukraine, Zabolotnogo Str., 150, Kyiv, 03143, Ukraine
- Enamine Ltd., 78 Chervonotkatska Str., 02660, Kyiv, Ukraine
| | - Oleksandr Maximyuk
- Bogomoletz Institute of Physiology, Natl. Academy of Sciences of Ukraine, 4 Bogomoletz Str., 01024, Kyiv, Ukraine
| | - Alexey Rayevsky
- Institute of molecular biology and genetics, Natl. Academy of Sciences of Ukraine, Zabolotnogo Str., 150, Kyiv, 03143, Ukraine
- Enamine Ltd., 78 Chervonotkatska Str., 02660, Kyiv, Ukraine
- Institute of Food Biotechnology and Genomics, Natl. Academy of Sciences of Ukraine, Osypovskoho Str., 2 A, Kyiv, 04123, Ukraine
| | - Olena Iegorova
- Bogomoletz Institute of Physiology, Natl. Academy of Sciences of Ukraine, 4 Bogomoletz Str., 01024, Kyiv, Ukraine
| | - Vasyl Hurmach
- Institute of molecular biology and genetics, Natl. Academy of Sciences of Ukraine, Zabolotnogo Str., 150, Kyiv, 03143, Ukraine
- Enamine Ltd., 78 Chervonotkatska Str., 02660, Kyiv, Ukraine
| | - Yuliia Holota
- Enamine Ltd., 78 Chervonotkatska Str., 02660, Kyiv, Ukraine
| | - Elijah Bulgakov
- Enamine Ltd., 78 Chervonotkatska Str., 02660, Kyiv, Ukraine
- Institute of Food Biotechnology and Genomics, Natl. Academy of Sciences of Ukraine, Osypovskoho Str., 2 A, Kyiv, 04123, Ukraine
| | - Andrii Cherninskyi
- Bogomoletz Institute of Physiology, Natl. Academy of Sciences of Ukraine, 4 Bogomoletz Str., 01024, Kyiv, Ukraine
| | - Pavel Karpov
- Institute of Food Biotechnology and Genomics, Natl. Academy of Sciences of Ukraine, Osypovskoho Str., 2 A, Kyiv, 04123, Ukraine
| | - Sergey Ryabukhin
- Enamine Ltd., 78 Chervonotkatska Str., 02660, Kyiv, Ukraine
- Institute of High Technologies, Taras Shevchenko National University of Kyiv., Glushkova Ave, 03022, Kyiv, Ukraine
- Institute of organic chemistry NAS of Ukraine, 5 Murmanska Str., 02660, Kyiv, Ukraine
| | - Oleg Krishtal
- Bogomoletz Institute of Physiology, Natl. Academy of Sciences of Ukraine, 4 Bogomoletz Str., 01024, Kyiv, Ukraine
| | - Dmitriy Volochnyuk
- Enamine Ltd., 78 Chervonotkatska Str., 02660, Kyiv, Ukraine
- Institute of High Technologies, Taras Shevchenko National University of Kyiv., Glushkova Ave, 03022, Kyiv, Ukraine
- Institute of organic chemistry NAS of Ukraine, 5 Murmanska Str., 02660, Kyiv, Ukraine
| |
Collapse
|
5
|
Kumar V, Chunchagatta Lakshman PK, Prasad TK, Manjunath K, Bairy S, Vasu AS, Ganavi B, Jasti S, Kamariah N. Target-based drug discovery: Applications of fluorescence techniques in high throughput and fragment-based screening. Heliyon 2024; 10:e23864. [PMID: 38226204 PMCID: PMC10788520 DOI: 10.1016/j.heliyon.2023.e23864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 01/17/2024] Open
Abstract
Target-based discovery of first-in-class therapeutics demands an in-depth understanding of the molecular mechanisms underlying human diseases. Precise measurements of cellular and biochemical activities are critical to gain mechanistic knowledge of biomolecules and their altered function in disease conditions. Such measurements enable the development of intervention strategies for preventing or treating diseases by modulation of desired molecular processes. Fluorescence-based techniques are routinely employed for accurate and robust measurements of in-vitro activity of molecular targets and for discovering novel chemical molecules that modulate the activity of molecular targets. In the current review, the authors focus on the applications of fluorescence-based high throughput screening (HTS) and fragment-based ligand discovery (FBLD) techniques such as fluorescence polarization (FP), Förster resonance energy transfer (FRET), fluorescence thermal shift assay (FTSA) and microscale thermophoresis (MST) for the discovery of chemical probe to exploring target's role in disease biology and ultimately, serve as a foundation for drug discovery. Some recent advancements in these techniques for compound library screening against important classes of drug targets, such as G-protein-coupled receptors (GPCRs) and GTPases, as well as phosphorylation- and acetylation-mediated protein-protein interactions, are discussed. Overall, this review presents a landscape of how these techniques paved the way for the discovery of small-molecule modulators and biologics against these targets for therapeutic benefits.
Collapse
Affiliation(s)
| | | | - Thazhe Kootteri Prasad
- Centre for Chemical Biology & Therapeutics, inStem & NCBS, Bellary Road, Bangalore, 560065, India
| | - Kavyashree Manjunath
- Centre for Chemical Biology & Therapeutics, inStem & NCBS, Bellary Road, Bangalore, 560065, India
| | - Sneha Bairy
- Centre for Chemical Biology & Therapeutics, inStem & NCBS, Bellary Road, Bangalore, 560065, India
| | - Akshaya S. Vasu
- Centre for Chemical Biology & Therapeutics, inStem & NCBS, Bellary Road, Bangalore, 560065, India
| | - B. Ganavi
- Centre for Chemical Biology & Therapeutics, inStem & NCBS, Bellary Road, Bangalore, 560065, India
| | - Subbarao Jasti
- Centre for Chemical Biology & Therapeutics, inStem & NCBS, Bellary Road, Bangalore, 560065, India
| | - Neelagandan Kamariah
- Centre for Chemical Biology & Therapeutics, inStem & NCBS, Bellary Road, Bangalore, 560065, India
| |
Collapse
|
6
|
Yan S, Schöpe PC, Lewis J, Putzker K, Uhrig U, Specker E, von Kries JP, Lindemann P, Omran A, Sanchez-Ibarra HE, Unger A, Zischinsky ML, Klebl B, Walther W, Nazaré M, Kobelt D, Stein U. Discovery of tetrazolo-pyridazine-based small molecules as inhibitors of MACC1-driven cancer metastasis. Biomed Pharmacother 2023; 168:115698. [PMID: 37865992 DOI: 10.1016/j.biopha.2023.115698] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/24/2023] Open
Abstract
Metastasis is directly linked to poor prognosis of cancer patients and warrants search for effective anti-metastatic drugs. MACC1 is a causal key molecule for metastasis. High MACC1 expression is prognostic for metastasis and poor survival. Here, we developed novel small molecule inhibitors targeting MACC1 expression to impede metastasis formation. We performed a human MACC1 promoter-driven luciferase reporter-based high-throughput screen (HTS; 118.500 compound library) to identify MACC1 transcriptional inhibitors. HTS revealed 1,2,3,4-tetrazolo[1,5-b]pyridazine-based compounds as efficient transcriptional inhibitors of MACC1 expression, able to decrease MACC1-induced cancer cell motility in vitro. Structure-activity relationships identified the essential inhibitory core structure. Best candidates were evaluated for metastasis inhibition in xenografted mouse models demonstrating metastasis restriction. ADMET showed high drug-likeness of these new candidates for cancer therapy. The NFκB pathway was identified as one mode of action targeted by these compounds. Taken together, 1,2,3,4-tetrazolo[1,5-b]pyridazine-based compounds are effective MACC1 inhibitors and pose promising candidates for anti-metastatic therapies particularly for patients with MACC1-overexpressing cancers, that are at high risk to develop metastases. Although further preclinical and clinical development is necessary, these compounds represent important building blocks for an individualized anti-metastatic therapy for solid cancers.
Collapse
Affiliation(s)
- Shixian Yan
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, and Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Paul Curtis Schöpe
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, and Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Joe Lewis
- The European Molecular Biology Laboratory, EMBL, Meyerhofstraße 1, 69120 Heidelberg, Germany
| | - Kerstin Putzker
- The European Molecular Biology Laboratory, EMBL, Meyerhofstraße 1, 69120 Heidelberg, Germany
| | - Ulrike Uhrig
- The European Molecular Biology Laboratory, EMBL, Meyerhofstraße 1, 69120 Heidelberg, Germany
| | - Edgar Specker
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, FMP, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Jens Peter von Kries
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, FMP, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Peter Lindemann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, FMP, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Anahid Omran
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, FMP, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Hector E Sanchez-Ibarra
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, and Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Anke Unger
- Lead Discovery Center GmbH, LDC, Otto-Hahn-Str. 15, 44227 Dortmund, Germany
| | | | - Bert Klebl
- Lead Discovery Center GmbH, LDC, Otto-Hahn-Str. 15, 44227 Dortmund, Germany
| | - Wolfgang Walther
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, and Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Marc Nazaré
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, FMP, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Dennis Kobelt
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, and Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany; German Cancer Consortium (DKTK Partnersite Berlin), Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Ulrike Stein
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, and Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany; German Cancer Consortium (DKTK Partnersite Berlin), Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|
7
|
Sung B, Park KM, Park CG, Kim YH, Lee J, Jin TE. What drives researcher preferences for chemical compounds? Evidence from conjoint analysis. PLoS One 2023; 18:e0294576. [PMID: 38011085 PMCID: PMC10681187 DOI: 10.1371/journal.pone.0294576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 11/04/2023] [Indexed: 11/29/2023] Open
Abstract
We investigated the attributes and attribute levels that affect researcher preferences for chemical compounds. We conducted a conjoint analysis on survey data of Korean researchers using chemical compounds from the Korean Chemical Bank (KCB). The analysis estimated the part-worth utility for each attribute's level, calculated relative importance of attributes, and classified user segmentation with different patterns. The results show that the structure database offers the highest part-worth utility to researchers, followed by high new functionality, price, screening service, and drug action data provided only by the KCB. Notably, researchers view the offer of a structured database and high new functionality as more important than other attributes in decision-making about research and development of chemical compounds. Furthermore, the results of segmentation analysis demonstrated that researchers have distinct usage patterns of chemical compounds: researchers consider structure database and high new functionality in cluster 1; and high new functionality and price in cluster 2, to be the most appealing. We discussed some policy and strategic implications based on the findings of this study and proposed some limitations.
