1
|
Lai J, Zhou Z, Hu K, Yu H, Su X, Niu X, Li H, Mao S. N6-methyladenosine methylation analysis of long noncoding RNAs and mRNAs in 5-FU-resistant colon cancer cells. Epigenetics 2024; 19:2298058. [PMID: 38145548 PMCID: PMC10761136 DOI: 10.1080/15592294.2023.2298058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/13/2023] [Indexed: 12/27/2023] Open
Abstract
N6 methyladenosine (m6A), methylation at the sixth N atom of adenosine, is the most common and abundant modification in mammalian mRNAs and non-coding RNAs. Increasing evidence shows that the alteration of m6A modification level could regulate tumour proliferation, metastasis, self-renewal, and immune infiltration by regulating the related expression of tumour genes. However, the role of m6A modification in colorectal cancer (CRC) drug resistance is unclear. Here, MeRIP-seq and RNA-seq techniques were utilized to obtain mRNA, lncRNA expression, and their methylation profiles in 5-Fluorouracil (5-FU)-resistant colon cancer HCT-15 cells and control cells. In addition, we performed detailed bioinformatics analysis as well as in vitro experiments of lncRNA to explore the function of lncRNA with differential m6A in CRC progression and drug resistance. In this study, we obtained the m6A methylomic landscape of CRC cells and resistance group cells by MeRIP-seq and RNA-seq. We identified 3698 differential m6A peaks, of which 2224 were hypermethylated, and 1474 were hypomethylated. Among the lncRNAs, 60 were hypermethylated, and 38 were hypomethylated. GO and KEGG analysis annotations showed significant enrichment of endocytosis and MAPK signalling pathways. Moreover, knockdown of lncRNA ADIRF-AS1 and AL139035.1 promoted CRC proliferation and invasive metastasis in vitro. lncRNA- mRNA network showed that ADIRF-AS1 and AL139035.1 May play a key role in regulating drug resistance formation. We provide the first m6A methylation profile in 5-FU resistance CRC cells and analyse the functions of differential m6A-modified mRNAs and lncRNAs. Our results indicated that differential m6A RNAs were significantly associated with MAPK signalling and endocytosis after induction of 5-FU resistance. Knockdown of LncRNA ADIRF-AS1 and AL139035.1 promotes CRC progression and might be critical in regulating drug resistance formation.
Collapse
Affiliation(s)
- Jie Lai
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of General Surgery, Pingxiang People’s Hospital, Pingxiang, Jiangxi, China
| | - Zhiyong Zhou
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Kan Hu
- Department of General Surgery, Pingxiang People’s Hospital, Pingxiang, Jiangxi, China
| | - HongLong Yu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xingyao Su
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiaoqiang Niu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Huizi Li
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Shengxun Mao
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Di Y, Zhang X, Wen X, Qin J, Ye L, Wang Y, Song M, Wang Z, He W. MAPK Signaling-Mediated RFNG Phosphorylation and Nuclear Translocation Restrain Oxaliplatin-Induced Apoptosis and Ferroptosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402795. [PMID: 39120977 PMCID: PMC11481204 DOI: 10.1002/advs.202402795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/12/2024] [Indexed: 08/11/2024]
Abstract
Chemotherapy resistance remains a major challenge in the treatment of colorectal cancer (CRC). Therefore, it is crucial to develop novel strategies to sensitize cancer cells to chemotherapy. Here, the fringe family is screened to determine their contribution to chemotherapy resistance in CRC. It is found that RFNG depletion significantly sensitizes cancer cells to oxaliplatin treatment. Mechanistically, chemotherapy-activated MAPK signaling induces ERK to phosphorylate RFNG Ser255 residue. Phosphorylated RFNG S255 (pS255) interacts with the nuclear importin proteins KPNA1/importin-α1 and KPNB1/importin-β1, leading to its translocation into the nucleus where it targets p53 and inhibits its phosphorylation by competitively inhibiting the binding of CHK2 to p53. Consequently, the expression of CDKN1A is decreased and that of SLC7A11 is increased, leading to the inhibition of apoptosis and ferroptosis. In contrast, phosphor-deficient RFNG S225A mutant showed increased apoptosis and ferroptosis, and exhibited a notable response to oxaliplatin chemotherapy both in vitro and in vivo. It is further revealed that patients with low RFNG pS255 exhibited significant sensitivity to oxaliplatin in a patient-derived xenograft (PDX) model. These findings highlight the crosstalk between the MAPK and p53 signaling pathways through RFNG, which mediates oxaliplatin resistance in CRC. Additionally, this study provides guidance for oxaliplatin treatment of CRC patients.
