1
|
Vandeputte MM, Glatfelter GC, Walther D, Layle NK, St Germaine DM, Ujváry I, Iula DM, Baumann MH, Stove CP. Characterization of novel nitazene recreational drugs: Insights into their risk potential from in vitro µ-opioid receptor assays and in vivo behavioral studies in mice. Pharmacol Res 2024; 210:107503. [PMID: 39521025 DOI: 10.1016/j.phrs.2024.107503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
2-Benzylbenzimidazole derivatives or 'nitazenes' are increasingly present on the recreational drug market. Here, we report the synthesis and pharmacological characterization of 15 structurally diverse nitazenes that might be predicted to emerge or grow in popularity. This work expands the existing knowledge about 2-benzylbenzimidazole structure-activity relationships (SARs), while also helping stakeholders (e.g., forensic toxicologists, clinicians, policymakers) in their risk assessment and preparedness for the potential next generation of nitazenes. In vitro µ-opioid receptor (MOR) affinity was determined via competition radioligand (3[H]DAMGO) binding assays in rat brain tissue. MOR activation (potency and efficacy) was studied by means of a cell-based β-arrestin 2 recruitment assay. For seven nitazenes, including etonitazene, opioid-like pharmacodynamic effects (antinociception, locomotor activity, body temperature changes) were evaluated after subcutaneous administration in male C57BL/6 J mice. The results showed that all nitazenes bound to MOR with nanomolar affinities, and the functional potency of several of them was comparable to or exceeded that of fentanyl. In vivo, dose-dependent effects were observed for antinociception, locomotor activity, and body temperature changes in mice. SAR insights included the high opioid-like activity of methionitazene, iso-butonitazene, sec-butonitazene, and the etonitazene analogues 1-ethyl-pyrrolidinylmethyl N-desalkyl etonitazene and ethylene etonitazene. The most potent analogue of the panel across all functional assays was α'-methyl etonitazene. Taken together, through critical pharmacological evaluation, this work provides a framework for strengthened preparedness and risk assessments of current and future nitazenes that have the potential to cause harm to users.
Collapse
Affiliation(s)
- Marthe M Vandeputte
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.
| | - Grant C Glatfelter
- Designer Drug Research Unit (DDRU), Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Donna Walther
- Designer Drug Research Unit (DDRU), Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Nathan K Layle
- Forensic Chemistry Division, Cayman Chemical Company, Ann Arbor, MI 48108, USA.
| | | | | | - Donna M Iula
- Forensic Chemistry Division, Cayman Chemical Company, Ann Arbor, MI 48108, USA.
| | - Michael H Baumann
- Designer Drug Research Unit (DDRU), Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
2
|
Vandeputte MM, Bilel S, Tirri M, Corli G, Bassi M, Layle NK, Fantinati A, Walther D, Iula DM, Baumann MH, Stove CP, Marti M. Elucidating the harm potential of brorphine analogues as new synthetic opioids: Synthesis, in vitro, and in vivo characterization. Neuropharmacology 2024; 260:110113. [PMID: 39154855 DOI: 10.1016/j.neuropharm.2024.110113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/18/2024] [Accepted: 08/09/2024] [Indexed: 08/20/2024]
Abstract
The emergence of new synthetic opioids (NSOs) has added complexity to recreational opioid markets worldwide. While NSOs with diverse chemical structures have emerged, brorphine currently remains the only NSO with a piperidine benzimidazolone scaffold. However, the emergence of new generations of NSOs, including brorphine analogues, can be anticipated. This study explored the pharmaco-toxicological, opioid-like effect profile of brorphine alongside its non-brominated analogue (orphine) and three other halogenated analogues (fluorphine, chlorphine, iodorphine). In vitro, radioligand binding assays in rat brain tissue indicated that all analogues bind to the μ-opioid receptor (MOR) with nM affinity. While analogues with smaller-sized substituents showed the highest MOR affinity, further in vitro characterization via two cell-based (HEK 293T) MOR activation (β-arrestin 2 and mini-Gαi recruitment) assays indicated that chlorphine, brorphine, and iodorphine were generally the most active MOR agonists. None of the compounds showed significant in vitro biased agonism compared to hydromorphone. In vivo, we investigated the effects of intraperitoneal (IP) administration of the benzimidazolones (0.01-15 mg/kg) on mechanical and thermal antinociception in male CD-1 mice. Chlorphine and brorphine overall induced the highest levels of antinociception. Furthermore, the effects on respiratory changes induced by a fixed dose (15 mg/kg IP) of the compounds were investigated using non-invasive plethysmography. Fluorphine-, chlorphine-, and brorphine-induced respiratory depressant effects were the most pronounced. For some compounds, pretreatment with naloxone (6 mg/kg IP) could not reverse respiratory depression. Taken together, brorphine-like piperidine benzimidazolones are opioid agonists that have the potential to cause substantial harm to users should they emerge as NSOs. This article is part of the Special Issue on "Novel Synthetic Opioids (NSOs)".