Collapse
Affiliation(s)
- Bongsuk Sung
- Department of International Trade, Kyonggi University, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Kang-Min Park
- Korea Bioinformation Center (KOBIC), Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Chun Gun Park
- Department of Mathematics, Kyonggi University, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Yong-Hee Kim
- Department of Applied Statistics, Chung-Ang University, Seoul, Republic of Korea
| | - Jaeyong Lee
- Department of Applied Statistics, Chung-Ang University, Seoul, Republic of Korea
| | - Tae-Eun Jin
- Korea Bioinformation Center (KOBIC), Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Republic of Korea
| |
Collapse
|
8
|
Takechi-Haraya Y, Ohgita T, Usui A, Nishitsuji K, Uchimura K, Abe Y, Kawano R, Konaklieva MI, Reimund M, Remaley AT, Sato Y, Izutsu KI, Saito H. Structural flexibility of apolipoprotein E-derived arginine-rich peptides improves their cell penetration capability. Sci Rep 2023; 13:19396. [PMID: 37938626 PMCID: PMC10632520 DOI: 10.1038/s41598-023-46754-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/04/2023] [Indexed: 11/09/2023] Open
Abstract
Amphipathic arginine-rich peptide, A2-17, exhibits moderate perturbation of lipid membranes and the highest cell penetration among its structural isomers. We investigated the direct cell-membrane penetration mechanism of the A2-17 peptide while focusing on structural flexibility. We designed conformationally constrained versions of A2-17, stapled (StpA2-17) and stitched (StchA2-17), whose α-helical conformations were stabilized by chemical crosslinking. Circular dichroism confirmed that StpA2-17 and StchA2-17 had higher α-helix content than A2-17 in aqueous solution. Upon liposome binding, only A2-17 exhibited a coil-to-helix transition. Confocal microscopy revealed that A2-17 had higher cell penetration efficiency than StpA2-17, whereas StchA2-17 remained on the cell membrane without cell penetration. Although the tryptophan fluorescence analysis suggested that A2-17 and its analogs had similar membrane-insertion positions between the interface and hydrophobic core, StchA2-17 exhibited a higher membrane affinity than A2-17 or StpA2-17. Atomic force microscopy demonstrated that A2-17 reduced the mechanical rigidity of liposomes to a greater extent than StpA2-17 and StchA2-17. Finally, electrophysiological analysis showed that A2-17 induced a higher charge influx through transient pores in a planer lipid bilayer than StpA2-17 and StchA2-17. These findings indicate that structural flexibility, which enables diverse conformations of A2-17, leads to a membrane perturbation mode that contributes to cell membrane penetration.
Collapse
Affiliation(s)
- Yuki Takechi-Haraya
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, 210-9501, Japan.
| | - Takashi Ohgita
- Center for Instrumental Analysis, Kyoto Pharmaceutical University, 1 Misasagi-Shichono-cho, Yamashina-ku, Kyoto, 607-8412, Japan
| | - Akiko Usui
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, 210-9501, Japan
| | - Kazuchika Nishitsuji
- Department of Biochemistry, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université de Lille, 59655, Villeneuve d'Ascq, France
| | - Kenji Uchimura
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université de Lille, 59655, Villeneuve d'Ascq, France
| | - Yasuhiro Abe
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, 210-9501, Japan
| | - Ryuji Kawano
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-6 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Monika I Konaklieva
- Department of Chemistry, American University, 4400 Massachusetts Avenue NW, Washington, DC, 20016-8014, USA
| | - Mart Reimund
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alan T Remaley
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yoji Sato
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, 210-9501, Japan
| | - Ken-Ichi Izutsu
- School of Pharmacy Department of Pharmaceutical Sciences, International University of Health and Welfare, 2600-1 Kitakanemaru, Otawara, Tochigi, 324-8501, Japan
| | - Hiroyuki Saito
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| |
Collapse
|
9
|
Casamajo A, Yu Y, Schnepel C, Morrill C, Barker R, Levy CW, Finnigan J, Spelling V, Westerlund K, Petchey M, Sheppard RJ, Lewis RJ, Falcioni F, Hayes MA, Turner NJ. Biocatalysis in Drug Design: Engineered Reductive Aminases (RedAms) Are Used to Access Chiral Building Blocks with Multiple Stereocenters. J Am Chem Soc 2023; 145:22041-22046. [PMID: 37782882 PMCID: PMC10571080 DOI: 10.1021/jacs.3c07010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Indexed: 10/04/2023]
Abstract
Novel building blocks are in constant demand during the search for innovative bioactive small molecule therapeutics by enabling the construction of structure-activity-property-toxicology relationships. Complex chiral molecules containing multiple stereocenters are an important component in compound library expansion but can be difficult to access by traditional organic synthesis. Herein, we report a biocatalytic process to access a specific diastereomer of a chiral amine building block used in drug discovery. A reductive aminase (RedAm) was engineered following a structure-guided mutagenesis strategy to produce the desired isomer. The engineered RedAm (IR-09 W204R) was able to generate the (S,S,S)-isomer 3 in 45% conversion and 95% ee from the racemic ketone 2. Subsequent palladium-catalyzed deallylation of 3 yielded the target primary amine 4 in a 73% yield. This engineered biocatalyst was used at preparative scale and represents a potential starting point for further engineering and process development.
Collapse
Affiliation(s)
- Arnau
Rué Casamajo
- Department
of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, United
Kingdom
| | - Yuqi Yu
- Department
of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, United
Kingdom
| | - Christian Schnepel
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Industrial Biotechnology, KTH Royal Institute of Technology, AlbaNova University Center, 11421 Stockholm, Sweden
| | - Charlotte Morrill
- Department
of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, United
Kingdom
| | - Rhys Barker
- Department
of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, United
Kingdom
| | - Colin W. Levy
- Department
of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, United
Kingdom
| | - James Finnigan
- Prozomix
Ltd, Building 4, West
End Ind. Estate, Haltwhistle NE49 9HA, United Kingdom
| | - Victor Spelling
- Early
Chemical Development, Pharmaceutical Sciences, Biopharmaceuticals
R&D, AstraZeneca, Mölndal, 431 50 Gothenburg, Sweden
| | - Kristina Westerlund
- Medicinal
Chemistry, Research and Early Development; Cardiovascular, Renal and
Metabolism, Biopharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal, 431 50 Gothenburg Sweden
| | - Mark Petchey
- Compound
Synthesis and Management, Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Mölndal, 431 50 Gothenburg, Sweden
| | - Robert J. Sheppard
- Medicinal
Chemistry, Research and Early Development; Cardiovascular, Renal and
Metabolism, Biopharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal, 431 50 Gothenburg Sweden
| | - Richard J. Lewis
- Department
of Medicinal Chemistry, Research and Early Development, Respiratory
and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, 43183 Mölndal, Sweden
| | - Francesco Falcioni
- Early
Chemical Development, Pharmaceutical Sciences, Biopharmaceuticals
R&D, AstraZeneca, CB21 6GP Cambridge, United Kingdom
| | - Martin A. Hayes
- Compound
Synthesis and Management, Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Mölndal, 431 50 Gothenburg, Sweden
| | - Nicholas J. Turner
- Department
of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, United
Kingdom
| |
Collapse
|
10
|
Neumann A, Marrison L, Klein R. Relevance of the Trillion-Sized Chemical Space "eXplore" as a Source for Drug Discovery. ACS Med Chem Lett 2023; 14:466-472. [PMID: 37077402 PMCID: PMC10108389 DOI: 10.1021/acsmedchemlett.3c00021] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Within the past two decades, virtual combinatorial compound collections, so-called chemical spaces, became an important molecule source for pharmaceutical research all over the world. The emergence of compound vendor chemical spaces with rapidly growing numbers of molecules raises questions about their application suitability and the quality of the content. Here, we examine the composition of the recently published and, so far, biggest chemical space, "eXplore", which comprises approximately 2.8 trillion virtual product molecules. The utility of eXplore to retrieve interesting chemistry around approved drugs and common Bemis Murcko scaffolds has been assessed with several methods (FTrees, SpaceLight, SpaceMACS). Further, the overlap between several vendor chemical spaces and a physicochemical property distribution analysis has been performed. Despite the straightforward chemical reactions underlying its setup, eXplore is demonstrated to provide relevant and, most importantly, easily accessible molecules for drug discovery campaigns.
Collapse
Affiliation(s)
| | - Lester Marrison
- eMolecules, 3430 Carmel Mountain Road, Suite
250, San Diego, California 92121, United States
| | - Raphael Klein
- BioSolveIT
GmbH, An der Ziegelei 79, 53757 Sankt Augustin, Germany
| |
Collapse
|
11
|
Mityuk AP, Kiriakov OM, Tiutiunnyk VV, Lebed PS, Grabchuk GP, Rusanov EB, Volochnyuk DM, Ryabukhin SV. Trifluoromethyl Vinamidinium Salt as a Promising Precursor for Fused β-Trifluoromethyl Pyridines. J Org Chem 2023. [PMID: 36795967 DOI: 10.1021/acs.joc.2c02684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
An efficient chlorotrimethylsilane-promoted synthetic protocol for the preparation of functionalized fused β-trifluoromethyl pyridines by cyclization of electron-rich aminoheterocycles or substituted anilines with a trifluoromethyl vinamidinium salt was developed. The efficient and scalable approach for producing represented trifluoromethyl vinamidinium salt demonstrated huge prospects for further use. The structure specificities of the trifluoromethyl vinamidinium salt and their impact on the reaction progress were determined. The procedure's scope and alternative ways of the reaction were investigated. The possibility of increasing the reaction scale up to 50 g and further modification of obtained products was shown. A minilibrary of potential fragments for 19F NMR-based fragment-based drug discovery (FBDD) was synthesized.
