1
|
Chatterjee O, Jana J, Panda S, Dutta A, Sharma A, Saurav S, Motiani RK, Weisz K, Chatterjee S. Remodeling Ca 2+ dynamics by targeting a promising E-box containing G-quadruplex at ORAI1 promoter in triple-negative breast cancer. Cell Calcium 2024; 123:102944. [PMID: 39191092 PMCID: PMC7616398 DOI: 10.1016/j.ceca.2024.102944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/19/2024] [Accepted: 08/11/2024] [Indexed: 08/29/2024]
Abstract
ORAI1 is an intrinsic component of store-operated calcium entry (SOCE) that strictly regulates Ca2+ influx in most non-excitable cells. ORAI1 is overexpressed in a wide variety of cancers, and its signal transduction has been associated with chemotherapy resistance. There is extensive proteomic interaction of ORAI1 with other channels and effectors, resulting in various altered phenotypes. However, the transcription regulation of ORAI1 is not well understood. We have found a putative G-quadruplex (G4) motif, ORAI1-Pu, in the upstream promoter region of the gene, having regulatory functions. High-resolution 3-D NMR structure elucidation suggests that ORAI1-Pu is a stable parallel-stranded G4, having a long 8-nt loop imparting dynamics without affecting the structural stability. The protruded loop further houses an E-box motif that provides a docking site for transcription factors like Zeb1. The G4 structure was also endogenously observed using Chromatin Immunoprecipitation (ChIP) with anti-G4 antibody (BG4) in the MDA-MB-231 cell line overexpressing ORAI1. Ligand-mediated stabilization suggested that the stabilized G4 represses transcription in cancer cell line MDA-MB-231. Downregulation of transcription further led to decreased Ca2+ entry by the SOCE pathway, as observed by live-cell Fura-2 Ca2+ imaging.
Collapse
Affiliation(s)
- Oishika Chatterjee
- Department of Biological Sciences, Bose Institute, EN-80 Sector V, Salt Lake, Unified Campus, Kolkata 700091, India
| | - Jagannath Jana
- Institut für Biochemie, Universität Greifswald, Felix-Hausdorff-Str. 4, D-17489 Greifswald, Germany
| | - Suman Panda
- Department of Biological Sciences, Bose Institute, EN-80 Sector V, Salt Lake, Unified Campus, Kolkata 700091, India
| | - Anindya Dutta
- Department of Biological Sciences, Bose Institute, EN-80 Sector V, Salt Lake, Unified Campus, Kolkata 700091, India
| | - Akshay Sharma
- Laboratory of Calciomics and Systemic Pathophysiology (LCSP), Regional Centre for Biotechnology (RCB), Faridabad 121001, Delhi NCR, India
| | - Suman Saurav
- Laboratory of Calciomics and Systemic Pathophysiology (LCSP), Regional Centre for Biotechnology (RCB), Faridabad 121001, Delhi NCR, India
| | - Rajender K Motiani
- Laboratory of Calciomics and Systemic Pathophysiology (LCSP), Regional Centre for Biotechnology (RCB), Faridabad 121001, Delhi NCR, India
| | - Klaus Weisz
- Institut für Biochemie, Universität Greifswald, Felix-Hausdorff-Str. 4, D-17489 Greifswald, Germany
| | - Subhrangsu Chatterjee
- Department of Biological Sciences, Bose Institute, EN-80 Sector V, Salt Lake, Unified Campus, Kolkata 700091, India.
| |
Collapse
|
2
|
Xu Z, Shi Y, Zhu L, Luo J, Hu Q, Jiang S, Xiao M, Jiang X, Wang H, Xu Y, Jin W, Zhou Y, Wang P, Wang K. Novel SERCA2 inhibitor Diphyllin displays anti-tumor effect in non-small cell lung cancer by promoting endoplasmic reticulum stress and mitochondrial dysfunction. Cancer Lett 2024; 598:217075. [PMID: 38909775 DOI: 10.1016/j.canlet.2024.217075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/25/2024]
Abstract
Abnormal calcium signaling is associated with non-small cell lung cancer (NSCLC) malignant progression, poor survival and chemotherapy resistance. Targeting endoplasmic reticulum (ER) Ca2+ channels or pumps to block calcium uptake in the ER induces ER stress and concomitantly promotes mitochondrial calcium uptake, leading to mitochondrial dysfunction and ultimately inducing cell death. Here, we identified Diphyllin was a potential specific inhibitor of endoplasmic reticulum (ER) calcium-importing protein sarco/endoplasmic-reticulum Ca2+ ATPase 2 (SERCA2). In vitro and in vivo studies showed that Diphyllin increased NSCLC cell apoptosis, along with inhibition of cell proliferation and migration. Mechanistically, Diphyllin promoted ER stress by directly inhibiting SERCA2 activity and decreasing ER Ca2+ levels. At the same time, the accumulated Ca2+ in cytoplasm flowed into mitochondria to increase reactive oxygen species (ROS) and decrease mitochondrial membrane potential (MMP), leading to cytochrome C (Cyto C) release and mitochondrial dysfunction. In addition, we found that Diphyllin combined with cisplatin could have a synergistic anti-tumor effect in vitro and in vivo. Taken together, our results suggested that Diphyllin, as a potential novel inhibitor of SERCA2, exerts anti-tumor effects by blocking ER Ca2+ uptake and thereby promoting ER stress and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Zhiyong Xu
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medical, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China; Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China
| | - Yueli Shi
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medical, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China; Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China
| | - Liang Zhu
- Department of Rheumatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Jianhua Luo
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medical, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China; Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China; Department of Respiratory Medicine, Taizhou Municipal Hospital, Taizhou, 318000, Zhejiang, China
| | - Qiongjie Hu
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medical, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China; Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China
| | - Sujing Jiang
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medical, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China; Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China
| | - Mingshu Xiao
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medical, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China; Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China
| | - Xinyuan Jiang
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medical, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China; Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China
| | - Huan Wang
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medical, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China; Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China
| | - Yun Xu
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medical, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China; Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China
| | - Wei Jin
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medical, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Yan Zhou
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medical, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China; Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China
| | - Pingli Wang
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Kai Wang
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medical, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China; Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China.
