1
|
Sun CC, Li YJ, Zhu DT, Chen ZL, Xiao JL, Chen XT, Zheng L, Peng XY, Tang CF. Establishment of a dexamethasone-induced zebrafish skeletal muscle atrophy model and exploration of its mechanisms. Exp Gerontol 2024; 198:112615. [PMID: 39442897 DOI: 10.1016/j.exger.2024.112615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Skeletal muscle atrophy is one of the main side effects of high-dose or continuous use of glucocorticoids (such as dexamethasone). However, there are limited studies on dexamethasone-induced skeletal muscle atrophy in zebrafish and even fewer explorations of the underlying molecular mechanisms. This study aimed to construct a model of dexamethasone-induced skeletal muscle atrophy in zebrafish and to investigate the molecular mechanisms. METHODS Zebrafish soaked in 0.01 % dexamethasone solution for 10 days. Loli Track (Denmark) and Loligo Swimming Respirometer were used to observe the effect of dexamethasone on swimming ability. The effects of dexamethasone on zebrafish skeletal muscle were observed by Transmission electron microscopy, H&E, and wheat germ agglutinin techniques. Enriched genes and signaling pathways were analyzed using Transcriptome sequencing. Further, the levels of mitochondrial and endoplasmic reticulum-related proteins were examined to investigate possible mechanisms. RESULTS 0.01 % dexamethasone reduced zebrafish skeletal muscle mass (p < 0.05), myofibre size and cross-sectional area (p < 0.001), and increased protein degradation (ubiquitination and autophagy) (p < 0.05). In addition, 0.01 % dexamethasone reduced the swimming ability of zebrafish, as evidenced by the reluctance to move, fewer movement trajectories, decreased total distance traveled (p < 0.001), average velocity of movement (p < 0.001), oxygen consumption (p < 0.001), critical swimming speed (p < 0.01) and increased exhaustive swimming time (p < 0.001). Further, 0.01 % dexamethasone-induced mitochondrial dysfunction (decreased mitochondrial biogenesis, disturbs kinetic homeostasis, increased autophagy) and endoplasmic reticulum stress. CONCLUSIONS 0.01 % dexamethasone induces skeletal muscle atrophy and impairs the swimming ability of zebrafish through mitochondrial dysfunction and endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Chen-Chen Sun
- Institute of Physical Education, Hunan First Normal University, Changsha, Hunan 410205, China; Key Laboratory of Physical Fitness and Exercise Rehabilitation, State Key Laboratory of Developmental Biology of Freshwater Fish of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, Hunan 410012, China
| | - Ye-Jun Li
- School of Educational Science, Hunan Normal University, Changsha, Hunan 410012, China
| | - Dan-Ting Zhu
- Key Laboratory of Physical Fitness and Exercise Rehabilitation, State Key Laboratory of Developmental Biology of Freshwater Fish of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, Hunan 410012, China
| | - Zhang-Lin Chen
- Key Laboratory of Physical Fitness and Exercise Rehabilitation, State Key Laboratory of Developmental Biology of Freshwater Fish of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, Hunan 410012, China
| | - Jiang-Ling Xiao
- Key Laboratory of Physical Fitness and Exercise Rehabilitation, State Key Laboratory of Developmental Biology of Freshwater Fish of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, Hunan 410012, China
| | - Xiang-Tao Chen
- Key Laboratory of Physical Fitness and Exercise Rehabilitation, State Key Laboratory of Developmental Biology of Freshwater Fish of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, Hunan 410012, China
| | - Lan Zheng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation, State Key Laboratory of Developmental Biology of Freshwater Fish of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, Hunan 410012, China
| | - Xi-Yang Peng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation, State Key Laboratory of Developmental Biology of Freshwater Fish of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, Hunan 410012, China.
| | - Chang-Fa Tang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation, State Key Laboratory of Developmental Biology of Freshwater Fish of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, Hunan 410012, China.