Collapse
Affiliation(s)
| | | | | | - Pavlo S Lebed
- Enamine Ltd, 78 Chervonotkatska str., Kyiv 02094, Ukraine.,Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Murmanska str., Kyiv 02094, Ukraine
| | - Galyna P Grabchuk
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska str., Kyiv 01033, Ukraine
| | - Eduard B Rusanov
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Murmanska str., Kyiv 02094, Ukraine
| | - Dmitriy M Volochnyuk
- Enamine Ltd, 78 Chervonotkatska str., Kyiv 02094, Ukraine.,Taras Shevchenko National University of Kyiv, 60 Volodymyrska str., Kyiv 01033, Ukraine.,Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Murmanska str., Kyiv 02094, Ukraine
| | - Sergey V Ryabukhin
- Enamine Ltd, 78 Chervonotkatska str., Kyiv 02094, Ukraine.,Taras Shevchenko National University of Kyiv, 60 Volodymyrska str., Kyiv 01033, Ukraine.,Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Murmanska str., Kyiv 02094, Ukraine
| |
Collapse
|
12
|
He S, Lim GE. The Application of High-Throughput Approaches in Identifying Novel Therapeutic Targets and Agents to Treat Diabetes. Adv Biol (Weinh) 2023; 7:e2200151. [PMID: 36398493 DOI: 10.1002/adbi.202200151] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/04/2022] [Indexed: 11/19/2022]
Abstract
During the past decades, unprecedented progress in technologies has revolutionized traditional research methodologies. Among these, advances in high-throughput drug screening approaches have permitted the rapid identification of potential therapeutic agents from drug libraries that contain thousands or millions of molecules. Moreover, high-throughput-based therapeutic target discovery strategies can comprehensively interrogate relationships between biomolecules (e.g., gene, RNA, and protein) and diseases and significantly increase the authors' knowledge of disease mechanisms. Diabetes is a chronic disease primarily characterized by the incapacity of the body to maintain normoglycemia. The prevalence of diabetes in modern society has become a severe public health issue that threatens the well-being of millions of patients. Although a number of pharmacological treatments are available, there is no permanent cure for diabetes, and discovering novel therapeutic targets and agents continues to be an urgent need. The present review discusses the technical details of high-throughput screening approaches in drug discovery, followed by introducing the applications of such approaches to diabetes research. This review aims to provide an example of the applicability of high-throughput technologies in facilitating different aspects of disease research.
Collapse
Affiliation(s)
- Siyi He
- Department of Medicine, Université de Montréal, Pavillon Roger-Gaudry, 2900 Edouard Montpetit Blvd, Montreal, Québec, H3T 1J4, Canada.,Cardiometabolic Axis, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 rue St Denis, Montreal, Québec, H2X 0A9, Canada
| | - Gareth E Lim
- Department of Medicine, Université de Montréal, Pavillon Roger-Gaudry, 2900 Edouard Montpetit Blvd, Montreal, Québec, H3T 1J4, Canada.,Cardiometabolic Axis, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 rue St Denis, Montreal, Québec, H2X 0A9, Canada
| |
Collapse
|
13
|
Iusupov IR, Lukyanenko ER, Altieri A, Kurkin AV. Design and Synthesis of Fsp3-Enriched Spirocyclic-Based Biological Screening Compound Arrays via DOS Strategies and Their NNMT Inhibition Profiling. ChemMedChem 2022; 17:e202200394. [PMID: 36193863 DOI: 10.1002/cmdc.202200394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/26/2022] [Indexed: 01/14/2023]
Abstract
Medicinal chemists are keen to explore tridimensional compounds, especially when it comes to small molecules. It has already been stressed that the majority of known drugs tend to be flat, whereas natural products tend to be more tridimensional and represent a good source of active compounds. 3D metrics have been implemented and computational descriptors are available to evaluate and prioritize compounds based on their 3D geometry. This is usually done by comparing the saturated carbon atoms in a molecule with the total number of its non-hydrogen atoms (the Fsp3 value). While this aspect is clear, still there are not enough synthetic tools that support the realization of novel chemotypes that conform to these criteria. Herein we describe a diversity oriented synthesis (DOS) synthetic cascade technology that starts from two simple reagents, and generates highly enriched Fsp3 novel and diverse spiro-scaffolds with pragmatic synthetic handles (points of diversity). The spiro nature of these scaffolds not only ensures high Fsp3 values but renders the compounds more rigid and therefore more effective in forming precise stereo-interactions with their potential biological targets. These compounds were also profiled for their drug-like properties and as potential modulators of the NNMT enzyme.
Collapse
Affiliation(s)
- Ildar R Iusupov
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninsky Gory, Moscow, 119991, Russia
| | - Evgeny R Lukyanenko
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninsky Gory, Moscow, 119991, Russia
| | - Andrea Altieri
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninsky Gory, Moscow, 119991, Russia.,EDASA Scientific Srls, Via Stingi, 3, 66050, San Salvo, Italy
| | - Alexander V Kurkin
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninsky Gory, Moscow, 119991, Russia
| |
Collapse
|
14
|
Young RJ, Flitsch SL, Grigalunas M, Leeson PD, Quinn RJ, Turner NJ, Waldmann H. The Time and Place for Nature in Drug Discovery. JACS AU 2022; 2:2400-2416. [PMID: 36465532 PMCID: PMC9709949 DOI: 10.1021/jacsau.2c00415] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/06/2022] [Accepted: 10/06/2022] [Indexed: 05/31/2023]
Abstract
The case for a renewed focus on Nature in drug discovery is reviewed; not in terms of natural product screening, but how and why biomimetic molecules, especially those produced by natural processes, should deliver in the age of artificial intelligence and screening of vast collections both in vitro and in silico. The declining natural product-likeness of licensed drugs and the consequent physicochemical implications of this trend in the context of current practices are noted. To arrest these trends, the logic of seeking new bioactive agents with enhanced natural mimicry is considered; notably that molecules constructed by proteins (enzymes) are more likely to interact with other proteins (e.g., targets and transporters), a notion validated by natural products. Nature's finite number of building blocks and their interactions necessarily reduce potential numbers of structures, yet these enable expansion of chemical space with their inherent diversity of physical characteristics, pertinent to property-based design. The feasible variations on natural motifs are considered and expanded to encompass pseudo-natural products, leading to the further logical step of harnessing bioprocessing routes to access them. Together, these offer opportunities for enhancing natural mimicry, thereby bringing innovation to drug synthesis exploiting the characteristics of natural recognition processes. The potential for computational guidance to help identifying binding commonalities in the route map is a logical opportunity to enable the design of tailored molecules, with a focus on "organic/biological" rather than purely "synthetic" structures. The design and synthesis of prototype structures should pay dividends in the disposition and efficacy of the molecules, while inherently enabling greener and more sustainable manufacturing techniques.
Collapse
Affiliation(s)
| | - Sabine L. Flitsch
- Department
of Chemistry, University of Manchester,
Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Michael Grigalunas
- Department
of Chemical Biology, Max-Planck-Institute
of Molecular Physiology, Otto-Hahn Strasse 11, 44227 Dortmund, Germany
| | - Paul D. Leeson
- Paul
Leeson Consulting Limited, The Malt House, Main Street, Congerstone, Nuneaton, Warwickshire CV13 6LZ, U.K.
| | - Ronald J. Quinn
- Griffith
Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Nicholas J. Turner
- Department
of Chemistry, University of Manchester,
Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Herbert Waldmann
- Department
of Chemical Biology, Max-Planck-Institute
of Molecular Physiology, Otto-Hahn Strasse 11, 44227 Dortmund, Germany
- Faculty of
Chemistry and Chemical Biology, Technical
University of Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
| |
Collapse
|
15
|
Putt KS, Du Y, Fu H, Zhang ZY. High-throughput screening strategies for space-based radiation countermeasure discovery. LIFE SCIENCES IN SPACE RESEARCH 2022; 35:88-104. [PMID: 36336374 DOI: 10.1016/j.lssr.2022.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/13/2022] [Accepted: 07/19/2022] [Indexed: 06/16/2023]
Abstract
As humanity begins to venture further into space, approaches to better protect astronauts from the hazards found in space need to be developed. One particular hazard of concern is the complex radiation that is ever present in deep space. Currently, it is unlikely enough spacecraft shielding could be launched that would provide adequate protection to astronauts during long-duration missions such as a journey to Mars and back. In an effort to identify other means of protection, prophylactic radioprotective drugs have been proposed as a potential means to reduce the biological damage caused by this radiation. Unfortunately, few radioprotectors have been approved by the FDA for usage and for those that have been developed, they protect normal cells/tissues from acute, high levels of radiation exposure such as that from oncology radiation treatments. To date, essentially no radioprotectors have been developed that specifically counteract the effects of chronic low-dose rate space radiation. This review highlights how high-throughput screening (HTS) methodologies could be implemented to identify such a radioprotective agent. Several potential target, pathway, and phenotypic assays are discussed along with potential challenges towards screening for radioprotectors. Utilizing HTS strategies such as the ones proposed here have the potential to identify new chemical scaffolds that can be developed into efficacious radioprotectors that are specifically designed to protect astronauts during deep space journeys. The overarching goal of this review is to elicit broader interest in applying drug discovery techniques, specifically HTS towards the identification of radiation countermeasures designed to be efficacious towards the biological insults likely to be encountered by astronauts on long duration voyages.