| |
Collapse
|
3
|
Sun S, Huang C, Fan W, Wang Z, Li K, Liu X, Wang Z, Zhao T, Zhang G, Li X. FAM136A as a Diagnostic Biomarker in Esophageal Cancer: Insights into Immune Infiltration, m6A Modification, Alternative Splicing, Cuproptosis, and the ceRNA Network. Adv Biol (Weinh) 2024:e2400157. [PMID: 39185769 DOI: 10.1002/adbi.202400157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/01/2024] [Indexed: 08/27/2024]
Abstract
FAM136A promotes the progression and metastasis of various tumors. However, there are few studies on the role of FAM136A in esophageal cancer (ESCA). The TCGA, GTEx, and GEO databases are employed to analyze the expression of FAM136A in ESCA, and qPCR and TMA experiments are performed for validation. Enrichment analyzes are performed to investigate the association of FAM136A expression with immune features, m6A modification, alternative splicing, cuproptosis, and the ceRNA network via bioinformatics analysis. FAM136A is highly expressed in ESCA and correlated with lymph node metastasis and overall survival (OS). Bioinformatics analysis suggested that FAM136A may participate in the following processes to promote ESCA development and progression: 1) Promotion of mast cells infiltration to influence the ESCA immune microenvironment, 2) HNRNPC upregulation to regulate m6A modification, 3) ALYREF upregulation to increase the occurrence of retained intron (RI) events, 4) CDK5RAP1 upregulation to achieve inhibition of tumor cell apoptosis, and 5) promotion of ESCA progression through the lncRNA SNHG15/hsa-miR-29c-3p/FAM136A ceRNA network. FAM136A is a potential biomarker for ESCA diagnosis and treatment response evaluation, and the underlying mechanisms may be associated with immune infiltration, m6A modification, alternative splicing, cuproptosis, and the ceRNA regulatory network.
Collapse
Affiliation(s)
- Shaowu Sun
- Department of Thoracic Surgery and Lung Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Chunyao Huang
- Department of Thoracic Surgery and Lung Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Wenbo Fan
- Department of Thoracic Surgery and Lung Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Zhulin Wang
- Department of Thoracic Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Kaiyuan Li
- Department of Thoracic Surgery and Lung Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xu Liu
- Department of Thoracic Surgery and Lung Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Zelong Wang
- Department of Thoracic Surgery and Lung Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Tianliang Zhao
- Department of Thoracic Surgery and Lung Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Guoqing Zhang
- Department of Thoracic Surgery and Lung Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xiangnan Li
- Department of Thoracic Surgery and Lung Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Henan Province Engineering Research Center of molecular pathology and clinical experiment of thoracic diseases, Zhengzhou, Henan, 450052, China
| |
Collapse
|
4
|
Hu L, Shi J, Zhu Z, Lu X, Jiang H, Yu H, Liu H, Chen W. CRISPLD1 promotes gastric cancer progression by regulating the Ca 2+/PI3K-AKT signaling pathway. Heliyon 2024; 10:e27569. [PMID: 38486747 PMCID: PMC10938123 DOI: 10.1016/j.heliyon.2024.e27569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/17/2024] Open
Abstract
Gastric cancer (GC) is a malignant tumor with poor prognosis. Studies have shown that cysteine-rich secretory protein LCCL domain containing 1 (CRISPLD1) is associated with tumor progression. However, its role in GC is unclear. The present study aimed to determine the pathogenic mechanism of CRISPLD1 in GC. Analysis of public databases revealed high mRNA expression of CRISPLD1 in GC, which was associated with poor prognosis. Additionally, CRISPLD1 expression levels showed significant correlations with T stage, overall survival events, and stage. Knockdown of CRISPLD1 reduced cell proliferation, invasion, and migration. Furthermore, CRISPLD1 knockdown decreased intracellular calcium levels in GC cells and inhibited the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)-protein kinase B (AKT) signaling pathway. Treatment with an AKT activator reversed the inhibitory effect of CRISPLD1 knockdown on GC cell migration and invasion. Our findings suggest that CRISPLD1 promotes tumor cell progression in GC by mediating intracellular calcium levels and activating the PI3K-AKT pathway, highlighting CRISPLD1 as a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Liqiang Hu
- Graduate school of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Jianghua Shi
- Graduate school of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zichen Zhu
- Graduate school of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xuemei Lu
- Graduate school of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Huibo Jiang