Collapse
Affiliation(s)
- Marthe M Vandeputte
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Sabrine Bilel
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Micaela Tirri
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Giorgia Corli
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Marta Bassi
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Nathan K Layle
- Forensic Chemistry Division, Cayman Chemical Company, Ann Arbor, MI, 48108, USA
| | - Anna Fantinati
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Donna Walther
- Designer Drug Research Unit (DDRU), Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Donna M Iula
- Forensic Chemistry Division, Cayman Chemical Company, Ann Arbor, MI, 48108, USA
| | - Michael H Baumann
- Designer Drug Research Unit (DDRU), Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.
| | - Matteo Marti
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy; Collaborative Center of the National Early Warning System, Department for Anti-Drug Policies, Presidency of the Council of Ministers, Italy.
| |
Collapse
|
3
|
Alhosan N, Cavallo D, Santiago M, Kelly E, Henderson G. Slow dissociation kinetics of fentanyls and nitazenes correlates with reduced sensitivity to naloxone reversal at the μ-opioid receptor. Br J Pharmacol 2024. [PMID: 39437833 DOI: 10.1111/bph.17376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND AND PURPOSE Fentanyls and nitazenes are μ-opioid receptor agonists responsible for a large number of opioid overdose deaths. Here, we determined the potency, dissociation kinetics and antagonism by naloxone at the μ receptor of several fentanyl and nitazene analogues, compared to morphine and DAMGO. EXPERIMENTAL APPROACH In vitro assays of G protein activation and signalling and arrestin recruitment were performed. AtT20 cells expressing μ receptors were loaded with a membrane potential dye and changes in fluorescence used to determine agonist potency, dissociation kinetics and susceptibility to antagonism by naloxone. BRET experiments were undertaken in HEK293T cells expressing μ receptors to assess Gi protein activation and β-arrestin 2 recruitment. KEY RESULTS The apparent rate of agonist dissociation from the μ receptor varied: morphine, DAMGO, alfentanil and fentanyl dissociated rapidly, whereas isotonitazene, etonitazene, ohmefentanyl and carfentanil dissociated slowly. Slowly dissociating agonists were more resistant to antagonism by naloxone. For carfentanil, the slow apparent rate of dissociation was not because of G protein receptor kinase-mediated arrestin recruitment as its apparent rate of dissociation was not increased by inhibition of G protein-coupled receptor kinases (GRKs) with Compound 101. The in vitro relative potencies of fentanyls and nitazenes compared to morphine were much lower than that previously observed in in vivo experiments. CONCLUSIONS AND IMPLICATIONS With fentanyls and nitazenes that slowly dissociate from the μ receptor, antagonism by naloxone is pseudo-competitive. In overdoses involving fentanyls and nitazenes, higher doses of naloxone may be required for reversal than those normally used to reverse heroin overdose.
Collapse
Affiliation(s)
- Norah Alhosan
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
- College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Damiana Cavallo
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Marina Santiago
- Macquarie Medical School, Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Eamonn Kelly
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Graeme Henderson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| |
Collapse
|
4
|
Canfield JR, Sprague JE. Influence of carbon side chain length on the in vivo pharmacokinetic and pharmacodynamic characteristics of illicitly manufactured fentanyls. Drug Test Anal 2024; 16:1113-1121. [PMID: 38158874 DOI: 10.1002/dta.3636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
Since 2016, illicitly manufactured fentanyls and fentanyl analogs (referred to as IMFs) have contributed to an increase in drug overdoses. Although fentanyl has been characterized and evaluated extensively in animals and humans, many of the clandestinely synthesized analogs of fentanyl have not and users may unknowingly ingest these IMFs leading to overdose and potentially death. The pharmacodynamic (PD) and pharmacokinetic (PK) properties of four IMFs and fentanyl were evaluated in Sprague-Dawley rats. A 300-μg/kg subcutaneous dose of each compound (fentanyl, acetylfentanyl, cyclopropylfentanyl, butyrylfentanyl, and valerylfentanyl) was given. PD parameters were measured using a tail flick meter and core body temperature. Blood was drawn to evaluate PK parameters utilizing liquid chromatography tandem mass spectrometry (LC-MS/MS). Fentanyl displayed the greatest and longest lasting analgesia with a tail flick response of 10 s (the maximum cutoff). Additionally, fentanyl produced an average -4.9°C in core body temperature resulting in the greatest decrease in core body temperature. Acetylfentanyl, with the shortest carbon side chain, displayed the shortest T½, and lowest AUC and Cmax and resulted in an increase in body temperature. There were no other PK differences among the IMFs assessed. As IMFs are commonly seen on the streets and can pose significant risks to users (although these risks do depend on other factors such as dose and route of administration), there is a benefit to having the pharmacological properties of these compounds characterized to better understand the potential harm to humans.
