1
|
Wang B, Wu T. NNMT suppresses H3K9me3 to facilitate malignant progression and drug resistance in gastric cancer. Arab J Gastroenterol 2025:S1687-1979(24)00132-1. [PMID: 39757078 DOI: 10.1016/j.ajg.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/15/2024] [Accepted: 12/07/2024] [Indexed: 01/07/2025]
Abstract
BACKGROUND AND STUDY AIMS Nicotinamide N-methyltransferase (NNMT) is aberrantly expressed in tumors and is implicated in the progression and chemoresistance of cancers. This project attempts to explore the specific molecular mechanism by which NNMT enhances 5-fluorouracil (5-FU) resistance in gastric cancer (GC). MATERIALS AND METHODS By bioinformatics analysis, the expression of NNMT in GC was analyzed and its relationship with patients' prognoses was examined. The signaling pathway enriched by NNMT was analyzed by the Kyoto Encyclopedia of Genes and Genomes (KEGG). Western blot (WB) and quantitative reverse transcription polymerase chain reaction (qRT-PCR) were employed to measure the mRNA and protein expression of NNMT in normal gastric epithelial cells and GC cells. CCK8 was employed to measure cell viability and the IC50 of 5-FU. The apoptosis rate was assessed by Flow cytometry. WB measured the protein expression of Ki67, epithelial-mesenchymal transition (EMT)-related proteins, PI3K, AKT, p-AKT, NNMT, and H3K9me3. We applied the Transwell assay to measure cell migration and invasion ability. The content of S-adenosylmethionine (SAM) and S-adenosyl-L-homocysteine (SAH) in cells was measured by enzyme-linked immunosorbent assay (ELISA). RESULT NNMT was greatly upregulated in GC tissues and cells, exhibiting a negative linkage with patients' prognoses. Knocking down NNMT remarkably repressed the vitality, proliferation, anti-apoptotic ability, migration, and invasion of GC cells but elevated the sensitivity of cancer cells to 5-FU. However, overexpression of NNMT inhibited H3K9 methylation by reducing the universal methyl donor SAM, activated the PI3K/AKT pathway, facilitated GC malignant progression, and triggered resistance to 5-FU. CONCLUSION Upregulation of NNMT expression in GC cells can induce 5-FU resistance by repressing the activation of PI3K/AKT through the inhibition of histone methylation.
Collapse
Affiliation(s)
- Bo Wang
- Fourth Oncology Department, Anyang Tumor Hospital, Anyang City, Henan Province 455000, China
| | - Tao Wu
- Fourth Oncology Department, Anyang Tumor Hospital, Anyang City, Henan Province 455000, China.
| |
Collapse
|
2
|
Xu W, Hou L. Knockdown of nicotinamide N-methyltransferase ameliorates renal fibrosis caused by ischemia-reperfusion injury and remodels sphingosine metabolism. Clin Exp Nephrol 2024; 28:1241-1253. [PMID: 39168882 DOI: 10.1007/s10157-024-02545-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND CKD currently affects 8.2% to 9.1% of the global population and the CKD mortality rate has increased during recent decades, making it necessary to identify new therapeutic targets. This study investigated the role of nicotinamide N-methyltransferase (NNMT) in renal fibrosis following ischemia-reperfusion injury (IRI), a key factor in chronic kidney disease (CKD) progression. METHODS We established a mouse model with a knockdown of NNMT to investigate the impact of this enzyme on renal fibrosis after unilateral IRI. We then utilized histology, immunohistochemistry, and metabolomic analyses to investigate fibrosis markers and sphingolipid metabolism in NNMT-deficient mice. We also utilized an Nnmt lentivirus interference vector or an Nnmt overexpression plasmid to transfect mouse kidney proximal tubule cells, stimulated these cells with TGF-β1, and then measured the pro-fibrotic response and the expression of the methylated and unmethylated forms of Sphk1. RESULTS The results demonstrated that reducing NNMT expression mitigated fibrosis, inflammation, and lipid deposition, potentially through the modulation of sphingolipid metabolism. Histology, immunohistochemistry, and metabolomic analyses provided evidence of decreased fibrosis and enhanced sphingolipid metabolism in NNMT-deficient mice. NNMT mediated the TGF-β1-induced pro-fibrotic response, knockdown of Nnmt decreased the level of unmethylated Sphk1 and increased the level of methylated Sphk1 in renal tubular epithelial cells. CONCLUSIONS Our findings suggest that NNMT functions in sphingolipid metabolism and has potential as a therapeutic target for CKD. Further research is needed to elucidate the mechanisms linking NNMT to sphingolipid metabolism and renal fibrosis.
Collapse
Affiliation(s)
- Wanfeng Xu
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ling Hou
- Department of Pediatrics, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, China.
| |
Collapse
|
3
|
Park J, Shin EJ, Kim TH, Yang JH, Ki SH, Kang KW, Kim KM. Exploring NNMT: from metabolic pathways to therapeutic targets. Arch Pharm Res 2024; 47:893-913. [PMID: 39604638 DOI: 10.1007/s12272-024-01519-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
Cellular metabolism-related epigenetic modulation plays a pivotal role in the maintenance of cellular homeostasis. Nicotinamide N-methyltransferase (NNMT) serves as a crucial link between cellular metabolism and epigenetics by catalyzing nicotinamide methylation using the universal methyl donor S-adenosyl-L-methionine. This direct connection bridges the methylation-mediated one-carbon metabolism with nicotinamide adenine dinucleotide levels. Numerous studies have revealed tissue-specific differences in NNMT expression and activity, indicating that its varied physiological and pathological roles depend on its distribution. In this review, we provide an overview of the NNMT involvement in various pathological conditions, including cancer, liver disease, obesity, diabetes, brain disease, pulmonary disease, cardiovascular disease, and kidney disease. By synthesizing this information, our article aims to enhance our understanding of the cellular mechanisms underlying NNMT biology related to diverse diseases and lay the molecular groundwork for developing therapeutic strategies for pharmacological interventions.
Collapse
Affiliation(s)
- Jeongwoo Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju, 61452, Republic of Korea
- Institute of Well-Aging Medicare & Chosun University G-LAMP Project Group, Chosun University, Gwangju, 61452, Republic of Korea
| | - Eun Jin Shin
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju, 61452, Republic of Korea
- Institute of Well-Aging Medicare & Chosun University G-LAMP Project Group, Chosun University, Gwangju, 61452, Republic of Korea
- Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Age-Associated Disorder Control Technology, Chosun University, Gwangju, 61452, Republic of Korea
| | - Tae Hyun Kim
- Drug Information Research Institute, Muscle Physiome Research Center, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, South Korea
| | - Ji Hye Yang
- College of Korean Medicine, Dongshin University, Naju, Jeollanam-Do, 58245, Republic of Korea
| | - Sung Hwan Ki
- College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea
| | - Keon Wook Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyu Min Kim
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju, 61452, Republic of Korea.
- Institute of Well-Aging Medicare & Chosun University G-LAMP Project Group, Chosun University, Gwangju, 61452, Republic of Korea.
- Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Age-Associated Disorder Control Technology, Chosun University, Gwangju, 61452, Republic of Korea.
| |
Collapse
|
4
|
Zhang AA, Zhou C, Lin GQ, He QL, Zhao Q. Deciphering substrate promiscuity and specificity of indolethylamine N-methyltransferase family enzymes from amphibian toads. Bioorg Chem 2024; 153:107950. [PMID: 39522428 DOI: 10.1016/j.bioorg.2024.107950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/01/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
N-methylation is a crucial post-modification process in natural product biosynthesis and also contributes to the metabolism of various physiological substances, such as neurotransmitter, hormone, and trace elements. In this study, we identified seven indolethylamine N-methyltransferase (INMT) family enzymes from the amphibian toad Bufo gargarizan with distinct catalytic properties. Among these enzymes, BNMT 1, BNMT 5, BNMT 6 and BNMT 7 exhibited notable promiscuity, demonstrating the ability to methylate multiple derivatives of indolethylamine, phenylethylamine, phenylethanolamine, and nicotinamide. Conversely, BNMT 3 and BNMT 4 exhibited more specific substrate preferences, targeting particular phenylethylamine, phenylethanolamine, and nicotinamide-type substrates. Additionally, one enzyme, BNMT 11, exhibiting high specificity towards phenylethanolamines. By employing molecular docking and mutating key amino acids, we provided a rational explanation for the promiscuity and specificity mechanisms exhibited by these enzymes. This research offers valuable insights into the catalytic mechanisms of INMT family enzymes in B. gargarizans, as well as other organisms. Moreover, the identification of these broadly substrate-specific enzymes holds promise for leveraging synthetic biology in the production of a wide variety of naturally occurring N-methylated compounds.
Collapse
Affiliation(s)
- An-An Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Chengyu Zhou
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Guo-Qiang Lin
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Qing-Li He
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| | - Qunfei Zhao
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| |
Collapse
|
5
|
Li X, Song Y. Perspective for Drug Discovery Targeting SARS Coronavirus Methyltransferases: Function, Structure and Inhibition. J Med Chem 2024; 67:18642-18655. [PMID: 39478665 DOI: 10.1021/acs.jmedchem.4c01749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Severe acute respiratory syndrome-associated coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), is highly contagious and caused a catastrophic pandemic. It has infected billions of people worldwide with >6 million deaths. With expedited development of effective vaccines and antiviral drugs, there have been significantly reduced SARS-CoV-2 infections and associated mortalities and morbidities. The virus is closely related to SARS-CoV, which emerged in 2003 and infected several thousand people with a higher mortality rate of ∼10%. Because of continued viral evolution and drug-induced resistance, as well as the possibility of a new coronavirus in the future, studies for new therapies are needed. The viral methyltransferases play critical roles in SARS coronavirus replication and are therefore promising drug targets. This review summarizes the function, structure and inhibition of methyltransferases of SARS-CoV-2 and SARS-CoV. Challenges and perspectives of targeting the viral methyltransferases to treat viral infections are discussed.