Collapse
Affiliation(s)
- Yuqin Di
- Molecular Diagnosis and Gene Testing CenterThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Xiang Zhang
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Xiangqiong Wen
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Jiale Qin
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Lvlan Ye
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Youpeng Wang
- Center of Hepato‐Pancreato‐Biliary SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Mei Song
- Institute of Precision MedicineThe First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouGuangdong510080China
| | - Ziyang Wang
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
- Center for Translational MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Weiling He
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
- Department of Gastrointestinal SurgeryXiang'an Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361000China
| |
Collapse
|
3
|
Almohammad Aljabr B, Zihlif M, Abu-Dahab R, Zalloum H. Effect of quercetin on doxorubicin cytotoxicity in sensitive and resistant human MCF7 breast cancer cell lines. Biomed Rep 2024; 20:58. [PMID: 38414625 PMCID: PMC10895388 DOI: 10.3892/br.2024.1745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 09/26/2023] [Indexed: 02/29/2024] Open
Abstract
Chemoresistance is the major cause of cancer recurrence, relapse and eventual death. Doxorubicin resistance is one such challenge in breast cancer. The use of quercetin, an antioxidant, in combination with doxorubicin has been investigated for offering protection to normal cells from the toxic side effects of doxorubicin in addition to modulation of its resistance. The present study aimed to investigate the effects of quercetin in prevention of a doxorubicin-chemoresistant phenotype in both doxorubicin-sensitive and -resistant human MCF-7 breast cancer cell lines. A doxorubicin-resistant MCF-7 cell line was established. The development of resistant cells was closely monitored for changes in morphological features. Sensitivity to doxorubicin and the doxorubicin/quercetin combination was assessed using the tetrazolium assay. To determine the mechanism by which quercetin sensitizes the doxorubicin MCF-7-resistant cell line to doxorubicin, gene expression alterations in breast cancer-related genes were examined using the reverse transcription-quantitative PCR (RT-qPCR) array technology. Resistant MCF cells were successfully developed and the inhibitory concentration (IC50) value of doxorubicin increased from 0.133 to 4 µM (wild-type to resistant). The effects of the quercetin/doxorubicin combination exhibited different effects on wild-type vs. resistant cells. The IC50 of doxorubicin was reduced in wild cells, whereas resistant cells showed an increase in cell viability at lower concentrations and a potentiation of the effects of doxorubicin only at higher concentrations. Annexin V/propidium iodide staining demonstrated that quercetin drives cells into late apoptosis and necrosis, but in resistant cells, necrosis predominates. RT-qPCR results revealed that quercetin led to a reversal in doxorubicin effects via up- and downregulation of important genes such as SNAI2, PLAU and CSF1 genes. Downregulation of cell migration genes, SNAI2 (-31.23-fold) and plasminogen activator, urokinase (PLAU; -30.62-fold), and the apoptotic pathway gene, colony stimulating factor 1 (CSF1; -17.25-fold) were the most important querticin-associated events. Other gene alterations were also observed involving cell cycle arrest and DNA repair pathways. The results of the present study indicated that quercetin could lead to a reversal of doxorubicin resistance in breast cancer cells via downregulation of the expression of important genes, such as SNAI2, PLAU and CSF1. Such findings may represent a potential strategy for reversing breast cancer cell-related chemoresistance.
