1
|
Zhang H, Xu J, Chen M, Yin J, Hou Y, Tang B. The OnSPN2 from the nipa palm hispid beetle Octodonta nipae is a multipurpose defense tool against proteases from different peptidase families. INSECT SCIENCE 2025. [PMID: 39828949 DOI: 10.1111/1744-7917.13483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 01/22/2025]
Abstract
Serpins (serine protease inhibitors) constitute a superfamily of proteins with functional diversity and unusual conformational flexibility. In insects, serpins act as multiple inhibitors, by forming inactive acyl-enzyme complexes, in regulating Spätzles activation, phenoloxidases (POs) activity, and other cytokines. In this study, we present the cloning and characterization of Octodonta nipae serpin2 (OnSPN2), a 415 residues protein homologous to Tenebrio molitor 42Dd-like. Notably, OnSPN2 features an arginine residue (R364) at the P1 position, and additional arginine residues (R362, R367) at the P3 and P3' positions, respectively which is crucial for protease inhibition. Immunohistochemistry (IHC) and Western blot analyses revealed that OnSPN2 is primarily synthesized in plasmatocytes and then released into the plasma to exert its function. RNA interference results indicated that OnSPN2 knockdown may depress serine protease in melanization and remarkably increase the transcript level of Attacin in hemolymph, but its messenger RNA levels were not changed upon immune induction. Reciprocal co-immunoprecipitation assay results confirmed that OnSPN2 binds to OnPPAF1 and OnSP8, indicating its role as a negative regulator in the PO and AMP pathway. Intriguingly, several cathepsin-L isoforms were identified in the OnSPN2 immunoprecipitated samples. The cathepsin-L inhibition assays and protein-protein docking results, identified cathepsin-L as a potential target of OnSPN2. These results indicate that OnSPN2 is produced as an intracellular resident and additionally is associated with the PO and AMP pathway. OnSPN2 represents a multiple defense tool that may provide multiple antiproteolytic functions.
Collapse
Affiliation(s)
- Huajian Zhang
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural, School of Rural Revitalization), Hainan University, Haikou, China
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University
| | - Jiawei Xu
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural, School of Rural Revitalization), Hainan University, Haikou, China
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University
| | - Mintao Chen
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural, School of Rural Revitalization), Hainan University, Haikou, China
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University
| | - Jiawei Yin
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural, School of Rural Revitalization), Hainan University, Haikou, China
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University
| | - Youming Hou
- State Key Laboratory of Agricultural and Forestry Biosecurity, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Baozhen Tang
- State Key Laboratory of Agricultural and Forestry Biosecurity, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
2
|
Wang J, Li J, Zhou L, Hou H, Zhang K. Regulation of epidermal barrier function and pathogenesis of psoriasis by serine protease inhibitors. Front Immunol 2024; 15:1498067. [PMID: 39737188 PMCID: PMC11683130 DOI: 10.3389/fimmu.2024.1498067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
Serine protease inhibitors (Serpins) are a protein superfamily of protease inhibitors that are thought to play a role in the regulation of inflammation, immunity, tumorigenesis, coagulation, blood pressure and cancer metastasis. Serpins is enriched in the skin and play a vital role in modulating the epidermal barrier and maintaining skin homeostasis. Psoriasis is a chronic inflammatory immune-mediated skin disease. At present, most serpins focus on the pathogenesis of psoriasis vulgaris. Only a small number, such as the mutation of SerpinA1/A3/B3, are involved in the pathogenesis of GPP. SerpinA12 and SerpinG1 are significantly elevated in the serum of patients with psoriatic arthritis, but their specific mechanism of action in psoriatic arthritis has not been reported. Some Serpins, including SerpinA12, SerpinB2/B3/B7, play multiple roles in skin barrier function and pathogenesis of psoriasis. The decrease in the expression of SerpinA12, SerpinB7 deficiency and increase in expression of SerpinB3/4 in the skin can promote inflammation and poor differentiation of keratinocyte, with damaged skin barrier. Pso p27, derived from SerpinB3/B4, is an autoantigen that can enhance immune response in psoriasis. SerpinB2 plays a role in maintaining epidermal barrier integrity and inhibiting keratinocyte proliferation. Here we briefly introduce the structure, functional characteristics, expression and distribution of serpins in skin and focus on the regulation of serpins in the epidermal barrier function and the pathogenic role of serpins in psoriasis.
Collapse
Affiliation(s)
- Juanjuan Wang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital, Taiyuan, China
- State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital, Taiyuan, China
| | - Junqin Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital, Taiyuan, China
- State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital, Taiyuan, China
| | - Ling Zhou
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital, Taiyuan, China
- State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital, Taiyuan, China
| | - Hui Hou
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital, Taiyuan, China
- State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital, Taiyuan, China
| | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital, Taiyuan, China
- State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital, Taiyuan, China
| |
Collapse
|
3
|
Yan T, Zhou A. Crystallization and crystallographic studies of human serine protease inhibitor (serpin) B9. Acta Crystallogr F Struct Biol Commun 2024; 80:286-293. [PMID: 39382088 PMCID: PMC11533364 DOI: 10.1107/s2053230x24009439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 09/24/2024] [Indexed: 10/10/2024] Open
Abstract
Serine protease inhibitor B9 (serpin B9, also known as protease inhibitor 9 or PI9) plays a critical role in regulating the immune response by specifically inhibiting granzyme B, a serine protease found in cytotoxic T lymphocytes and natural killer cells. Despite its potential as an anticancer drug target, the structural details of serpin B9 have remained elusive until now. In this study, a cleaved form of recombinant human serpin B9 was successfully prepared and crystallized. The crystals belonged to space group P212121, with unit-cell parameters a = 68.51, b = 82.32, c = 101.17 Å, and an X-ray diffraction data set was collected at 1.9 Å resolution. The structure shows that serpin B9 adopts a relaxed conformation, with its cleaved reactive-centre loop inserted into the central β-sheet. Unlike other serpins, serpin B9 shows significant structural deviations around helix D, with a larger surface cavity, which could serve as a promising target for small-molecule inhibitors.