Collapse
Affiliation(s)
- Jeremy R Canfield
- The Ohio Attorney General's Center for the Future of Forensic Science, Bowling Green State University, Bowling Green, Ohio, USA
| | - Jon E Sprague
- The Ohio Attorney General's Center for the Future of Forensic Science, Bowling Green State University, Bowling Green, Ohio, USA
| |
Collapse
|
5
|
Giorgetti A, Große Perdekamp M, Franchetti G, Pircher R, Pollak S, Pelotti S, Auwärter V. Intoxications involving methoxyacetylfentanyl and U-47700: a study of 3 polydrug fatalities. Int J Legal Med 2024; 138:1801-1811. [PMID: 38831139 PMCID: PMC11306479 DOI: 10.1007/s00414-024-03263-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/28/2024] [Indexed: 06/05/2024]
Abstract
Novel synthetic opioids (NSOs) represent an emerging group of novel psychoactive substances, acting as agonists at the opioid receptors. NSOs include fentanyl-related compounds, e.g. methoxyacetylfentanyl (MeACF), and non-fentanyl analogs, e.g. "U compounds" including U-47700. Here we present three cases of death involving MeACF and U-47700, with particular reference to preliminary data on pharmacokinetics and tissue distribution.After a complete post-mortem examination, general unknown screenings and analysis of drugs of abuse were performed on postmortem samples by immunoassays, gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry. To quantify the analytes of interest in post-mortem blood and tissues, the standard addition method was used. A toxicological significance score (TSS), weighing the role of the NSO in each death case, was assigned.Case 1 died at the hospital after consumption of U-47700, methadone (serum levels: 2,600 ng/ml and 37 ng/ml), tilidine and benzodiazepines. In case 2, U-47700 (204 ng/ml) together with methadone (290 ng/ml), flubromazepam (480 ng/ml) and diazepam (300 ng/ml) were detected in peripheral blood. In case 3, methoxyacetylfentanyl (266 ng/ml), furanylfentanyl (4.3 ng/ml) 4-ANPP (15 ng/ml) and alprazolam (69 ng/ml) were quantified in femoral blood. In all cases, the NSO likely contributed to the death (TSS = 3).NSOs appear to be often consumed in the setting of polydrug intoxications, especially in combination with other opioids and benzodiazepines, which often exert synergistic effects. The standard addition method remains the most reliable in post-mortem analysis and toxicological results should always be evaluated together with circumstantial and autopsy data.
Collapse
Affiliation(s)
- Arianna Giorgetti
- Department of Medical and Surgical Sciences, Unit of Legal Medicine, University of Bologna, Via Irnerio 49, 40126, Bologna, Italy.
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Marcus Große Perdekamp
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Giorgia Franchetti
- Legal Medicine, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Via Falloppio 50, 35121, Padua, Italy
| | - Rebecca Pircher
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stefan Pollak
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Susi Pelotti
- Department of Medical and Surgical Sciences, Unit of Legal Medicine, University of Bologna, Via Irnerio 49, 40126, Bologna, Italy
| | - Volker Auwärter
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
6
|
De Vrieze LM, Walton SE, Pottie E, Papsun D, Logan BK, Krotulski AJ, Stove CP, Vandeputte MM. In vitro structure-activity relationships and forensic case series of emerging 2-benzylbenzimidazole 'nitazene' opioids. Arch Toxicol 2024; 98:2999-3018. [PMID: 38877156 PMCID: PMC11324687 DOI: 10.1007/s00204-024-03774-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/24/2024] [Indexed: 06/16/2024]
Abstract
2-Benzylbenzimidazole 'nitazene' opioids are presenting a growing threat to public health. Although various nitazenes were previously studied, systematic comparisons of the effects of different structural modifications to the 2-benzylbenzimidazole core structure on μ-opioid receptor (MOR) activity are limited. Here, we assessed in vitro structure-activity relationships of 9 previously uncharacterized nitazenes alongside known structural analogues. Specifically, we focused on MOR activation by 'ring' substituted analogues (i.e., N-pyrrolidino and N-piperidinyl modifications), 'desnitazene' analogues (lacking the 5-nitro group), and N-desethyl analogues. The results from two in vitro MOR activation assays (β-arrestin 2 recruitment and inhibition of cAMP accumulation) showed that 'ring' modifications overall yield highly active drugs. With the exception of 4'-OH analogues (which are metabolites), N-pyrrolidino substitutions were generally more favorable for MOR activation than N-piperidine substitutions. Furthermore, removal of the 5-nitro group on the benzimidazole ring consistently caused a pronounced decrease in potency. The N-desethyl modifications showed important MOR activity, and generally resulted in a slightly lowered potency than comparator nitazenes. Intriguingly, N-desethyl isotonitazene was the exception and was consistently more potent than isotonitazene. Complementing the in vitro findings and demonstrating the high harm potential associated with many of these compounds, we describe 85 forensic cases from North America and the United Kingdom involving etodesnitazene, N-desethyl etonitazene, N-desethyl isotonitazene, N-pyrrolidino metonitazene, and N-pyrrolidino protonitazene. The low-to-sub ng/mL blood concentrations observed in most cases underscore the drugs' high potencies. Taken together, by bridging pharmacology and case data, this study may aid to increase awareness and guide legislative and public health efforts.
