1
|
Pulido-Saavedra A, Borelli A, Kitaneh R, Alrafayia M, Jalilian-Khave L, Funaro MC, Potenza MN, Angarita GA. The potential of non-psychedelic 5-HT2A agents in the treatment of substance use disorders: a narrative review of the clinical literature. Expert Opin Pharmacother 2025; 26:133-146. [PMID: 39708346 PMCID: PMC11786980 DOI: 10.1080/14656566.2024.2446623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/10/2024] [Accepted: 12/19/2024] [Indexed: 12/23/2024]
Abstract
INTRODUCTION Substance use disorders (SUDs) are a public health issue, with only some having FDA-approved indicated treatments and these having high attrition. Consequently, there has been interest in novel interventions (e.g. psychedelics that target 5-HT2A receptors) with some promising results. In this narrative review, we aim to focus on the role of the 5-HT2A receptors on the effectiveness of the treatment of SUDs. AREAS COVERED We evaluated the clinical evidence of the treatment of SUDs with non-psychedelic medications with a primary affinity for the 5-HT2A receptor. EXPERT OPINION The reviewed literature showed some positive effects on craving and abstinence but, overall, results were mixed. Comparison of this work with work on psychedelic agents suggests that mixed results are not unique to non-psychedelic agents. Both psychedelic and non-psychedelic drugs with 5-HT2A affinity are not exclusively selective for 5-HT2A receptors. The observation that most agents reviewed are 5-HT2A receptor antagonists instead of agonists and that psychedelics (typically 5-HT2A receptor agonists) may have more homogenous positive results gives more support to 5-HT2A receptor agonists as a promising group for treating SUDs. Mechanisms may target a common denominator across SUDs (e.g. chronic hypodopaminergic states).
Collapse
Affiliation(s)
- Alejandra Pulido-Saavedra
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT 0651, United States
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, 34 Park Street, New Haven, CT 06519, United States
| | - Anna Borelli
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT 0651, United States
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, 34 Park Street, New Haven, CT 06519, United States
| | - Razi Kitaneh
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT 0651, United States
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, 34 Park Street, New Haven, CT 06519, United States
| | | | - Laya Jalilian-Khave
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT 0651, United States
| | - Melissa C. Funaro
- Harvey Cushing/John Hay Whitney Medical Library, Yale University, 333 Cedar Street, New Haven, CT 06510, United States
| | - Marc N. Potenza
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT 0651, United States
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, 34 Park Street, New Haven, CT 06519, United States
- Connecticut Council on Problem Gambling, Wethersfield, CT, United States
- Child Study Center, Yale University School of Medicine, New Haven, CT, United States
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, United States
- Wu Tsai Institute, Yale University, New Haven, CT, United States
| | - Gustavo A. Angarita
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT 0651, United States
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, 34 Park Street, New Haven, CT 06519, United States
| |
Collapse
|
2
|
Olejníková-Ladislavová L, Fujáková-Lipski M, Šíchová K, Danda H, Syrová K, Horáček J, Páleníček T. Mescaline-induced behavioral alterations are mediated by 5-HT2A and 5-HT2C receptors in rats. Pharmacol Biochem Behav 2024; 245:173903. [PMID: 39547368 DOI: 10.1016/j.pbb.2024.173903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024]
Abstract
RATIONALE Mescaline is a classical psychedelic compound with a phenylethylamine structure that primarily acts on serotonin 5-HT2A/C receptors, but also binds to 5-HT1A and 5-HT2B receptors. Despite being the first psychedelic ever isolated and synthesized, the precise role of different serotonin receptor subtypes in its behavioral pharmacology is not fully understood. OBJECTIVES In this study, we aimed to investigate how selective antagonists of 5-HT2A, 5-HT2B, 5-HT2C, and 5-HT1A receptors affect the behavioral changes induced by subcutaneous administration of mescaline (at doses of 10, 20, and 100 mg/kg) in rats. METHODS We used adult male Wistar rats in all our experiments. We evaluated locomotor activity using the open field test, and assessed sensorimotor gating deficits by measuring prepulse inhibition (PPI) of acoustic startle reaction (ASR). RESULTS While the highest dose of mescaline induced hyperlocomotion (p < 0.001), which almost all the other antagonists reversed (p < 0.05-0.001), the PPI deficits were selectively normalized by the 5-HT2A antagonist (p < 0.05-0.01). The 5-HT2C antagonist partially reversed the small PPI deficit induced by lower doses of mescaline (p = 0.0017). CONCLUSION Our findings suggest that mescaline-induced changes in behavior are primarily mediated by the 5-HT2A receptor subtype, with less pronounced contributions from the 5-HT2C receptor. The other antagonists had limited effects.