Collapse
Affiliation(s)
- Teng Yan
- Department of Pathophysiology, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai200025, People’s Republic of China
| | - Aiwu Zhou
- Department of Pathophysiology, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai200025, People’s Republic of China
| |
Collapse
|
4
|
Wang N, Gao Y, Wang Y, Dai Y, Tang Y, Huang J, Sun L, Qian G, Ma J, Li X, Liu Y, Yang D, Huang X, Wang W, Li W, Zhuo W, Lv H, Liu Z. Plasma proteomic profiling reveals that SERPINE1 is a potential biomarker associated with coronary artery lesions in Kawasaki disease. Int Immunopharmacol 2024; 139:112698. [PMID: 39029232 DOI: 10.1016/j.intimp.2024.112698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/28/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Kawasaki disease (KD) is the most common cause of acquired heart disease in childhood. Coronary artery lesions (CALs) are serious complications of KD that can result in stenosis and thrombosis, but the specific underlying pathogenic mechanisms have not been elucidated. Therefore, exploring biomarkers to help predict early CALs is urgently needed for clinical treatment. METHODS Patients were recruited from three independent cohorts. In the discovery cohort, Data-Independent Acquisition Mass Spectrometry (DIA-MS) was performed to screen plasma proteins from healthy controls (HCs), KD patients prior to intravenous immunoglobulin (IVIG) treatment, and KD patients post-IVIG treatment. KD patients were further divided into KD patients without CALs (nCAL) and with CALs (CALs) groups. Bioinformatic analysis was carried out for the differentially expressed proteins (DEPs) and hub proteins. Candidate proteins were quantified by enzyme-linked immunosorbent assay (ELISA) in the validation cohort 1 and 2. Furthermore, candida albicans cell wall extract (CAWS)-induced KD vasculitis mice and cell models were established to investigate the expression of biomarkers identified in the aforementioned clinical cohort. RESULTS According to the quantitative proteomics analysis, SERPINE1 was significantly increased in KD patients with CALs. Receiver operating characteristic curves (ROC) revealed that plasma SERPINE1 exhibited greater ability in predicting CALs (AUC = 0.824, P < 0.0001). After IVIG treatment, the concentrations of SERPINE1 in the nCALs group significantly decreased. However, the concentration of SERPINE1 remained persistently elevated in the CALs group. Moreover, the expression of SERPINE1 was significantly upregulated in the heart tissue of KD mice, KD plasma, or tumor necrosis factor-α (TNF-α)-stimulated human coronary artery endothelial cells (HCAECs). CONCLUSIONS Overall, our results suggest that the plasma concentration of SERPINE1 might serve as a new potential predictive biomarker for CALs in KD patients.
Collapse
Affiliation(s)
- Nana Wang
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, JiangSu province, China
| | - Yang Gao
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, JiangSu province, China; Department of Pediatrics, The First People's Hospital of Lianyungang, Xuzhou Medical University Affiliated Hospital of Lianyungang (Lianyungang Clinical College of Nanjing Medical University), Lianyungang, JiangSu province, China
| | - Yan Wang
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, JiangSu province, China; Department of Cardiology, Children's Hospital Affiliated to Xuzhou Medical University, Xuzhou, JiangSu province, China
| | - Yuan Dai
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, JiangSu province, China
| | - Yunjia Tang
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, JiangSu province, China
| | - Jie Huang
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, JiangSu province, China
| | - Ling Sun
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, JiangSu province, China
| | - Guanghui Qian
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, JiangSu province, China
| | - Jin Ma
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, JiangSu province, China
| | - Xuan Li
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, JiangSu province, China
| | - Ying Liu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, JiangSu province, China
| | - Daoping Yang
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, JiangSu province, China
| | - Xin Huang
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, JiangSu province, China
| | - Wang Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, JiangSu province, China
| | - Wenjie Li
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, JiangSu province, China
| | - Wenyu Zhuo
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, JiangSu province, China
| | - Haitao Lv
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, JiangSu province, China.
| | - Zhiheng Liu
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, JiangSu province, China.