Collapse
Affiliation(s)
- Liam M De Vrieze
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Sara E Walton
- Center for Forensic Science Research and Education, Fredric Rieders Family Foundation, Willow Grove, PA, 19090, USA
| | - Eline Pottie
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | | | - Barry K Logan
- Center for Forensic Science Research and Education, Fredric Rieders Family Foundation, Willow Grove, PA, 19090, USA
- NMS Labs, Horsham, PA, 19044, USA
| | - Alex J Krotulski
- Center for Forensic Science Research and Education, Fredric Rieders Family Foundation, Willow Grove, PA, 19090, USA
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.
| | - Marthe M Vandeputte
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
7
|
Bodnar RJ. Endogenous opiates and behavior: 2023. Peptides 2024; 179:171268. [PMID: 38943841 DOI: 10.1016/j.peptides.2024.171268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024]
Abstract
This paper is the forty-sixth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2023 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug and alcohol abuse (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Psychology Doctoral Sub-Program, Queens College and the Graduate Center, City University of New York, USA.
| |
Collapse
|
8
|
De Vrieze LM, Stove CP, Vandeputte MM. Nitazene test strips: a laboratory evaluation. Harm Reduct J 2024; 21:159. [PMID: 39198843 PMCID: PMC11350930 DOI: 10.1186/s12954-024-01078-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND 2-Benzylbenzimidazole 'nitazene' opioids pose a growing threat to public health. Nitazene analogues are increasingly found mixed with or (mis)sold as heroin and in falsified (non-)opioid medications, posing a great risk of intoxication in users (un)knowingly exposed to these potent opioids. Lateral flow immunoassay nitazene test strips (NTS; BTNX Rapid Response™) became commercially available in Q1 2024, with the aim to enable rapid detection of nitazene analogues in drug samples. As only limited independent data is available on the performance of these strips, this lab-based study aimed at evaluating their potential for drug checking applications. METHODS Following dilution of drug standards in water, the NTS readouts were analyzed independently by two individuals and by ImageJ. The limit of detection for isotonitazene was determined using two manufacturing lots of NTS. Cross-reactivity with 32 other nitazene analogues was evaluated. Six sourced drug samples were tested to explore the ability of NTS to detect the presence of a nitazene analogue in authentic samples. RESULTS The limits of detection for isotonitazene were 2000 or 3000 ng/mL, depending on the lot. Twenty-four of the 33 tested nitazene analogues cross-reacted with the NTS at concentrations ≤ 9000 ng/mL. Structural analysis indicated that either substitution or removal of the 5-nitro group, or lengthening the linker between the two aromatic rings, generally hampered detection. All six authentic drug samples consistently tested positive, with no observed false negatives. CONCLUSIONS This study provides a better understanding of the potential of NTS for drug checking purposes. Our findings indicate that NTS can theoretically alert to the presence of most nitazene analogues that have emerged on recreational drug markets. However, 'desnitazenes' (lacking the 5-nitro group) may yield false negative results due to low cross-reactivity. Although factors like specificity, lot-to-lot variability, nitazene analogue content in drug samples, solubility, and different testing conditions should be considered, our study results indicate that, at least under the conditions evaluated here (using reference standards and sourced powders), NTS are capable of detecting the presence of a wide range of nitazene analogues. Hence, NTS may alert users of the presence of nitazene analogues in drug samples.
Collapse
Affiliation(s)
- Liam M De Vrieze
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.
| | - Marthe M Vandeputte
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
9
|
Jadhav GR, Fasinu PS. Metabolic characterization of the new benzimidazole synthetic opioids - nitazenes. Front Pharmacol 2024; 15:1434573. [PMID: 39092223 PMCID: PMC11291330 DOI: 10.3389/fphar.2024.1434573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 06/19/2024] [Indexed: 08/04/2024] Open
Abstract
The recent re-emergence and the increasing popularity of nitazenes, a group of new synthetic opioids (NSO) that belong to the benzimidazole chemical class, has raised public health concerns. As a class of potential opioid analgesic agents whose development was discontinued in the 1960s due to their high potential for abuse, very little is known about their metabolism and physiologic disposition. In the current study, three nitazenes-butonitazene, isotonitazene and protonitaze were incubated in human liver microsomes (HLM), human S9 (HS9) fractions and recombinant cytochrome P450 enzymes. All three nitazenes were rapidly metabolized in both HLM and HS9 with over 95% depletion within 60 min. In HLM, butonitazene, isotonitazene and protonitazene had in vitro intrinsic clearance (CLint) (µL/min/mg protein) values of 309, 221 and 216 respectively compared to 150 of verapamil, the positive control. In HS9, CLint values were 217, 139, and 150 for butonitazene, isotonitazene and protonitazene respectively compared to only 35 for testosterone, the control probe substrate. Putative metabolite identified from this study include products of hydroxylation, desethylation, dealkylation, desethylation followed by dealkylation, and desethylation followed by hydroxylation. The metabolic phenotyping showed CYP2D6, CYP2B6 and CYP2C8 and the major hepatic enzymes responsible for the metabolism of nitazenes. Within 30 min of incubation, CYP2D6 depleted butonitazene (99%), isotonitazene (72%) and butonitazene (100%) significantly. The rapid metabolism of nitazenes may be an important factor in accurate and timely detections and quantitation of the unchanged drugs in human matrices following intoxication or in forensic analysis. The involvement of multiple polymorphic CYPs in their metabolism may play important roles in the susceptibility to intoxication and/or addiction, depending on the activity of the metabolites.