Collapse
Affiliation(s)
- Bayan Almohammad Aljabr
- Department of Pharmacology, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Malek Zihlif
- Department of Pharmacology, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Rana Abu-Dahab
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Hiba Zalloum
- Hamdi Mango Research Center for Scientific Research, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
4
|
Gao C, Jia K, Fang J, Zhu X, Hu J, Zhang Y, Jiang J, Yu X, Wang D, Gu H, Chen Z. CD95 promotes stemness of colorectal cancer cells by lncRNA MALAT1. Life Sci 2024; 338:122394. [PMID: 38159593 DOI: 10.1016/j.lfs.2023.122394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 12/18/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Colorectal cancer (CRC) is the second most fatal cancer. Many studies have shown that cancer stemness contributes to resistance to conventional chemotherapy and poor prognosis. However, the mechanisms involved in maintaining cancer stemness in CRC are still obscure and few clinical drugs were used to target cancer stemness. Previous studies had reported CD95 increases the stemness of cancer cells with long-term stimulation of exogenous agonist CD95 ligand (CD95L). However, the expression of CD95L is relative low in certain human tumor tissues. In this study, we found that CD95 was highly expressed in CRC cells, and in vitro it promoted the tumorsphere formation, chemotherapy resistance and in vivo tumor growth without stimulation of exogenous CD95L. Mechanistically, the bulk and single-cell RNA-sequencing results suggested that CD95 promotes stemness of CRC cells through upregulation of long non-coding RNAs metastasis-associated lung adenocarcinoma transcript 1 (lncRNA MALAT1). MALAT1 knockdown inhibited CD95-induced tumorsphere formation and chemotherapy resistance. In summary, our findings reveal that CD95 has the capability to modulate cancer stemness via the action of the lncRNA MALAT1. Targeting CD95 may be a promising strategy to inhibit cancer stemness in CRC.
Collapse
Affiliation(s)
- Chenyi Gao
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China; Cancer Centre, Zhejiang University, China Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Kunpeng Jia
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China; Cancer Centre, Zhejiang University, China Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jun Fang
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Xuan Zhu
- Department of Radiation Oncology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jianming Hu
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China; Cancer Centre, Zhejiang University, China Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yi Zhang
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Jingxin Jiang
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China; Cancer Centre, Zhejiang University, China Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiuyan Yu
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China; Cancer Centre, Zhejiang University, China Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Danting Wang
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China; Cancer Centre, Zhejiang University, China Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Haochen Gu
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhigang Chen
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China; Cancer Centre, Zhejiang University, China Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Kurowska N, Madej M, Strzalka-Mrozik B. Thymoquinone: A Promising Therapeutic Agent for the Treatment of Colorectal Cancer. Curr Issues Mol Biol 2023; 46:121-139. [PMID: 38248312 PMCID: PMC10814900 DOI: 10.3390/cimb46010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most commonly diagnosed cancers and is responsible for approximately one million deaths each year. The current standard of care is surgical resection of the lesion and chemotherapy with 5-fluorouracil (5-FU). However, of concern is the increasing incidence in an increasingly younger patient population and the ability of CRC cells to develop resistance to 5-FU. In this review, we discuss the effects of thymoquinone (TQ), one of the main bioactive components of Nigella sativa seeds, on CRC, with a particular focus on the use of TQ in combination therapy with other chemotherapeutic agents. TQ exhibits anti-CRC activity by inducing a proapoptotic effect and inhibiting proliferation, primarily through its effect on the regulation of signaling pathways crucial for tumor progression and oxidative stress. TQ can be used synergistically with chemotherapeutic agents to enhance their anticancer effects and to influence the expression of signaling pathways and other genes important in cancer development. These data appear to be most relevant for co-treatment with 5-FU. We believe that TQ is a suitable candidate for consideration in the chemoprevention and adjuvant therapy for CRC, but further studies, including clinical trials, are needed to confirm its safety and efficacy in the treatment of cancer.
Collapse
Affiliation(s)
- Natalia Kurowska
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (N.K.); (M.M.)
| | - Marcel Madej
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (N.K.); (M.M.)