Collapse
MESH Headings
- Animals
- Male
- Rats
- Rats, Wistar
- Receptor, Serotonin, 5-HT2C/metabolism
- Receptor, Serotonin, 5-HT2C/drug effects
- Receptor, Serotonin, 5-HT2A/metabolism
- Receptor, Serotonin, 5-HT2A/drug effects
- Behavior, Animal/drug effects
- Mescaline/pharmacology
- Dose-Response Relationship, Drug
- Hallucinogens/pharmacology
- Hallucinogens/administration & dosage
- Reflex, Startle/drug effects
- Locomotion/drug effects
- Serotonin 5-HT2 Receptor Antagonists/pharmacology
- Motor Activity/drug effects
- Serotonin Antagonists/pharmacology
- Prepulse Inhibition/drug effects
Collapse
Affiliation(s)
| | - Michaela Fujáková-Lipski
- Psychedelic Research Centre, National Institute of Mental Health, Topolová 748, Klecany 250 67, Czechia
| | - Klára Šíchová
- Psychedelic Research Centre, National Institute of Mental Health, Topolová 748, Klecany 250 67, Czechia
| | - Hynek Danda
- Psychedelic Research Centre, National Institute of Mental Health, Topolová 748, Klecany 250 67, Czechia; 3rd Faculty of Medicine, Charles University, Ruská 87, Prague 10, 100 00, Czechia
| | - Kateřina Syrová
- Psychedelic Research Centre, National Institute of Mental Health, Topolová 748, Klecany 250 67, Czechia; 3rd Faculty of Medicine, Charles University, Ruská 87, Prague 10, 100 00, Czechia
| | - Jiří Horáček
- 3rd Faculty of Medicine, Charles University, Ruská 87, Prague 10, 100 00, Czechia; Center for Advanced Studies of Brain and Consciousness, National Institute of Mental Health, Topolová 748, Klecany 250 67, Czechia
| | - Tomáš Páleníček
- Psychedelic Research Centre, National Institute of Mental Health, Topolová 748, Klecany 250 67, Czechia.
| |
Collapse
|
3
|
McQueney AJ, Garcia EJ. Biological sex modulates the efficacy of 2,5-dimethoxy-4-iodoamphetamine (DOI) to mitigate fentanyl demand. Drug Alcohol Depend 2024; 263:112426. [PMID: 39217832 DOI: 10.1016/j.drugalcdep.2024.112426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Overdose deaths remain high for opioid use disorder, emphasizing the need to pursue innovative therapeutics. Classic psychedelic drugs that engage many monoamine receptors mitigate opioid use. Here, we tested the hypothesis that the preferential serotonin 5-HT2AR agonist, 2,5-dimethoxy-4-iodoamphetamine (DOI) could reduce the demand for fentanyl in a preclinical model of fentanyl self-administration. METHODS Male and female Sprague-Dawley rats (n = 25-29) were implanted with indwelling jugular catheters and allowed to self-administer fentanyl (3.2μg/kg/infusion). Rats progressed to a novel low price twice within-session threshold procedure where rats sampled the lowest price twice before decreasing the dose of fentanyl by a ¼ log every 10minutes across 11 doses. Once stable, rats were pretreated with saline or DOI (0.01, 0.03, 1mg/kg). Fentanyl consumption was analyzed using an exponentiated demand function to extract the dependent variables, Q0 and α. RESULTS Male and female rats acquired fentanyl self-administration in the lowest price twice within-session threshold procedure. DOI dose-dependently altered fentanyl intake such that 5-HT2AR activation decreased Q0 in female rats but increased Q0 in male rats. For demand elasticity, DOI increased α in male rats but did not alter α in female rats. DOI did not alter inactive lever presses or latency. CONCLUSION DOI reduces consumption at minimally constrained costs but did not affect the reinforcement value of fentanyl in female rats. Alternatively, DOI significantly reduced the reinforcement value of fentanyl in male rats. Biological sex alters the therapeutic efficacy of DOI and 5-HT2AR activation sex-dependently alters opioid reinforcement.