Collapse
Affiliation(s)
| | - Pius S. Fasinu
- Department of Pharmacology and Toxicology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
10
|
Salomone A, Vincenti M. Detecting novel psychoactive substances around the world. Curr Opin Psychiatry 2024; 37:258-263. [PMID: 38818825 DOI: 10.1097/yco.0000000000000939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
PURPOSE OF REVIEW The worldwide spread of novel psychoactive substances (NPS) in the illicit drug market and their continuous increase in number and type, for the purpose of bypassing controlled substance legislation, represents a continuing challenge for forensic scientists, clinicians and enforcement authorities. We aim to provide information regarding the most urgent harms related to NPS consumption in different world regions and the current state of the art for NPS analysis. RECENT FINDINGS Unfortunately, the identification of NPS in biological samples is controversial, especially when samples are limited, or the drug is promptly and extensively metabolized. This causes a lack of information on their real diffusion in different parts of the world and in different populations. New technologies and instrumental detection of NPS in alternative samples are offering comprehensive information about NPS use. SUMMARY The lack of detection and underreporting of NPS in biological samples makes it difficult to obtain complete qualitative and quantitative information about NPS prevalence. The most innovative strategies that have been proposed in the last 2 years to assist NPS analysis and possibly facilitate the understanding of the NPS diffusion around the world are presented.
Collapse
Affiliation(s)
- Alberto Salomone
- Department of Chemistry, University of Turin
- Centro Regionale Antidoping, Orbassano, Turin, Italy
| | - Marco Vincenti
- Department of Chemistry, University of Turin
- Centro Regionale Antidoping, Orbassano, Turin, Italy
| |
Collapse
|
11
|
Abstract
Substance use disorders (SUD) present a worldwide challenge with few effective therapies except for the relative efficacy of opioid pharmacotherapies, despite limited treatment access. However, the proliferation of illicit fentanyl use initiated a dramatic and cascading epidemic of lethal overdoses. This rise in fentanyl overdoses regenerated an interest in vaccine immunotherapy, which, despite an optimistic start in animal models over the past 50 years, yielded disappointing results in human clinical trials of vaccines against nicotine, stimulants (cocaine and methamphetamine), and opioids. After a brief review of clinical and selected preclinical vaccine studies, the "lessons learned" from the previous vaccine clinical trials are summarized, and then the newest challenge of a vaccine against fentanyl and its analogs is explored. Animal studies have made significant advances in vaccine technology for SUD treatment over the past 50 years, and the resulting anti-fentanyl vaccines show remarkable promise for ending this epidemic of fentanyl deaths.