| |
Collapse
|
2
|
de Lima AMDL, de Lima Rosa G, Guzzo EFM, Padilha RB, de Araujo MC, da Silva RC, Coitinho AS, Van Der Sand ST. Effect of prednisolone in a kindling model of epileptic seizures in rats on cytokine and intestinal microbiota diversity. Epilepsy Behav 2024; 155:109800. [PMID: 38657485 DOI: 10.1016/j.yebeh.2024.109800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/26/2024] [Accepted: 04/14/2024] [Indexed: 04/26/2024]
Abstract
Epilepsy is a neurological disease characterized by spontaneous and recurrent seizures. Epileptic seizures can be initiated and facilitated by inflammatory mechanisms. As the dysregulation of the immune system would be involved in epileptogenesis, it is suggested that anti-inflammatory medications could impact epileptic seizures. These medications could potentially have a side effect by altering the structure and composition of the intestinal microbiota. These changes can disrupt microbial homeostasis, leading to dysbiosis and potentially exacerbating intestinal inflammation. We hypothesize that prednisolone may affect the development of epileptic seizures, potentially influencing the diversity of the intestinal microbiota and the regulation of pro-inflammatory cytokines in intestinal tissue. This study aimed to evaluate the effects of prednisolone treatment on epileptic seizures and investigate the effect of this drug on the bacterial diversity of the intestinal microbiota and markers of inflammatory processes in intestinal tissue. We used Male Wistar rat littermates (n = 31, 90-day-old) divided into four groups: positive control treated with 2 mg/kg of diazepam (n = 6), negative control treated with 0.9 g% sodium chloride (n = 6), and the remaining two groups were subjected to treatment with prednisolone, with one receiving 1 mg/kg (n = 9) and the other 5 mg/kg (n = 10). All administrations were performed intraperitoneally (i.p.) over 14 days. To induce the chronic model of epileptic seizures, we administered pentylenetetrazole (PTZ) 25 mg/kg i.p. on alternate days. Seizure latency (n = 6 - 10) and TNF-α and IL-1β concentrations from intestinal samples were measured by ELISA (n = 6 per group), and intestinal microbiota was evaluated with intergenic ribosomal RNA (rRNA) spacer (RISA) analysis (n = 6 per group). The prednisolone treatment demonstrated an increase in the latency time of epileptic seizures and TNF-α and IL-1β concentrations compared to controls. There was no statistically significant difference in intestinal microbiota diversity between the different treatments. However, there was a strong positive correlation between microbial diversity and TNF-α and IL-1β concentrations. The administration of prednisolone yields comparable results to diazepam on increasing latency between seizures, exhibiting promise for its use in clinical studies. Although there were no changes in intestinal microbial diversity, the increase in the TNF-α and IL-1β cytokines in intestinal tissue may be linked to immune system signaling pathways involving the intestinal microbiota. Additional research is necessary to unravel the intricacies of these pathways and to understand their implications for clinical practice.
Collapse
Affiliation(s)
- Amanda Muliterno Domingues Lourenço de Lima
- Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Ramiro Barcelos Street, 2.600, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Ramiro Barcelos Street, 2.600, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Ramiro Barcelos Street, 2.600, Porto Alegre, RS, Brazil
| | - Gabriel de Lima Rosa
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Ramiro Barcelos Street, 2.600, Porto Alegre, RS, Brazil
| | - Edson Fernando Müller Guzzo
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Ramiro Barcelos Street, 2.600, Porto Alegre, RS, Brazil
| | - Rafael Bremm Padilha
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Ramiro Barcelos Street, 2.600, Porto Alegre, RS, Brazil
| | - Milena Conci de Araujo
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Ramiro Barcelos Street, 2.600, Porto Alegre, RS, Brazil
| | - Rodrigo Costa da Silva
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Ramiro Barcelos Street, 2.600, Porto Alegre, RS, Brazil
| | - Adriana Simon Coitinho
- Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Ramiro Barcelos Street, 2.600, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Ramiro Barcelos Street, 2.600, Porto Alegre, RS, Brazil; Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Ramiro Barcelos Street, 2.600, Porto Alegre, RS, Brazil.