Collapse
Affiliation(s)
- Alice J McQueney
- Neuroscience and Behavior, Psychology Department, University of Nebraska at Omaha, Omaha, NE, USA
| | - Erik J Garcia
- Neuroscience and Behavior, Psychology Department, University of Nebraska at Omaha, Omaha, NE, USA.
| |
Collapse
|
4
|
Jones JD, Arout CA, Luba R, Murugesan D, Madera G, Gorsuch L, Schusterman R, Martinez S. The influence of drug class on reward in substance use disorders. Pharmacol Biochem Behav 2024; 240:173771. [PMID: 38670466 PMCID: PMC11162950 DOI: 10.1016/j.pbb.2024.173771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/26/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024]
Abstract
In the United States, the societal costs associated with drug use surpass $500 billion annually. The rewarding and reinforcing properties that drive the use of these addictive substances are typically examined concerning the neurobiological effects responsible for their abuse potential. In this review, terms such as "abuse potential," "drug," and "addictive properties" are used due to their relevance to the methodological, theoretical, and conceptual framework for understanding the phenomenon of drug-taking behavior and the associated body of preclinical and clinical literature. The use of these terms is not intended to cast aspersions on individuals with substance use disorders (SUD). Understanding what motivates substance use has been a focus of SUD research for decades. Much of this corpus of work has focused on the shared effects of each drug class to increase dopaminergic transmission within the central reward pathways of the brain, or the "reward center." However, the precise influence of each drug class on dopamine signaling, and the extent thereof, differs considerably. Furthermore, the aforementioned substances have effects on several neurobiological targets that mediate and modulate their addictive properties. The current manuscript sought to review the influence of drug class on the rewarding effects of each of the major pharmacological classes of addictive drugs (i.e., psychostimulants, opioids, nicotine, alcohol, and cannabinoids). Our review suggests that even subtle differences in drug effects can result in significant variability in the subjective experience of the drug, altering rewarding and other reinforcing effects. Additionally, this review will argue that reward (i.e., the attractive and motivational property of a stimulus) alone is not sufficient to explain the abuse liability of these substances. Instead, abuse potential is best examined as a function of both positive and negative reinforcing drug effects (i.e., stimuli that the subject will work to attain and stimuli that the subject will work to end or avoid, respectively). Though reward is central to drug use, the factors that motivate and maintain drug taking are varied and complex, with much to be elucidated.