- Silesia LabMed, Centre for Research and Implementation, Medical University of Silesia, 40-752 Katowice, Poland
| | - Barbara Strzalka-Mrozik
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (N.K.); (M.M.)
| |
Collapse
|
6
|
Yuan J, Li G, Zhong F, Liao J, Zeng Z, Ouyang S, Xie H, Deng Z, Tang H, Ou X. SALL1 promotes proliferation and metastasis and activates phosphorylation of p65 and JUN in colorectal cancer cells. Pathol Res Pract 2023; 250:154827. [PMID: 37741137 DOI: 10.1016/j.prp.2023.154827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 09/25/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most usual malignant tumors, and its incidence continues to rise. Our purpose was to explore the function and potential regulatory mechanisms of SALL1, a differentially methylated gene in CRC, in vivo and in vitro. METHODS Firstly, methylation differential gene SALL1 in CRC was screened and validated. SALL1 overexpression plasmids or SALL1 siRNAs were transfected in HT-29 and SW480 cells. Moreover, 10 μM T-5224 was added in SALL1-overexpressed CRC cells. CCK-8, flow cytometry and transwell assays were utilized to assess cell proliferation, cycle, migration, and invasion, respectively. Then CRC organoids were cultured. Next, HT-29 and SW480 cells transfected with SALL1 overexpression lentivirus were analyzed by transcriptome sequencing. Finally, in vivo tumorigenesis was used to analyze the effect of SALL1 overexpression on subcutaneous tumorigenesis in nude mice. RESULTS The methylation level of CpG island in SALL1 promoter was increased in CRC tissues and could distinguish tumor tissues. Overexpression of SALL1 accelerated proliferation, migration and invasion of HT-29 and SW480 cells, and silencing of SALL1 attenuated proliferation, migration and invasion of HT-29 and SW480 cells. Through analysis and validation, we found that overexpression of SALL1 also could upregulate p-p65 and p-JUN expressions. Besides, c-Fos/activator protein (AP)- 1 inhibitor (T-5224) could reverse the induction of CRC progression by SALL1 overexpression. In vivo, we also proved that overexpression of SALL1 significantly increased tumor volume, tumor weight, and p-JUN expression. CONCLUSIONS SALL1 could promote the proliferation, migration, and invasion of CRC cells and activate phosphorylation of p65 and JUN.
Collapse
Affiliation(s)
- Jie Yuan
- Department of General Surgery, Foshan Clinical Medical School, Guangzhou University of Chinese Medicine, Foshan 528000, China; Department of General Surgery, Foshan Fosun Chancheng Hospital, Foshan 528000, China.
| | - Guiying Li
- Department of General Surgery, Foshan Fosun Chancheng Hospital, Foshan 528000, China
| | - Fei Zhong
- Department of General Surgery, Foshan Clinical Medical School, Guangzhou University of Chinese Medicine, Foshan 528000, China
| | - Jiannan Liao
- Department of General Surgery, Foshan Fosun Chancheng Hospital, Foshan 528000, China
| | - Zhiqiang Zeng
- Department of General Surgery, Foshan Clinical Medical School, Guangzhou University of Chinese Medicine, Foshan 528000, China; Department of General Surgery, Foshan Fosun Chancheng Hospital, Foshan 528000, China
| | - Shaoyong Ouyang
- Department of General Surgery, Foshan Fosun Chancheng Hospital, Foshan 528000, China
| | - Hong Xie
- Department of General Surgery, Foshan Fosun Chancheng Hospital, Foshan 528000, China
| | - Zhiliang Deng
- Department of General Surgery, Foshan Fosun Chancheng Hospital, Foshan 528000, China
| | - Hongmei Tang
- Pharmaceutical Department, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510504, China
| | - Xiaowei Ou
- Department of General Surgery, Foshan Fosun Chancheng Hospital, Foshan 528000, China.