Collapse
Affiliation(s)
- Karson S Putt
- Institute for Drug Discovery, Purdue University, West Lafayette IN 47907 USA
| | - Yuhong Du
- Department of Pharmacology and Chemical Biology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Haian Fu
- Department of Pharmacology and Chemical Biology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Zhong-Yin Zhang
- Institute for Drug Discovery, Purdue University, West Lafayette IN 47907 USA; Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette IN 47907 USA.
| |
Collapse
|
16
|
Janin YL. On drug discovery against infectious diseases and academic medicinal chemistry contributions. Beilstein J Org Chem 2022; 18:1355-1378. [PMID: 36247982 PMCID: PMC9531561 DOI: 10.3762/bjoc.18.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/21/2022] [Indexed: 11/23/2022] Open
Abstract
This perspective is an attempt to document the problems that medicinal chemists are facing in drug discovery. It is also trying to identify relevant/possible, research areas in which academics can have an impact and should thus be the subject of grant calls. Accordingly, it describes how hit discovery happens, how compounds to be screened are selected from available chemicals and the possible reasons for the recurrent paucity of useful/exploitable results reported. This is followed by the successful hit to lead stories leading to recent and original antibacterials which are, or about to be, used in human medicine. Then, illustrated considerations and suggestions are made on the possible inputs of academic medicinal chemists. This starts with the observation that discovering a "good" hit in the course of a screening campaign still rely on a lot of luck - which is within the reach of academics -, that the hit to lead process requires a lot of chemistry and that if public-private partnerships can be important throughout these stages, they are absolute requirements for clinical trials. Concerning suggestions to improve the current hit success rate, one academic input in organic chemistry would be to identify new and pertinent chemical space, design synthetic accesses to reach these and prepare the corresponding chemical libraries. Concerning hit to lead programs on a given target, if no new hits are available, previously reported leads along with new structural data can be pertinent starting points to design, prepare and assay original analogues. In conclusion, this text is an actual plea illustrating that, in many countries, academic research in medicinal chemistry should be more funded, especially in the therapeutic area neglected by the industry. At the least, such funds would provide the intensive to secure series of hopefully relevant chemical entities which appears to often lack when considering the results of academic as well as industrial screening campaigns.
Collapse
Affiliation(s)
- Yves L Janin
- Structure et Instabilité des Génomes (StrInG), Muséum National d'Histoire Naturelle, INSERM, CNRS, Alliance Sorbonne Université, 75005 Paris, France
| |
Collapse
|
17
|
Kondratov IS, Moroz YS, Grygorenko OO, Tolmachev AA. The Ukrainian Factor in Early-Stage Drug Discovery in the Context of Russian Invasion: The Case of Enamine Ltd. ACS Med Chem Lett 2022; 13:992-996. [PMID: 35859862 PMCID: PMC9290057 DOI: 10.1021/acsmedchemlett.2c00211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Ukrainian companies occupy an important niche in the global drug discovery process; however, before the Russian invasion, the role of Ukraine was not obvious. The biggest Ukrainian fine chemical supplier, Enamine Ltd, had to stop operation for more than a month, which significantly affected various early-stage drug discovery projects. The role of Enamine in drug discovery and the company's past and future in the context of the Russian invasion are described in this Viewpoint.
Collapse
Affiliation(s)
- Ivan S. Kondratov
- Enamine
Ltd (www.enamine.net), Chervonotkatska Street 78, Kyïv 02094, Ukraine
- V.P.
Kukhar Institute of Bioorganic Chemistry & Petrochemistry, National Academy of Sciences of Ukraine, Murmanska Street 1, Kyïv 02660, Ukraine
| | - Yurii S. Moroz
- Chemspace
(www.chem-space.com), Chervonotkatska Street 85, Kyïv 02094, Ukraine
- Taras
Shevchenko National University of Kyïv, Volodymyrska Street 60, Kyïv 01601, Ukraine
| | - Oleksandr O. Grygorenko
- Enamine
Ltd (www.enamine.net), Chervonotkatska Street 78, Kyïv 02094, Ukraine
- Taras
Shevchenko National University of Kyïv, Volodymyrska Street 60, Kyïv 01601, Ukraine
| | - Andrey A. Tolmachev
- Enamine
Ltd (www.enamine.net), Chervonotkatska Street 78, Kyïv 02094, Ukraine
- Taras
Shevchenko National University of Kyïv, Volodymyrska Street 60, Kyïv 01601, Ukraine
| |
Collapse
|
18
|
Knez D, Gobec S, Hrast M. Screening of Big Pharma’s Library against Various in-house Biological Targets. Molecules 2022; 27:molecules27144484. [PMID: 35889355 PMCID: PMC9320114 DOI: 10.3390/molecules27144484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/27/2022] [Accepted: 07/08/2022] [Indexed: 12/04/2022] Open
Abstract
Open innovation initiatives provide opportunities for collaboration and sharing of knowledge and experience between industry, academia, and government institutions. Through open innovation, Merck is offering a Mini Library of 80 carefully selected compounds from previous research and development projects to a broader scientific community for testing in academic drug discovery projects. These compounds are predominantly drug-like and cover a broad range of molecular targets. They could potentially interact with other enzymes, receptors, transporters, and ion channels of interest. The Mini Library was tested on seven in-house enzymes (bacterial MurA, MurC ligase, and DdlB enzyme, human MAO-A/B, human BChE, and murine AChE), and several hits were identified. A follow-up series of structural analogues provided by Merck gave a more detailed insight into the accessibility and the quality of the hit compounds. For example, sartan derivatives were moderate inhibitors of MurC, whereas bisarylureas were potent, selective, nanomolar inhibitors of hMAO-B. Importantly, 3-n-butyl-substituted indoles were identified as low nanomolar selective inhibitors of hBChE. All in all, the hit derivatives provide new starting points for the further exploration of the chemical space of high-quality enzyme inhibitors.
Collapse
|
19
|
Bajusz D, Keserű GM. Maximizing the integration of virtual and experimental screening in hit discovery. Expert Opin Drug Discov 2022; 17:629-640. [PMID: 35671403 DOI: 10.1080/17460441.2022.2085685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Experimental and virtual screening contributes to the discovery of more than 50% of clinical candidates. Considering the similar concept and goals, early-phase drug discovery would benefit from the effective integration of these approaches. AREAS COVERED After reviewing the recent trends in both experimental and virtual screening, the authors discuss different integration strategies from parallel, focused, sequential, and iterative screening. Strategic considerations are demonstrated in a number of real-life case studies. EXPERT OPINION Experimental and virtual screening are complementary approaches that should be integrated in lead discovery settings. Virtual screening can access extremely large synthetically feasible chemical space that can be effectively searched on GPU clusters or cloud architectures. Experimental screening provides reliable datasets by quantitative HTS applications, and DNA-encoded libraries (DEL) have enlarged the chemical space covered by these technologies. These developments, together with the use of artificial intelligence methods, represent new options for their efficient integration. The case studies discussed here demonstrate the benefits of complementary strategies, such as focused and iterative screening.
Collapse
Affiliation(s)
- Dávid Bajusz
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Hungary
| | - György M Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
20
|
Bozhanov VI, Bohdan DP, Borysov OV, Silin AV, Zaremba OV, Avramenko MM, Volochnyuk DM, Ryabukhin SV, Gavrilenko KS. Straightforward Synthesis of Functionalized 4,5,6,7‐Tetrahydro‐pyrazolo[1,5‐a]pyrazines – Important Building Blocks for Medicinal Chemistry. ChemistrySelect 2022. [DOI: 10.1002/slct.202104287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Vladimir I. Bozhanov
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Institute of Organic Chemistry National Academy of Sciences of Ukraine Murmanska Street 5 Kyiv 02660 Ukraine
| | | | - Oleksandr V. Borysov
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Institute of Organic Chemistry National Academy of Sciences of Ukraine Murmanska Street 5 Kyiv 02660 Ukraine
| | | | | | - Mykola M. Avramenko
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 64 Kyiv 01601 Ukraine
| | - Dmitriy M. Volochnyuk
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Institute of Organic Chemistry National Academy of Sciences of Ukraine Murmanska Street 5 Kyiv 02660 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 64 Kyiv 01601 Ukraine
| | - Sergey V. Ryabukhin
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Institute of Organic Chemistry National Academy of Sciences of Ukraine Murmanska Street 5 Kyiv 02660 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 64 Kyiv 01601 Ukraine
| | | |
Collapse
|
21
|
Li J, Ho DJ, Henault M, Yang C, Neri M, Ge R, Renner S, Mansur L, Lindeman A, Kelly B, Tumkaya T, Ke X, Soler-Llavina G, Shanker G, Russ C, Hild M, Gubser Keller C, Jenkins JL, Worringer KA, Sigoillot FD, Ihry RJ. DRUG-seq Provides Unbiased Biological Activity Readouts for Neuroscience Drug Discovery. ACS Chem Biol 2022; 17:1401-1414. [PMID: 35508359 PMCID: PMC9207813 DOI: 10.1021/acschembio.1c00920] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Unbiased transcriptomic RNA-seq data has provided deep insights into biological processes. However, its impact in drug discovery has been narrow given high costs and low throughput. Proof-of-concept studies with Digital RNA with pertUrbation of Genes (DRUG)-seq demonstrated the potential to address this gap. We extended the DRUG-seq platform by subjecting it to rigorous testing and by adding an open-source analysis pipeline. The results demonstrate high reproducibility and ability to resolve the mechanism(s) of action for a diverse set of compounds. Furthermore, we demonstrate how this data can be incorporated into a drug discovery project aiming to develop therapeutics for schizophrenia using human stem cell-derived neurons. We identified both an on-target activation signature, induced by a set of chemically distinct positive allosteric modulators of the N-methyl-d-aspartate (NMDA) receptor, and independent off-target effects. Overall, the protocol and open-source analysis pipeline are a step toward industrializing RNA-seq for high-complexity transcriptomics studies performed at a saturating scale.
Collapse
Affiliation(s)
| | | | | | | | - Marilisa Neri
- Chemical and Biological Therapeutics, Novartis Institutes for BioMedical Research, Basel, 4056, Switzerland
| | | | - Steffen Renner
- Chemical and Biological Therapeutics, Novartis Institutes for BioMedical Research, Basel, 4056, Switzerland
| | | | | | | | | | | | | | | | | | | | - Caroline Gubser Keller
- Chemical and Biological Therapeutics, Novartis Institutes for BioMedical Research, Basel, 4056, Switzerland
| | | | | | | | | |
Collapse
|
22
|
Choo MZY, Chai CLL. Promoting GAINs (Give Attention to Limitations in Assays) over PAINs Alerts: no PAINS, more GAINs. ChemMedChem 2022; 17:e202100710. [PMID: 35146933 DOI: 10.1002/cmdc.202100710] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/14/2022] [Indexed: 11/09/2022]
Abstract
Many concepts and guidelines in medicinal chemistry have been introduced to aid in successful drug discovery and development. An example is the concept of Pan-Assay Interference Compounds (PAINS) and the elimination of such nuisance compounds from high-throughput screening (HTS) libraries. PAINs, along with other guidelines in medicinal chemistry, are like double-edged swords. If used appropriately, they may be beneficial for drug discovery and development. However, rigid and blind use of such concepts can hinder productivity. In this perspective, we introduce GAINS (give attention to limitations in assays) and highlight its relevance for successful drug discovery.