| |
Collapse
|
5
|
Que H, Mai E, Hu Y, Li H, Zheng W, Jiang Y, Han F, Li X, Gong P, Gu J. Multilineage-differentiating stress-enduring cells: a powerful tool for tissue damage repair. Front Cell Dev Biol 2024; 12:1380785. [PMID: 38872932 PMCID: PMC11169632 DOI: 10.3389/fcell.2024.1380785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/08/2024] [Indexed: 06/15/2024] Open
Abstract
Multilineage-differentiating stress-enduring (Muse) cells are a type of pluripotent cell with unique characteristics such as non-tumorigenic and pluripotent differentiation ability. After homing, Muse cells spontaneously differentiate into tissue component cells and supplement damaged/lost cells to participate in tissue repair. Importantly, Muse cells can survive in injured tissue for an extended period, stabilizing and promoting tissue repair. In addition, it has been confirmed that injection of exogenous Muse cells exerts anti-inflammatory, anti-apoptosis, anti-fibrosis, immunomodulatory, and paracrine protective effects in vivo. The discovery of Muse cells is an important breakthrough in the field of regenerative medicine. The article provides a comprehensive review of the characteristics, sources, and potential mechanisms of Muse cells for tissue repair and regeneration. This review serves as a foundation for the further utilization of Muse cells as a key clinical tool in regenerative medicine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Puyang Gong
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Jian Gu
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| |
Collapse
|
6
|
Pawłowska M, Mila-Kierzenkowska C. Effect of Alpha-1 Antitrypsin and Irisin on Post-Exercise Inflammatory Response: A Narrative Review. IRANIAN JOURNAL OF MEDICAL SCIENCES 2024; 49:205-218. [PMID: 38680225 PMCID: PMC11053258 DOI: 10.30476/ijms.2023.97480.2925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/12/2023] [Accepted: 02/16/2023] [Indexed: 05/01/2024]
Abstract
Physical activity has a positive effect on human health and emotional well-being. However, in both amateur and professional athletes, training poses a risk of acute or chronic injury through repetitive overloading of bones, joints, and muscles. Inflammation can be an adverse effect of intense exercise caused by several factors including oxidative stress. The present narrative review summarizes current knowledge on inflammatory markers induced by physical exercise. Post-exercise recovery may reduce inflammatory responses and is key to effective training and adaptation of muscle tissues to sustained physical exertion.
Collapse
Affiliation(s)
- Marta Pawłowska
- Department of Medical Biology and Biochemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Poland
| | - Celestyna Mila-Kierzenkowska
- Department of Medical Biology and Biochemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Poland
| |
Collapse
|
7
|
Zheng HZ, Miao X, Chang J, Zhou H, Zhang JJ, Mo HM, Jia Q. Smoking behavior associated upregulation of SERPINB12 promotes proliferation and metastasis via activating WNT signaling in NSCLC. J Cardiothorac Surg 2024; 19:141. [PMID: 38504347 PMCID: PMC10949655 DOI: 10.1186/s13019-024-02625-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 03/09/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is the leading cause of morality among all malignant tumors. Smoking is one of the most important causes of NSCLC, which contributes not only to the initiation of NSCLC but also to its progression. The identification of specific biomarkers associated with smoking will promote diagnosis and treatment. METHODS Data mining was used to identify the smoking associated gene SERPINB12. CCK8 assays, colony formation assays, a mouse xenograft model and transwell assays were performed to measure the biological functions of SERPINB12 in NSCLC. GSEA, luciferase reporter assays and immunofluorescence were conducted to explore the potential molecular mechanisms of SERPINB12 in NSCLC. RESULTS In this study, by data mining the TCGA database, we found that SERPINB12 was greatly upregulated in NSCLC patients with cigarette consumption behavior, while the expression level was positively correlated with disease grade and poor prognosis. SERPINB12 is a kind of serpin peptidase inhibitor, but its function in malignant tumors remains largely unknown. Functionally, knockdown of SERPINB12 observably inhibited the proliferation and metastasis of NSCLC cells in vitro and in vivo. Moreover, downregulation of SERPINB12 attenuated Wnt signaling by inhibiting the nuclear translocation of β-catenin, which explained the molecular mechanism underlying tumor progression. CONCLUSIONS In conclusion, SERPINB12 functions as a tumorigenesis factor, which could be a promising biomarker for NSCLC patients with smoking behavior, as well as a therapeutic target.
Collapse
Affiliation(s)
- Hong-Zhen Zheng
- Department of Respiratory Medicine, Shidong Hospital, Yangpu District, 999 Shiguang Road, Yangpu District, Shanghai, 200438, P.R. China
| | - Xiang Miao
- Department of Respiratory Medicine, Shidong Hospital, Yangpu District, 999 Shiguang Road, Yangpu District, Shanghai, 200438, P.R. China
| | - Jing Chang
- Department of Respiratory Medicine, Shidong Hospital, Yangpu District, 999 Shiguang Road, Yangpu District, Shanghai, 200438, P.R. China
| | - Hai Zhou
- Department of Respiratory Medicine, Shidong Hospital, Yangpu District, 999 Shiguang Road, Yangpu District, Shanghai, 200438, P.R. China
| | - Jing-Jian Zhang
- Department of Respiratory Medicine, Shidong Hospital, Yangpu District, 999 Shiguang Road, Yangpu District, Shanghai, 200438, P.R. China
| | - Hui-Min Mo
- Department of Respiratory Medicine, Shidong Hospital, Yangpu District, 999 Shiguang Road, Yangpu District, Shanghai, 200438, P.R. China
| | - Qin Jia
- Department of Respiratory Medicine, Shidong Hospital, Yangpu District, 999 Shiguang Road, Yangpu District, Shanghai, 200438, P.R. China.