- Graduate school of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Hanyang Yu
- School of Computer Science, University of Nottingham Ningbo China, Ningbo, China
| | - Hao Liu
- Graduate school of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Wei Chen
- Graduate school of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Ji R, Chang L, An C, Zhang J. Proton-sensing ion channels, GPCRs and calcium signaling regulated by them: implications for cancer. Front Cell Dev Biol 2024; 12:1326231. [PMID: 38505262 PMCID: PMC10949864 DOI: 10.3389/fcell.2024.1326231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/14/2024] [Indexed: 03/21/2024] Open
Abstract
Extracellular acidification of tumors is common. Through proton-sensing ion channels or proton-sensing G protein-coupled receptors (GPCRs), tumor cells sense extracellular acidification to stimulate a variety of intracellular signaling pathways including the calcium signaling, which consequently exerts global impacts on tumor cells. Proton-sensing ion channels, and proton-sensing GPCRs have natural advantages as drug targets of anticancer therapy. However, they and the calcium signaling regulated by them attracted limited attention as potential targets of anticancer drugs. In the present review, we discuss the progress in studies on proton-sensing ion channels, and proton-sensing GPCRs, especially emphasizing the effects of calcium signaling activated by them on the characteristics of tumors, including proliferation, migration, invasion, metastasis, drug resistance, angiogenesis. In addition, we review the drugs targeting proton-sensing channels or GPCRs that are currently in clinical trials, as well as the relevant potential drugs for cancer treatments, and discuss their future prospects. The present review aims to elucidate the important role of proton-sensing ion channels, GPCRs and calcium signaling regulated by them in cancer initiation and development. This review will promote the development of drugs targeting proton-sensing channels or GPCRs for cancer treatments, effectively taking their unique advantage as anti-cancer drug targets.
Collapse
Affiliation(s)
- Renhui Ji
- Foundational and Translational Medical Research Center, Department of Allergy and General Surgery, Hohhot First Hospital, Hohhot, China
- Department of Pathophysiology, Basic Medicine College of Inner Mongolia Medical University, Hohhot, China
| | - Li Chang
- Foundational and Translational Medical Research Center, Department of Allergy and General Surgery, Hohhot First Hospital, Hohhot, China
- Department of Pathophysiology, Basic Medicine College of Inner Mongolia Medical University, Hohhot, China
| | - Caiyan An
- Foundational and Translational Medical Research Center, Department of Allergy and General Surgery, Hohhot First Hospital, Hohhot, China
| | - Junjing Zhang
- Foundational and Translational Medical Research Center, Department of Allergy and General Surgery, Hohhot First Hospital, Hohhot, China
| |
Collapse
|
6
|
Fong ZV, Severs G, Moir J, White S, Qadan M, Tingle S. Calcium channel blockers are associated with improved survival in pancreatic cancer patients undergoing neoadjuvant chemotherapy and resection. HPB (Oxford) 2024; 26:418-425. [PMID: 38135550 DOI: 10.1016/j.hpb.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/16/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND Repurposing existing drugs for use in oncology is more efficient, cost-effective and safe than novel drug discovery. Calcium signalling is increasingly recognised to have a key role in chemoresistance. This study assessed the impact of calcium channel blockers (CCB) in pancreatic cancer. METHODS Retrospective population study of patients undergoing resection (curative intent) of pancreatic ductal adenocarcinoma (SEER-Medicare, 2007-2017). Cox models were built to assess the impact on overall survival. As laboratory studies suggest a chemosensitising effect, the impact of CCB was assessed separately in patients receiving neoadjuvant chemotherapy. RESULTS 6,223 patients were included, of whom 660 were prescribed CCB. In total, 591 received neoadjuvant chemotherapy; in this cohort CCB prescription was associated with improved overall survival when adjusting for multiple prognostic factors (aHR = 0.715, 0.514-0.996, P = 0.047). This effect was not observed in patients not receiving neoadjuvant chemotherapy (aHR = 1.082, 0.982-1.191, P = 0.112). CONCLUSION CCB prescription was associated with improved overall survival in patients receiving neoadjuvant chemotherapy prior to pancreatic cancer resection. The association was specific to the group of patients receiving neoadjuvant chemotherapy, mirroring the chemosensitising effect in laboratory studies. This defines patients receiving neoadjuvant chemotherapy as a target population for prospective clinical trials of CCB in pancreatic cancer.