Collapse
|
6
|
Marín-Blázquez M, Rovira J, Ramírez-Bajo MJ, Zapata-Pérez R, Rabadán-Ros R. NAD + enhancers as therapeutic agents in the cardiorenal axis. Cell Commun Signal 2024; 22:537. [PMID: 39516787 PMCID: PMC11546376 DOI: 10.1186/s12964-024-01903-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Cardiorenal diseases represent a complex interplay between heart failure and renal dysfunction, being clinically classified as cardiorenal syndromes (CRS). Recently, the contributions of altered nicotinamide adenine dinucleotide (NAD+) metabolism, through deficient NAD+ synthesis and/or elevated consumption, have proved to be decisive in the onset and progress of cardiorenal disease. NAD+ is a pivotal coenzyme in cellular metabolism, being significant in various signaling pathways, such as energy metabolism, DNA damage repair, gene expression, and stress response. Convincing evidence suggests that strategies designed to boost cellular NAD+ levels are a promising therapeutic option to address cardiovascular and renal disorders. Here, we review and discuss the implications of NAD+ metabolism in cardiorenal diseases, focusing on the propitious NAD+ boosting therapeutic strategies, based on the use of NAD+ precursors, poly(ADP-ribose) polymerase inhibitors, sirtuin activators, and other alternative approaches, such as CD38 blockade, nicotinamide phosphoribosyltransferase activation and combined interventions.
Collapse
Affiliation(s)
- Mariano Marín-Blázquez
- Group of Metabolism and Genetic Regulation of Disease, UCAM HiTech Sport & Health Innovation Hub, Universidad Católica de Murcia, 30107 Guadalupe de Maciascoque, Murcia, Spain
| | - Jordi Rovira
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Casanova 143 CRB CELLEX sector 2B, Barcelona, 08036, Spain
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS 2040), Madrid, Spain
| | - María José Ramírez-Bajo
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Casanova 143 CRB CELLEX sector 2B, Barcelona, 08036, Spain
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS 2040), Madrid, Spain
| | - Rubén Zapata-Pérez
- Group of Metabolism and Genetic Regulation of Disease, UCAM HiTech Sport & Health Innovation Hub, Universidad Católica de Murcia, 30107 Guadalupe de Maciascoque, Murcia, Spain.
| | - Rubén Rabadán-Ros
- Group of Metabolism and Genetic Regulation of Disease, UCAM HiTech Sport & Health Innovation Hub, Universidad Católica de Murcia, 30107 Guadalupe de Maciascoque, Murcia, Spain.
| |
Collapse
|
7
|
Hou S, Xu H, Lei S, Zhao D. Overexpressed nicotinamide N‑methyltransferase in endometrial stromal cells induced by macrophages and estradiol contributes to cell proliferation in endometriosis. Cell Death Discov 2024; 10:463. [PMID: 39489776 PMCID: PMC11532478 DOI: 10.1038/s41420-024-02229-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024] Open
Abstract
Endometriosis, an estrogen-dependent chronic inflammatory condition, afflicts reproductive-aged women. However, the underlying pathological mechanisms remain to be elucidated. Nicotinamide N-methyltransferase (NNMT) is a critical enzyme involved in cellular metabolism and methylation regulation. This study investigated the role of NNMT in endometriosis. By analyzing datasets GSE5108, GSE7305, GSE141549, GSE23339, and GSE25628, we identified a significant overexpression of NNMT in the eutopic endometrium and ectopic lesions of endometriosis patients compared to normal endometrium. Furthermore, NNMT was upregulated in collected endometrioma specimens and isolated primary endometrial stromal cells (ESCs) compared to their respective controls. Inhibition of NNMT using JBSNF-000088 attenuated the proliferation, migration, and invasion of ESCs. In vivo, treatment of mouse models of endometriosis with JBSNF-000088 resulted in a marked reduction in lesion weight and quantity. NNMT expression in ESCs was dose-dependently upregulated by 17β-estradiol at concentrations of 1 nM, 10 nM, and 100 nM, an effect that was attenuated by 10 nM progesterone. Additionally, treating HESCs with macrophage-conditioned medium elevated NNMT expression at both mRNA and protein levels. Knockdown of NNMT impeded the proliferation, migration, and invasion of ESCs, which was paralleled by decreased phosphorylation levels of Erb-b2 receptor tyrosine kinase 4 (ERBB4), PI3K, and AKT. Conversely, overexpressing ERBB4 mitigated the NNMT knockdown-induced decline in phosphorylated PI3K and AKT and rescued the proliferation of ESCs. Altogether, these results indicate that the overexpression of NNMT induced by estrogen and macrophage interaction modulates ESC proliferation via the NNMT-ERBB4-PI3K/AKT signaling pathway, as well as promotes cellular migration and invasion, contributing to the development of endometriosis.
Collapse
Affiliation(s)
- Shuhui Hou
- Department of Obstetrics and Gynecology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Xu
- Department of Obstetrics and Gynecology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shating Lei
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China
| | - Dong Zhao
- Department of Obstetrics and Gynecology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
8
|
Migaud ME, Ziegler M, Baur JA. Regulation of and challenges in targeting NAD + metabolism. Nat Rev Mol Cell Biol 2024; 25:822-840. [PMID: 39026037 DOI: 10.1038/s41580-024-00752-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2024] [Indexed: 07/20/2024]
Abstract
Nicotinamide adenine dinucleotide, in its oxidized (NAD+) and reduced (NADH) forms, is a reduction-oxidation (redox) co-factor and substrate for signalling enzymes that have essential roles in metabolism. The recognition that NAD+ levels fall in response to stress and can be readily replenished through supplementation has fostered great interest in the potential benefits of increasing or restoring NAD+ levels in humans to prevent or delay diseases and degenerative processes. However, much about the biology of NAD+ and related molecules remains poorly understood. In this Review, we discuss the current knowledge of NAD+ metabolism, including limitations of, assumptions about and unappreciated factors that might influence the success or contribute to risks of NAD+ supplementation. We highlight several ongoing controversies in the field, and discuss the role of the microbiome in modulating the availability of NAD+ precursors such as nicotinamide riboside (NR) and nicotinamide mononucleotide (NMN), the presence of multiple cellular compartments that have distinct pools of NAD+ and NADH, and non-canonical NAD+ and NADH degradation pathways. We conclude that a substantial investment in understanding the fundamental biology of NAD+, its detection and its metabolites in specific cells and cellular compartments is needed to support current translational efforts to safely boost NAD+ levels in humans.
Collapse
Affiliation(s)
- Marie E Migaud
- Mitchell Cancer Institute, Department of Pharmacology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, USA.
| | - Mathias Ziegler
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| | - Joseph A Baur
- Department of Physiology, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Myong S, Nguyen AQ, Challa S. Biological Functions and Therapeutic Potential of NAD + Metabolism in Gynecological Cancers. Cancers (Basel) 2024; 16:3085. [PMID: 39272943 PMCID: PMC11394644 DOI: 10.3390/cancers16173085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/31/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an important cofactor for both metabolic and signaling pathways, with the dysregulation of NAD+ levels acting as a driver for diseases such as neurodegeneration, cancers, and metabolic diseases. NAD+ plays an essential role in regulating the growth and progression of cancers by controlling important cellular processes including metabolism, transcription, and translation. NAD+ regulates several metabolic pathways such as glycolysis, the citric acid (TCA) cycle, oxidative phosphorylation, and fatty acid oxidation by acting as a cofactor for redox reactions. Additionally, NAD+ acts as a cofactor for ADP-ribosyl transferases and sirtuins, as well as regulating cellular ADP-ribosylation and deacetylation levels, respectively. The cleavage of NAD+ by CD38-an NAD+ hydrolase expressed on immune cells-produces the immunosuppressive metabolite adenosine. As a result, metabolizing and maintaining NAD+ levels remain crucial for the function of various cells found in the tumor microenvironment, hence its critical role in tissue homeostasis. The NAD+ levels in cells are maintained by a balance between NAD+ biosynthesis and consumption, with synthesis being controlled by the Preiss-Handler, de novo, and NAD+ salvage pathways. The primary source of NAD+ synthesis in a variety of cell types is directed by the expression of the enzymes central to the three biosynthesis pathways. In this review, we describe the role of NAD+ metabolism and its synthesizing and consuming enzymes' control of cancer cell growth and immune responses in gynecologic cancers. Additionally, we review the ongoing efforts to therapeutically target the enzymes critical for NAD+ homeostasis in gynecologic cancers.
Collapse
Affiliation(s)
- Subin Myong
- The University of Chicago Comprehensive Cancer Center, The University of Chicago, Chicago, IL 60637, USA
| | - Anh Quynh Nguyen
- Department of Obstetrics and Gynecology, The University of Chicago, Chicago, IL 60637, USA
| | - Sridevi Challa
- The University of Chicago Comprehensive Cancer Center, The University of Chicago, Chicago, IL 60637, USA
- Department of Obstetrics and Gynecology, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
10
|
Liang R, Xiang Q, Dai M, Lin T, Xie D, Song Q, Liu Y, Yue J. Identification of nicotinamide N-methyltransferase as a promising therapeutic target for sarcopenia. Aging Cell 2024; 23:e14236. [PMID: 38838088 PMCID: PMC11488295 DOI: 10.1111/acel.14236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 06/07/2024] Open
Abstract
Sarcopenia is a significant geriatric syndrome that involves the loss of skeletal muscle mass and strength. Due to its substantial endocrine role, the metabolic microenvironment of skeletal muscle undergoes changes with age. Examining the pathogenesis of sarcopenia through focusing on metabolic dysregulation could offer insights for developing more effective intervention strategies. In this study, we analyzed the transcriptomics data to identify specific genes involved in the regulation of metabolism in skeletal muscle during the development of sarcopenia. Three machine learning algorithms were employed to screen key target genes exhibiting strong correlations with metabolism, which were further validated using RNA-sequencing data and publicly accessible datasets. Among them, the metabolic enzyme nicotinamide N-methyltransferase (NNMT) was elevated in sarcopenia, and predicted sarcopenia with an area under the curve exceeding 0.7, suggesting it as a potential therapeutic target for sarcopenia. As expected, inhibition of NNMT improved the grip strength in aging mice and alleviated age-related decline in the mass index of the quadriceps femoris muscles and whole-body lean mass index. Additionally, the NNMTi treatment increased the levels of nicotinamide adenine dinucleotide (NAD+) content, as well as PGC1α and p-AMPK expression in the muscles of both the D-galactose-treated mouse model and naturally aging mouse model. Overall, this work demonstrates NNMT as a promising target for preventing age-related decline in muscle mass and strength.