Collapse
Affiliation(s)
- Jermaine D Jones
- Division on Substance Use Disorders, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032, USA.
| | - Caroline A Arout
- Division on Substance Use Disorders, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032, USA
| | - Rachel Luba
- Division on Substance Use Disorders, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032, USA
| | - Dillon Murugesan
- CUNY School of Medicine, 160 Convent Avenue, New York, NY 10031, USA
| | - Gabriela Madera
- Division on Substance Use Disorders, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032, USA
| | - Liam Gorsuch
- Department of Psychiatry, The University of British Columbia, 430-5950 University Blvd., Vancouver V6T 1Z3, BC, Canada
| | - Rebecca Schusterman
- Division on Substance Use Disorders, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032, USA
| | - Suky Martinez
- Division on Substance Use Disorders, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032, USA
| |
Collapse
|
5
|
Jeon KO, Kim OH, Seo SY, Yun J, Jang CG, Lim RN, Kim TW, Yang CH, Yoon SS, Jang EY. The psychomotor, reinforcing, and discriminative stimulus effects of synthetic cathinone mexedrone in male mice and rats. Eur J Pharmacol 2024; 969:176466. [PMID: 38431243 DOI: 10.1016/j.ejphar.2024.176466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/18/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
The chronic use of the novel synthetic cathinone mexedrone, like other psychoactive drugs, can be considered addictive, with a high potential for abuse and the ability to cause psychological dependence in certain users. However, little is known about the neurobehavioral effects of mexedrone in association with its potential for abuse. We investigated the abuse potential for mexedrone abuse through multiple behavioral tests. In addition, serotonin transporter (SERT) levels were measured in the synaptosome of the dorsal striatum, and serotonin (5-HT) levels were measured in the dorsal striatum of acute mexedreone (50 mg/kg)-treated mice. To clarify the neuropharmacological mechanisms underlying the locomotor response of mexedrone, the 5-HT2A receptor antagonist M100907 (0.5 or 1.0 mg/kg) was administered prior to the acute injection of mexedrone in the locomotor activity experiment in mice. Mexedrone (10-50 mg/kg) produced a significant place preference in mice and mexedrone (0.1-0.5 mg/kg/infusion) maintained self-administration behavior in rats in a dose-dependent manner. In the drug discrimination experiment, mexedrone (5.6-32 mg/kg) was fully substituted for the discriminative stimulus effects of cocaine in rats. Mexedrone increased locomotor activity, and these effects were reversed by pretreatment with M100907. Acute mexedrone significantly increased c-Fos expression in the dorsal striatum and decreased SERT levels in the synaptosome of the dorsal striatum of mice, resulting in an elevation of 5-HT levels. Taken together, our results provide the possibility that mexedrone has abuse potential, which might be mediated, at least in part, by the activation of the serotonergic system in the dorsal striatum.
Collapse
Affiliation(s)
- Kyung Oh Jeon
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea; Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Oc-Hee Kim
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Su Yeon Seo
- Korean Medicine (KM) Research Division, Korea Institute of Oriental Medicine, Daejeon, 34054, Republic of Korea
| | - Jaesuk Yun
- College of Pharmacy, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 28160, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Ri-Na Lim
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Tae Wan Kim
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Chae Ha Yang
- Department of Physiology, College of Korean Medicine, Daegu Haany University, 136 Sincheondong-ro, Suseong-gu, Daegu, 42158, Republic of Korea
| | - Seong Shoon Yoon
- Department of Physiology, College of Korean Medicine, Daegu Haany University, 136 Sincheondong-ro, Suseong-gu, Daegu, 42158, Republic of Korea.
| | - Eun Young Jang
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea.