| | - Sueli Teresinha Van Der Sand
- Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Ramiro Barcelos Street, 2.600, Porto Alegre, RS, Brazil; Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Ramiro Barcelos Street, 2.600, Porto Alegre, RS, Brazil
| |
Collapse
|
3
|
Chang CY, Chang HH, Wu CY, Tsai YT, Lu TH, Chang WH, Hsu CF, Chen PS, Tseng HH. Peripheral inflammation is associated with impaired sadness recognition in euthymic bipolar patients. J Psychiatr Res 2024; 173:333-339. [PMID: 38579478 DOI: 10.1016/j.jpsychires.2024.03.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/06/2024] [Accepted: 03/26/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND Inflammation impairs cognitive function in healthy individuals and people with psychiatric disorders, such as bipolar disorder (BD). This effect may also impact emotion recognition, a fundamental element of social cognition. Our study aimed to investigate the relationships between pro-inflammatory cytokines and emotion recognition in euthymic BD patients and healthy controls (HCs). METHODS We recruited forty-four euthymic BD patients and forty healthy controls (HCs) and measured their inflammatory markers, including high-sensitivity C-reactive protein (hs-CRP), interleukin-6 (IL-6), and TNF-α. We applied validated cognitive tasks, the Wisconsin Card-Sorting Test (WCST) and Continuous Performance Test (CPT), and a social cognitive task for emotion recognition, Diagnostic Analyses of Nonverbal Accuracy, Taiwanese Version (DANVA-2-TW). We analyzed the relationships between cytokines and cognition and then explored possible predictive factors of sadness recognition accuracy. RESULTS Regarding pro-inflammatory cytokines, TNF-α was elevated in euthymic BD patients relative to HCs. In euthymic BD patients only, higher TNF-α levels were associated with lower accuracy of sadness recognition. Regression analysis revealed that TNF-α was an independent predictive factor of sadness recognition in patients with euthymic BD when neurocognition was controlled for. CONCLUSIONS We demonstrated that enhanced inflammation, indicated by increased TNF-α, was an independent predictive factor of impaired sadness recognition in BD patients but not in HCs. Our findings suggested a direct influence of TNF-α on sadness recognition and indicated vulnerability to depression in euthymic BD patients with chronic inflammation.
Collapse
Affiliation(s)
- Chih-Yu Chang
- Department of Medicine, College of Medicine, National Cheng Kung University, Taiwan
| | - Hui Hua Chang
- Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng University, Tainan, Taiwan; School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Pharmacy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Pharmacy, National Cheng Kung University Hospital, Dou-Liou Branch, Yunlin, Taiwan
| | - Cheng Ying Wu
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ying Tsung Tsai
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tsung-Hua Lu
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei Hung Chang
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Psychiatry, National Cheng Kung University Hospital, Dou-Liou Branch, Yunlin, Taiwan
| | - Chia-Fen Hsu
- Department of Occupational Therapy, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Po See Chen
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Huai-Hsuan Tseng
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
4
|
Dulski J, Heckman MG, Nowak JM, Wszolek ZK. Protective Effect of Glucocorticoids against Symptomatic Disease in CSF1R Variant Carriers. Mov Disord 2023; 38:1545-1549. [PMID: 37309919 DOI: 10.1002/mds.29504] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/11/2023] [Accepted: 05/22/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND There is an unmet need for the treatment of colony-stimulating factor-1 receptor (CSF1R)-related leukoencephalopathy. OBJECTIVES To evaluate the association of glucocorticoids (GCs) with disease onset and progression in CSF1R variant carriers. METHODS Retrospective cohort study on CSF1R variants carriers (n = 41) whose medical records were collected at Mayo Clinic Florida from 2003 to 2023. We retrieved information on sex, ethnicity, family history, medications, disease onset, course and duration, neuroimaging features, and activities of daily living (ADL). RESULTS Risk of