Collapse
Affiliation(s)
- Rui Liang
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduChina
| | - Qiao Xiang
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduChina
| | - Miao Dai
- Department of GeriatricsJiujiang No 1 People's HospitalJiujiangJiangxiChina
| | - Taiping Lin
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduChina
| | - Dongmei Xie
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduChina
| | - Quhong Song
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduChina
| | - Yu Liu
- National Clinical Research Center for Geriatrics, General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Jirong Yue
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
11
|
Zheng C, Li Y, Wu X, Gao L, Chen X. Advances in the Synthesis and Physiological Metabolic Regulation of Nicotinamide Mononucleotide. Nutrients 2024; 16:2354. [PMID: 39064797 PMCID: PMC11279976 DOI: 10.3390/nu16142354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Nicotinamide mononucleotide (NMN), the direct precursor of nicotinamide adenine dinucleotide (NAD+), is involved in the regulation of many physiological and metabolic reactions in the body. NMN can indirectly affect cellular metabolic pathways, DNA repair, and senescence, while also being essential for maintaining tissues and dynamic metabolic equilibria, promoting healthy aging. Therefore, NMN has found many applications in the food, pharmaceutical, and cosmetics industries. At present, NMN synthesis strategies mainly include chemical synthesis and biosynthesis. Despite its potential benefits, the commercial production of NMN by organic chemistry approaches faces environmental and safety problems. With the rapid development of synthetic biology, it has become possible to construct microbial cell factories to produce NMN in a cost-effective way. In this review, we summarize the chemical and biosynthetic strategies of NMN, offering an overview of the recent research progress on host selection, chassis cell optimization, mining of key enzymes, metabolic engineering, and adaptive fermentation strategies. In addition, we also review the advances in the role of NMN in aging, metabolic diseases, and neural function. This review provides comprehensive technical guidance for the efficient biosynthesis of NMN as well as a theoretical basis for its application in the fields of food, medicine, and cosmetics.
Collapse
Affiliation(s)
- Chuxiong Zheng
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China;
| | - Yumeng Li
- National Technology Innovation Center for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32, Xiqi Road, Tianjin Airport Economic Park, Tianjin 300308, China; (Y.L.); (X.W.)
| | - Xin Wu
- National Technology Innovation Center for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32, Xiqi Road, Tianjin Airport Economic Park, Tianjin 300308, China; (Y.L.); (X.W.)
| | - Le Gao
- National Technology Innovation Center for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32, Xiqi Road, Tianjin Airport Economic Park, Tianjin 300308, China; (Y.L.); (X.W.)
| | - Xiaoyi Chen
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China;
| |
Collapse
|
12
|
Li JJ, Sun WD, Zhu XJ, Mei YZ, Li WS, Li JH. Nicotinamide N-Methyltransferase (NNMT): A New Hope for Treating Aging and Age-Related Conditions. Metabolites 2024; 14:343. [PMID: 38921477 PMCID: PMC11205546 DOI: 10.3390/metabo14060343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
The complex process of aging leads to a gradual deterioration in the function of cells, tissues, and the entire organism, thereby increasing the risk of disease and death. Nicotinamide N-methyltransferase (NNMT) has attracted attention as a potential target for combating aging and its related pathologies. Studies have shown that NNMT activity increases over time, which is closely associated with the onset and progression of age-related diseases. NNMT uses S-adenosylmethionine (SAM) as a methyl donor to facilitate the methylation of nicotinamide (NAM), converting NAM into S-adenosyl-L-homocysteine (SAH) and methylnicotinamide (MNA). This enzymatic action depletes NAM, a precursor of nicotinamide adenine dinucleotide (NAD+), and generates SAH, a precursor of homocysteine (Hcy). The reduction in the NAD+ levels and the increase in the Hcy levels are considered important factors in the aging process and age-related diseases. The efficacy of RNA interference (RNAi) therapies and small-molecule inhibitors targeting NNMT demonstrates the potential of NNMT as a therapeutic target. Despite these advances, the exact mechanisms by which NNMT influences aging and age-related diseases remain unclear, and there is a lack of clinical trials involving NNMT inhibitors and RNAi drugs. Therefore, more in-depth research is needed to elucidate the precise functions of NNMT in aging and promote the development of targeted pharmaceutical interventions. This paper aims to explore the specific role of NNMT in aging, and to evaluate its potential as a therapeutic target.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiang-Hua Li
- Physical Education College, Jiangxi Normal University, Nanchang 330022, China; (J.-J.L.); (W.-D.S.); (X.-J.Z.); (Y.-Z.M.); (W.-S.L.)
| |
Collapse
|
13
|
Gauss C, Stone LD, Ghafouri M, Quan D, Johnson J, Fribley AM, Amm HM. Overcoming Resistance to Standard-of-Care Therapies for Head and Neck Squamous Cell Carcinomas. Cells 2024; 13:1018. [PMID: 38920648 PMCID: PMC11201455 DOI: 10.3390/cells13121018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
Although there have been some advances during in recent decades, the treatment of head and neck squamous cell carcinoma (HNSCC) remains challenging. Resistance is a major issue for various treatments that are used, including both the conventional standards of care (radiotherapy and platinum-based chemotherapy) and the newer EGFR and checkpoint inhibitors. In fact, all the non-surgical treatments currently used for HNSCC are associated with intrinsic and/or acquired resistance. Herein, we explore the cellular mechanisms of resistance reported in HNSCC, including those related to epigenetic factors, DNA repair defects, and several signaling pathways. This article discusses these mechanisms and possible approaches that can be used to target different pathways to sensitize HNSCC to the existing treatments, obtain better responses to new agents, and ultimately improve the patient outcomes.
Collapse
Affiliation(s)
- Chester Gauss
- Carman and Ann Adams Department of Pediatrics, School of Medicine, Wayne State University, Detroit, MI 48202, USA; (C.G.); (M.G.)
| | - Logan D. Stone
- Oral & Maxillofacial Surgery, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Mehrnoosh Ghafouri
- Carman and Ann Adams Department of Pediatrics, School of Medicine, Wayne State University, Detroit, MI 48202, USA; (C.G.); (M.G.)
| | - Daniel Quan
- Department of Otolaryngology Head and Neck Surgery, School of Medicine, Wayne State University, Detroit, MI 48202, USA; (D.Q.)
| | - Jared Johnson
- Department of Otolaryngology Head and Neck Surgery, School of Medicine, Wayne State University, Detroit, MI 48202, USA; (D.Q.)
| | - Andrew M. Fribley
- Carman and Ann Adams Department of Pediatrics, School of Medicine, Wayne State University, Detroit, MI 48202, USA; (C.G.); (M.G.)
- Department of Otolaryngology Head and Neck Surgery, School of Medicine, Wayne State University, Detroit, MI 48202, USA; (D.Q.)
- Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48202, USA
| | - Hope M. Amm
- Oral & Maxillofacial Surgery, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| |
Collapse
|
14
|
Sun WD, Zhu XJ, Li JJ, Mei YZ, Li WS, Li JH. Nicotinamide N-methyltransferase (NNMT): a novel therapeutic target for metabolic syndrome. Front Pharmacol 2024; 15:1410479. [PMID: 38919254 PMCID: PMC11196770 DOI: 10.3389/fphar.2024.1410479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Metabolic syndrome (MetS) represents a constellation of metabolic abnormalities, typified by obesity, hypertension, hyperglycemia, and hyperlipidemia. It stems from intricate dysregulations in metabolic pathways governing energy and substrate metabolism. While comprehending the precise etiological mechanisms of MetS remains challenging, evidence underscores the pivotal roles of aberrations in lipid metabolism and insulin resistance (IR) in its pathogenesis. Notably, nicotinamide N-methyltransferase (NNMT) has recently surfaced as a promising therapeutic target for addressing MetS. Single nucleotide variants in the NNMT gene are significantly correlated with disturbances in energy metabolism, obesity, type 2 diabetes (T2D), hyperlipidemia, and hypertension. Elevated NNMT gene expression is notably observed in the liver and white adipose tissue (WAT) of individuals with diabetic mice, obesity, and rats afflicted with MetS. Knockdown of NNMT elicits heightened energy expenditure in adipose and hepatic tissues, mitigates lipid accumulation, and enhances insulin sensitivity. NNMT catalyzes the methylation of nicotinamide (NAM) using S-adenosyl-methionine (SAM) as the donor methyl group, resulting in the formation of S-adenosyl-l-homocysteine (SAH) and methylnicotinamide (MNAM). This enzymatic process results in the depletion of NAM, a precursor of nicotinamide adenine dinucleotide (NAD+), and the generation of SAH, a precursor of homocysteine (Hcy). Consequently, this cascade leads to reduced NAD+ levels and elevated Hcy levels, implicating NNMT in the pathogenesis of MetS. Moreover, experimental studies employing RNA interference (RNAi) strategies and small molecule inhibitors targeting NNMT have underscored its potential as a therapeutic target for preventing or treating MetS-related diseases. Nonetheless, the precise mechanistic underpinnings remain elusive, and as of yet, clinical trials focusing on NNMT have not been documented. Therefore, further investigations are warranted to elucidate the intricate roles of NNMT in MetS and to develop targeted therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiang-Hua Li
- Key Lab of Aquatic Training Monitoring and Intervention of General Administration of Sport of China, Physical Education College, Jiangxi Normal University, Nanchang, China
| |
Collapse
|
15
|
Huang H, Su L, Zhang R, Wu D, Ding C, Chen C, Zhu G, Cao P, Li X, Li Y, Liu H, Chen J. Pan-cancer analysis combined with experiments predicts NNMT as a therapeutic target for human cancers. Discov Oncol 2024; 15:196. [PMID: 38809277 PMCID: PMC11136932 DOI: 10.1007/s12672-024-01052-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 05/22/2024] [Indexed: 05/30/2024] Open
Abstract
The identification of effective therapeutic targets plays a pivotal role in advancing cancer treatment outcomes. We employed a comprehensive pan-cancer analysis, complemented by experimental validation, to explore the potential of Nicotinamide N-methyltransferase (NNMT) as a promising therapeutic strategy for human cancers. By analyzing large-scale transcriptomic datasets across various cancer types, we consistently observed upregulated expression of NNMT. Furthermore, elevated NNMT expression correlated with inferior overall survival in multiple cancer cohorts, underscoring its significance as a prognostic biomarker. Additionally, we investigated the relationship between NNMT expression and the tumor immune microenvironment, which plays a crucial role in regulating anti-tumor immune responses. To confirm the malignant functions of NNMT in tumor cells, we conducted a series of cell-based experiments, revealing that NNMT promotes cancer cell proliferation and invasion, indicative of its oncogenic properties. The integration of computational analysis and experimental validation in our study firmly establishes NNMT as a potential therapeutic target for human cancers. Specifically, targeting NNMT holds promise for the development of innovative and effective cancer treatments. Further investigations into NNMT's role in cancer pathogenesis could potentially pave the way for groundbreaking advancements in cancer treatment.