Collapse
Affiliation(s)
- Malcolm Z Y Choo
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore, Singapore, 117543, Singapore
| | - Christina L L Chai
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore, Singapore, 117543, Singapore
| |
Collapse
|
23
|
Raffaele M, Kovacovicova K, Biagini T, Lo Re O, Frohlich J, Giallongo S, Nhan JD, Giannone AG, Cabibi D, Ivanov M, Tonchev AB, Mistrik M, Lacey M, Dzubak P, Gurska S, Hajduch M, Bartek J, Mazza T, Micale V, Curran SP, Vinciguerra M. Nociceptin/orphanin FQ opioid receptor (NOP) selective ligand MCOPPB links anxiolytic and senolytic effects. GeroScience 2022; 44:463-483. [PMID: 34820764 PMCID: PMC8612119 DOI: 10.1007/s11357-021-00487-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/05/2021] [Indexed: 01/18/2023] Open
Abstract
Accumulation of senescent cells may drive age-associated alterations and pathologies. Senolytics are promising therapeutics that can preferentially eliminate senescent cells. Here, we performed a high-throughput automatized screening (HTS) of the commercial LOPAC®Pfizer library on aphidicolin-induced senescent human fibroblasts, to identify novel senolytics. We discovered the nociceptin receptor FQ opioid receptor (NOP) selective ligand 1-[1-(1-methylcyclooctyl)-4-piperidinyl]-2-[(3R)-3-piperidinyl]-1H-benzimidazole (MCOPPB, a compound previously studied as potential anxiolytic) as the best scoring hit. The ability of MCOPPB to eliminate senescent cells in in vitro models was further tested in mice and in C. elegans. MCOPPB reduced the senescence cell burden in peripheral tissues but not in the central nervous system. Mice and worms exposed to MCOPPB also exhibited locomotion and lipid storage changes. Mechanistically, MCOPPB treatment activated transcriptional networks involved in the immune responses to external stressors, implicating Toll-like receptors (TLRs). Our study uncovers MCOPPB as a NOP ligand that, apart from anxiolytic effects, also shows tissue-specific senolytic effects.
Collapse
Affiliation(s)
- Marco Raffaele
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Kristina Kovacovicova
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
- Psychogenics Inc, Tarrytown, NY, USA
| | - Tommaso Biagini
- Laboratory of Bioinformatics, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
| | - Oriana Lo Re
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
- Department of Translational Stem Cell Biology, Research Institute of the Medical University of Varna, Varna, Bulgaria
| | - Jan Frohlich
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Sebastiano Giallongo
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - James D Nhan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Department of Molecular and Computational Biology, Arts, and Sciences, Dornsife College of Letters, University of Southern California, Los Angeles, CA, USA
| | - Antonino Giulio Giannone
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Pathologic Anatomy Unit-University of Palermo, Palermo, Italy
| | - Daniela Cabibi
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Pathologic Anatomy Unit-University of Palermo, Palermo, Italy
| | - Martin Ivanov
- Department of Anatomy and Cell Biology, Research Institute of the Medical University of Varna, Varna, Bulgaria
| | - Anton B Tonchev
- Department of Translational Stem Cell Biology, Research Institute of the Medical University of Varna, Varna, Bulgaria
- Department of Anatomy and Cell Biology, Research Institute of the Medical University of Varna, Varna, Bulgaria
| | - Martin Mistrik
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Matthew Lacey
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Petr Dzubak
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Sona Gurska
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Jiri Bartek
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
- Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Tommaso Mazza
- Laboratory of Bioinformatics, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
| | - Vincenzo Micale
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Sean P Curran
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Department of Molecular and Computational Biology, Arts, and Sciences, Dornsife College of Letters, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Manlio Vinciguerra
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.
- Department of Translational Stem Cell Biology, Research Institute of the Medical University of Varna, Varna, Bulgaria.
| |
Collapse
|
24
|
Mahon N, Slater K, O'Brien J, Alvarez Y, Reynolds A, Kennedy B. Discovery and Development of the Quininib Series of Ocular Drugs. J Ocul Pharmacol Ther 2022; 38:33-42. [PMID: 35089801 DOI: 10.1089/jop.2021.0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The quininib series is a novel collection of small-molecule drugs with antiangiogenic, antivascular permeability, anti-inflammatory, and antiproliferative activity. Quininib was initially identified as a drug hit during a random chemical library screen for determinants of developmental ocular angiogenesis in zebrafish. To enhance drug efficacy, novel quininib analogs were designed by applying medicinal chemistry approaches. The resulting quininib drug series has efficacy in in vitro and ex vivo models of angiogenesis utilizing human cell lines and tissues. In vivo, quininib drugs reduce pathological angiogenesis and retinal vascular permeability in rodent models. Quininib acts as a cysteinyl leukotriene (CysLT) receptor antagonist, revealing new roles of these G-protein-coupled receptors in developmental angiogenesis of the eye and unexpectedly in uveal melanoma (UM). The quininib series highlighted the potential of CysLT receptors as therapeutic targets for retinal vasculopathies (e.g., neovascular age-related macular degeneration, diabetic retinopathy, and diabetic macular edema) and ocular cancers (e.g., UM).
Collapse
Affiliation(s)
- Niamh Mahon
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland.,UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Kayleigh Slater
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland.,UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Justine O'Brien
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland.,UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Yolanda Alvarez
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland.,UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Alison Reynolds
- UCD Conway Institute, University College Dublin, Dublin, Ireland.,UCD School of Veterinary Medicine, Veterinary Sciences Center, University College Dublin, Dublin, Ireland
| | - Breandán Kennedy
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland.,UCD Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
25
|
Discovery of compounds with viscosity-reducing effects on biopharmaceutical formulations with monoclonal antibodies. Comput Struct Biotechnol J 2022; 20:5420-5429. [PMID: 36212536 PMCID: PMC9529560 DOI: 10.1016/j.csbj.2022.09.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 11/24/2022] Open
Abstract
Computational screening yielded 44 new viscosity-reducing agents on two model mAbs. Dual excipients for viscosity reduction and solution buffering were discovered. Compounds with three or more charges reduce the viscosity of model mAb formulations. Filtering based on physicochemical properties can be applied to other mAb formulations.
For the development of concentrated monoclonal antibody formulations for subcutaneous administration, the main challenge is the high viscosity of the solutions. To compensate for this, viscosity reducing agents are commonly used as excipients. Here, we applied two computational chemistry approaches to discover new viscosity-reducing agents: fingerprint similarity searching, and physicochemical property filtering. In total, 94 compounds were selected and experimentally evaluated on two model monoclonal antibodies, which led to the discovery of 44 new viscosity-reducing agents. Analysis of the results showed that using a simple filter that selects only compounds with three or more charge groups is a good ‘rule of thumb’ for selecting potential viscosity-reducing agents for two model monoclonal antibody formulations.
Collapse
|
26
|
Raffaele M, Vinciguerra M. The costs and benefits of senotherapeutics for human health. THE LANCET. HEALTHY LONGEVITY 2022; 3:e67-e77. [PMID: 36098323 DOI: 10.1016/s2666-7568(21)00300-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/09/2021] [Accepted: 11/21/2021] [Indexed: 12/24/2022] Open
Abstract
Cellular senescence is a major contributor to age-related diseases in humans; however, it also has a beneficial role in physiological and pathological processes, including wound healing, host immunity, and tumour suppression. Reducing the burden of cell senescence in animal models of cardiometabolic disorders, inflammatory conditions, neurodegenerative diseases, and cancer using pharmaceutical approaches that selectively target senescent cells (ie, senolytics) or that suppress senescence-associated secretory phenotype (ie, senomorphics) holds great promise for the management of chronic age-associated conditions. Although studies have provided evidence that senolytics or senomorphics are effective at decreasing the number of senescent cells in humans, the short-term and long-term side-effects of these therapies are largely unknown. In this Review, we systematically discuss the senolytics and senomorphics that have been investigated in clinical trials or have been used off-label, presenting their various adverse effects. Despite the potential of senotherapeutics to transform anti-ageing medicine, a cautionary approach regarding unwanted dose-dependent side-effects should be adopted.
Collapse
Affiliation(s)
- Marco Raffaele
- International Clinical Research Center, St Anne's University Hospital, Brno, Czech Republic
| | - Manlio Vinciguerra
- International Clinical Research Center, St Anne's University Hospital, Brno, Czech Republic; Division of Medicine, University College London, London, UK; Research Institute of the Medical University of Varna, Varna, Bulgaria.
| |
Collapse
|
27
|
Zabolotna Y, Volochnyuk DM, Ryabukhin SV, Horvath D, Gavrilenko KS, Marcou G, Moroz YS, Oksiuta O, Varnek A. A Close-up Look at the Chemical Space of Commercially Available Building Blocks for Medicinal Chemistry. J Chem Inf Model 2021; 62:2171-2185. [PMID: 34928600 DOI: 10.1021/acs.jcim.1c00811] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The ability to efficiently synthesize desired compounds can be a limiting factor for chemical space exploration in drug discovery. This ability is conditioned not only by the existence of well-studied synthetic protocols but also by the availability of corresponding reagents, so-called building blocks (BBs). In this work, we present a detailed analysis of the chemical space of 400 000 purchasable BBs. The chemical space was defined by corresponding synthons─fragments contributed to the final molecules upon reaction. They allow an analysis of BB physicochemical properties and diversity, unbiased by the leaving and protective groups in actual reagents. The main classes of BBs were analyzed in terms of their availability, rule-of-two-defined quality, and diversity. Available BBs were eventually compared to a reference set of biologically relevant synthons derived from ChEMBL fragmentation, in order to illustrate how well they cover the actual medicinal chemistry needs. This was performed on a newly constructed universal generative topographic map of synthon chemical space that enables visualization of both libraries and analysis of their overlapped and library-specific regions.