developing symptoms was significantly lower for individuals who used GCs (n = 8) compared to individuals who did not (n = 33) (12.5% vs. 81.8%, hazard ratio [HR] = 0.10, P = 0.036). The risk of becoming dependent in ADL was markedly lower for the GCs group (0.0% vs. 43.8%, P = 0.006). White matter lesions and corpus callosum involvement were less common in the GCs group (62.5% vs. 96.6%, P = 0.026; 37.5% vs. 84.6%, P = 0.017; respectively). CONCLUSIONS We found a protective association of GCs in CSF1R variant carriers against developing CSF1R-related leukoencephalopathy. We call for further studies to validate our findings and investigate the potential application of GCs in CSF1R-related leukoencephalopathy. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jarosław Dulski
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, USA
- Division of Neurological and Psychiatric Nursing, Faculty of Health Sciences, Medical University of Gdansk, Gdansk, Poland
- Neurology Department, St Adalbert Hospital, Copernicus PL Ltd., Gdansk, Poland
| | - Michael G Heckman
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Jacksonville, Florida, USA
| | - Julia M Nowak
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, USA
- Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
5
|
Mentzelopoulos SD, Pappa E, Malachias S, Vrettou CS, Giannopoulos A, Karlis G, Adamos G, Pantazopoulos I, Megalou A, Louvaris Z, Karavana V, Aggelopoulos E, Agaliotis G, Papadaki M, Baladima A, Lasithiotaki I, Lagiou F, Temperikidis P, Louka A, Asimakos A, Kougias M, Makris D, Zakynthinos E, Xintara M, Papadonta ME, Koutsothymiou A, Zakynthinos SG, Ischaki E. Physiologic effects of stress dose corticosteroids in in-hospital cardiac arrest (CORTICA): A randomized clinical trial. Resusc Plus 2022; 10:100252. [PMID: 35652112 PMCID: PMC9149191 DOI: 10.1016/j.resplu.2022.100252] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 01/15/2023] Open
Abstract
Aim Postresuscitation hemodynamics are associated with hospital mortality/functional outcome. We sought to determine whether low-dose steroids started during and continued after cardiopulmonary resuscitation (CPR) affect postresuscitation hemodynamics and other physiological variables in vasopressor-requiring, in-hospital cardiac arrest. Methods We conducted a two-center, randomized, double-blind trial of patients with adrenaline (epinephrine)-requiring cardiac arrest. Patients were randomized to receive either methylprednisolone 40 mg (steroids group) or normal saline-placebo (control group) during the first CPR cycle post-enrollment. Postresuscitation shock was treated with hydrocortisone 240 mg daily for 7 days maximum and gradual taper (steroids group), or saline-placebo (control group). Primary outcomes were arterial pressure and central-venous oxygen saturation (ScvO2) within 72 hours post-ROSC. Results Eighty nine of 98 controls and 80 of 86 steroids group patients with ROSC were treated as randomized. Primary outcome data were collected from 100 patients with ROSC (control, n = 54; steroids, n = 46). In intention-to-treat mixed-model analyses, there was no significant effect of group on arterial pressure, marginal mean (95% confidence interval) for mean arterial pressure, steroids vs. control: 74 (68–80) vs. 72 (66–79) mmHg] and ScvO2 [71 (68–75)% vs. 69 (65–73)%], cardiac index [2.8 (2.5–3.1) vs. 2.9 (2.5–3.2) L/min/m2], and serum cytokine concentrations [e.g. interleukin-6, 89.1 (42.8–133.9) vs. 75.7 (52.1–152.3) pg/mL] determined within 72 hours post-ROSC (P = 0.12–0.86). There was no between-group difference in body temperature, echocardiographic variables, prefrontal blood flow index/cerebral autoregulation, organ failure-free days, and hazard for poor in-hospital/functional outcome, and adverse events (P = 0.08–>0.99). Conclusions Our results do not support the use of low-dose corticosteroids in in-hospital cardiac arrest. Trial Registration:ClinicalTrials.gov number: NCT02790788 (https://www.clinicaltrials.gov).
Collapse
Affiliation(s)
- Spyros D. Mentzelopoulos
- First Department of Intensive Care Medicine, National and Kapodistrian University of Athens Medical School, Evaggelismos General Hospital, Athens, Greece
- Corresponding author at: Department of Intensive Care Medicine, Evaggelismos General Hospital, 45-47 Ipsilandou Street, GR-10675 Athens, Greece.