Collapse
Affiliation(s)
- Thomas R Kosten
- Waggoner Professor of Psychiatry, Pharmacology, Neuroscience, Immunology, Baylor College of Medicine, Houston
| |
Collapse
|
12
|
Kozell LB, Eshleman AJ, Wolfrum KM, Swanson TL, Bloom SH, Benware S, Schmachtenberg JL, Schutzer KA, Schutzer WE, Janowsky A, Abbas AI. Pharmacologic Characterization of Substituted Nitazenes at μ, κ, and Δ Opioid Receptors Suggests High Potential for Toxicity. J Pharmacol Exp Ther 2024; 389:219-228. [PMID: 38453524 PMCID: PMC11026150 DOI: 10.1124/jpet.123.002052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/09/2024] Open
Abstract
The benzimidazole opioids (substituted nitazenes) are highly potent μ opiod receptor (MOR) agonists with heroin- or fentanyl-like effects. These compounds have caused hospitalizations and fatal overdoses. We characterized the in vitro pharmacology and structure-activity relationships of 19 nitazenes with substitutions at three positions of the benzimidazole core. Affinities were assessed using agonist radioligand binding assays at human μ, κ, and Δ opioid receptors (MOR, KOR, and DOR, respectively) heterologously expressed in CHO cells. Notably, for MOR binding, nine substituted nitazenes had significantly higher affinities than fentanyl including N-pyrrolidino etonitazene, N-pyrrilidino isonitazene, and N-desethyl isotonitazene; 13 had subnanomolar affinities. Only metodesnitazene and flunitazene had significantly lower affinities than fentanyl. Affinities for the substituted nitazenes at KOR and DOR relative to MOR were 46- to 2580-fold and 180- to 1280-fold lower, respectively. Functional activities were assessed using [35S]GTPγS binding assays. Four nitazenes had subnanomolar potencies at MOR: N-pyrrolidino etonitazene, N-pyrrilidino isonitazene, N-pyrrilidino protonitazene and N-desethyl isotonitazene. Ten substituted nitazenes had significantly higher potencies than fentanyl. All tested nitazenes were full MOR agonists. Potencies at KOR and DOR relative to MOR were 7.3- to 7920-fold and 24- to 9400-fold lower, respectively. Thus, many of these compounds are high affinity/high potency MOR agonists with elevated potential to elicit toxicity and overdose at low doses. SIGNIFICANCE STATEMENT: Substituted nitazenes are a growing public health threat. Although the 19 nitazenes tested vary in their opioid receptor pharmacology, a number are very high affinity, high potency, and high efficacy compounds- higher than fentanyl. Their pharmacology suggests high potential for harm.
Collapse
Affiliation(s)
- Laura B Kozell
- VA Portland Health Care System (L.B.K., A.J.E., K.M.W., T.L.S., S.H.B., S.B., J.L.S., K.A.S., W.E.S., A.J., A.I.A.), Departments of Psychiatry (L.B.K., A.J.E., T.L.S., W.E.S., A.J., A.I.A.), and Behavioral Neuroscience (L.B.K., A.J., A.I.A.), Oregon Health and Science University, Portland, Oregon
| | - Amy J Eshleman
- VA Portland Health Care System (L.B.K., A.J.E., K.M.W., T.L.S., S.H.B., S.B., J.L.S., K.A.S., W.E.S., A.J., A.I.A.), Departments of Psychiatry (L.B.K., A.J.E., T.L.S., W.E.S., A.J., A.I.A.), and Behavioral Neuroscience (L.B.K., A.J., A.I.A.), Oregon Health and Science University, Portland, Oregon
| | - Katherine M Wolfrum
- VA Portland Health Care System (L.B.K., A.J.E., K.M.W., T.L.S., S.H.B., S.B., J.L.S., K.A.S., W.E.S., A.J., A.I.A.), Departments of Psychiatry (L.B.K., A.J.E., T.L.S., W.E.S., A.J., A.I.A.), and Behavioral Neuroscience (L.B.K., A.J., A.I.A.), Oregon Health and Science University, Portland, Oregon
| | - Tracy L Swanson
- VA Portland Health Care System (L.B.K., A.J.E., K.M.W., T.L.S., S.H.B., S.B., J.L.S., K.A.S., W.E.S., A.J., A.I.A.), Departments of Psychiatry (L.B.K., A.J.E., T.L.S., W.E.S., A.J., A.I.A.), and Behavioral Neuroscience (L.B.K., A.J., A.I.A.), Oregon Health and Science University, Portland, Oregon
| | - Shelley H Bloom
- VA Portland Health Care System (L.B.K., A.J.E., K.M.W., T.L.S., S.H.B., S.B., J.L.S., K.A.S., W.E.S., A.J., A.I.A.), Departments of Psychiatry (L.B.K., A.J.E., T.L.S., W.E.S., A.J., A.I.A.), and Behavioral Neuroscience (L.B.K., A.J., A.I.A.), Oregon Health and Science University, Portland, Oregon
| | - Sheila Benware
- VA Portland Health Care System (L.B.K., A.J.E., K.M.W., T.L.S., S.H.B., S.B., J.L.S., K.A.S., W.E.S., A.J., A.I.A.), Departments of Psychiatry (L.B.K., A.J.E., T.L.S., W.E.S., A.J., A.I.A.), and Behavioral Neuroscience (L.B.K., A.J., A.I.A.), Oregon Health and Science University, Portland, Oregon
| | - Jennifer L Schmachtenberg
- VA Portland Health Care System (L.B.K., A.J.E., K.M.W., T.L.S., S.H.B., S.B., J.L.S., K.A.S., W.E.S., A.J., A.I.A.), Departments of Psychiatry (L.B.K., A.J.E., T.L.S., W.E.S., A.J., A.I.A.), and Behavioral Neuroscience (L.B.K., A.J., A.I.A.), Oregon Health and Science University, Portland, Oregon
| | - Kamryn A Schutzer
- VA Portland Health Care System (L.B.K., A.J.E., K.M.W., T.L.S., S.H.B., S.B., J.L.S., K.A.S., W.E.S., A.J., A.I.A.), Departments of Psychiatry (L.B.K., A.J.E., T.L.S., W.E.S., A.J., A.I.A.), and Behavioral Neuroscience (L.B.K., A.J., A.I.A.), Oregon Health and Science University, Portland, Oregon
| | - William E Schutzer
- VA Portland Health Care System (L.B.K., A.J.E., K.M.W., T.L.S., S.H.B., S.B., J.L.S., K.A.S., W.E.S., A.J., A.I.A.), Departments of Psychiatry (L.B.K., A.J.E., T.L.S., W.E.S., A.J., A.I.A.), and Behavioral Neuroscience (L.B.K., A.J., A.I.A.), Oregon Health and Science University, Portland, Oregon
| | - Aaron Janowsky
- VA Portland Health Care System (L.B.K., A.J.E., K.M.W., T.L.S., S.H.B., S.B., J.L.S., K.A.S., W.E.S., A.J., A.I.A.), Departments of Psychiatry (L.B.K., A.J.E., T.L.S., W.E.S., A.J., A.I.A.), and Behavioral Neuroscience (L.B.K., A.J., A.I.A.), Oregon Health and Science University, Portland, Oregon