Collapse
Affiliation(s)
- Zhi V Fong
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - George Severs
- Department of HPB Surgery, Freeman Hospital, Newcastle upon Tyne, NE7 7DN, UK
| | - John Moir
- Department of HPB Surgery, Freeman Hospital, Newcastle upon Tyne, NE7 7DN, UK
| | - Steve White
- Department of HPB Surgery, Freeman Hospital, Newcastle upon Tyne, NE7 7DN, UK; Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Motaz Qadan
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Samuel Tingle
- Department of HPB Surgery, Freeman Hospital, Newcastle upon Tyne, NE7 7DN, UK; Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
7
|
Wang S, Li X, Hu Y, Wang L, Lv G, Feng Y, Sun Z, Cao Z, Liu Y, Wang H. Discovery of N-alkyl-N-benzyl thiazoles as novel TRPC antagonists for the treatment of glioblastoma multiforme. Eur J Med Chem 2024; 265:116066. [PMID: 38185057 DOI: 10.1016/j.ejmech.2023.116066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/09/2024]
Abstract
Glioblastoma multiforme represents a substantial clinical challenge. Transient receptor potential channel (TRPC) antagonists might provide new therapeutic options for this aggressive cancer. In this study, a series of N-alkyl-N-benzoyl and N-alkyl-N-benzyl thiazoles were designed and prepared using a scaffold-hopping strategy and evaluated as TRPC6 antagonists. This resulted in the discovery of 15g, a potent TRPC antagonist that exhibited suitable inhibitory micromolar activities against TRPC3, TRPC4, TRPC5, TPRC6, and TRPC7 and displayed noteworthy anti-glioblastoma efficacy in vitro against U87 cell lines. In addition, 15g featured an acceptable pharmacokinetic profile and exhibited better in vivo potency (25 mg/kg/d) than the frontline therapeutic agent temozolomide (50 mg/kg/d) in xenograft models. Taken together, the TRPC antagonist 15g represents a promising lead compound for developing new anti-glioblastoma agents.
Collapse
Affiliation(s)
- Shanshan Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Xiaoxue Li
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Yuemiao Hu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Lin Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Guangyao Lv
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Yuxin Feng
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Ziqiang Sun
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Zhengyu Cao
- State Key Laboratory of Natural Medicines & Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yi Liu
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China.
| | - Hongbo Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China.
| |
Collapse
|
8
|
Xu L, Peng M, Gao T, Wang D, Lian X, Sun H, Shi J, Wang Y, Wang P. Nanoenabled Intracellular Metal Ion Homeostasis Regulation for Tumor Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306203. [PMID: 38063781 PMCID: PMC10870045 DOI: 10.1002/advs.202306203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/27/2023] [Indexed: 02/17/2024]
Abstract
Endogenous essential metal ions play an important role in many life processes, especially in tumor development and immune response. The approval of various metallodrugs for tumor therapy brings more attention to the antitumor effect of metal ions. With the deepening understanding of the regulation mechanisms of metal ion homeostasis in vivo, breaking intracellular metal ion homeostasis becomes a new means to inhibit the proliferation of tumor cells and activate antitumor immune response. Diverse nanomedicines with the loading of small molecular ion regulators or metal ions have been developed to disrupt metal ion homeostasis in tumor cells, with higher safety and efficiency than free small molecular ion regulators or metal compounds. This comprehensive review focuses on the latest progress of various intracellular metal ion homeostasis regulation-based nanomedicines in tumor therapy including calcium ion (Ca2+ ), ferrous ion (Fe2+ ), cuprous ion (Cu+ ), managanese ion (Mn2+ ), and zinc ion (Zn2+ ). The physiological functions and homeostasis regulation processes of ions are summarized to guide the design of metal ion regulation-based nanomedicines. Then the antitumor mechanisms of various ions-based nanomedicines and some efficient synergistic therapies are highlighted. Finally, the challenges and future developments of ion regulation-based antitumor therapy are also discussed, hoping to provide a reference for finding more effective metal ions and synergistic therapies.