| |
Collapse
|
8
|
Pacheco JS, Teixeira ÉMGF, Paschoal RG, Torres-Santos EC, Simone SGDE, Silva-López REDA. Antileishmanial effects of Crotalaria spectabilis Roth aqueous extracts on Leishmania amazonensis. AN ACAD BRAS CIENC 2023; 95:e20220613. [PMID: 37672397 DOI: 10.1590/0001-3765202320220613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/22/2023] [Indexed: 09/08/2023] Open
Abstract
Fifteen polar extracts from leaf, seed, pod, stem, flower and root of Crotalaria spectabilis were prepared using aqueous systems, based on the principles of green chemistry, and showed different protease inhibitor (PI) activities on trypsin, papain, pepsin and the extracellular L. amazonensis serine protease (LSPIII). The most pronounced inhibitory effect on LSPIII was observed in leaf (CS-P), root, stem, flower (CS-FPVPP) and pod (CS-VA) extracts. Crotalaria extracts exhibited low cytotoxicity on macrophages; however, they decreased the viability of L. amazonensis promastigotes and amastigotes, as observed in leaf (CS-AE, CS-P, CS-T and CS-PVPP), seed (CS-ST), flower and root (CS-RA) extracts. CS-P was chosen to study PI and secondary metabolites and a 10-12 kDa protein, analyzed by mass spectrometry, was identified as a serine PI homologous with papaya latex serine PI. Glycosylated flavonoids, such as quercetins, vitexin and tricin were the major secondary metabolites of CS-P. The presence of PIs in C. spectabilis is a new finding, especially in other organs than seeds since PIs have been reported only in seed legumes. Besides, this is the first report of antileishmanial activity of C. spectabilis extracts and the identification of serine polypeptide PI and glycosylated flavonoids from leaf.
Collapse
Affiliation(s)
- Juliana S Pacheco
- FIOCRUZ, Departamento de Produtos Naturais, Avenida Brasil, 4365, Farmanguinhos, 21040-900 Rio de Janeiro, RJ, Brazil
- University of Dundee, School of Life Sciences, Division of Biological Chemistry and Drug Discovery, Nethergate, Dundee, DD1 4HN, Scotland, United Kingdom
| | - Érika Maria G F Teixeira
- FIOCRUZ, Departamento de Produtos Naturais, Avenida Brasil, 4365, Farmanguinhos, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Ramon G Paschoal
- FIOCRUZ, Departamento de Produtos Naturais, Avenida Brasil, 4365, Farmanguinhos, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Eduardo Caio Torres-Santos
- FIOCRUZ, Instituto Oswaldo Cruz, Laboratório de Bioquímica de Tripanossomatídeos, Avenida Brasil, 4365, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Salvatore Giovanni DE Simone
- FIOCRUZ, Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Instituto Nacional de Ciências e Tecnologia para Inovação em Doenças Negligenciadas (INCT-IDN), Avenida Brasil, 4365, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Raquel Elisa DA Silva-López
- FIOCRUZ, Departamento de Produtos Naturais, Avenida Brasil, 4365, Farmanguinhos, 21040-900 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
9
|
He X, Ma Y, Huang Z, Wang G, Wang W, Zhang R, Guo G, Zhang X, Wen Y, Zhang L. SERPINB5 is a prognostic biomarker and promotes proliferation, metastasis and epithelial-mesenchymal transition (EMT) in lung adenocarcinoma. Thorac Cancer 2023; 14:2275-2287. [PMID: 37424293 PMCID: PMC10423661 DOI: 10.1111/1759-7714.15013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/08/2023] [Accepted: 06/11/2023] [Indexed: 07/11/2023] Open
Abstract
BACKGROUND Serine protease inhibitors clade B serpins (SERPINBs) are the largest subclass of protease inhibitors, once thought of as a tumor suppressor gene family. However, some SERPINBs exhibit functions unrelated to the inhibition of catalytic activity. METHODS The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), Gene Set Cancer Analysis (GSCA), and cBioPortal databases were utilized to investigate SERPINBs expression, prognostic correlation, and genomic variation in 33 cancer types. We also conducted a comprehensive transcriptome analysis in multiple lung adenocarcinoma (LUAD) cohorts to reveal the molecular mechanism of SERPINB5 in LUAD. Then, qPCR and immunohistochemistry were used to verify the expression and prognostic value of SERPINB5 in LUAD patients. Furthermore, knockdown and overexpression of SERPINB5 in LUAD cell lines were performed to evaluate cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT). RESULTS The expression of SERPINB5 was upregulated and demethylated in LUAD, and its abnormally high expression was significantly correlated with poor overall survival (OS). In addition, the expression of SERPINB5 was analyzed to determine its prognostic value in LUAD and confirmed that SERPINB5 was an independent predictor of LUAD in TCGA and GEO cohorts and qPCR validation with 106 clinical samples. At last, A knockdown of SERPINB5 in LUAD cells reduced proliferation, migration, and EMT. Proliferation, migration, and invasion are promoted by the overexpression of SERPINB5. CONCLUSION Therefore, SERPINB5 has shown potential as a prognostic biomarker for LUAD, and it may become a potential therapeutic target for lung adenocarcinoma.