Collapse
Affiliation(s)
- Hua Huang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Lianchun Su
- Department of Thoracic Surgery, First Affiliated Hospital of Shihezi University School of Medicine, Shihezi, China
| | - Ruihao Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Di Wu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Chen Ding
- Department of Thoracic Surgery, First Affiliated Hospital of Shihezi University School of Medicine, Shihezi, China
| | - Chen Chen
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Guangsheng Zhu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Peijun Cao
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Xuanguang Li
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yongwen Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Hongyu Liu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Jun Chen
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China.
- Department of Thoracic Surgery, First Affiliated Hospital of Shihezi University School of Medicine, Shihezi, China.
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
16
|
Xiong Z, Fang Y, Lu S, Sun Q, Sun Y, Yang P, Huang J. Exploring the Relevance of Disulfidptosis to the Pathophysiology of Ulcerative Colitis by Bioinformatics Analysis. J Inflamm Res 2024; 17:2757-2774. [PMID: 38737111 PMCID: PMC11088416 DOI: 10.2147/jir.s454668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/25/2024] [Indexed: 05/14/2024] Open
Abstract
Background Ulcerative colitis (UC) is a nonspecific inflammatory disease confined to the intestinal mucosa and submucosa, and its prevalence significantly increases each year. Disulfidptosis is a recently discovered new form of cell death that has been suggested to be involved in multiple diseases. The aim of this study was to explore the relevance of disulfidptosis in UC. Methods First, the UC datasets were downloaded from the Gene Expression Omnibus (GEO) database, and UC samples were typed based on upregulated disulfidptosis-related genes (DRGs). Then, weighted gene co-expression network analysis (WGCNA) was performed on the datasets and molecular subtypes of UC, respectively, to obtain candidate signature genes. After validation of the validation set and qRT-PCR, we constructed a nomogram model by signature genes to predict the risk of UC. Finally, single-cell sequencing analysis was used to study the heterogeneity of UC and to demonstrate the expression of DRGs and signature genes at the single-cell level. Results A total of 7 DRGs were significantly upregulated in the expression profiles of UC, and 180 UC samples were divided into two subtypes based on these DRGs. Five candidate signature genes were obtained by intersecting two key gene modules selected by WGCNA. After evaluation, four signature genes with diagnostic relevance (COL4A1, PRRX1, NNMT, and PECAM1) were eventually identified. The nomogram model showed excellent prediction ability. Finally, in the single-cell analysis, there were eight cell types (including B cells, T cells, monocyte, smooth muscle cells, epithelial cells, neutrophil, endothelial cells and NK cells) were identified. The signature genes were significantly expressed mainly in endothelial cells and smooth muscle cells. Conclusion In this study, subtypes related to disulfidptosis were identified, and single-cell analysis was performed to understand the pathogenesis of UC from a new perspective. Four signature genes were screened and a prediction model with high accuracy was established. This provides novel insights for early diagnosis and therapeutic targets in UC.
Collapse
Affiliation(s)
- Zhe Xiong
- Department of Gastroenterology, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, People’s Republic of China
- Graduate School of Dalian Medical University, Dalian, Liaoning Province, China
| | - Ying Fang
- Department of Gastroenterology, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, People’s Republic of China
- Graduate School of Dalian Medical University, Dalian, Liaoning Province, China
| | - Shuangshuang Lu
- Department of Gastroenterology, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, People’s Republic of China
| | - Qiuyue Sun
- Department of Gastroenterology, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, People’s Republic of China
- Graduate School of Nanjing Medical University, Nanjing, Jiangsu Province, People’s Republic of China
| | - Yuhui Sun
- Department of Gastroenterology, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, People’s Republic of China
- Graduate School of Nanjing Medical University, Nanjing, Jiangsu Province, People’s Republic of China
| | - Pengcheng Yang
- Department of Gastroenterology, Hengshanqiao People’s Hospital, Changzhou, Jiangsu Province, People’s Republic of China
| | - Jin Huang
- Department of Gastroenterology, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, People’s Republic of China
| |
Collapse
|
17
|
Jedrzejewska A, Jablonska P, Gawlik-Jakubczak T, Czajkowski M, Maszka P, Mierzejewska P, Smolenski RT, Slominska EM. Elevated Plasma Concentration of 4-Pyridone-3-carboxamide-1-β-D-ribonucleoside (4PYR) Highlights Malignancy of Renal Cell Carcinoma. Int J Mol Sci 2024; 25:2359. [PMID: 38397036 PMCID: PMC10888534 DOI: 10.3390/ijms25042359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 01/31/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Nicotinamide (NA) derivatives play crucial roles in various biological processes, such as inflammation, regulation of the cell cycle, and DNA repair. Recently, we proposed that 4-pyridone-3-carboxamide-1-β-D-ribonucleoside (4PYR), an unusual derivative of NA, could be classified as an oncometabolite in bladder, breast, and lung cancer. In this study, we investigated the relations between NA metabolism and the progression, recurrence, metastasis, and survival of patients diagnosed with different histological subtypes of renal cell carcinoma (RCC). We identified alterations in plasma NA metabolism, particularly in the clear cell RCC (ccRCC) subtype, compared to papillary RCC, chromophobe RCC, and oncocytoma. Patients with ccRCC also exhibited larger tumor sizes and elevated levels of diagnostic serum biomarkers, such as hsCRP concentration and ALP activity, which were positively correlated with the plasma 4PYR. Notably, 4PYR levels were elevated in advanced stages of ccRCC cancer and were associated with a highly aggressive phenotype of ccRCC. Additionally, elevated concentrations of 4PYR were related to a higher likelihood of mortality, recurrence, and particularly metastasis in ccRCC. These findings are consistent with other studies, suggesting that NA metabolism is accelerated in RCC, leading to abnormal concentrations of 4PYR. This supports the concept of 4PYR as an oncometabolite and a potential prognostic factor in the ccRCC subtype.
Collapse
Affiliation(s)
- Agata Jedrzejewska
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.J.); (P.J.); (P.M.); (P.M.)
| | - Patrycja Jablonska
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.J.); (P.J.); (P.M.); (P.M.)
| | - Teresa Gawlik-Jakubczak
- Department of Urology, Medical University of Gdansk, 80-211 Gdansk, Poland; (T.G.-J.); (M.C.)
| | - Mateusz Czajkowski
- Department of Urology, Medical University of Gdansk, 80-211 Gdansk, Poland; (T.G.-J.); (M.C.)
| | - Patrycja Maszka
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.J.); (P.J.); (P.M.); (P.M.)
| | - Paulina Mierzejewska
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.J.); (P.J.); (P.M.); (P.M.)
| | - Ryszard T. Smolenski
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.J.); (P.J.); (P.M.); (P.M.)
| | - Ewa M. Slominska
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.J.); (P.J.); (P.M.); (P.M.)
| |
Collapse
|
18
|
Henderson JD, Quigley SNZ, Chachra SS, Conlon N, Ford D. The use of a systems approach to increase NAD + in human participants. NPJ AGING 2024; 10:7. [PMID: 38302501 PMCID: PMC10834541 DOI: 10.1038/s41514-023-00134-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/12/2023] [Indexed: 02/03/2024]
Abstract
Reversal or mitigation against an age-related decline in NAD+ has likely benefits, and this premise has driven academic and commercial endeavour to develop dietary supplements that achieve this outcome. We used a systems-based approach to improve on current supplements by targeting multiple points in the NAD+ salvage pathway. In a double-blind, randomised, crossover trial, the supplement - Nuchido TIME+® (NT) - increased NAD+ concentration in whole blood. This was associated with an increase in SIRT1 and an increase in nicotinamide phosphoribosyltransferase (NAMPT) in peripheral blood mononucleocytes, lower concentrations of pro-inflammatory cytokines in plasma, including a reduction in interleukin 2 (IL2), a reduction in glycated serum protein and a shift in the glycosylation profile of immunoglobulin G (IgG) toward a younger biological age, all of which are likely to promote a healthier ageing trajectory.