| | - Evanthia Pappa
- First Department of Intensive Care Medicine, National and Kapodistrian University of Athens Medical School, Evaggelismos General Hospital, Athens, Greece
| | - Sotirios Malachias
- First Department of Intensive Care Medicine, National and Kapodistrian University of Athens Medical School, Evaggelismos General Hospital, Athens, Greece
| | - Charikleia S. Vrettou
- First Department of Intensive Care Medicine, National and Kapodistrian University of Athens Medical School, Evaggelismos General Hospital, Athens, Greece
| | - Achilleas Giannopoulos
- First Department of Intensive Care Medicine, National and Kapodistrian University of Athens Medical School, Evaggelismos General Hospital, Athens, Greece
| | - George Karlis
- First Department of Intensive Care Medicine, National and Kapodistrian University of Athens Medical School, Evaggelismos General Hospital, Athens, Greece
| | - George Adamos
- First Department of Intensive Care Medicine, National and Kapodistrian University of Athens Medical School, Evaggelismos General Hospital, Athens, Greece
| | - Ioannis Pantazopoulos
- First Department of Intensive Care Medicine, National and Kapodistrian University of Athens Medical School, Evaggelismos General Hospital, Athens, Greece
| | - Aikaterini Megalou
- First Department of Intensive Care Medicine, National and Kapodistrian University of Athens Medical School, Evaggelismos General Hospital, Athens, Greece
| | - Zafeiris Louvaris
- Faculty of Movement and Rehabilitation Sciences, Department of Rehabilitation Sciences, Research Group for Rehabilitation in Internal Disorders, KU Leuven, Belgium
- University Hospitals Leuven, Department of Intensive Care Medicine, Leuven, Belgium
| | - Vassiliki Karavana
- First Department of Intensive Care Medicine, National and Kapodistrian University of Athens Medical School, Evaggelismos General Hospital, Athens, Greece
| | - Epameinondas Aggelopoulos
- First Department of Intensive Care Medicine, National and Kapodistrian University of Athens Medical School, Evaggelismos General Hospital, Athens, Greece
| | - Gerasimos Agaliotis
- First Department of Intensive Care Medicine, National and Kapodistrian University of Athens Medical School, Evaggelismos General Hospital, Athens, Greece
| | - Marielen Papadaki
- First Department of Intensive Care Medicine, National and Kapodistrian University of Athens Medical School, Evaggelismos General Hospital, Athens, Greece
| | - Aggeliki Baladima
- First Department of Intensive Care Medicine, National and Kapodistrian University of Athens Medical School, Evaggelismos General Hospital, Athens, Greece
| | | | - Fotini Lagiou
- First Department of Intensive Care Medicine, National and Kapodistrian University of Athens Medical School, Evaggelismos General Hospital, Athens, Greece
| | - Prodromos Temperikidis
- First Department of Intensive Care Medicine, National and Kapodistrian University of Athens Medical School, Evaggelismos General Hospital, Athens, Greece
| | - Aggeliki Louka
- Department of Anesthesiology, Evaggelismos General Hospital, Athens, Greece
| | - Andreas Asimakos
- First Department of Intensive Care Medicine, National and Kapodistrian University of Athens Medical School, Evaggelismos General Hospital, Athens, Greece
| | - Marios Kougias
- First Department of Intensive Care Medicine, National and Kapodistrian University of Athens Medical School, Evaggelismos General Hospital, Athens, Greece
| | - Demosthenes Makris
- Department of Intensive Care Medicine, University of Thessaly Medical School, Larissa, Greece
| | | | - Maria Xintara
- Department of Intensive Care Medicine, University of Thessaly Medical School, Larissa, Greece
| | | | | | - Spyros G. Zakynthinos
- First Department of Intensive Care Medicine, National and Kapodistrian University of Athens Medical School, Evaggelismos General Hospital, Athens, Greece
| | - Eleni Ischaki
- First Department of Intensive Care Medicine, National and Kapodistrian University of Athens Medical School, Evaggelismos General Hospital, Athens, Greece
| |
Collapse
|
6
|
Nie R, Lu J, Xu R, Yang J, Shen X, Ouyang X, Zhu D, Huang Y, Zhao T, Zhao X, Lu Y, Qian M, Wang J, Shen X. Ipriflavone as a non-steroidal glucocorticoid receptor antagonist ameliorates diabetic cognitive impairment in mice. Aging Cell 2022; 21:e13572. [PMID: 35172041 PMCID: PMC8920458 DOI: 10.1111/acel.13572] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/27/2021] [Accepted: 02/01/2022] [Indexed: 12/26/2022] Open
Abstract
Diabetic cognitive impairment (DCI) is a common diabetic complication with hallmarks of loss of learning ability and disorders of memory and behavior. Glucocorticoid receptor (GR) dysfunction is a main reason for neuronal impairment in brain of diabetic patients. Here, we determined that ipriflavone (IP) a clinical anti-osteoporosis drug functioned as a non-steroidal GR antagonist and efficiently ameliorated learning and memory dysfunction in both type 1 and 2 diabetic mice. The underlying mechanism has been intensively investigated by assay against the diabetic mice with GR-specific knockdown in the brain by injection of adeno-associated virus (AAV)-ePHP-si-GR. IP suppressed tau hyperphosphorylation through GR/PI3K/AKT/GSK3β pathway, alleviated neuronal inflammation through GR/NF-κB/NLRP3/ASC/Caspase-1 pathway, and protected against synaptic impairment through GR/CREB/BDNF pathway. To our knowledge, our work might be the first to expound the detailed mechanism underlying the amelioration of non-steroidal GR antagonist on DCI-like pathology in mice and report the potential of IP in treatment of DCI.