| |
Collapse
|
7
|
Lan X, Lu M, Fang X, Cao Y, Sun M, Shan M, Gao W, Wang Y, Yu W, Luo H. Anti-Colorectal Cancer Activity of Solasonin from Solanum nigrum L. via Histone Deacetylases-Mediated p53 Acetylation Pathway. Molecules 2023; 28:6649. [PMID: 37764423 PMCID: PMC10534604 DOI: 10.3390/molecules28186649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
(1) Background: Solanum nigrum L. is a plant of the genus Solanum in the family Solanaceae and is commonly used to treat tumors. Solasonin (SS) is a steroidal alkaloid extracted from Solanum nigrum L. that has anti-colorectal cancer (CRC) activity. (2) Methods: Column chromatography, semi-preparative HPLC and cellular activity screening were used to isolate potential anti-CRC active compounds in Solanum nigrum L., and structure identification using 1H-NMR and 13C-NMR techniques. Expression levels of HDAC in CRC were mined in the UALCAN database. The in vitro effects of SS on SW620 cell line and its mechanism were examined via Western blot, EdU staining, flow cytometry and immunofluorescence. CRC xenograft model and IHC staining were mainly used to evaluate the role of SS in vivo. (3) Results: The results showed that SS was the most potent anti-CRC component in Solanum nigrum L., which induced apoptosis and cell cycle arrest in the SW620 cell line. HDAC was highly expressed in CRC. The treatment of SW620 cell line with SS resulted in a significant downregulation of HDAC, an increase in the level of P53 acetylation and a subsequent increase in the level of P21. The in vivo validation results showed that SS could effectively inhibit CRC growth, which was associated with the downregulation of HDAC. (4) Conclusions: SS treatment for CRC mainly works through the induction of apoptosis and cycle arrest, and its mechanism of action is mainly related to HDAC-induced P53 acetylation, and the HDAC/P53 signaling pathway may be a potential pathway for the treatment of CRC.
Collapse
Affiliation(s)
- Xintian Lan
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (X.L.); (M.L.); (X.F.); (Y.C.); (M.S.); (M.S.); (W.G.)
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Meng Lu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (X.L.); (M.L.); (X.F.); (Y.C.); (M.S.); (M.S.); (W.G.)
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xiaoxue Fang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (X.L.); (M.L.); (X.F.); (Y.C.); (M.S.); (M.S.); (W.G.)
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yiming Cao
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (X.L.); (M.L.); (X.F.); (Y.C.); (M.S.); (M.S.); (W.G.)
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Mingyang Sun
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (X.L.); (M.L.); (X.F.); (Y.C.); (M.S.); (M.S.); (W.G.)
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Mengyao Shan
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (X.L.); (M.L.); (X.F.); (Y.C.); (M.S.); (M.S.); (W.G.)
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Wenyi Gao
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (X.L.); (M.L.); (X.F.); (Y.C.); (M.S.); (M.S.); (W.G.)
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yuchen Wang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (X.L.); (M.L.); (X.F.); (Y.C.); (M.S.); (M.S.); (W.G.)
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Wenbo Yu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (X.L.); (M.L.); (X.F.); (Y.C.); (M.S.); (M.S.); (W.G.)
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Haoming Luo
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (X.L.); (M.L.); (X.F.); (Y.C.); (M.S.); (M.S.); (W.G.)