Collapse
Affiliation(s)
- Lihua Xu
- Sino‐British Research Centre for Molecular OncologyNational Centre for International Research in Cell and Gene TherapyState Key Laboratory of Esophageal Cancer Prevention & TreatmentSchool of Basic Medical SciencesAcademy of Medical SciencesZhengzhou UniversityZhengzhou450052China
| | - Mingzheng Peng
- Sino‐British Research Centre for Molecular OncologyNational Centre for International Research in Cell and Gene TherapyState Key Laboratory of Esophageal Cancer Prevention & TreatmentSchool of Basic Medical SciencesAcademy of Medical SciencesZhengzhou UniversityZhengzhou450052China
| | - Tingting Gao
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhou450001China
| | - Dandan Wang
- Sino‐British Research Centre for Molecular OncologyNational Centre for International Research in Cell and Gene TherapyState Key Laboratory of Esophageal Cancer Prevention & TreatmentSchool of Basic Medical SciencesAcademy of Medical SciencesZhengzhou UniversityZhengzhou450052China
| | - Xiaowu Lian
- Henan Institute of Medical and Pharmaceutical SciencesZhengzhou UniversityZhengzhou450052China
| | - Huihui Sun
- Sino‐British Research Centre for Molecular OncologyNational Centre for International Research in Cell and Gene TherapyState Key Laboratory of Esophageal Cancer Prevention & TreatmentSchool of Basic Medical SciencesAcademy of Medical SciencesZhengzhou UniversityZhengzhou450052China
| | - Jinjin Shi
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhou450001China
| | - Yafeng Wang
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhou450001China
| | - Pengju Wang
- Sino‐British Research Centre for Molecular OncologyNational Centre for International Research in Cell and Gene TherapyState Key Laboratory of Esophageal Cancer Prevention & TreatmentSchool of Basic Medical SciencesAcademy of Medical SciencesZhengzhou UniversityZhengzhou450052China
| |
Collapse
|
9
|
Kang Y, Xu L, Dong J, Huang Y, Yuan X, Li R, Chen L, Wang Z, Ji X. Calcium-based nanotechnology for cancer therapy. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
10
|
Huang C, Qin L, Chen S, Huang Q. CircSETDB1 contributes to paclitaxel resistance of ovarian cancer cells by sponging miR-508-3p and regulating ABCC1 expression. Anticancer Drugs 2023; 34:395-404. [PMID: 36729852 DOI: 10.1097/cad.0000000000001465] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Ovarian cancer is a gynecological tumor with a poor prognosis. The chemotherapy failure and recurrence induced by paclitaxel (Ptx) resistance are the main reason for the failure of ovarian cancer treatment. In this study, we aimed to explore the role of circular RNA (circRNA) in the regulation of Ptx resistance in ovarian cancer. Quantitative reverse transcription PCR was performed to detect the expression of circRNA SET domain bifurcated histone lysine methyltransferase 1 (circSETDB1), microRNA (miR)-508-3p and ATP-binding cassette subfamily C member 1 ( ABCC1 ) mRNA. The effects of circSETDB1 on Ptx resistance were explored by cell counting kit-8, 5-ethynyl-2'-deoxyuridine, and flow cytometry experiments in vitro . The protein level was assessed by western blot. Dual-luciferase reporter and RNA pull-down assays were carried out to confirm the interactions among circSETDB1, miR-508-3p, and ABCC1 . Xenograft tumor experiment was performed to investigate the effect of circSETDB1 on Ptx resistance in vivo . CircSETDB1 was highly expressed in Ptx-resistant ovarian cancer. CircSETDB1 knockdown inhibited cell proliferation viability, half maximal inhibitory concentration value of Ptx, cell cycle progression, and induced cell apoptosis in Ptx-resistant ovarian cancer cells. miR-508-3p was a target of circSETDB1, and inhibition of miR-508-3p overturned the effects of circSETDB1 knockdown on the Ptx resistance of ovarian cancer cells. miR-508-5p could bind to ABCC1 . Overexpression of ABCC1 reversed the effects of circSETDB1 knockdown on the Ptx resistance of ovarian cancer cells. CircSETDB1 knockdown also enhanced Ptx sensitivity in vivo . In conclusion, circSETDB1 regulated Ptx resistance of ovarian cancer by targeting miR-508-3p/ ABCC1 axis.
Collapse
Affiliation(s)
- Chunyan Huang
- Department of Obstetrics and Gynecology, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | | | | | | |
Collapse
|
11
|
Romito O, Guéguinou M, Raoul W, Champion O, Robert A, Trebak M, Goupille C, Potier-Cartereau M. Calcium signaling: A therapeutic target to overcome resistance to therapies in cancer. Cell Calcium 2022; 108:102673. [PMID: 36410063 DOI: 10.1016/j.ceca.2022.102673] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
Innate and acquired resistances to therapeutic agents are responsible for the failure of cancer treatments. Due to the multifactorial nature of resistance, the identification of new therapeutic targets is required to improve cancer treatment. Calcium is a universal second messenger that regulates many cellular functions such as proliferation, migration, and survival. Calcium channels, pumps and exchangers tightly regulate the duration, location and magnitude of calcium signals. Many studies have implicated dysregulation of calcium signaling in several pathologies, including cancer. Abnormal calcium fluxes due to altered channel expression or activation contribute to carcinogenesis and promote tumor development. However, there is limited information on the role of calcium signaling in cancer resistance to therapeutic drugs. This review discusses the role of calcium signaling as a mediator of cancer resistance, and assesses the potential value of combining anticancer therapy with calcium signaling modulators to improve the effectiveness of current treatments.