Collapse
Affiliation(s)
- Ruifang Nie
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and School of Medicine & Holistic Integrative Medicine Nanjing University of Chinese Medicine Nanjing China
| | - Jian Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and School of Medicine & Holistic Integrative Medicine Nanjing University of Chinese Medicine Nanjing China
| | - Rui Xu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and School of Medicine & Holistic Integrative Medicine Nanjing University of Chinese Medicine Nanjing China
| | - Juanzhen Yang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and School of Medicine & Holistic Integrative Medicine Nanjing University of Chinese Medicine Nanjing China
| | - Xingyi Shen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and School of Medicine & Holistic Integrative Medicine Nanjing University of Chinese Medicine Nanjing China
| | - Xingnan Ouyang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and School of Medicine & Holistic Integrative Medicine Nanjing University of Chinese Medicine Nanjing China
| | - Danyang Zhu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and School of Medicine & Holistic Integrative Medicine Nanjing University of Chinese Medicine Nanjing China
| | - Yujie Huang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and School of Medicine & Holistic Integrative Medicine Nanjing University of Chinese Medicine Nanjing China
| | - Tong Zhao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and School of Medicine & Holistic Integrative Medicine Nanjing University of Chinese Medicine Nanjing China
| | - Xuejian Zhao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and School of Medicine & Holistic Integrative Medicine Nanjing University of Chinese Medicine Nanjing China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and School of Medicine & Holistic Integrative Medicine Nanjing University of Chinese Medicine Nanjing China
| | - Minyi Qian
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and School of Medicine & Holistic Integrative Medicine Nanjing University of Chinese Medicine Nanjing China
| | - Jiaying Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and School of Medicine & Holistic Integrative Medicine Nanjing University of Chinese Medicine Nanjing China
| | - Xu Shen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and School of Medicine & Holistic Integrative Medicine Nanjing University of Chinese Medicine Nanjing China
| |
Collapse
|
7
|
Kostrzewa-Nowak D, Nowak R, Kubaszewska J, Gos W. Interdisciplinary Approach to Biological and Health Implications in Selected Professional Competences. Brain Sci 2022; 12:brainsci12020236. [PMID: 35203999 PMCID: PMC8870650 DOI: 10.3390/brainsci12020236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/28/2022] [Accepted: 02/05/2022] [Indexed: 01/09/2023] Open
Abstract
Everyday life’s hygiene and professional realities, especially in economically developed countries, indicate the need to modify the standards of pro-health programs as well as modern hygiene and work ergonomics programs. These observations are based on the problem of premature death caused by civilization diseases. The biological mechanisms associated with financial risk susceptibility are well described, but there is little data explaining the biological basis of neuroaccounting. Therefore, the aim of the study was to present relationships between personality traits, cognitive competences and biological factors shaping behavioral conditions in a multidisciplinary aspect. This critical review paper is an attempt to compile biological and psychological factors influencing the development of professional competences, especially decent in the area of accounting and finance. We analyzed existing literature from wide range of scientific disciplines (including economics, psychology, behavioral genetics) to create background to pursuit multidisciplinary research models in the field of neuroaccounting. This would help in pointing the best genetically based behavioral profile of future successful financial and accounting specialists.
Collapse
Affiliation(s)
- Dorota Kostrzewa-Nowak
- Institute of Physical Culture Sciences, University of Szczecin, 17C Narutowicza St., 70-240 Szczecin, Poland; (R.N.); (J.K.)
- Correspondence:
| | - Robert Nowak
- Institute of Physical Culture Sciences, University of Szczecin, 17C Narutowicza St., 70-240 Szczecin, Poland; (R.N.); (J.K.)
| | - Joanna Kubaszewska
- Institute of Physical Culture Sciences, University of Szczecin, 17C Narutowicza St., 70-240 Szczecin, Poland; (R.N.); (J.K.)