Collapse
Affiliation(s)
- Xiaotian He
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
- Department of Thoracic SurgerySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Yiyang Ma
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
- Department of Thoracic SurgerySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Zirui Huang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
- Department of Thoracic SurgerySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Gongming Wang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
- Department of Thoracic SurgerySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Weidong Wang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
- Department of Thoracic SurgerySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Rusi Zhang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
- Department of Thoracic SurgerySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Guangran Guo
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
- Department of Thoracic SurgerySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Xuewen Zhang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
- Department of AnesthesiologySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Yingsheng Wen
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
- Department of Thoracic SurgerySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Lanjun Zhang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
- Department of Thoracic SurgerySun Yat‐sen University Cancer CenterGuangzhouChina
| |
Collapse
|
10
|
Abbasifard M, Fakhrabadi AH, Bahremand F, Khorramdelazad H. Evaluation of the interaction between tumor growth factor-β and interferon type I pathways in patients with COVID-19: focusing on ages 1 to 90 years. BMC Infect Dis 2023; 23:248. [PMID: 37072722 PMCID: PMC10112317 DOI: 10.1186/s12879-023-08225-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 04/05/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND Evidence revealed that age could affect immune responses in patients with the acute respiratory syndrome of coronavirus 2 (SARS-CoV-2) infection. This study investigated the impact of age on immune responses, especially on the interaction between the tumor growth factor-β (TGF-β) and interferon type-I (IFN-I) axes in the pathogenesis of novel coronavirus disease 2019 (COVID-19). METHODS This age-matched case-control investigation enrolled 41 COVID-19 patients and 40 healthy controls categorized into four groups, including group 1 (up to 20 years), group 2 (20-40 years), group 3 (40-60 years), and group 4 (over 60 years). Blood samples were collected at the time of admission. The expression of TGF-βRI, TGF-βRII, IFNARI, IFNARII, interferon regulatory factor 9 (IRF9), and SMAD family member 3 (SMAD3) was measured using the real-time PCR technique. In addition, serum levels of TGF-β, IFN-α, and SERPINE1 were measured by the enzyme-linked immunosorbent assay (ELISA) technique. All biomarkers were measured and analyzed in the four age studies groups. RESULTS The expression of TGF-βRI, TGF-βRII, IFNARI, IFNARII, IRF9, and SMAD3 was markedly upregulated in all age groups of patients compared with the matched control groups. Serum levels of IFN-α and SERPINE1 were significantly higher in patient groups than in control groups. While TGF-β serum levels were only significantly elevated in the 20 to 40 and over 60 years patient group than in matched control groups. CONCLUSIONS These data showed that the age of patients, at least at the time of admission, may not significantly affect TGF-β- and IFN-I-associated immune responses. However, it is possible that the severity of the disease affects these pathway-mediated responses, and more studies with a larger sample size are needed to verify it.
Collapse
Affiliation(s)
- Mitra Abbasifard
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Internal Medicine, Ali-Ibn-Abi-Talib Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ali Hasani Fakhrabadi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Internal Medicine, Ali-Ibn-Abi-Talib Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Fatemeh Bahremand
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Internal Medicine, Ali-Ibn-Abi-Talib Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Sun M, Liu H, Xu C, Jiang Z, Lv C. Inhibition of Iron Release from Donkey Spleen Ferritin through Malt-Derived Protein Z-Ferulic Acid Interactions. Foods 2023; 12:foods12020234. [PMID: 36673326 PMCID: PMC9857996 DOI: 10.3390/foods12020234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Protein-small molecule interactions naturally occur in foodstuffs, which could improve the properties of protein and small molecules. Meanwhile, they might affect the bioavailability and nutritional value of proteins. Ferritin, as an iron-storage protein, has been a focus of research. However, the complexity of foodstuffs enables the interaction between ferritin and food components, especially polyphenols, which can induce iron release from ferritin. Thus, the application of ferritin in food is limited. Inspired by the natural-occurring, strong protein-polyphenol interactions in beer, to inhibit the iron release of ferritin, the malt-derived protein Z (PZ) was chosen to interact with ferulic acid (FA), an abundant reductant in malt, beer, and other foodstuffs. The analysis of the interaction between PZ and FA was carried out using fluorescence spectroscopy, the results of which suggest that one PZ molecule can bind with 22.11 ± 2.13 of FA, and the binding constant is (4.99 ± 2.13) × 105 M-1. In a molecular dynamics (MD) simulation, FA was found to be embedded in the internal hydrophobic pocket of PZ, where it formed hydrogen bonds with Val-389 and Tyr-234. As expected, compared to iron release induced by FA, the iron release from donkey spleen ferritin (DSF) induced by FA decreased by 86.20% in the presence of PZ. Meanwhile, based on the PZ-FA interaction, adding PZ in beer reduced iron release from DSF by 40.5% when DSF:PZ was 1:40 (molar ratio). This work will provide a novel method of inhibiting iron release from ferritin.