| |
Collapse
|
6
|
Pentkowski NS, Bouquin SJ, Maestas-Olguin CR, Villasenor ZM, Clark BJ. Differential effects of chronic stress on anxiety-like behavior and contextual fear conditioning in the TgF344-AD rat model of Alzheimer's disease. Behav Brain Res 2022; 418:113661. [PMID: 34780859 DOI: 10.1016/j.bbr.2021.113661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative brain disorder that leads to severe cognitive and functional impairments. Many AD patients also exhibit neuropsychiatric symptoms, such as anxiety and depression, prior to the clinical diagnosis of dementia. Chronic stress is associated with numerous adverse health consequences and disease states, and AD patients exhibit altered stress systems. Thus, stress may represent a causal link between neuropsychiatric symptoms and AD. To address this possibility, we examined the effects of chronic stress in the TgF344-AD rat model that co-expresses the mutant human amyloid precursor protein (APPsw) and presenilin 1 (PS1ΔE9) genes. Adult male transgenic (Tg+) and wild-type (WT) rats (6-7.5 months of age), with and without a history of chronic restraint stress, were tested for footshock-induced conditioned fear and for anxiety-like behavior in the elevated plus-maze. We found that non-stressed Tg+ rats showed increased anxiety-like behavior compared to non-stressed WT rats. In contrast, Tg+ and WT rats did not differ in levels of freezing immediately following footshock or during contextual re-exposure. Additionally, stressed Tg+ rats were not significantly different from stressed WT rats on any measures of anxiety or fear. Thus, while stress has been linked as a risk factor for AD-related pathology, it appears from the present findings that two weeks of daily restraint stress did not further enhance anxiety- or fear-like behaviors in TgF344-AD rats.
Collapse
Affiliation(s)
- Nathan S Pentkowski
- Department of Psychology, University of New Mexico, Albuquerque, NM 87109, USA.
| | - Samuel J Bouquin
- Department of Psychology, University of New Mexico, Albuquerque, NM 87109, USA
| | | | | | - Benjamin J Clark
- Department of Psychology, University of New Mexico, Albuquerque, NM 87109, USA
| |
Collapse
|
7
|
Differential methamphetamine-induced behavioral effects in male and female mice lacking regulator of G Protein signaling 4. Behav Brain Res 2022; 423:113770. [DOI: 10.1016/j.bbr.2022.113770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/03/2022] [Accepted: 01/21/2022] [Indexed: 11/21/2022]
|
8
|
Madden JT, Reyna NC, Goranson EV, Gonzalez TA, Zavala AR, Pentkowski NS. Blocking serotonin 2A (5-HT 2A) receptors attenuates the acquisition of methamphetamine-induced conditioned place preference in adult female rats. Behav Brain Res 2021; 415:113521. [PMID: 34391796 DOI: 10.1016/j.bbr.2021.113521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/29/2021] [Accepted: 08/09/2021] [Indexed: 11/19/2022]
Abstract
Methamphetamine withdrawal can induce intense cravings leading to relapse. Contexts/cues paired with chronic methamphetamine use develop incentive motivational properties, promoting future drug-seeking and taking behavior. Research has shown that, in adult male rats, the selective 5-HT2A receptor antagonist M100907 attenuates the acquisition of methamphetamine-induced conditioned place preference (CPP), a measure that examines conditioned associations between the rewarding properties of drugs and contexts. However, these findings have not been extended to adult female rats. The present study investigated the effects of M100907 on the acquisition of methamphetamine-CPP in adult female rats. During conditioning, rats were administered M100907 (0, 0.025, 0.25 mg/kg, i.p.) 15 min before methamphetamine (1 mg/kg, i.p.) and then placed into their initially non-preferred chamber for 30 min, or administered saline and placed into their initially preferred chamber for 30 min. Conditioning sessions were separated by four hours. Following four days of conditioning, the effects of M100907 on the acquisition of methamphetamine-CPP were assessed during a 15 min drug-free test trial. Pretreatment with M100907 dose-dependently attenuated the acquisition of methamphetamine-induced CPP. Blocking 5-HT2A receptors with a low dose of the selective antagonist M100907 attenuated the rewarding effects of methamphetamine in adult female rats. These data provide further evidence that the 5-HT2A receptor subtype is involved in the behavioral effects of methamphetamine.
Collapse
Affiliation(s)
- John T Madden
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA
| | - Nicole C Reyna
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA
| | - Emerald V Goranson
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA
| | - Tiffany A Gonzalez
- Department of Psychology, California State University, Long Beach, Long Beach, CA, USA
| | - Arturo R Zavala
- Department of Psychology, California State University, Long Beach, Long Beach, CA, USA
| | | |
Collapse
|