Collapse
Affiliation(s)
- Yuliana Zabolotna
- University of Strasbourg, Laboratoire de Chemoinformatique, 4, rue B. Pascal, Strasbourg 67081, France
| | - Dmitriy M Volochnyuk
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, Kyiv 02660, Ukraine.,Enamine Ltd., 78 Chervonotkatska str., 02660 Kiev, Ukraine
| | - Sergey V Ryabukhin
- The Institute of High Technologies, Kyiv National Taras Shevchenko University, 64 Volodymyrska Street, Kyiv 01601, Ukraine.,Enamine Ltd., 78 Chervonotkatska str., 02660 Kiev, Ukraine
| | - Dragos Horvath
- University of Strasbourg, Laboratoire de Chemoinformatique, 4, rue B. Pascal, Strasbourg 67081, France
| | - Konstantin S Gavrilenko
- Research-And-Education ChemBioCenter, National Taras Shevchenko University of Kyiv, Chervonotkatska str., 61, 03022 Kiev, Ukraine.,Enamine Ltd., 78 Chervonotkatska str., 02660 Kiev, Ukraine
| | - Gilles Marcou
- University of Strasbourg, Laboratoire de Chemoinformatique, 4, rue B. Pascal, Strasbourg 67081, France
| | - Yurii S Moroz
- Research-And-Education ChemBioCenter, National Taras Shevchenko University of Kyiv, Chervonotkatska str., 61, 03022 Kiev, Ukraine.,Chemspace, Chervonotkatska Street 78, 02094 Kyiv, Ukraine
| | - Oleksandr Oksiuta
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, Kyiv 02660, Ukraine.,Chemspace, Chervonotkatska Street 78, 02094 Kyiv, Ukraine
| | - Alexandre Varnek
- University of Strasbourg, Laboratoire de Chemoinformatique, 4, rue B. Pascal, Strasbourg 67081, France.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, 001-0021 Sapporo, Japan
| |
Collapse
|
28
|
Virtual Screening in Search for a Chemical Probe for Angiotensin-Converting Enzyme 2 (ACE2). Molecules 2021; 26:molecules26247584. [PMID: 34946667 PMCID: PMC8707431 DOI: 10.3390/molecules26247584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 01/09/2023] Open
Abstract
We elaborate new models for ACE and ACE2 receptors with an excellent prediction power compared to previous models. We propose promising workflows for working with huge compound collections, thereby enabling us to discover optimized protocols for virtual screening management. The efficacy of elaborated roadmaps is demonstrated through the cost-effective molecular docking of 1.4 billion compounds. Savings of up to 10-fold in CPU time are demonstrated. These developments allowed us to evaluate ACE2/ACE selectivity in silico, which is a crucial checkpoint for developing chemical probes for ACE2.
Collapse
|
29
|
Grygorenko OO. Enamine Ltd.: The Science and Business of Organic Chemistry and Beyond. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Oleksandr O. Grygorenko
- Enamine Ltd. Chervonotkatska 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| |
Collapse
|
30
|
Phanchana M, Harnvoravongchai P, Wongkuna S, Phetruen T, Phothichaisri W, Panturat S, Pipatthana M, Charoensutthivarakul S, Chankhamhaengdecha S, Janvilisri T. Frontiers in antibiotic alternatives for Clostridioides difficile infection. World J Gastroenterol 2021; 27:7210-7232. [PMID: 34876784 PMCID: PMC8611198 DOI: 10.3748/wjg.v27.i42.7210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/12/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023] Open
Abstract
Clostridioides difficile (C. difficile) is a gram-positive, anaerobic spore-forming bacterium and a major cause of antibiotic-associated diarrhea. Humans are naturally resistant to C. difficile infection (CDI) owing to the protection provided by healthy gut microbiota. When the gut microbiota is disturbed, C. difficile can colonize, produce toxins, and manifest clinical symptoms, ranging from asymptomatic diarrhea and colitis to death. Despite the steady-if not rising-prevalence of CDI, it will certainly become more problematic in a world of antibiotic overuse and the post-antibiotic era. C. difficile is naturally resistant to most of the currently used antibiotics as it uses multiple resistance mechanisms. Therefore, current CDI treatment regimens are extremely limited to only a few antibiotics, which include vancomycin, fidaxomicin, and metronidazole. Therefore, one of the main challenges experienced by the scientific community is the development of alternative approaches to control and treat CDI. In this Frontier article, we collectively summarize recent advances in alternative treatment approaches for CDI. Over the past few years, several studies have reported on natural product-derived compounds, drug repurposing, high-throughput library screening, phage therapy, and fecal microbiota transplantation. We also include an update on vaccine development, pre- and pro-biotics for CDI, and toxin antidote approaches. These measures tackle CDI at every stage of disease pathology via multiple mechanisms. We also discuss the gaps and concerns in these developments. The next epidemic of CDI is not a matter of if but a matter of when. Therefore, being well-equipped with a collection of alternative therapeutics is necessary and should be prioritized.
Collapse
Affiliation(s)
- Matthew Phanchana
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | | | - Supapit Wongkuna
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Tanaporn Phetruen
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Wichuda Phothichaisri
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Supakan Panturat
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Methinee Pipatthana
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Sitthivut Charoensutthivarakul
- School of Bioinnovation and Bio-based Product Intelligence, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | | | - Tavan Janvilisri
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
31
|
Green AI, Burslem GM. Photochemical synthesis of an epigenetic focused tetrahydroquinoline library. RSC Med Chem 2021; 12:1780-1786. [PMID: 34778779 DOI: 10.1039/d1md00193k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/24/2021] [Indexed: 12/21/2022] Open
Abstract
Discovery of epigenetic chemical probes is an important area of research with potential to deliver drugs for a multitude of diseases. However, commercially available libraries frequently used in drug discovery campaigns contain molecules that are focused on a narrow range of chemical space primarily driven by ease of synthesis and previously targeted enzyme classes (e.g., kinases) resulting in low hit rates for epigenetic targets. Here we describe the design and synthesis of a compound collection that augments current screening collections by the inclusion of privileged isosteres for epigenetic targets.
Collapse
Affiliation(s)
- Adam I Green
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania PA 19104 USA
| | - George M Burslem
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania PA 19104 USA .,Department of Cancer Biology and Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania PA 19104 USA
| |
Collapse
|
32
|
High throughput screening identifies inhibitors for parvovirus B19 infection of human erythroid progenitor cells. J Virol 2021; 96:e0132621. [PMID: 34669461 DOI: 10.1128/jvi.01326-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Parvovirus B19 (B19V) infection can cause hematological disorders and fetal hydrops during pregnancy. Currently, no antivirals or vaccines are available for the treatment or the prevention of B19V infection. To identify novel small-molecule antivirals against B19V replication, we developed a high throughput screening assay, which is based on an in vitro nicking assay using recombinant N-terminal 1-176 amino acids of the viral large nonstructural protein (NS1N) and a fluorescently labeled DNA probe (OriQ) that spans the nicking site of the viral DNA replication origin. We collectively screened 17,040 compounds and identified 2,178 (12.78%) hits that possess >10% inhibition of the NS1 nicking activity, among which 84 hits were confirmed to inhibit nicking in a dose-dependent manner. Using ex vivo expanded primary human erythroid progenitor cells (EPCs) infected by B19V, we validated 24 compounds demonstrated >50% in vivo inhibition of B19V infection at 10 μM, which can be categorized into 7 structure scaffolds. Based on the therapeutic index [half maximal cytotoxic concentration (CC50)/half maximal effective concentration (EC50)] in EPCs, the top 4 compounds were chosen to examine their inhibitions of B19V infection in EPCs at two times of the 90% maximal effective concentration (EC90). A purine derivative (P7), demonstrated an antiviral effect (EC50=1.46 μM) without prominent cytotoxicity (CC50=71.8 μM) in EPCs, exhibited 92% inhibition of B19V infection in EPCs at 3.32 μM, which can be used as the lead compound in future studies for the treatment of B19V infection caused hematological disorders. Importance B19V encodes a large non-structural protein NS1. Its N-terminal domain (NS1N) consisting of 1-176 amino acids binds to viral DNA and serves as an endonuclease to nick the viral DNA replication origins, which is a pivotal step in rolling hairpin-dependent B19V DNA replication. For high throughput screening (HTS) of anti-B19V antivirals, we miniaturized a fluorescence-based in vitro nicking assay, which employs a fluorophore-labeled probe spanning the trs and the NS1N protein, into a 384-well plate format. The HTS assay showed a high reliability and capability in screening 17,040 compounds. Based on the therapeutic index [half maximal cytotoxic concentration (CC50)/half maximal effective concentration (EC50)] in EPCs, a purine derivative demonstrated an antiviral effect of 92% inhibition of B19V infection in EPCs at 3.32 μM (two times EC90). Our study demonstrated a robust HTS assay for screening antivirals against B19V infection.
Collapse
|
33
|
Abstract
Click chemistry, proposed nearly 20 years ago, promised access to novel chemical space by empowering combinatorial library synthesis with a "few good reactions". These click reactions fulfilled key criteria (broad scope, quantitative yield, abundant starting material, mild reaction conditions, and high chemoselectivity), keeping the focus on molecules that would be easy to make, yet structurally diverse. This philosophy bears a striking resemblance to DNA-encoded library (DEL) technology, the now-dominant combinatorial chemistry paradigm. This review highlights the similarities between click and DEL reaction design and deployment in combinatorial library settings, providing a framework for the design of new DEL synthesis technologies to enable next-generation drug discovery.