| | - Waldemar Gos
- Institute of Economy and Finance, University of Szczecin, 64 Mickiewicza St., 71-101 Szczecin, Poland;
| |
Collapse
|
8
|
Tret’yakova LV, Kvichansky AA, Bolshakov AP, Gulyaeva NV. Dexamethasone Modulates Lipopolysaccharide-Induced Expression of Proinflammatory Cytokines in Rat Hippocampus. NEUROCHEM J+ 2021. [DOI: 10.1134/s1819712421330011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
9
|
Wang L, Jiao XF, Wu C, Li XQ, Sun HX, Shen XY, Zhang KZ, Zhao C, Liu L, Wang M, Bu YL, Li JW, Xu F, Chang CL, Lu X, Gao W. Trimetazidine attenuates dexamethasone-induced muscle atrophy via inhibiting NLRP3/GSDMD pathway-mediated pyroptosis. Cell Death Discov 2021; 7:251. [PMID: 34537816 PMCID: PMC8449784 DOI: 10.1038/s41420-021-00648-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/23/2021] [Accepted: 09/07/2021] [Indexed: 01/19/2023] Open
Abstract
Skeletal muscle atrophy is one of the major side effects of high dose or sustained usage of glucocorticoids. Pyroptosis is a novel form of pro-inflammatory programmed cell death that may contribute to skeletal muscle injury. Trimetazidine, a well-known anti-anginal agent, can improve skeletal muscle performance both in humans and mice. We here showed that dexamethasone-induced atrophy, as evidenced by the increase of muscle atrophy F-box (Atrogin-1) and muscle ring finger 1 (MuRF1) expression, and the decrease of myotube diameter in C2C12 myotubes. Dexamethasone also induced pyroptosis, indicated by upregulated pyroptosis-related protein NLR family pyrin domain containing 3 (NLRP3), Caspase-1, and gasdermin-D (GSDMD). Knockdown of NLRP3 or GSDMD attenuated dexamethasone-induced myotube pyroptosis and atrophy. Trimetazidine treatment ameliorated dexamethasone-induced muscle pyroptosis and atrophy both in vivo and in vitro. Activation of NLRP3 using LPS and ATP not only increased the cleavage and activation of Caspase-1 and GSDMD, but also increased the expression levels of atrophy markers MuRF1 and Atrogin-1 in trimetazidine-treated C2C12 myotubes. Mechanically, dexamethasone inhibited the phosphorylation of PI3K/AKT/FoxO3a, which could be attenuated by trimetazidine. Conversely, co-treatment with a PI3K/AKT inhibitor, picropodophyllin, remarkably increased the expression of NLRP3 and reversed the protective effects of trimetazidine against dexamethasone-induced C2C12 myotube pyroptosis and atrophy. Taken together, our study suggests that NLRP3/GSDMD-mediated pyroptosis might be a novel mechanism for dexamethasone-induced skeletal muscle atrophy. Trimetazidine might be developed as a potential therapeutic agent for the treatment of dexamethasone-induced muscle atrophy.
Collapse
Affiliation(s)
- Li Wang
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.,Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, China
| | - Xin-Feng Jiao
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.,Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, China
| | - Cheng Wu
- Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, China.,Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao-Qing Li
- Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, China.,Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hui-Xian Sun
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.,Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xi-Yu Shen
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.,Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kang-Zhen Zhang
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.,Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Can Zhao
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.,Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Li Liu
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.,Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Man Wang
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.,Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yun-Ling Bu
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.,Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jia-Wen Li
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.,Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fan Xu
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.,Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chen-Lu Chang
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.,Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiang Lu
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China. .,Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Wei Gao
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China. .,Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
10
|
Diaz-Jimenez D, Kolb JP, Cidlowski JA. Glucocorticoids as Regulators of Macrophage-Mediated Tissue Homeostasis. Front Immunol 2021; 12:669891. [PMID: 34079551 PMCID: PMC8165320 DOI: 10.3389/fimmu.2021.669891] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/05/2021] [Indexed: 02/06/2023] Open
Abstract
Our immune system has evolved as a complex network of cells and tissues tasked with maintaining host homeostasis. This is evident during the inflammatory responses elicited during a microbial infection or traumatic tissue damage. These responses seek to eliminate foreign material or restore tissue integrity. Even during periods without explicit disturbances, the immune system plays prominent roles in tissue homeostasis. Perhaps one of the most studied cells in this regard is the macrophage. Tissue-resident macrophages are a heterogenous group of sensory cells that respond to a variety of environmental cues and are essential for organ function. Endogenously produced glucocorticoid hormones connect external environmental stress signals with the function of many cell types, producing profound changes in immune cells, including macrophages. Here, we review the current literature which demonstrates specific effects of glucocorticoids in several organ systems. We propose that tissue-resident macrophages, through glucocorticoid signaling, may play an underappreciated role as regulators of organ homeostasis.