Collapse
Affiliation(s)
- John D Henderson
- Department of Applied Sciences, Northumbria University, Northumberland Road, Newcastle upon Tyne, NE1 8ST, UK
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3B, Mærsk Tårnet, 7, Sal, 2200, København N, Denmark
| | - Sophia N Z Quigley
- Department of Applied Sciences, Northumbria University, Northumberland Road, Newcastle upon Tyne, NE1 8ST, UK
| | - Shruti S Chachra
- Nuchido Ltd. Dissington Hall, Dalton, Northumberland, NE18 0AD, UK
| | - Nichola Conlon
- Nuchido Ltd. Dissington Hall, Dalton, Northumberland, NE18 0AD, UK.
| | - Dianne Ford
- Department of Applied Sciences, Northumbria University, Northumberland Road, Newcastle upon Tyne, NE1 8ST, UK.
| |
Collapse
|
19
|
Zaalberg A, Pottendorfer E, Zwart W, Bergman AM. It Takes Two to Tango: The Interplay between Prostate Cancer and Its Microenvironment from an Epigenetic Perspective. Cancers (Basel) 2024; 16:294. [PMID: 38254784 PMCID: PMC10813511 DOI: 10.3390/cancers16020294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/28/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Prostate cancer is the second most common cancer in men worldwide and is associated with high morbidity and mortality. Consequently, there is an urgent unmet need for novel treatment avenues. In addition to somatic genetic alterations, deviations in the epigenetic landscape of cancer cells and their tumor microenvironment (TME) are critical drivers of prostate cancer initiation and progression. Unlike genomic mutations, epigenetic modifications are potentially reversible. Therefore, the inhibition of aberrant epigenetic modifications represents an attractive and exciting novel treatment strategy for castration-resistant prostate cancer patients. Moreover, drugs targeting the epigenome also exhibit synergistic interactions with conventional therapeutics by directly enhancing their anti-tumorigenic properties by "priming" the tumor and tumor microenvironment to increase drug sensitivity. This review summarizes the major epigenetic alterations in prostate cancer and its TME, and their involvement in prostate tumorigenesis, and discusses the impact of epigenome-targeted therapies.
Collapse
Affiliation(s)
- Anniek Zaalberg
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; (A.Z.); (E.P.)
| | - Elisabeth Pottendorfer
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; (A.Z.); (E.P.)
| | - Wilbert Zwart
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; (A.Z.); (E.P.)
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Oncode Institute
| | - Andries M. Bergman
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; (A.Z.); (E.P.)
- Division of Medical Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
20
|
Zhang J, Wang H, Tian Y, Li T, Zhang W, Ma L, Chen X, Wei Y. Discovery of a novel lipid metabolism-related gene signature to predict outcomes and the tumor immune microenvironment in gastric cancer by integrated analysis of single-cell and bulk RNA sequencing. Lipids Health Dis 2023; 22:212. [PMID: 38042786 PMCID: PMC10693080 DOI: 10.1186/s12944-023-01977-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/21/2023] [Indexed: 12/04/2023] Open
Abstract
Gastric cancer (GC) is a pressing global clinical issue, with few treatment options and a poor prognosis. The onset and spread of stomach cancer are significantly influenced by changes in lipid metabolism-related pathways. This study aimed to discover a predictive signature for GC using lipid metabolism-related genes (LMRGs) and examine its correlation with the tumor immune microenvironment (TIME). Transcriptome data and clinical information from patients with GC were collected from the TCGA and GEO databases. Data from GC samples were analyzed using both bulk RNA-seq and single-cell sequencing of RNA (scRNA-seq). To identify survival-related differentially expressed LMRGs (DE-LMRGs), differential expression and prognosis studies were carried out. We built a predictive signature using LASSO regression and tested it on the TCGA and GSE84437 datasets. In addition, the correlation of the prognostic signature with the TIME was comprehensively analyzed. In this study, we identified 258 DE-LMRGs in GC and further screened seven survival-related DE-LMRGs. The results of scRNA-seq identified 688 differentially expressed genes (DEGs) between the three branches. Two critical genes (GPX3 and NNMT) were identified using the above two gene groups. In addition, a predictive risk score that relies on GPX3 and NNMT was developed. Survival studies in both the TCGA and GEO datasets revealed that patients categorized to be at low danger had a significantly greater prognosis than those identified to be at high danger. Additionally, by employing calibration plots based on TCGA data, the study demonstrated the substantial predictive capacity of a prognostic nomogram, which incorporated a risk score along with various clinical factors. Within the high-risk group, there was a noticeable abundance of active natural killer (NK) cells, quiescent monocytes, macrophages, mast cells, and activated CD4 + T cells. In summary, a two-gene signature and a predictive nomogram have been developed, offering accurate prognostic predictions for general survival in GC patients. These findings have the potential to assist healthcare professionals in making informed medical decisions and providing personalized treatment approaches.
Collapse
Affiliation(s)
- Jinze Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Dalian Medical University, Dalian, China
- Department of Scientific Research, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - He Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Dalian Medical University, Dalian, China
| | - Yu Tian
- Department of Epidemiology and Health Statistics, School of Public Health, Dalian Medical University, Dalian, China
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| | - Tianfeng Li
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
- Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Wei Zhang
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| | - Li Ma
- Department of Epidemiology and Health Statistics, School of Public Health, Dalian Medical University, Dalian, China
| | - Xiangjuan Chen
- Department of Obstetrics, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China.
| | - Yushan Wei
- Department of Scientific Research, First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
21
|
Xu Y, Xiao W. NAD+: An Old but Promising Therapeutic Agent for Skeletal Muscle Ageing. Ageing Res Rev 2023; 92:102106. [PMID: 39492424 DOI: 10.1016/j.arr.2023.102106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/05/2024]
Abstract
More than a century after the discovery of nicotinamide adenine dinucleotide (NAD+), our understanding of the molecule's role in the biology of ageing continues to evolve. As a coenzyme or substrate for many enzymes, NAD+ governs a wide range of biological processes, including energy metabolism, genomic stability, signal transduction, and cell fate. NAD+ deficiency has been recognised as a bona fide hallmark of tissue degeneration, and restoring NAD+ homeostasis helps to rejuvenate multiple mechanisms associated with tissue ageing. The progressive loss of skeletal muscle homeostasis with age is directly associated with high morbidity, disability and mortality. The aetiology of skeletal muscle ageing is complex, involving mitochondrial dysfunction, senescence and stem cell depletion, autophagy defects, chronic cellular stress, intracellular ion overload, immune cell dysfunction, circadian clock disruption, microcirculation disorders, persistent denervation, and gut microbiota dysbiosis. This review focuses on the therapeutic potential of NAD+ restoration to alleviate the above pathological factors and discusses the effects of in vivo administration of different NAD+ boosting strategies on skeletal muscle homeostasis, aiming to provide a reference for combating skeletal muscle ageing.
Collapse
Affiliation(s)
- Yingying Xu
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| | - Weihua Xiao
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
22
|
Aghara H, Chadha P, Zala D, Mandal P. Stress mechanism involved in the progression of alcoholic liver disease and the therapeutic efficacy of nanoparticles. Front Immunol 2023; 14:1205821. [PMID: 37841267 PMCID: PMC10570533 DOI: 10.3389/fimmu.2023.1205821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/07/2023] [Indexed: 10/17/2023] Open
Abstract
Alcoholic liver disease (ALD) poses a significant threat to human health, with excessive alcohol intake disrupting the immunotolerant environment of the liver and initiating a cascade of pathological events. This progressive disease unfolds through fat deposition, proinflammatory cytokine upregulation, activation of hepatic stellate cells, and eventual development of end-stage liver disease, known as hepatocellular carcinoma (HCC). ALD is intricately intertwined with stress mechanisms such as oxidative stress mediated by reactive oxygen species, endoplasmic reticulum stress, and alcohol-induced gut dysbiosis, culminating in increased inflammation. While the initial stages of ALD can be reversible with diligent care and abstinence, further progression necessitates alternative treatment approaches. Herbal medicines have shown promise, albeit limited by their poor water solubility and subsequent lack of extensive exploration. Consequently, researchers have embarked on a quest to overcome these challenges by delving into the potential of nanoparticle-mediated therapy. Nanoparticle-based treatments are being explored for liver diseases that share similar mechanisms with alcoholic liver disease. It underscores the potential of these innovative approaches to counteract the complex pathogenesis of ALD, providing new avenues for therapeutic intervention. Nevertheless, further investigations are imperative to fully unravel the therapeutic potential and unlock the promise of nanoparticle-mediated therapy specifically tailored for ALD treatment.
Collapse
Affiliation(s)
| | | | | | - Palash Mandal
- P D Patel Institute of Applied Sciences, Charotar University of Science and Technology, Anand, Gujarat, India
| |
Collapse
|
23
|
Aghara H, Chadha P, Zala D, Mandal P. Stress mechanism involved in the progression of alcoholic liver disease and the therapeutic efficacy of nanoparticles. Front Immunol 2023; 14. [DOI: https:/doi.org/10.3389/fimmu.2023.1205821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023] Open
Abstract
Alcoholic liver disease (ALD) poses a significant threat to human health, with excessive alcohol intake disrupting the immunotolerant environment of the liver and initiating a cascade of pathological events. This progressive disease unfolds through fat deposition, proinflammatory cytokine upregulation, activation of hepatic stellate cells, and eventual development of end-stage liver disease, known as hepatocellular carcinoma (HCC). ALD is intricately intertwined with stress mechanisms such as oxidative stress mediated by reactive oxygen species, endoplasmic reticulum stress, and alcohol-induced gut dysbiosis, culminating in increased inflammation. While the initial stages of ALD can be reversible with diligent care and abstinence, further progression necessitates alternative treatment approaches. Herbal medicines have shown promise, albeit limited by their poor water solubility and subsequent lack of extensive exploration. Consequently, researchers have embarked on a quest to overcome these challenges by delving into the potential of nanoparticle-mediated therapy. Nanoparticle-based treatments are being explored for liver diseases that share similar mechanisms with alcoholic liver disease. It underscores the potential of these innovative approaches to counteract the complex pathogenesis of ALD, providing new avenues for therapeutic intervention. Nevertheless, further investigations are imperative to fully unravel the therapeutic potential and unlock the promise of nanoparticle-mediated therapy specifically tailored for ALD treatment.