| | - Atheir I Abbas
- VA Portland Health Care System (L.B.K., A.J.E., K.M.W., T.L.S., S.H.B., S.B., J.L.S., K.A.S., W.E.S., A.J., A.I.A.), Departments of Psychiatry (L.B.K., A.J.E., T.L.S., W.E.S., A.J., A.I.A.), and Behavioral Neuroscience (L.B.K., A.J., A.I.A.), Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
13
|
Tsai MHM, Chen L, Baumann MH, Canals M, Javitch JA, Lane JR, Shi L. In Vitro Functional Profiling of Fentanyl and Nitazene Analogs at the μ-Opioid Receptor Reveals High Efficacy for Gi Protein Signaling. ACS Chem Neurosci 2024; 15:854-867. [PMID: 38345920 DOI: 10.1021/acschemneuro.3c00750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024] Open
Abstract
Novel synthetic opioids (NSOs), including both fentanyl and non-fentanyl analogs that act as μ-opioid receptor (MOR) agonists, are associated with serious intoxication and fatal overdose. Previous studies proposed that G-protein-biased MOR agonists are safer pain medications, while other evidence indicates that low intrinsic efficacy at MOR better explains the reduced opioid side effects. Here, we characterized the in vitro functional profiles of various NSOs at the MOR using adenylate cyclase inhibition and β-arrestin2 recruitment assays, in conjunction with the application of the receptor depletion approach. By fitting the concentration-response data to the operational model of agonism, we deduced the intrinsic efficacy and affinity for each opioid in the Gi protein signaling and β-arrestin2 recruitment pathways. Compared to the reference agonist [d-Ala2,N-MePhe4,Gly-ol5]enkephalin, we found that several fentanyl analogs were more efficacious at inhibiting cAMP production, whereas all fentanyl analogs were less efficacious at recruiting β-arrestin2. In contrast, the non-fentanyl 2-benzylbenzimidazole (i.e., nitazene) analogs were highly efficacious and potent in both the cAMP and β-arrestin2 assays. Our findings suggest that the high intrinsic efficacy of the NSOs in Gi protein signaling is a common property that may underlie their high risk of intoxication and overdose, highlighting the limitation of using in vitro functional bias to predict the adverse effects of opioids. In addition, the extremely high potency of many NSOs now infiltrating illicit drug markets further contributes to the danger posed to public health.
Collapse
Affiliation(s)
- Meng-Hua M Tsai
- Computational Chemistry and Molecular Biophysics Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Li Chen
- Computational Chemistry and Molecular Biophysics Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Michael H Baumann
- Designer Drug Research Unit, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Meritxell Canals
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, U.K
- Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, Midlands NG7 2UH, U.K
| | - Jonathan A Javitch
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York 10032, United States
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York 10032, United States
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York 10032, United States
| | - J Robert Lane
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, U.K
- Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, Midlands NG7 2UH, U.K
| | - Lei Shi
- Computational Chemistry and Molecular Biophysics Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224, United States
| |
Collapse
|
14
|
Glatfelter GC, Vandeputte MM, Chen L, Walther D, Tsai MHM, Shi L, Stove CP, Baumann MH. Alkoxy chain length governs the potency of 2-benzylbenzimidazole 'nitazene' opioids associated with human overdose. Psychopharmacology (Berl) 2023; 240:2573-2584. [PMID: 37658878 DOI: 10.1007/s00213-023-06451-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/15/2023] [Indexed: 09/05/2023]
Abstract
RATIONALE Novel synthetic opioids (NSOs) are emerging in recreational drug markets worldwide. In particular, 2-benzylbenzimidazole 'nitazene' compounds are problematic NSOs associated with serious clinical consequences, including fatal respiratory depression. Evidence from in vitro studies shows that alkoxy chain length can influence the potency of nitazenes at the mu-opioid receptor (MOR). However, structure-activity relationships (SARs) of nitazenes for inducing opioid-like effects in animal models are not well understood compared to relevant opioids contributing to the ongoing opioid crisis (e.g., fentanyl). OBJECTIVES Here, we examined the in vitro and in vivo effects of nitazene analogues with varying alkoxy chain lengths (i.e., metonitazene, etonitazene, isotonitazene, protonitazene, and butonitazene) as compared to reference opioids (i.e., morphine and fentanyl). METHODS AND RESULTS Nitazene analogues displayed nanomolar affinities for MOR in rat brain membranes and picomolar potencies to activate MOR in transfected cells. All compounds induced opioid-like effects on locomotor activity, hot plate latency, and body temperature in male mice, and alkoxy chain length markedly influenced potency. Etonitazene, with an ethoxy chain, was the most potent analogue in MOR functional assays (EC50 = 30 pM, Emax = 103%) and across all in vivo endpoints (ED50 = 3-12 μg/kg). In vivo SARs revealed that ethoxy, isopropoxy, and propoxy chains engendered higher potencies than fentanyl, whereas methoxy and butoxy analogues were less potent. MOR functional potencies, but not MOR affinities, were positively correlated with in vivo potencies to induce opioid effects. CONCLUSIONS Overall, our data show that certain nitazene NSOs are more potent than fentanyl as MOR agonists in mice, highlighting concerns regarding the high potential for overdose in humans who are exposed to these compounds.