Collapse
Affiliation(s)
- David Diaz-Jimenez
- Molecular Endocrinology Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Joseph P Kolb
- Molecular Endocrinology Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - John A Cidlowski
- Molecular Endocrinology Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| |
Collapse
|
11
|
Achar A, Ghosh C. Multiple hurdle mechanism and blood-brain barrier in epilepsy: glucocorticoid receptor-heat shock proteins on drug regulation. Neural Regen Res 2021; 16:2427-2428. [PMID: 33907029 PMCID: PMC8374577 DOI: 10.4103/1673-5374.313046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Aneesha Achar
- Cerebrovascular Research, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Chaitali Ghosh
- Cerebrovascular Research, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic; Department of Biomedical Engineering and Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
12
|
Achar A, Ghosh C. COVID-19-Associated Neurological Disorders: The Potential Route of CNS Invasion and Blood-Brain Relevance. Cells 2020; 9:cells9112360. [PMID: 33120941 PMCID: PMC7692725 DOI: 10.3390/cells9112360] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/16/2020] [Accepted: 10/26/2020] [Indexed: 12/22/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel human coronavirus that has sparked a global pandemic of the coronavirus disease of 2019 (COVID-19). The virus invades human cells through the angiotensin-converting enzyme 2 (ACE2) receptor-driven pathway, primarily targeting the human respiratory tract. However, emerging reports of neurological manifestations demonstrate the neuroinvasive potential of SARS-CoV-2. This review highlights the possible routes by which SARS-CoV-2 may invade the central nervous system (CNS) and provides insight into recent case reports of COVID-19-associated neurological disorders, namely ischaemic stroke, encephalitis, encephalopathy, epilepsy, neurodegenerative diseases, and inflammatory-mediated neurological disorders. We hypothesize that SARS-CoV-2 neuroinvasion, neuroinflammation, and blood-brain barrier (BBB) dysfunction may be implicated in the development of the observed disorders; however, further research is critical to understand the detailed mechanisms and pathway of infectivity behind CNS pathogenesis.
Collapse
Affiliation(s)
- Aneesha Achar
- Cerebrovascular Research, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Chaitali Ghosh
- Cerebrovascular Research, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
- Department of Biomedical Engineering and Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
- Correspondence: ; Tel.: +1-216-445-0559
| |
Collapse
|
13
|
Heat Shock Proteins Accelerate the Maturation of Brain Endothelial Cell Glucocorticoid Receptor in Focal Human Drug-Resistant Epilepsy. Mol Neurobiol 2020; 57:4511-4529. [PMID: 32748370 DOI: 10.1007/s12035-020-02043-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 07/24/2020] [Indexed: 12/21/2022]
Abstract
Pharmacoresistance in epilepsy is a major challenge to successful clinical therapy. Glucocorticoid receptor (GR) dysregulation can affect the underlying disease pathogenesis. We recently reported that local drug biotransformation at the blood-brain barrier is upregulated by GR, which controls drug-metabolizing enzymes (e.g., cytochrome P450s, CYPs) and efflux drug transporters (MDR1) in human epileptic brain endothelial cells (EPI-ECs). Here, we establish that this mechanism is influenced upstream by GR and its association with heat shock proteins/co-chaperones (Hsps) during maturation, which differentially affect human epileptic (EPI) tissue and brain endothelial cells. Overexpressed GR, Hsp90, Hsp70, and Hsp40 were found in EPI vs. NON-EPI brain regions. Elevated neurovascular GR expression and co-localization with Hsps was evident in the EPI regions with cortical dysplasia, predominantly in the brain micro-capillaries and neurons. A corresponding increase in ATPase activity (*p < 0.05) was found in the EPI regions. The GR-Hsp90/Hsp70 binding patterns indicated a faster chaperone-promoted maturation of GR, leading to its overactivation in both the tissue and EPI-ECs derived from EPI/focal regions and GR silencing in EPI-ECs slowed such GR-Hsp interactions. Significantly accelerated GR nuclear translocation was determined in EPI-ECs following treatment with GR modulators/ligands dexamethasone, rifampicin, or phenytoin. Our findings reveal that overexpressed GR co-localizes with Hsps in the neurovasculature of EPI brain, increased GR maturation by Hsps accelerates EPI GR machinery, and furthermore this change in EPI and NON-EPI GR-Hsp interaction alters with the age of seizure onset in epileptic patients, together affecting the pathophysiology and drug regulation in the epileptic brain endothelium.
Collapse
|