Collapse
|
24
|
Reustle A, Büttner FA, Schwab M, Schaeffeler E. Re: Judikael R. Saout, Gwendoline Lecuyer, Simon Léonard, et al. Single-cell Deconvolution of a Specific Malignant Cell Population as a Poor Prognostic Biomarker in Low-risk Clear Cell Renal Cell Carcinoma Patients. Eur Urol. 2023;83:441-51. Eur Urol 2023; 84:e72. [PMID: 37202315 DOI: 10.1016/j.eururo.2023.04.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/19/2023] [Indexed: 05/20/2023]
Affiliation(s)
- Anna Reustle
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany; University of Tübingen, Tübingen, Germany
| | - Florian A Büttner
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany; University of Tübingen, Tübingen, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany; Departments of Clinical Pharmacology, Pharmacy and Biochemistry, University of Tübingen, Tübingen, Germany.
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany; University of Tübingen, Tübingen, Germany
| |
Collapse
|
25
|
DeBalsi KL, Newman JH, Sommerville LJ, Phillips JA, Hamid R, Cogan J, Fessel JP, Evans AM, Network UD, Kennedy AD. A Case Study of Dysfunctional Nicotinamide Metabolism in a 20-Year-Old Male. Metabolites 2023; 13:399. [PMID: 36984839 PMCID: PMC10055858 DOI: 10.3390/metabo13030399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 03/04/2023] [Indexed: 03/10/2023] Open
Abstract
We present a case study of a 20-year-old male with an unknown neurodegenerative disease who was referred to the Undiagnosed Diseases Network Vanderbilt Medical Center site. A previous metabolic panel showed that the patient had a critical deficiency in nicotinamide intermediates that are generated during the biosynthesis of NAD(H). We followed up on these findings by evaluating the patient's ability to metabolize nicotinamide. We performed a global metabolic profiling analysis of plasma samples that were collected: (1) under normal fed conditions (baseline), (2) after the patient had fasted, and (3) after he was challenged with a 500 mg nasogastric tube bolus of nicotinamide following the fast. Our findings showed that the patient's nicotinamide N-methyltransferase (NNMT), a key enzyme in NAD(H) biosynthesis and methionine metabolism, was not functional under normal fed or fasting conditions but was restored in response to the nicotinamide challenge. Altered levels of metabolites situated downstream of NNMT and in neighboring biochemical pathways provided further evidence of a baseline defect in NNMT activity. To date, this is the only report of a critical defect in NNMT activity manifesting in adulthood and leading to neurodegenerative disease. Altogether, this study serves as an important reference in the rare disease literature and also demonstrates the utility of metabolomics as a diagnostic tool for uncharacterized metabolic diseases.
Collapse
Affiliation(s)
| | - John H. Newman
- Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | | | | | - Rizwan Hamid
- Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Joy Cogan
- Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Joshua P. Fessel
- National Institutes of Health, National Center for Advancing Translational Sciences, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
26
|
Barrows RD, Jeffries DE, Vishe M, Tukachinsky H, Zheng SL, Li F, Ma Z, Li X, Jin S, Song H, Zhang R, Zhang S, Ni J, Luan H, Wen L, Rongshan Y, Ying C, Shair MD. Potent Uncompetitive Inhibitors of Nicotinamide N-Methyltransferase (NNMT) as In Vivo Chemical Probes. J Med Chem 2022; 65:14642-14654. [DOI: 10.1021/acs.jmedchem.2c01166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Robert D. Barrows
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Daniel E. Jeffries
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Mahesh Vishe
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Hanna Tukachinsky
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Shao-Liang Zheng
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Fanfan Li
- Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing 100176, China
| | - Zhenjie Ma
- Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing 100176, China
| | - Xiaolei Li
- Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing 100176, China
| | - Shujuan Jin
- Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing 100176, China
| | - Haobin Song
- Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing 100176, China
| | - Ruonan Zhang
- Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing 100176, China
| | - Shaofeng Zhang
- Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing 100176, China
| | - Jing Ni
- Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing 100176, China
| | - Haofei Luan
- Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing 100176, China
| | - Lei Wen
- Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing 100176, China
| | - Yan Rongshan
- WuXi AppTec Co., Ltd., #288 FuTe ZhongLu WaiGaoQiao Free Trade Zone, Shanghai 200131, China
| | - Chen Ying
- WuXi AppTec Co., Ltd., #288 FuTe ZhongLu WaiGaoQiao Free Trade Zone, Shanghai 200131, China
| | - Matthew D. Shair
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
27
|
Su J, Tian X, Zhang Z, Xu W, Anwaier A, Ye S, Zhu S, Wang Y, Shi G, Qu Y, Zhang H, Ye D. A novel amino acid metabolism-related gene risk signature for predicting prognosis in clear cell renal cell carcinoma. Front Oncol 2022; 12:1019949. [PMID: 36313638 PMCID: PMC9614380 DOI: 10.3389/fonc.2022.1019949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundRenal cancer is one of the most lethal cancers because of its atypical symptoms and metastatic potential. The metabolism of amino acids and their derivatives is essential for cancer cell survival and proliferation. Thus, the construction of the amino acid metabolism-related risk signature might enhance the accuracy of the prognostic model and shed light on the treatments of renal cancers.MethodsRNA expression and clinical data were downloaded from Santa Cruz (UCSC) Xena, GEO, and ArrayExpress databases. The “DESeq2” package identified the differentially expressed genes. Univariate COX analysis selected prognostic genes related to the metabolism of amino acids. Patients were divided into two clusters using the “ConsensusClusterPlus” package, and the CIBERSORT, ESTIMATE methods were explored to assess the immune infiltrations. The LASSO regression analysis constructed a risk model which was evaluated the prediction accuracy in two independent cohorts. The genomic alterations and drug sensitivity of 18-LASSO-genes were assessed. The differentially expressed genes between two clusters were used to perform functional enrichment analysis and weighted gene co-expression network analysis (WGCNA). Furthermore, external validation of TMEM72 expression was conducted in the FUSCC cohort containing 33 ccRCC patients.ResultsThe amino acid metabolism-related genes had significant correlations with prognosis. The patients in Cluster A demonstrated better survival, lower Treg cell proportion, higher ESTIMATE scores, and higher cuproptosis-related gene expressions. Amino acid metabolism-related genes with prognostic values were used to construct a risk model and patients in the low risk group were associated with improved outcomes. The Area Under Curve of the risk model was 0.801, 0.777, and 0.767 at the first, second, and third year respectively. The external validation cohort confirmed the stable prognostic value of the risk model. WGCNA identified four gene modules correlated with immune cell infiltrations and cuproptosis. We found that TMEM72 was downregulated in tumors by using TCGA, GEO datasets (p<0.001) and the FUSCC cohort (p=0.002).ConclusionOur study firstly constructed an 18 amino acid metabolism related signature to predict the prognosis in clear cell renal cell carcinoma. We also identified four potential gene modules potentially correlated with cuproptosis and identified TMEM72 downregulation in ccRCC which deserved further studies.
Collapse
Affiliation(s)
- Jiaqi Su
- Department of Urology, Fudan University Shanghai Cancer Center, School of Life Sciences, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Xi Tian
- Department of Urology, Fudan University Shanghai Cancer Center, School of Life Sciences, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Zihao Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, School of Life Sciences, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Wenhao Xu
- Department of Urology, Fudan University Shanghai Cancer Center, School of Life Sciences, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Aihetaimujiang Anwaier
- Department of Urology, Fudan University Shanghai Cancer Center, School of Life Sciences, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Shiqi Ye
- Department of Urology, Fudan University Shanghai Cancer Center, School of Life Sciences, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Shuxuan Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, School of Life Sciences, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Yue Wang
- Department of Urology, Fudan University Shanghai Cancer Center, School of Life Sciences, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Guohai Shi
- Department of Urology, Fudan University Shanghai Cancer Center, School of Life Sciences, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Yuanyuan Qu
- Department of Urology, Fudan University Shanghai Cancer Center, School of Life Sciences, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
- *Correspondence: Yuanyuan Qu, ; Hailiang Zhang, ; Dingwei Ye,
| | - Hailiang Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, School of Life Sciences, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
- *Correspondence: Yuanyuan Qu, ; Hailiang Zhang, ; Dingwei Ye,
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, School of Life Sciences, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
- *Correspondence: Yuanyuan Qu, ; Hailiang Zhang, ; Dingwei Ye,
| |
Collapse
|
28
|
Lipopolysaccharide affects energy metabolism and elevates nicotinamide N-methyltransferase level in human aortic endothelial cells (HAEC). Int J Biochem Cell Biol 2022; 151:106292. [PMID: 36038127 DOI: 10.1016/j.biocel.2022.106292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/10/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022]
Abstract
This study aimed to investigate the putative role of nicotinamide N-methyltransferase in the metabolic response of human aortic endothelial cells. This enzyme catalyses S-adenosylmethionine-mediated methylation of nicotinamide to methylnicotinamide. This reaction is accompanied by the reduction of the intracellular nicotinamide and S-adenosylmethionine content. This may affect NAD+ synthesis and various processes of methylation, including epigenetic modifications of chromatin. Particularly high activity of nicotinamide N-methyltransferase is detected in liver, many neoplasms as well as in various cells in stressful conditions. The elevated nicotinamide N-methyltransferase content was also found in endothelial cells treated with statins. Although the exogenous methylnicotinamide has been postulated to induce a vasodilatory response, the specific metabolic role of nicotinamide N-methyltransferase in vascular endothelium is still unclear. Treatment of endothelial cells with bacterial lipopolysaccharide evokes several metabolic and functional consequences which built a multifaceted physiological response of endothelium to bacterial infection. Among the spectrum of biochemical changes substantially elevated protein level of nicotinamide N-methyltransferase was particularly intriguing. Here it has been shown that silencing of the nicotinamide N-methyltransferase gene influences several changes which are observed in cells treated with lipopolysaccharide. They include altered energy metabolism and rearrangement of the mitochondrial network. A complete explanation of the mechanisms behind the protective consequences of the nicotinamide N-methyltransferase deficiency in cells treated with lipopolysaccharide needs further investigation.