Collapse
Affiliation(s)
- Olivier Romito
- Inserm UMR 1069, Nutrition Croissance Cancer, Faculté de Médecine, Université de Tours, F-37032, France, Réseau 3MC « Molécules Marines, Métabolisme et Cancer » and Réseau CASTOR «Cancers des Tissus Hormono-Dépendants » Cancéropôle Grand Ouest, France.
| | - Maxime Guéguinou
- Inserm UMR 1069, Nutrition Croissance Cancer, Faculté de Médecine, Université de Tours, F-37032, France, Réseau 3MC « Molécules Marines, Métabolisme et Cancer » and Réseau CASTOR «Cancers des Tissus Hormono-Dépendants » Cancéropôle Grand Ouest, France.
| | - William Raoul
- Inserm UMR 1069, Nutrition Croissance Cancer, Faculté de Médecine, Université de Tours, F-37032, France, Réseau 3MC « Molécules Marines, Métabolisme et Cancer » and Réseau CASTOR «Cancers des Tissus Hormono-Dépendants » Cancéropôle Grand Ouest, France.
| | - Ophélie Champion
- Inserm UMR 1069, Nutrition Croissance Cancer, Faculté de Médecine, Université de Tours, F-37032, France, Réseau 3MC « Molécules Marines, Métabolisme et Cancer » and Réseau CASTOR «Cancers des Tissus Hormono-Dépendants » Cancéropôle Grand Ouest, France.
| | - Alison Robert
- Inserm UMR 1069, Nutrition Croissance Cancer, Faculté de Médecine, Université de Tours, F-37032, France, Réseau 3MC « Molécules Marines, Métabolisme et Cancer » and Réseau CASTOR «Cancers des Tissus Hormono-Dépendants » Cancéropôle Grand Ouest, France.
| | - Mohamed Trebak
- Vascular Medicine Institute, Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Caroline Goupille
- Inserm UMR 1069, Nutrition Croissance Cancer, Faculté de Médecine, Université de Tours, F-37032, France, Réseau 3MC « Molécules Marines, Métabolisme et Cancer » and Réseau CASTOR «Cancers des Tissus Hormono-Dépendants » Cancéropôle Grand Ouest, France; CHRU de Tours, hôpital Bretonneau, Tours, France.
| | - Marie Potier-Cartereau
- Inserm UMR 1069, Nutrition Croissance Cancer, Faculté de Médecine, Université de Tours, F-37032, France, Réseau 3MC « Molécules Marines, Métabolisme et Cancer » and Réseau CASTOR «Cancers des Tissus Hormono-Dépendants » Cancéropôle Grand Ouest, France.
| |
Collapse
|
12
|
Han QF, Li WJ, Hu KS, Gao J, Zhai WL, Yang JH, Zhang SJ. Exosome biogenesis: machinery, regulation, and therapeutic implications in cancer. Mol Cancer 2022; 21:207. [PMID: 36320056 PMCID: PMC9623991 DOI: 10.1186/s12943-022-01671-0] [Citation(s) in RCA: 149] [Impact Index Per Article: 74.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/13/2022] [Indexed: 12/14/2022] Open
Abstract
Exosomes are well-known key mediators of intercellular communication and contribute to various physiological and pathological processes. Their biogenesis involves four key steps, including cargo sorting, MVB formation and maturation, transport of MVBs, and MVB fusion with the plasma membrane. Each process is modulated through the competition or coordination of multiple mechanisms, whereby diverse repertoires of molecular cargos are sorted into distinct subpopulations of exosomes, resulting in the high heterogeneity of exosomes. Intriguingly, cancer cells exploit various strategies, such as aberrant gene expression, posttranslational modifications, and altered signaling pathways, to regulate the biogenesis, composition, and eventually functions of exosomes to promote cancer progression. Therefore, exosome biogenesis-targeted therapy is being actively explored. In this review, we systematically summarize recent progress in understanding the machinery of exosome biogenesis and how it is regulated in the context of cancer. In particular, we highlight pharmacological targeting of exosome biogenesis as a promising cancer therapeutic strategy.