Collapse
Affiliation(s)
- Patrick R Fitzgerald
- Skaggs Doctoral Program in the Chemical and Biological Sciences, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Brian M Paegel
- Departments of Pharmaceutical Sciences, Chemistry, & Biomedical Engineering, University of California, Irvine, 101 Theory Suite 100, Irvine, California 92617, United States
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
34
|
Sotnik SO, Subota AI, Kliuchynskyi AY, Yehorov DV, Lytvynenko AS, Rozhenko AB, Kolotilov SV, Ryabukhin SV, Volochnyuk DM. Cu-Catalyzed Pyridine Synthesis via Oxidative Annulation of Cyclic Ketones with Propargylamine. J Org Chem 2021; 86:7315-7325. [PMID: 33977713 DOI: 10.1021/acs.joc.0c03038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A Cu-catalyzed, easily scalable one-pot synthesis of fused pyridines by the reaction of cyclic ketones with propargylamine is described. The protocol was optimized based on the results of more than 30 experiments. The highest product yields were achieved in i-PrOH as a solvent in the presence of 5.0 mol % CuCl2 in air. In contrast to the well-known Au-catalyzed protocol, our procedure is "laboratory friendly", cost-effective, and suitable for preparing dozens of grams of fused pyridine-based building blocks and does not require a high-pressure autoclave technique. Decreasing the catalyst amount in the reaction to 1.25 mol % CuCl2 provided a yield comparable to that achieved with 5 mol % catalyst, though a longer reaction time was required. A plausible reaction mechanism was proposed. The scope and limitation of the reaction were studied using 24 different cyclic ketones as starting materials. The fused pyridine yield decreased among cyclic ketones in the following order: six-membered ≫ eight-membered > five-membered ∼ seven-membered. The elaborated reaction conditions demonstrated tolerance to a number of protective functional groups in ketone such as ester, tert-butoxycarbonyl (Boc)-protected amine, and acetal moieties.
Collapse
Affiliation(s)
| | - Andrii I Subota
- Enamine Ltd., 78 Chervonotkatska Street, Kyiv 02094, Ukraine.,Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Murmanska Street, Kyiv 02094, Ukraine
| | - Anton Y Kliuchynskyi
- National Taras Shevchenko University of Kyiv, 60 Volodymyrska Street, Kyiv 01033, Ukraine
| | - Dmytro V Yehorov
- Enamine Ltd., 78 Chervonotkatska Street, Kyiv 02094, Ukraine.,Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Murmanska Street, Kyiv 02094, Ukraine
| | - Anton S Lytvynenko
- L.V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, 31 Nauki Avenue, Kyiv 03028, Ukraine
| | - Alexander B Rozhenko
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Murmanska Street, Kyiv 02094, Ukraine.,National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", 37 Peremogy Avenue, Kyiv 03056, Ukraine
| | - Sergey V Kolotilov
- L.V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, 31 Nauki Avenue, Kyiv 03028, Ukraine
| | - Sergey V Ryabukhin
- Enamine Ltd., 78 Chervonotkatska Street, Kyiv 02094, Ukraine.,National Taras Shevchenko University of Kyiv, 60 Volodymyrska Street, Kyiv 01033, Ukraine
| | - Dmitriy M Volochnyuk
- Enamine Ltd., 78 Chervonotkatska Street, Kyiv 02094, Ukraine.,Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Murmanska Street, Kyiv 02094, Ukraine.,National Taras Shevchenko University of Kyiv, 60 Volodymyrska Street, Kyiv 01033, Ukraine
| |
Collapse
|
35
|
Hughes RE, Elliott RJR, Dawson JC, Carragher NO. High-content phenotypic and pathway profiling to advance drug discovery in diseases of unmet need. Cell Chem Biol 2021; 28:338-355. [PMID: 33740435 DOI: 10.1016/j.chembiol.2021.02.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/10/2020] [Accepted: 02/18/2021] [Indexed: 02/07/2023]
Abstract
Conventional thinking in modern drug discovery postulates that the design of highly selective molecules which act on a single disease-associated target will yield safer and more effective drugs. However, high clinical attrition rates and the lack of progress in developing new effective treatments for many important diseases of unmet therapeutic need challenge this hypothesis. This assumption also impinges upon the efficiency of target agnostic phenotypic drug discovery strategies, where early target deconvolution is seen as a critical step to progress phenotypic hits. In this review we provide an overview of how emerging phenotypic and pathway-profiling technologies integrate to deconvolute the mechanism-of-action of phenotypic hits. We propose that such in-depth mechanistic profiling may support more efficient phenotypic drug discovery strategies that are designed to more appropriately address complex heterogeneous diseases of unmet need.
Collapse
Affiliation(s)
- Rebecca E Hughes
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Richard J R Elliott
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - John C Dawson
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Neil O Carragher
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, UK.
| |
Collapse
|
36
|
Zabolotna Y, Lin A, Horvath D, Marcou G, Volochnyuk DM, Varnek A. Chemography: Searching for Hidden Treasures. J Chem Inf Model 2020; 61:179-188. [PMID: 33334102 DOI: 10.1021/acs.jcim.0c00936] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The days when medicinal chemistry was limited to a few series of compounds of therapeutic interest are long gone. Nowadays, no human may succeed to acquire a complete overview of more than a billion existing or feasible compounds within which the potential "blockbuster drugs" are well hidden and yet only a few mouse clicks away. To reach these "hidden treasures", we adapted the generative topographic mapping method to enable efficient navigation through the chemical space, from a global overview to a structural pattern detection, covering, for the first time, the complete ZINC library of purchasable compounds, relative to 1.6 million biologically relevant ChEMBL molecules. About 40 000 hierarchical maps of the chemical space were constructed. Structural motifs inherent to only one library were identified. Roughly 20 000 off-market ChEMBL compound families represent incentives to enrich commercial catalogs. Alternatively, 125 000 ZINC-specific compound classes, absent in structure-activity bases, are novel paths to explore in medicinal chemistry. The complete list of these chemotypes can be downloaded using the link https://forms.gle/B6bUJj82t9EfmttV6.
Collapse
Affiliation(s)
- Yuliana Zabolotna
- University of Strasbourg, Laboratoire de Chemoinformatique, 4, rue B. Pascal, Strasbourg 67081 France
| | - Arkadii Lin
- University of Strasbourg, Laboratoire de Chemoinformatique, 4, rue B. Pascal, Strasbourg 67081 France
| | - Dragos Horvath
- University of Strasbourg, Laboratoire de Chemoinformatique, 4, rue B. Pascal, Strasbourg 67081 France
| | - Gilles Marcou
- University of Strasbourg, Laboratoire de Chemoinformatique, 4, rue B. Pascal, Strasbourg 67081 France
| | - Dmitriy M Volochnyuk
- Institute of Organic Chemistry National Academy of Sciences of Ukraine, Murmanska Street 5, Kyiv 02660, Ukraine.,Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine
| | - Alexandre Varnek
- University of Strasbourg, Laboratoire de Chemoinformatique, 4, rue B. Pascal, Strasbourg 67081 France
| |
Collapse
|
37
|
Lin A, Baskin II, Marcou G, Horvath D, Beck B, Varnek A. Parallel Generative Topographic Mapping: An Efficient Approach for Big Data Handling. Mol Inform 2020; 39:e2000009. [PMID: 32347666 PMCID: PMC7757192 DOI: 10.1002/minf.202000009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/10/2020] [Indexed: 11/12/2022]
Abstract
Generative Topographic Mapping (GTM) can be efficiently used to visualize, analyze and model large chemical data. The GTM manifold needs to span the chemical space deemed relevant for a given problem. Therefore, the Frame set (FS) of compounds used for the manifold construction must well cover a given chemical space. Intuitively, the FS size must raise with the size and diversity of the target library. At the same time, the GTM training can be very slow or even becomes technically impossible at FS sizes of the order of 105 compounds - which is a very small number compared to today's commercially accessible compounds, and, especially, to the theoretically feasible molecules. In order to solve this problem, we propose a Parallel GTM algorithm based on the merging of "intermediate" manifolds constructed in parallel for different subsets of molecules. An ensemble of these subsets forms a FS for the "final" manifold. In order to assess the efficiency of the new algorithm, 80 GTMs were built on the FSs of different sizes ranging from 10 to 1.8 M compounds selected from the ChEMBL database. Each GTM was challenged to build classification models for up to 712 biological activities (depending on the FS size). With the novel parallel GTM procedure, we could thus cover the entire spectrum of possible FS sizes, whereas previous studies were forced to rely on the working hypothesis that FS sizes of few thousands of compounds are sufficient to describe the ChEMBL chemical space. In fact, this study formally proves this to be true: a FS containing only 5000 randomly picked compounds is sufficient to represent the entire ChEMBL collection (1.8 M molecules), in the sense that a further increase of FS compound numbers has no benefice impact on the predictive propensity of the above-mentioned 712 activity classification models. Parallel GTM may, however, be required to generate maps based on very large FS, that might improve chemical space cartography of big commercial and virtual libraries, approaching billions of compounds.
Collapse
Affiliation(s)
- Arkadii Lin
- University of StrasbourgLaboratory of Chemoinformatics, Faculty of Chemistry4, Blaise Pascal str.67081StrasbourgFrance
| | - Igor I. Baskin
- Faculty of PhysicsLomonosov Moscow State University1/2, Leninskie Gory str.119991MoscowRussia
| | - Gilles Marcou
- University of StrasbourgLaboratory of Chemoinformatics, Faculty of Chemistry4, Blaise Pascal str.67081StrasbourgFrance
| | - Dragos Horvath
- University of StrasbourgLaboratory of Chemoinformatics, Faculty of Chemistry4, Blaise Pascal str.67081StrasbourgFrance
| | - Bernd Beck
- Department of Medicinal ChemistryBoehringer Ingelheim Pharma GmbH & Co. KG65, Birkendorfer str.88397Biberach an der RissGermany
| | - Alexandre Varnek
- University of StrasbourgLaboratory of Chemoinformatics, Faculty of Chemistry4, Blaise Pascal str.67081StrasbourgFrance
| |
Collapse
|
38
|
Goodwin S, Shahtahmassebi G, Hanley QS. Statistical models for identifying frequent hitters in high throughput screening. Sci Rep 2020; 10:17200. [PMID: 33057035 PMCID: PMC7560657 DOI: 10.1038/s41598-020-74139-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022] Open
Abstract
High throughput screening (HTS) interrogates compound libraries to find those that are “active” in an assay. To better understand compound behavior in HTS, we assessed an existing binomial survivor function (BSF) model of “frequent hitters” using 872 publicly available HTS data sets. We found large numbers of “infrequent hitters” using this model leading us to reject the BSF for identifying “frequent hitters.” As alternatives, we investigated generalized logistic, gamma, and negative binomial distributions as models for compound behavior. The gamma model reduced the proportion of both frequent and infrequent hitters relative to the BSF. Within this data set, conclusions about individual compound behavior were limited by the number of times individual compounds were tested (1–1613 times) and disproportionate testing of some compounds. Specifically, most tests (78%) were on a 309,847-compound subset (17.6% of compounds) each tested ≥ 300 times. We concluded that the disproportionate retesting of some compounds represents compound repurposing at scale rather than drug discovery. The approach to drug discovery represented by these 872 data sets characterizes the assays well by challenging them with many compounds while each compound is characterized poorly with a single assay. Aggregating the testing information from each compound across the multiple screens yielded a continuum with no clear boundary between normal and frequent hitting compounds.