Collapse
|
29
|
Pozzi V, Campagna R, Sartini D, Emanuelli M. Nicotinamide N-Methyltransferase as Promising Tool for Management of Gastrointestinal Neoplasms. Biomolecules 2022; 12:biom12091173. [PMID: 36139012 PMCID: PMC9496617 DOI: 10.3390/biom12091173] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 12/24/2022] Open
Abstract
Gastrointestinal (GI) neoplasms include esophageal, gastric, colorectal, hepatic, and pancreatic cancers. They are characterized by asymptomatic behavior, being responsible for diagnostic delay. Substantial refractoriness to chemo- and radiotherapy, exhibited by late-stage tumors, contribute to determine poor patient outcome. Therefore, it is of outmost importance to identify new molecular targets for the development of effective therapeutic strategies. In this study, we focused on the enzyme nicotinamide N-methyltransferase (NNMT), which catalyzes the N-methylation reaction of nicotinamide and whose overexpression has been reported in numerous neoplasms, including GI cancers. The aim of this review was to report data illustrating NNMT involvement in these tumors, highlighting its contribution to tumor cell phenotype. Cited works clearly demonstrate the interesting potential use of enzyme level determination for both diagnostic and prognostic purposes. NNMT was also found to positively affect cell viability, proliferation, migration, and invasiveness, contributing to sustain in vitro and in vivo tumor growth and metastatic spread. Moreover, enzyme upregulation featuring tumor cells was significantly associated with enhancement of resistance to treatment with chemotherapeutic drugs. Taken together, these results strongly suggest the possibility to target NNMT for setup of molecular-based strategies to effectively treat GI cancers.
Collapse
Affiliation(s)
- Valentina Pozzi
- Department of Clinical Sciences, Polytechnic University of Marche, 60020 Ancona, Italy
| | - Roberto Campagna
- Department of Clinical Sciences, Polytechnic University of Marche, 60020 Ancona, Italy
| | - Davide Sartini
- Department of Clinical Sciences, Polytechnic University of Marche, 60020 Ancona, Italy
- Correspondence: ; Tel.: +39-071-2204673
| | - Monica Emanuelli
- Department of Clinical Sciences, Polytechnic University of Marche, 60020 Ancona, Italy
- New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, 60131 Ancona, Italy
| |
Collapse
|
30
|
Yoshida S, Uehara S, Kondo N, Takahashi Y, Yamamoto S, Kameda A, Kawagoe S, Inoue N, Yamada M, Yoshimura N, Tachibana Y. Peptide-to-Small Molecule: A Pharmacophore-Guided Small Molecule Lead Generation Strategy from High-Affinity Macrocyclic Peptides. J Med Chem 2022; 65:10655-10673. [PMID: 35904556 DOI: 10.1021/acs.jmedchem.2c00919] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent technological innovations have led to the development of methods for the rapid identification of high-affinity macrocyclic peptides for a wide range of targets; however, it is still challenging to achieve the desired activity and membrane permeability at the same time. Here, we propose a novel small molecule lead discovery strategy, ″Peptide-to-Small Molecule″, which is a combination of rapid identification of high-affinity macrocyclic peptides via peptide display screening followed by pharmacophore-guided de novo design of small molecules, and demonstrate the applicability using nicotinamide N-methyltransferase (NNMT) as a target. Affinity selection by peptide display technology identified macrocyclic peptide 1 that exhibited good enzymatic inhibitory activity but no cell-based activity. Thereafter, a peptide pharmacophore-guided de novo design and further structure-based optimization resulted in highly potent and cell-active small molecule 14 (cell-free IC50 = 0.0011 μM, cell-based IC50 = 0.40 μM), indicating that this strategy could be a new option for drug discovery.
Collapse
Affiliation(s)
- Shuhei Yoshida
- Pharmaceutical Research Division, Shionogi Pharmaceutical Research Center, 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Shota Uehara
- Pharmaceutical Research Division, Shionogi Pharmaceutical Research Center, 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Noriyasu Kondo
- Pharmaceutical Research Division, Shionogi Pharmaceutical Research Center, 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Yu Takahashi
- Pharmaceutical Research Division, Shionogi Pharmaceutical Research Center, 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Shiho Yamamoto
- Pharmaceutical Research Division, Shionogi Pharmaceutical Research Center, 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Atsushi Kameda
- Pharmaceutical Research Division, Shionogi Pharmaceutical Research Center, 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Soichiro Kawagoe
- Pharmaceutical Research Division, Shionogi Pharmaceutical Research Center, 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Naoko Inoue
- PeptiDream Inc. 3-25-23 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Masami Yamada
- PeptiDream Inc. 3-25-23 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Norito Yoshimura
- Pharmaceutical Research Division, Shionogi Pharmaceutical Research Center, 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Yuki Tachibana
- Pharmaceutical Research Division, Shionogi Pharmaceutical Research Center, 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| |
Collapse
|
31
|
Kushavah U, Panigrahi L, Ahmed S, Siddiqi MI. Ligand-based in silico identification and biological evaluation of potential inhibitors of nicotinamide N-methyltransferase. Mol Divers 2022:10.1007/s11030-022-10485-7. [DOI: 10.1007/s11030-022-10485-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/13/2022] [Indexed: 12/19/2022]
|
32
|
Reustle A, Menig LS, Leuthold P, Hofmann U, Stühler V, Schmees C, Becker M, Haag M, Klumpp V, Winter S, Büttner FA, Rausch S, Hennenlotter J, Fend F, Scharpf M, Stenzl A, Bedke J, Schwab M, Schaeffeler E. Nicotinamide-N-methyltransferase is a promising metabolic drug target for primary and metastatic clear cell renal cell carcinoma. Clin Transl Med 2022; 12:e883. [PMID: 35678045 PMCID: PMC9178377 DOI: 10.1002/ctm2.883] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 12/16/2022] Open
Abstract
Background The metabolic enzyme nicotinamide‐N‐methyltransferase (NNMT) is highly expressed in various cancer entities, suggesting tumour‐promoting functions. We systematically investigated NNMT expression and its metabolic interactions in clear cell renal cell carcinoma (ccRCC), a prominent RCC subtype with metabolic alterations, to elucidate its role as a drug target. Methods NNMT expression was assessed in primary ccRCC (n = 134), non‐tumour tissue and ccRCC‐derived metastases (n = 145) by microarray analysis and/or immunohistochemistry. Findings were validated in The Cancer Genome Atlas (kidney renal clear cell carcinoma [KIRC], n = 452) and by single‐cell analysis. Expression was correlated with clinicopathological data and survival. Metabolic alterations in NNMT‐depleted cells were assessed by nontargeted/targeted metabolomics and extracellular flux analysis. The NNMT inhibitor (NNMTi) alone and in combination with the inhibitor 2‐deoxy‐D‐glucose for glycolysis and BPTES (bis‐2‐(5‐phenylacetamido‐1,3,4‐thiadiazol‐2‐yl)ethyl‐sulfide) for glutamine metabolism was investigated in RCC cell lines (786‐O, A498) and in two 2D ccRCC‐derived primary cultures and three 3D ccRCC air–liquid interface models. Results NNMT protein was overexpressed in primary ccRCC (p = 1.32 × 10–16) and ccRCC‐derived metastases (p = 3.92 × 10–20), irrespective of metastatic location, versus non‐tumour tissue. Single‐cell data showed predominant NNMT expression in ccRCC and not in the tumour microenvironment. High NNMT expression in primary ccRCC correlated with worse survival in independent cohorts (primary RCC—hazard ratio [HR] = 4.3, 95% confidence interval [CI]: 1.5–12.4; KIRC—HR = 3.3, 95% CI: 2.0–5.4). NNMT depletion leads to intracellular glutamine accumulation, with negative effects on mitochondrial function and cell survival, while not affecting glycolysis or glutathione metabolism. At the gene level, NNMT‐depleted cells upregulate glycolysis, oxidative phosphorylation and apoptosis pathways. NNMTi alone or in combination with 2‐deoxy‐D‐glucose and BPTES resulted in inhibition of cell viability in ccRCC cell lines and primary tumour and metastasis‐derived models. In two out of three patient‐derived ccRCC air–liquid interface models, NNMTi treatment induced cytotoxicity. Conclusions Since efficient glutamine utilisation, which is essential for ccRCC tumours, depends on NNMT, small‐molecule NNMT inhibitors provide a novel therapeutic strategy for ccRCC and act as sensitizers for combination therapies.