Collapse
|
12
|
Moita MR, Silva MM, Diniz C, Serra M, Hoet RM, Barbas A, Simão D. Transcriptome and proteome profiling of activated cardiac fibroblasts supports target prioritization in cardiac fibrosis. Front Cardiovasc Med 2022; 9:1015473. [PMID: 36531712 PMCID: PMC9751336 DOI: 10.3389/fcvm.2022.1015473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/15/2022] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Activated cardiac fibroblasts (CF) play a central role in cardiac fibrosis, a condition associated with most cardiovascular diseases. Conversion of quiescent into activated CF sustains heart integrity upon injury. However, permanence of CF in active state inflicts deleterious heart function effects. Mechanisms underlying this cell state conversion are still not fully disclosed, contributing to a limited target space and lack of effective anti-fibrotic therapies. MATERIALS AND METHODS To prioritize targets for drug development, we studied CF remodeling upon activation at transcriptomic and proteomic levels, using three different cell sources: primary adult CF (aHCF), primary fetal CF (fHCF), and induced pluripotent stem cells derived CF (hiPSC-CF). RESULTS All cell sources showed a convergent response upon activation, with clear morphological and molecular remodeling associated with cell-cell and cell-matrix interactions. Quantitative proteomic analysis identified known cardiac fibrosis markers, such as FN1, CCN2, and Serpine1, but also revealed targets not previously associated with this condition, including MRC2, IGFBP7, and NT5DC2. CONCLUSION Exploring such targets to modulate CF phenotype represents a valuable opportunity for development of anti-fibrotic therapies. Also, we demonstrate that hiPSC-CF is a suitable cell source for preclinical research, displaying significantly lower basal activation level relative to primary cells, while being able to elicit a convergent response upon stimuli.
Collapse
Affiliation(s)
- Maria Raquel Moita
- iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Marta M. Silva
- iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Cláudia Diniz
- iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Margarida Serra
- iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - René M. Hoet
- Department of Pathology, CARIM - School of Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| | | | - Daniel Simão
- iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| |
Collapse
|
13
|
Kim BY, Kim YH, Park MJ, Yoon HJ, Lee KY, Kim HK, Lee KS, Jin BR. Dual function of a bumblebee (Bombus ignitus) serine protease inhibitor that acts as a microbicidal peptide and anti-fibrinolytic venom toxin. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 135:104478. [PMID: 35716829 DOI: 10.1016/j.dci.2022.104478] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 05/27/2023]
Abstract
In bee venoms, low-molecular-weight peptides, including serine protease inhibitors (SPIs), exhibit multifunctional activities. Although SPIs in bee venoms are relatively well known, those that function in both the body and secreted venom of bees are not well-characterized. In this study, we identified a bumblebee (Bombus ignitus) SPI (BiSPI) that displays microbicidal and anti-fibrinolytic activities. BiSPI was found to consist of a trypsin inhibitor-like domain containing a P1 site and ten cysteine residues. We observed that the BiSPI gene was ubiquitously transcribed in the body, including the venom glands. In correlation, the BiSPI protein was detected both in the body and secreted venom by using an antibody against a recombinant BiSPI peptide produced in baculovirus-infected insect cells. Recombinant BiSPI exhibited inhibitory activity against trypsin but not chymotrypsin and inhibited microbial serine proteases and plasmin but not elastase or thrombin. Moreover, recombinant BiSPI recognized carbohydrates and bound to fungi and gram-negative and gram-positive bacteria. Consistent with these properties, recombinant BiSPI exhibited microbicidal activities against bacteria and fungi through induction of structural damage by binding to the microbial surfaces. Additionally, recombinant BiSPI inhibited the plasmin-mediated degradation of human fibrin and was thus concluded to exhibit anti-fibrinolytic activity. Moreover, the peptide showed no effect on hemolysis. These findings demonstrate the dual function of BiSPI, which acts as a microbicidal peptide and anti-fibrinolytic venom toxin.
Collapse
Affiliation(s)
- Bo Yeon Kim
- College of Natural Resources and Life Science, Dong-A University, Busan, 49315, Republic of Korea
| | - Yun Hui Kim
- College of Natural Resources and Life Science, Dong-A University, Busan, 49315, Republic of Korea
| | - Min Ji Park
- College of Natural Resources and Life Science, Dong-A University, Busan, 49315, Republic of Korea
| | - Hyung Joo Yoon
- Department of Agricultural Biology, National Academy of Agricultural Science, Wanju, 55365, Republic of Korea
| | - Kyeong Yong Lee
- Department of Agricultural Biology, National Academy of Agricultural Science, Wanju, 55365, Republic of Korea
| | - Hye Kyung Kim
- Department of Industrial Entomology, Korea National College of Agriculture and Fisheries, Jeonju, 54874, Republic of Korea
| | - Kwang Sik Lee
- College of Natural Resources and Life Science, Dong-A University, Busan, 49315, Republic of Korea.
| | - Byung Rae Jin
- College of Natural Resources and Life Science, Dong-A University, Busan, 49315, Republic of Korea.
| |
Collapse
|
14
|
Colini Baldeschi A, Zattoni M, Vanni S, Nikolic L, Ferracin C, La Sala G, Summa M, Bertorelli R, Bertozzi SM, Giachin G, Carloni P, Bolognesi ML, De Vivo M, Legname G. Innovative Non-PrP-Targeted Drug Strategy Designed to Enhance Prion Clearance. J Med Chem 2022; 65:8998-9010. [PMID: 35771181 PMCID: PMC9289883 DOI: 10.1021/acs.jmedchem.2c00205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Prion diseases are a group of neurodegenerative disorders characterized by the accumulation of misfolded prion protein (called PrPSc). Although conversion of the cellular prion protein (PrPC) to PrPSc is still not completely understood, most of the therapies developed until now are based on blocking this process. Here, we propose a new drug strategy aimed at clearing prions without any direct interaction with neither PrPC nor PrPSc. Starting from the recent discovery of SERPINA3/SerpinA3n upregulation during prion diseases, we have identified a small molecule, named compound 5 (ARN1468), inhibiting the function of these serpins and effectively reducing prion load in chronically infected cells. Although the low bioavailability of this compound does not allow in vivo studies in prion-infected mice, our strategy emerges as a novel and effective approach to the treatment of prion disease.