Collapse
Affiliation(s)
- Samuel Goodwin
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK
| | - Golnaz Shahtahmassebi
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK
| | - Quentin S Hanley
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK.
| |
Collapse
|
39
|
Ishigami-Yuasa M, Kagechika H. Chemical Screening of Nuclear Receptor Modulators. Int J Mol Sci 2020; 21:E5512. [PMID: 32752136 PMCID: PMC7432305 DOI: 10.3390/ijms21155512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 12/15/2022] Open
Abstract
Nuclear receptors are ligand-inducible transcriptional factors that control multiple biological phenomena, including proliferation, differentiation, reproduction, metabolism, and the maintenance of homeostasis. Members of the nuclear receptor superfamily have marked structural and functional similarities, and their domain functionalities and regulatory mechanisms have been well studied. Various modulators of nuclear receptors, including agonists and antagonists, have been developed as tools for elucidating nuclear receptor functions and also as drug candidates or lead compounds. Many assay systems are currently available to evaluate the modulation of nuclear receptor functions, and are useful as screening tools in the discovery and development of new modulators. In this review, we cover the chemical screening methods for nuclear receptor modulators, focusing on assay methods and chemical libraries for screening. We include some recent examples of the discovery of nuclear receptor modulators.
Collapse
Affiliation(s)
| | - Hiroyuki Kagechika
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan;
| |
Collapse
|
40
|
Tereshchenko OD, Perebiynis MY, Knysh IV, Vasylets OV, Sorochenko AA, Slobodyanyuk EY, Rusanov EB, Borysov OV, Kolotilov SV, Ryabukhin SV, Volochnyuk DM. Electrochemical Scaled‐up Synthesis of Cyclic Enecarbamates as Starting Materials for Medicinal Chemistry Relevant Building Bocks. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000450] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | | | | | | | | | - Eugeniy Y. Slobodyanyuk
- Enamine Ltd 78 Chervonotkatska str. Kyiv Ukraine
- Institute of Organic ChemistryNational Academy of Sciences of Ukraine 5 Murmanska str. Kyiv Ukraine
| | - Eduard B. Rusanov
- Institute of Organic ChemistryNational Academy of Sciences of Ukraine 5 Murmanska str. Kyiv Ukraine
| | - Oleksandr V. Borysov
- Enamine Ltd 78 Chervonotkatska str. Kyiv Ukraine
- Institute of Organic ChemistryNational Academy of Sciences of Ukraine 5 Murmanska str. Kyiv Ukraine
| | - Sergey V. Kolotilov
- L. V. Pisarzhevskii Institute of Physical ChemistryNational Academy of Sciences of Ukraine 31 Nauki ave. Kyiv Ukraine
| | - Sergey V. Ryabukhin
- Enamine Ltd 78 Chervonotkatska str. Kyiv Ukraine
- Taras Shevchenko National University of Kyiv 60 Volodymyrska str. Kyiv Ukraine
| | - Dmitriy M. Volochnyuk
- Enamine Ltd 78 Chervonotkatska str. Kyiv Ukraine
- Institute of Organic ChemistryNational Academy of Sciences of Ukraine 5 Murmanska str. Kyiv Ukraine
- Taras Shevchenko National University of Kyiv 60 Volodymyrska str. Kyiv Ukraine
| |
Collapse
|
41
|
Horvath D, Marcou G, Varnek A. Generative topographic mapping in drug design. DRUG DISCOVERY TODAY. TECHNOLOGIES 2019; 32-33:99-107. [PMID: 33386101 DOI: 10.1016/j.ddtec.2020.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/10/2020] [Accepted: 06/18/2020] [Indexed: 06/12/2023]
Abstract
This is a review article of Generative Topographic Mapping (GTM) - a non-linear dimensionality reduction technique producing generative 2D maps of high-dimensional vector spaces - and its specific applications in Drug Design (chemical space cartography, compound library design and analysis, virtual screening, pharmacological profiling, de novo drug design, conformational space & docking interaction cartography, etc.) Written by chemoinformaticians for potential users among medicinal chemists and biologists, the article purposely avoids all underlying mathematics. First, the GTM concept is intuitively explained, based on the strong analogies with the rather popular Self-Organizing Maps (SOMs), which are well established library analysis tools. GTM is basically a fuzzy-logics-based generalization of SOMs. The second part of the review, some of published GTM applications in drug design are briefly revisited.
Collapse
Affiliation(s)
- Dragos Horvath
- Laboratory of Chemoinformatics, UMR 7140 University of Strasbourg/CNRS, 4 rue Blaise Pascal, 67000 Strasbourg, France.
| | - Gilles Marcou
- Laboratory of Chemoinformatics, UMR 7140 University of Strasbourg/CNRS, 4 rue Blaise Pascal, 67000 Strasbourg, France
| | - Alexandre Varnek
- Laboratory of Chemoinformatics, UMR 7140 University of Strasbourg/CNRS, 4 rue Blaise Pascal, 67000 Strasbourg, France.
| |
Collapse
|
42
|
Grygorenko OO, Volochnyuk DM, Ryabukhin SV, Judd DB. The Symbiotic Relationship Between Drug Discovery and Organic Chemistry. Chemistry 2019; 26:1196-1237. [PMID: 31429510 DOI: 10.1002/chem.201903232] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/19/2019] [Indexed: 12/20/2022]
Abstract
All pharmaceutical products contain organic molecules; the source may be a natural product or a fully synthetic molecule, or a combination of both. Thus, it follows that organic chemistry underpins both existing and upcoming pharmaceutical products. The reverse relationship has also affected organic synthesis, changing its landscape towards increasingly complex targets. This Review article sets out to give a concise appraisal of this symbiotic relationship between organic chemistry and drug discovery, along with a discussion of the design concepts and highlighting key milestones along the journey. In particular, criteria for a high-quality compound library design enabling efficient virtual navigation of chemical space, as well as rise and fall of concepts for its synthetic exploration (such as combinatorial chemistry; diversity-, biology-, lead-, or fragment-oriented syntheses; and DNA-encoded libraries) are critically surveyed.
Collapse
Affiliation(s)
- Oleksandr O Grygorenko
- Enamine Ltd., Chervonotkatska Street 78, Kiev, 02094, Ukraine.,Taras Shevchenko National University of Kiev, Volodymyrska Street 60, Kiev, 01601, Ukraine
| | - Dmitriy M Volochnyuk
- Enamine Ltd., Chervonotkatska Street 78, Kiev, 02094, Ukraine.,Taras Shevchenko National University of Kiev, Volodymyrska Street 60, Kiev, 01601, Ukraine.,Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, Kiev, 02660, Ukraine
| | - Sergey V Ryabukhin
- Enamine Ltd., Chervonotkatska Street 78, Kiev, 02094, Ukraine.,Taras Shevchenko National University of Kiev, Volodymyrska Street 60, Kiev, 01601, Ukraine
| | - Duncan B Judd
- Awridian Ltd., Stevenage Bioscience Catalyst, Gunnelswood Road, Stevenage, Herts, SG1 2FX, UK
| |
Collapse
|
43
|
Medina-Franco JL, Naveja JJ, López-López E. Reaching for the bright StARs in chemical space. Drug Discov Today 2019; 24:2162-2169. [PMID: 31557448 DOI: 10.1016/j.drudis.2019.09.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/10/2019] [Accepted: 09/17/2019] [Indexed: 02/07/2023]
Abstract
Visualization of activity data in chemical space is common in drug discovery. Navigating the space in a systematic manner is not trivial, given its size and huge coverage. To this end, methods for data visualization have been developed charting biological activity into chemical space. Herein, we review the progress in different visualization approaches to explore the chemical space aiming at reaching insightful structure-activity relationships (SARs) in the chemical space. We discuss recent methods including consensus diversity plots, ChemMaps, and constellation plots. Several of the methods we review can be extended to analyze other properties of interest in medicinal chemistry, such as structure-toxicity relationships, and can be adapted to postprocess results of virtual screening (VS) of large compound libraries.
Collapse
Affiliation(s)
- José L Medina-Franco
- Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Mexico City 04510, Mexico.
| | - J Jesús Naveja
- Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Mexico City 04510, Mexico; PECEM, School of Medicine, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Edgar López-López
- Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Mexico City 04510, Mexico
| |
Collapse
|
44
|
Dantas RF, Evangelista TCS, Neves BJ, Senger MR, Andrade CH, Ferreira SB, Silva-Junior FP. Dealing with frequent hitters in drug discovery: a multidisciplinary view on the issue of filtering compounds on biological screenings. Expert Opin Drug Discov 2019; 14:1269-1282. [DOI: 10.1080/17460441.2019.1654453] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Rafael Ferreira Dantas
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Tereza Cristina Santos Evangelista
- LaSOPB – Laboratório de Síntese Orgânica e Prospecção Biológica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruno Junior Neves
- LabChem – Laboratory of Cheminformatics, Centro Universitário de Anápolis, UniEVANGÉLICA, Anápolis, Brazil
| | - Mario Roberto Senger
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Carolina Horta Andrade
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, Brazil
| | - Sabrina Baptista Ferreira
- LaSOPB – Laboratório de Síntese Orgânica e Prospecção Biológica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Floriano Paes Silva-Junior
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
45
|
Lin A, Beck B, Horvath D, Marcou G, Varnek A. Diversifying chemical libraries with generative topographic mapping. J Comput Aided Mol Des 2019; 34:805-815. [DOI: 10.1007/s10822-019-00215-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/15/2019] [Indexed: 01/28/2023]
|