Collapse
Affiliation(s)
- Anna Reustle
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tuebingen, Tuebingen, Germany
| | - Lena-Sophie Menig
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tuebingen, Tuebingen, Germany
| | - Patrick Leuthold
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tuebingen, Tuebingen, Germany
| | - Ute Hofmann
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tuebingen, Tuebingen, Germany
| | - Viktoria Stühler
- Department of Urology, University Hospital Tuebingen, Tuebingen, Germany
| | - Christian Schmees
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, Reutlingen, Germany
| | - Michael Becker
- Experimental Pharmacology and Oncology GmbH, Berlin-Buch, Germany
| | - Mathias Haag
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tuebingen, Tuebingen, Germany
| | - Verena Klumpp
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tuebingen, Tuebingen, Germany
| | - Stefan Winter
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tuebingen, Tuebingen, Germany
| | - Florian A Büttner
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tuebingen, Tuebingen, Germany
| | - Steffen Rausch
- Department of Urology, University Hospital Tuebingen, Tuebingen, Germany
| | - Jörg Hennenlotter
- Department of Urology, University Hospital Tuebingen, Tuebingen, Germany
| | - Falko Fend
- Institute of Pathology and Neuropathology, University Hospital Tuebingen, Tuebingen, Germany
| | - Marcus Scharpf
- Institute of Pathology and Neuropathology, University Hospital Tuebingen, Tuebingen, Germany
| | - Arnulf Stenzl
- Department of Urology, University Hospital Tuebingen, Tuebingen, Germany
| | - Jens Bedke
- Department of Urology, University Hospital Tuebingen, Tuebingen, Germany.,German Cancer Consortium (DKTK), Partner Site Tübingen, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tuebingen, Tuebingen, Germany.,German Cancer Consortium (DKTK), Partner Site Tübingen, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Departments of Clinical Pharmacology, Pharmacy and Biochemistry, University of Tuebingen, Tuebingen, Germany.,Cluster of Excellence iFIT (EXC2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tuebingen, Tuebingen, Germany
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tuebingen, Tuebingen, Germany.,Cluster of Excellence iFIT (EXC2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
33
|
Targeting nicotinamide N-methyltransferase overcomes resistance to EGFR-TKI in non-small cell lung cancer cells. Cell Death Dis 2022; 8:170. [PMID: 35387964 PMCID: PMC8986855 DOI: 10.1038/s41420-022-00966-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/06/2022] [Accepted: 03/21/2022] [Indexed: 02/07/2023]
Abstract
Activating mutations of epidermal growth factor receptor (EGFR) contributes to the progression of non-small cell lung cancer (NSCLC). EGFR tyrosine kinase inhibitor (TKI)-targeted therapy has become the standard treatment for NSCLC patients with EGFR-mutations. However, acquired resistance to these agents remains a major obstacle for managing NSCLC. Here, we investigated a novel strategy to overcome EGFR TKI resistance by targeting the nicotinamide N-methyltransferase (NNMT). Using iTRAQ-based quantitative proteomics analysis, we identified that NNMT was significantly increased in EGFR-TKI-resistant NSCLC cells. Moreover, we found that NNMT expression was increased in EGFR-TKI-resistant NSCLC tissue samples, and higher levels were correlated with shorter progression-free survival in EGFR-TKI-treated NSCLC patients. Knockdown of NNMT rendered EGFR-TKI-resistant cells more sensitive to EGFR-TKI, whereas overexpression of NNMT in EGFR-TKI-sensitive cells resulted in EGFR-TKI resistance. Mechanically, upregulation of NNMT increased c-myc expression via SIRT1-mediated c-myc deacetylation, which in turn promoted glycolysis and EGFR-TKI resistance. Furthermore, we demonstrated that the combination of NNMT inhibitor and EGFR-TKI strikingly suppressed the growth of EGFR-TKI-resistant NSCLC cells both in vitro and in vivo. In conclusion, our research indicated that NNMT overexpression is important for acquired resistance to EGFR-TKI and that targeting NNMT might be a potential therapeutic strategy to overcome resistance to EGFR TKI.
Collapse
|
34
|
Alterations in Kynurenine and NAD + Salvage Pathways during the Successful Treatment of Inflammatory Bowel Disease Suggest HCAR3 and NNMT as Potential Drug Targets. Int J Mol Sci 2021; 22:ijms222413497. [PMID: 34948292 PMCID: PMC8705244 DOI: 10.3390/ijms222413497] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/03/2021] [Accepted: 12/14/2021] [Indexed: 02/08/2023] Open
Abstract
A meta-analysis of publicly available transcriptomic datasets was performed to identify metabolic pathways profoundly implicated in the progression and treatment of inflammatory bowel disease (IBD). The analysis revealed that genes involved in tryptophan (Trp) metabolism are upregulated in Crohn’s disease (CD) and ulcerative colitis (UC) and return to baseline after successful treatment with infliximab. Microarray and mRNAseq profiles from multiple experiments confirmed that enzymes responsible for Trp degradation via the kynurenine pathway (IDO1, KYNU, IL4I1, KMO, and TDO2), receptor of Trp metabolites (HCAR3), and enzymes catalyzing NAD+ turnover (NAMPT, NNMT, PARP9, CD38) were synchronously coregulated in IBD, but not in intestinal malignancies. The modeling of Trp metabolite fluxes in IBD indicated that changes in gene expression shifted intestinal Trp metabolism from the synthesis of 5-hydroxytryptamine (5HT, serotonin) towards the kynurenine pathway. Based on pathway modeling, this manifested in a decline in mucosal Trp and elevated kynurenine (Kyn) levels, and fueled the production of downstream metabolites, including quinolinate, a substrate for de novo NAD+ synthesis. Interestingly, IBD-dependent alterations in Trp metabolites were normalized in infliximab responders, but not in non-responders. Transcriptomic reconstruction of the NAD+ pathway revealed an increased salvage biosynthesis and utilization of NAD+ in IBD, which normalized in patients successfully treated with infliximab. Treatment-related changes in NAD+ levels correlated with shifts in nicotinamide N-methyltransferase (NNMT) expression. This enzyme helps to maintain a high level of NAD+-dependent proinflammatory signaling by removing excess inhibitory nicotinamide (Nam) from the system. Our analysis highlights the prevalent deregulation of kynurenine and NAD+ biosynthetic pathways in IBD and gives new impetus for conducting an in-depth examination of uncovered phenomena in clinical studies.
Collapse
|
35
|
Togni L, Mascitti M, Sartini D, Campagna R, Pozzi V, Salvolini E, Offidani A, Santarelli A, Emanuelli M. Nicotinamide N-Methyltransferase in Head and Neck Tumors: A Comprehensive Review. Biomolecules 2021; 11:1594. [PMID: 34827592 PMCID: PMC8615955 DOI: 10.3390/biom11111594] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 12/31/2022] Open
Abstract
The head and neck tumors (HNT) are a heterogeneous group of diseases ranging from benign to malignant lesions, with distinctive molecular and clinical behaviors. Several studies have highlighted the presence of an altered metabolic phenotype in HNT, such as the upregulation of nicotinamide N-methyltransferase (NNMT). However, its biological effects have not been completely disclosed and the role of NNMT in cancer cell metabolism remains unclear. Therefore, this comprehensive review aims to evaluate the available literature regarding the biological, diagnostic, and prognostic role of NNMT in HNT. NNMT was shown to be significantly overexpressed in all of the evaluated HNT types. Moreover, its upregulation has been correlated with cancer cell migration and adverse clinical outcomes, such as high-pathological stage, lymph node metastasis, and locoregional recurrences. However, in oral squamous cell carcinoma (OSCC) these associations are still debated, and several studies have failed to demonstrate the prognostic significance of NNMT. The shRNA-mediated gene silencing efficiently suppressed the NNMT gene expression and exhibited a clear inhibitory effect on cell proliferation, promoting the expression of apoptosis-related proteins and modulating the cell cycle. NNMT could represent a new molecular biomarker and a new target of molecular-based therapy, although further studies on larger patient cohorts are needed to explore its biological role in HNT.
Collapse
Affiliation(s)
- Lucrezia Togni
- Department of Clinical, Specialistic and Dental Sciences, Marche Polytechnic University, 60126 Ancona, Italy; (L.T.); (M.M.); (D.S.); (R.C.); (V.P.); (E.S.); (M.E.)
| | - Marco Mascitti
- Department of Clinical, Specialistic and Dental Sciences, Marche Polytechnic University, 60126 Ancona, Italy; (L.T.); (M.M.); (D.S.); (R.C.); (V.P.); (E.S.); (M.E.)
| | - Davide Sartini
- Department of Clinical, Specialistic and Dental Sciences, Marche Polytechnic University, 60126 Ancona, Italy; (L.T.); (M.M.); (D.S.); (R.C.); (V.P.); (E.S.); (M.E.)
| | - Roberto Campagna
- Department of Clinical, Specialistic and Dental Sciences, Marche Polytechnic University, 60126 Ancona, Italy; (L.T.); (M.M.); (D.S.); (R.C.); (V.P.); (E.S.); (M.E.)
| | - Valentina Pozzi
- Department of Clinical, Specialistic and Dental Sciences, Marche Polytechnic University, 60126 Ancona, Italy; (L.T.); (M.M.); (D.S.); (R.C.); (V.P.); (E.S.); (M.E.)
| | - Eleonora Salvolini
- Department of Clinical, Specialistic and Dental Sciences, Marche Polytechnic University, 60126 Ancona, Italy; (L.T.); (M.M.); (D.S.); (R.C.); (V.P.); (E.S.); (M.E.)
| | - Annamaria Offidani
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy;
| | - Andrea Santarelli
- Department of Clinical, Specialistic and Dental Sciences, Marche Polytechnic University, 60126 Ancona, Italy; (L.T.); (M.M.); (D.S.); (R.C.); (V.P.); (E.S.); (M.E.)
- Dentistry Clinic, National Institute of Health and Science of Aging, IRCCS INRCA, 60126 Ancona, Italy
| | - Monica Emanuelli
- Department of Clinical, Specialistic and Dental Sciences, Marche Polytechnic University, 60126 Ancona, Italy; (L.T.); (M.M.); (D.S.); (R.C.); (V.P.); (E.S.); (M.E.)
| |
Collapse
|
36
|
Parsons RB, Facey PD. Nicotinamide N-Methyltransferase: An Emerging Protagonist in Cancer Macro(r)evolution. Biomolecules 2021; 11:1418. [PMID: 34680055 PMCID: PMC8533529 DOI: 10.3390/biom11101418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/17/2021] [Accepted: 09/24/2021] [Indexed: 12/15/2022] Open
Abstract
Nicotinamide N-methyltransferase (NNMT) has progressed from being considered merely a Phase II metabolic enzyme to one with a central role in cell function and energy metabolism. Over the last three decades, a significant body of evidence has accumulated which clearly demonstrates a central role for NNMT in cancer survival, metastasis, and drug resistance. In this review, we discuss the evidence supporting a role for NNMT in the progression of the cancer phenotype and how it achieves this by driving the activity of pro-oncogenic NAD+-consuming enzymes. We also describe how increased NNMT activity supports the Warburg effect and how it promotes oncogenic changes in gene expression. We discuss the regulation of NNMT activity in cancer cells by both post-translational modification of the enzyme and transcription factor binding to the NNMT gene, and describe for the first time three long non-coding RNAs which may play a role in the regulation of NNMT transcription. We complete the review by discussing the development of novel anti-cancer therapeutics which target NNMT and provide insight into how NNMT-based therapies may be best employed clinically.
Collapse
Affiliation(s)
- Richard B. Parsons
- Institute of Pharmaceutical Science, King’s College London, 150 Stamford Street, London SE1 9NH, UK
| | - Paul D. Facey
- Singleton Park Campus, Swansea University Medical School, Swansea University, Swansea SA2 8PP, UK;
| |
Collapse
|