Collapse
Affiliation(s)
- Qing-Fang Han
- grid.412633.10000 0004 1799 0733Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China ,grid.412633.10000 0004 1799 0733Henan Research Centre for Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Wen-Jia Li
- grid.412536.70000 0004 1791 7851Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation Medical Research Center, Sun Yat-Sen Memorial Hospital Sun Yat-Sen University, Guangzhou, 510120 China
| | - Kai-Shun Hu
- grid.412536.70000 0004 1791 7851Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation Medical Research Center, Sun Yat-Sen Memorial Hospital Sun Yat-Sen University, Guangzhou, 510120 China
| | - Jie Gao
- grid.412633.10000 0004 1799 0733Henan Research Centre for Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China ,Henan Diagnosis & Treatment League for Hepatopathy, Zhengzhou, 450052 Henan China
| | - Wen-Long Zhai
- grid.412633.10000 0004 1799 0733Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Jing-Hua Yang
- grid.412633.10000 0004 1799 0733Clinical Systems Biology Key Laboratories of Henan, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Shui-Jun Zhang
- grid.412633.10000 0004 1799 0733Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China ,grid.412633.10000 0004 1799 0733Henan Research Centre for Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China ,Henan Diagnosis & Treatment League for Hepatopathy, Zhengzhou, 450052 Henan China ,Henan Engineering & Research Center for Diagnosis and Treatment of Hepatobiliary and Pancreatic Surgical Diseases, Zhengzhou, 450052 Henan China
| |
Collapse
|
13
|
Immanuel T, Li J, Green TN, Bogdanova A, Kalev-Zylinska ML. Deregulated calcium signaling in blood cancer: Underlying mechanisms and therapeutic potential. Front Oncol 2022; 12:1010506. [PMID: 36330491 PMCID: PMC9623116 DOI: 10.3389/fonc.2022.1010506] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/21/2022] [Indexed: 02/05/2023] Open
Abstract
Intracellular calcium signaling regulates diverse physiological and pathological processes. In solid tumors, changes to calcium channels and effectors via mutations or changes in expression affect all cancer hallmarks. Such changes often disrupt transport of calcium ions (Ca2+) in the endoplasmic reticulum (ER) or mitochondria, impacting apoptosis. Evidence rapidly accumulates that this is similar in blood cancer. Principles of intracellular Ca2+ signaling are outlined in the introduction. We describe different Ca2+-toolkit components and summarize the unique relationship between extracellular Ca2+ in the endosteal niche and hematopoietic stem cells. The foundational data on Ca2+ homeostasis in red blood cells is discussed, with the demonstration of changes in red blood cell disorders. This leads to the role of Ca2+ in neoplastic erythropoiesis. Then we expand onto the neoplastic impact of deregulated plasma membrane Ca2+ channels, ER Ca2+ channels, Ca2+ pumps and exchangers, as well as Ca2+ sensor and effector proteins across all types of hematologic neoplasms. This includes an overview of genetic variants in the Ca2+-toolkit encoding genes in lymphoid and myeloid cancers as recorded in publically available cancer databases. The data we compiled demonstrate that multiple Ca2+ homeostatic mechanisms and Ca2+ responsive pathways are altered in hematologic cancers. Some of these alterations may have genetic basis but this requires further investigation. Most changes in the Ca2+-toolkit do not appear to define/associate with specific disease entities but may influence disease grade, prognosis, treatment response, and certain complications. Further elucidation of the underlying mechanisms may lead to novel treatments, with the aim to tailor drugs to different patterns of deregulation. To our knowledge this is the first review of its type in the published literature. We hope that the evidence we compiled increases awareness of the calcium signaling deregulation in hematologic neoplasms and triggers more clinical studies to help advance this field.
Collapse
Affiliation(s)
- Tracey Immanuel
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Jixia Li
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Department of Laboratory Medicine, School of Medicine, Foshan University, Foshan City, China
| | - Taryn N. Green
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Anna Bogdanova
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland
| | - Maggie L. Kalev-Zylinska
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Haematology Laboratory, Department of Pathology and Laboratory Medicine, Auckland City Hospital, Auckland, New Zealand
| |
Collapse
|
14
|
Audero MM, Prevarskaya N, Fiorio Pla A. Ca 2+ Signalling and Hypoxia/Acidic Tumour Microenvironment Interplay in Tumour Progression. Int J Mol Sci 2022; 23:7377. [PMID: 35806388 PMCID: PMC9266881 DOI: 10.3390/ijms23137377] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 01/18/2023] Open
Abstract
Solid tumours are characterised by an altered microenvironment (TME) from the physicochemical point of view, displaying a highly hypoxic and acidic interstitial fluid. Hypoxia results from uncontrolled proliferation, aberrant vascularization and altered cancer cell metabolism. Tumour cellular apparatus adapts to hypoxia by altering its metabolism and behaviour, increasing its migratory and metastatic abilities by the acquisition of a mesenchymal phenotype and selection of aggressive tumour cell clones. Extracellular acidosis is considered a cancer hallmark, acting as a driver of cancer aggressiveness by promoting tumour metastasis and chemoresistance via the selection of more aggressive cell phenotypes, although the underlying mechanism is still not clear. In this context, Ca2+ channels represent good target candidates due to their ability to integrate signals from the TME. Ca2+ channels are pH and hypoxia sensors and alterations in Ca2+ homeostasis in cancer progression and vascularization have been extensively reported. In the present review, we present an up-to-date and critical view on Ca2+ permeable ion channels, with a major focus on TRPs, SOCs and PIEZO channels, which are modulated by tumour hypoxia and acidosis, as well as the consequent role of the altered Ca2+ signals on cancer progression hallmarks. We believe that a deeper comprehension of the Ca2+ signalling and acidic pH/hypoxia interplay will break new ground for the discovery of alternative and attractive therapeutic targets.