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| |
Collapse
|
8
|
Gautam N, Kaur M, Kashyap S. Meta-analysis of Genetic polymorphism of Enhancer of Zeste Homolog2 gene in cancer susceptibility. J Cancer Res Ther 2023; 19:1079-1092. [PMID: 37787267 DOI: 10.4103/jcrt.jcrt_1112_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
The alteration in the expression of enhancer of zeste homolog-2 (EZH2) gene is very well known in the progression, severity, and aggressiveness of cancer. Hence, it is important to study the genomic variation of the EZH2 gene. Previously, many association-based studies investigated the association between rs2302427C>G and cancer susceptibility. However, the result had been inconsistent. Therefore, our meta-analysis aimed to identify the association between EZH2 rs2302427 and cancer risk. A systematic literature search was done for databases PubMed, Google Scholar, Science Direct, and Cochrane library up to September 2020 and statistical analysis was performed by RevMan v 5.3. A total of six studies comprised 1876 cases and 2555 controls were included in the current meta-analysis. The pooled analysis showed that overall, there is significant association of rs2302427 C>G change with reduced cancer risk (odds ratio = 0.60, 95% confidence interval [0.35-1.03], P = 0.07) but non-significantly. Further, the subgroup analysis also revealed that there is no significant difference between the Asian and European population, and both exhibit the protective nature of rs2302427 with cancer. The present meta-analysis indicated that EZH2 rs2302427 has an association with cancer in reducing the risk but for the Indian population studies are required as the Indian population comprises various sub-population genetically isolated for long.
Collapse
Affiliation(s)
- Nisha Gautam
- Department of Human Genetics, Punjabi University, Patiala, Punjab, India
| | - Mandeep Kaur
- Department of Human Genetics, Punjabi University, Patiala, Punjab, India
| | - Surender Kashyap
- Atal Medical and Research University, Mandi, Himachal Pradesh, India
| |
Collapse
|
9
|
Lin X, Yang X, Yang Y, Zhang H, Huang X. Research progress of traditional Chinese medicine as sensitizer in reversing chemoresistance of colorectal cancer. Front Oncol 2023; 13:1132141. [PMID: 36994201 PMCID: PMC10040588 DOI: 10.3389/fonc.2023.1132141] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 01/27/2023] [Indexed: 03/14/2023] Open
Abstract
In recent years, the incidences and mortalities from colorectal cancer (CRC) have been increasing; therefore, there is an urgent need to discover newer drugs that enhance drug sensitivity and reverse drug tolerance in CRC treatment. With this view, the current study focuses on understanding the mechanism of CRC chemoresistance to the drug as well as exploring the potential of different traditional Chinese medicine (TCM) in restoring the sensitivity of CRC to chemotherapeutic drugs. Moreover, the mechanism involved in restoring sensitivity, such as by acting on the target of traditional chemical drugs, assisting drug activation, increasing intracellular accumulation of anticancer drugs, improving tumor microenvironment, relieving immunosuppression, and erasing reversible modification like methylation, have been thoroughly discussed. Furthermore, the effect of TCM along with anticancer drugs in reducing toxicity, increasing efficiency, mediating new ways of cell death, and effectively blocking the drug resistance mechanism has been studied. We aimed to explore the potential of TCM as a sensitizer of anti-CRC drugs for the development of a new natural, less-toxic, and highly effective sensitizer to CRC chemoresistance.
Collapse
Affiliation(s)
- Xiang Lin
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinyu Yang
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yushang Yang
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Hangbin Zhang
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xuan Huang
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Xuan Huang,
| |
Collapse
|
10
|
Ge C, Huang X, Zhang S, Yuan M, Tan Z, Xu C, Jie Q, Zhang J, Zou J, Zhu Y, Feng D, Zhang Y, Aa J. In vitro co-culture systems of hepatic and intestinal cells for cellular pharmacokinetic and pharmacodynamic studies of capecitabine against colorectal cancer. Cancer Cell Int 2023; 23:14. [PMID: 36717845 PMCID: PMC9887786 DOI: 10.1186/s12935-023-02853-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 01/15/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND As a prodrug of 5-fluorouracil (5-FU), orally administrated capecitabine (CAP) undergoes preliminary conversion into active metabolites in the liver and then releases 5-FU in the gut to exert the anti-tumor activity. Since metabolic changes of CAP play a key role in its activation, a single kind of intestinal or hepatic cell can never be used in vitro to evaluate the pharmacokinetics (PK) and pharmacodynamics (PD) nature. Hence, we aimed to establish a novel in vitro system to effectively assess the PK and PD of these kinds of prodrugs. METHODS Co-culture cellular models were established by simultaneously using colorectal cancer (CRC) and hepatocarcinoma cell lines in one system. Cell Counting Kit-8 (CCK-8) and flow cytometric analysis were used to evaluate cell viability and apoptosis, respectively. Apoptosis-related protein expression levels were measured using western blot analysis. A selective liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for cellular PK in co-culture models. RESULTS CAP had little anti-proliferative effect on the five monolayer CRC cell lines (SW480, LoVo, HCT-8, HCT-116 and SW620) or the hepatocarcinoma cell line (HepG2). However, CAP exerted marked anti-tumor activities on each of the CRC cell lines in the co-culture models containing both CRC and hepatocarcinoma cell lines, although its effect on the five CRC cell lines varied. Moreover, after pre-incubation of CAP with HepG2 cells, the culture media containing the active metabolites of CAP also showed an anti-tumor effect on the five CRC cell lines, indicating the crucial role of hepatic cells in the activation of CAP. CONCLUSION The simple and cost‑effective co-culture models with both CRC and hepatocarcinoma cells could mimic the in vivo process of a prodrug dependent on metabolic conversion to active metabolites in the liver, providing a valuable strategy for evaluating the PK and PD characteristics of CAP-like prodrugs in vitro at the early stage of drug development.