Collapse
Affiliation(s)
- Grant C Glatfelter
- Designer Drug Research Unit, National Institute On Drug Abuse, Intramural Research Program, Baltimore, MD, USA.
| | - Marthe M Vandeputte
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Li Chen
- Computational Chemistry and Molecular Biophysics Section, National Institute On Drug Abuse, Intramural Research Program, Baltimore, MD, USA
| | - Donna Walther
- Designer Drug Research Unit, National Institute On Drug Abuse, Intramural Research Program, Baltimore, MD, USA
| | - Meng-Hua M Tsai
- Computational Chemistry and Molecular Biophysics Section, National Institute On Drug Abuse, Intramural Research Program, Baltimore, MD, USA
| | - Lei Shi
- Computational Chemistry and Molecular Biophysics Section, National Institute On Drug Abuse, Intramural Research Program, Baltimore, MD, USA
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Michael H Baumann
- Designer Drug Research Unit, National Institute On Drug Abuse, Intramural Research Program, Baltimore, MD, USA
| |
Collapse
|
15
|
Tsai MHM, Chen L, Baumann MH, Canals M, Javitch JA, Lane JR, Shi L. The in vitro functional profiles of fentanyl and nitazene analogs at the μ-opioid receptor - high efficacy is dangerous regardless of signaling bias. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.10.566672. [PMID: 38014284 PMCID: PMC10680598 DOI: 10.1101/2023.11.10.566672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Novel synthetic opioids (NSOs), including both fentanyl and non-fentanyl analogs that act as the μ-opioid receptor (MOR) agonists, are associated with serious intoxication and fatal overdose. Previous studies proposed that G protein biased MOR agonists are safer pain medications, while other evidence indicates that low intrinsic efficacy at MOR better explains reduced opioid side effects. Here, we characterized the in vitro functional profiles of various NSOs at MOR using adenylate cyclase inhibition and β-arrestin2 recruitment assays, in conjunction with the application of the receptor depletion approach. By fitting the concentration-response data to the operational model of agonism, we deduced the intrinsic efficacy and affinity for each opioid in the Gi protein signaling and β-arrestin2 recruitment pathways. Compared to the reference agonist DAMGO, we found that several fentanyl analogs were more efficacious at inhibiting cAMP production, whereas all fentanyl analogs were less efficacious at recruiting β-arrestin2. In contrast, the non-fentanyl 2-benzylbenzimidazole (i.e., nitazene) analogs were highly efficacious and potent in both the cAMP and β-arrestin2 assays. Our findings suggest that the high intrinsic efficacy of the NSOs in Gi protein signaling is a common property that may underlie their high risk of intoxication and overdose, highlighting the limitation of using in vitro functional bias to predict the adverse effects of opioids. Instead, our results show that, regardless of bias, opioids with sufficiently high intrinsic efficacy can be lethal, especially given the extremely high potency of many of these compounds that are now pervading the illicit drug market.
Collapse
Affiliation(s)
- Meng-Hua M. Tsai
- Computational Chemistry and Molecular Biophysics Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Li Chen
- Computational Chemistry and Molecular Biophysics Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Michael H. Baumann
- Designer Drug Research Unit, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Meritxell Canals
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham, UK
- Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, Midlands, UK
| | - Jonathan A. Javitch
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - J. Robert Lane
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham, UK
- Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, Midlands, UK
| | - Lei Shi
- Computational Chemistry and Molecular Biophysics Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224, USA
| |
Collapse
|