Collapse
Affiliation(s)
- Arianna Colini Baldeschi
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, 34136 Trieste, Italy
| | - Marco Zattoni
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, 34136 Trieste, Italy
| | - Silvia Vanni
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, 34136 Trieste, Italy
| | - Lea Nikolic
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, 34136 Trieste, Italy
| | - Chiara Ferracin
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, 34136 Trieste, Italy
| | - Giuseppina La Sala
- Molecular Modeling & Drug Discovery Lab, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Maria Summa
- Translational Pharmacology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Rosalia Bertorelli
- Translational Pharmacology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Sine Mandrup Bertozzi
- Analytical Chemistry Lab, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Gabriele Giachin
- Department of Chemical Sciences (DiSC), University of Padua, Via F. Marzolo 1, 35131 Padova, Italy
| | - Paolo Carloni
- Institute for Advanced Simulations (IAS)-5/Institute for Neuroscience and Medicine (INM)-9, "Computational Medicine", Forschungszentrum Jülich, 52428 Jülich, Germany.,Institute for Neuroscience and Medicine (INM)-11, "Molecular Neuroscience and Neuroimaging", Forschungszentrum Jülich, 52428 Jülich, Germany.,Department of Physics, RWTH-Aachen University, 52074 Aachen, Germany
| | - Maria Laura Bolognesi
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Marco De Vivo
- Molecular Modeling & Drug Discovery Lab, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, 34136 Trieste, Italy
| |
Collapse
|
15
|
Wang S, Gao H, Wang X, Ma X, Zhang L, Xing Y, Jia Y, Wang Y. Network Pharmacology and Bioinformatics Analyses Identify Intersection Genes of Vitamin D3 and COVID-19 as Potential Therapeutic Targets. Front Pharmacol 2022; 13:874637. [PMID: 35571107 PMCID: PMC9095980 DOI: 10.3389/fphar.2022.874637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose: The persistent pandemic of coronavirus disease 2019 (COVID-19), the discovery of gastrointestinal transmission routes and the possible susceptibility of cancer patients to COVID-19 have forced us to search for effective pathways against stomach adenocarcinoma (STAD)/COVID-19. Vitamin D3 (VD3) is a steroid hormone with antiviral, anti-inflammatory and immunomodulatory properties. This study aimed to evaluate the possible functional role and potential mechanisms of action of VD3 as an anti-COVID-19 and anti- STAD. Methods: Clinicopathological analysis, enrichment analysis and protein interaction analysis using bioinformatics and network pharmacology methods. Validate the binding activity of VD3 to core pharmacological targets and viral crystal structures using molecular docking. Results: We revealed the clinical characteristics of STAD/COVID-19 patients. We also demonstrated that VD3 may be anti- STAD/COVID-19 through antiviral, anti-inflammatory, and immunomodulatory pathways. Molecular docking results showed that VD3 binds well to the relevant targets of COVID-19, including the spike RBD/ACE2 complex and main protease (Mpro, also known as 3CLpro). We also identified five core pharmacological targets of VD3 in anti-STAD/COVID-19 and validated the binding activity of VD3 to PAI1 by molecular docking. Conclusion: This study reveals for the first time that VD3 may act on disease target gene SERPINE1 through inflammatory and viral related signaling pathways and biological functions for the therapy of STAD/COVID-19. This may provide a new idea for the use of VD3 in the treatment of STAD/COVID-19.
Collapse
Affiliation(s)
- Shanglin Wang
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, China.,Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, China
| | - Huayu Gao
- Department of Pediatric Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Xiaoru Wang
- Department of Traditional Chinese Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, China
| | - Xiaoli Ma
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, China.,Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, China
| | - Lulu Zhang
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, China.,Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, China
| | - Yuanxin Xing
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, China.,Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, China
| | - Yanfei Jia
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, China.,Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, China
| | - Yunshan Wang
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, China.,Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, China
| |
Collapse
|
16
|
Cox A, Cevik H, Feldman HA, Canaday LM, Lakes N, Waggoner SN. Targeting natural killer cells to enhance vaccine responses. Trends Pharmacol Sci 2021; 42:789-801. [PMID: 34311992 PMCID: PMC8364504 DOI: 10.1016/j.tips.2021.06.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/21/2021] [Accepted: 06/13/2021] [Indexed: 02/06/2023]
Abstract
Vaccination serves as a cornerstone of global health. Successful prevention of infection or disease by vaccines is achieved through elicitation of pathogen-specific antibodies and long-lived memory T cells. However, several microbial threats to human health have proven refractory to past vaccine efforts. These shortcomings have been attributed to either inefficient triggering of memory T and B cell responses or to the unfulfilled need to stimulate non-conventional forms of immunological memory. Natural killer (NK) cells have recently emerged as both key regulators of vaccine-elicited T and B cell responses and as memory cells that contribute to pathogen control. We discuss potential methods to modulate these functions of NK cells to enhance vaccine success.