Collapse
Affiliation(s)
- Madelaine Magalì Audero
- U1003—PHYCEL—Laboratoire de Physiologie Cellulaire, Inserm, University of Lille, Villeneuve d’Ascq, 59000 Lille, France; (M.M.A.); (N.P.)
- Laboratory of Cellular and Molecular Angiogenesis, Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy
| | - Natalia Prevarskaya
- U1003—PHYCEL—Laboratoire de Physiologie Cellulaire, Inserm, University of Lille, Villeneuve d’Ascq, 59000 Lille, France; (M.M.A.); (N.P.)
| | - Alessandra Fiorio Pla
- U1003—PHYCEL—Laboratoire de Physiologie Cellulaire, Inserm, University of Lille, Villeneuve d’Ascq, 59000 Lille, France; (M.M.A.); (N.P.)
- Laboratory of Cellular and Molecular Angiogenesis, Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy
| |
Collapse
|
15
|
Kolawole OR, Kashfi K. NSAIDs and Cancer Resolution: New Paradigms beyond Cyclooxygenase. Int J Mol Sci 2022; 23:1432. [PMID: 35163356 PMCID: PMC8836048 DOI: 10.3390/ijms23031432] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
Acute inflammation or resolved inflammation is an adaptive host defense mechanism and is self-limiting, which returns the body to a state of homeostasis. However, unresolved, uncontrolled, or chronic inflammation may lead to various maladies, including cancer. Important evidence that links inflammation and cancer is that nonsteroidal anti-inflammatory drugs (NSAIDs), such as aspirin, reduce the risk and mortality from many cancers. The fact that NSAIDs inhibit the eicosanoid pathway prompted mechanistic drug developmental work focusing on cyclooxygenase (COX) and its products. The increased prostaglandin E2 levels and the overexpression of COX-2 in the colon and many other cancers provided the rationale for clinical trials with COX-2 inhibitors for cancer prevention or treatment. However, NSAIDs do not require the presence of COX-2 to prevent cancer. In this review, we highlight the effects of NSAIDs and selective COX-2 inhibitors (COXIBs) on targets beyond COX-2 that have shown to be important against many cancers. Finally, we hone in on specialized pro-resolving mediators (SPMs) that are biosynthesized locally and, in a time, -dependent manner to promote the resolution of inflammation and subsequent tissue healing. Different classes of SPMs are reviewed, highlighting aspirin's potential in triggering the production of these resolution-promoting mediators (resolvins, lipoxins, protectins, and maresins), which show promise in inhibiting cancer growth and metastasis.
Collapse
Affiliation(s)
- Oluwafunke R. Kolawole
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA;
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA;
- Graduate Program in Biology, City University of New York Graduate Center, New York, NY 10091, USA
| |
Collapse
|
16
|
Transcription factor c-Myb: novel prognostic factor in osteosarcoma. Clin Exp Metastasis 2022; 39:375-390. [PMID: 34994868 DOI: 10.1007/s10585-021-10145-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/28/2021] [Indexed: 12/21/2022]
Abstract
The transcription factor c-Myb is an oncoprotein promoting cell proliferation and survival when aberrantly activated/expressed, thus contributing to malignant transformation. Overexpression of c-Myb has been found in leukemias, breast, colon and adenoid cystic carcinoma. Recent studies revealed its expression also in osteosarcoma cell lines and suggested its functional importance during bone development. However, the relevance of c-Myb in control of osteosarcoma progression remains unknown. A retrospective clinical study was carried out to assess a relationship between c-Myb expression in archival osteosarcoma tissues and prognosis in a cohort of high-grade osteosarcoma patients. In addition, MYB was depleted in metastatic osteosarcoma cell lines SAOS-2 LM5 and 143B and their growth, chemosensitivity, migration and metastatic activity were determined. Immunohistochemical analysis revealed that high c-Myb expression was significantly associated with poor overall survival in the cohort and metastatic progression in young patients. Increased level of c-Myb was detected in metastatic osteosarcoma cell lines and its depletion suppressed their growth, colony-forming capacity, migration and chemoresistance in vitro in a cell line-dependent manner. MYB knock-out resulted in reduced metastatic activity of both SAOS-2 LM5 and 143B cell lines in immunodeficient mice. Transcriptomic analysis revealed the c-Myb-driven functional programs enriched for genes involved in the regulation of cell growth, stress response, cell adhesion and cell differentiation/morphogenesis. Wnt signaling pathway was identified as c-Myb target in osteosarcoma cells. Taken together, we identified c-Myb as a negative prognostic factor in osteosarcoma and showed its involvement in the regulation of osteosarcoma cell growth, chemosensitivity, migration and metastatic activity.
Collapse
|