Collapse
Affiliation(s)
- Andrew Cox
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Hilal Cevik
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Molecular and Developmental Biology Graduate Program, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - H Alex Feldman
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Laura M Canaday
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Nora Lakes
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Stephen N Waggoner
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Molecular and Developmental Biology Graduate Program, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
17
|
Abd El Hadi SR, Zien El-Deen EE, Bahaa MM, Sadakah AA, Yassin HA. COVID-19: Vaccine Delivery System, Drug Repurposing and Application of Molecular Modeling Approach. Drug Des Devel Ther 2021; 15:3313-3330. [PMID: 34366663 PMCID: PMC8335551 DOI: 10.2147/dddt.s320320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/03/2021] [Indexed: 12/14/2022] Open
Abstract
The acute respiratory syndrome coronavirus (SARS-CoV-2) has spread across the world, resulting in a pandemic COVID-19 which is a human zoonotic disease that is caused by a novel coronavirus (CoV) strain thought to have originated in wild or captive bats in the initial COVID outbreak region. The global COVID-19 outbreak started in Guangdong Province, China's southernmost province. The global response to the COVID-19 pandemic has been hampered by the sheer number of infected people, many of whom need intensive care before succumbing to the disease. The epidemic is being handled by a combination of disease control by public health interventions and compassionate treatment for those who have been impacted. There is no clear anti-COVID-19 medication available at this time. However, the need to find medications that can turn the tide has led to the development of a number of investigational drugs as potential candidates for improving outcomes, especially in the severely and critically ill. Although many of these adjunctive medications are still being studied in clinical trials, professional organizations have attempted to define the circumstances in which their use is deemed off-label or compassionate. It is important to remind readers that new information about COVID-19's clinical features, treatment options, and outcomes is released on a regular basis. The mainstay of treatment remains optimized supportive care, and the therapeutic effectiveness of the subsequent agents is still being studied.
Collapse
Affiliation(s)
- Soha R Abd El Hadi
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, Egypt
| | - Esmat E Zien El-Deen
- Pharmaceutical Technology Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
- Pharmaceutics Department, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, Egypt
| | - Mostafa M Bahaa
- Pharmacy Practice Department, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| | - Abdelfattah A Sadakah
- Oral and Maxillofacial Surgery, Department, Faculty of Dentistry, Tanta University, Tanta, Egypt
- Oral and Maxillofacial Surgery, Department, Faculty of Dentistry, AlSalam University, Tanta, Egypt
| | - Heba A Yassin
- Pharmaceutics Department. Faculty of Pharmacy, AlSalam University, Tanta, Egypt
| |
Collapse
|
18
|
Ishida M, Kawao N, Mizukami Y, Takafuji Y, Kaji H. Serpinb1a suppresses osteoclast formation. Biochem Biophys Rep 2021; 26:101004. [PMID: 33997318 PMCID: PMC8100536 DOI: 10.1016/j.bbrep.2021.101004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 11/25/2022] Open
Abstract
Serpinb1a, a serine protease inhibitor family protein, has been implicated in immunoregulation and several metabolic disorders, such as diabetes and obesity; however, its roles in bone remain unknown. Therefore, we herein investigated the physiological functions of Serpinb1a in osteoclastic and osteoblastic differentiation using mouse cell lines. Serpinb1a overexpression markedly reduced the number of tartrate-resistant acid phosphatase (TRAP)- and calcitonin receptor-positive multinucleated cells increased by receptor activator nuclear factor κB ligand (RANKL) in mouse preosteoclastic RAW 264.7 cells. Moreover, it significantly decreased the mRNA levels of nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), TRAP and cathepsin K in these cells. Regarding osteoblasts, Serpinb1a overexpression significantly reduced the mRNA levels of alkaline phosphatase (ALP) and osteocalcin as well as ALP activity induced by bone morphogenetic protein-2 (BMP-2) in mouse mesenchymal ST2 cells, although it did not alter osteoblast differentiation in mouse osteoblastic MC3T3-E1 cells. Concerning the pathophysiological relevance of Serpinb1a, Serpinb1a mRNA levels were decreased in the soleus and gastrocnemius muscles of mice 4 weeks after bilateral sciatic nerve resection. In conclusion, we herein revealed for the first time that Serpinb1a inhibited osteoclast formation induced by RANKL in RAW 264.7 cells and suppressed BMP-2-induced ALP activity in ST2 cells.
Collapse
Affiliation(s)
- Masayoshi Ishida
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan
| | - Naoyuki Kawao
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan
| | - Yuya Mizukami
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan
| | - Yoshimasa Takafuji
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan
| | - Hiroshi Kaji
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan
| |
Collapse
|
19
|
Kellici TF, Pilka ES, Bodkin MJ. Therapeutic Potential of Targeting Plasminogen Activator Inhibitor-1 in COVID-19. Trends Pharmacol Sci 2021; 42:431-433. [PMID: 33867130 PMCID: PMC7997307 DOI: 10.1016/j.tips.2021.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/19/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023]
Abstract
Latest research shows that SERPINE1 overexpression has an important role in Coronavirus 2019 (COVID-19)-associated coagulopathy leading to acute respiratory distress syndrome (ARDS). However, ways to target this protein remain elusive. In this forum, we discuss recent evidence linking SERPINE1 with COVID-19-related ARDS and summarize the available data on inhibitors of this target.
Collapse
|