Collapse
Affiliation(s)
- Chun Ge
- grid.89957.3a0000 0000 9255 8984Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006 China ,grid.89957.3a0000 0000 9255 8984Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006 China ,grid.254147.10000 0000 9776 7793Department of Clinical Pharmacy, School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198 China
| | - Xintong Huang
- grid.254147.10000 0000 9776 7793Department of Clinical Pharmacy, School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198 China
| | - Sujie Zhang
- grid.254147.10000 0000 9776 7793Department of Clinical Pharmacy, School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198 China
| | - Man Yuan
- grid.254147.10000 0000 9776 7793Department of Clinical Pharmacy, School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198 China
| | - Zhaoyi Tan
- grid.254147.10000 0000 9776 7793Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009 China
| | - Chen Xu
- grid.254147.10000 0000 9776 7793Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009 China
| | - Qiong Jie
- grid.89957.3a0000 0000 9255 8984Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006 China ,grid.89957.3a0000 0000 9255 8984Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006 China ,grid.254147.10000 0000 9776 7793Department of Clinical Pharmacy, School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198 China
| | - Jingjing Zhang
- grid.89957.3a0000 0000 9255 8984Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006 China ,grid.89957.3a0000 0000 9255 8984Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006 China ,grid.254147.10000 0000 9776 7793Department of Clinical Pharmacy, School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198 China
| | - Jianjun Zou
- grid.89957.3a0000 0000 9255 8984Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006 China ,grid.89957.3a0000 0000 9255 8984Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006 China ,grid.254147.10000 0000 9776 7793Department of Clinical Pharmacy, School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198 China
| | - Yubing Zhu
- grid.89957.3a0000 0000 9255 8984Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006 China ,grid.89957.3a0000 0000 9255 8984Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006 China ,grid.254147.10000 0000 9776 7793Department of Clinical Pharmacy, School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198 China
| | - Dong Feng
- Nanjing Southern Pharmaceutical Technology Co., Ltd., Nanjing, 211100 China
| | - Yue Zhang
- grid.254147.10000 0000 9776 7793Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009 China
| | - Jiye Aa
- grid.254147.10000 0000 9776 7793Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009 China
| |
Collapse
|
11
|
Walker RR, Rentia Z, Chiappinelli KB. Epigenetically programmed resistance to chemo- and immuno-therapies. Adv Cancer Res 2023; 158:41-71. [PMID: 36990538 PMCID: PMC10184181 DOI: 10.1016/bs.acr.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Resistance to cancer treatments remains a major barrier in developing cancer cures. While promising combination chemotherapy treatments and novel immunotherapies have improved patient outcomes, resistance to these treatments remains poorly understood. New insights into the dysregulation of the epigenome show how it promotes tumor growth and resistance to therapy. By altering control of gene expression, tumor cells can evade immune cell recognition, ignore apoptotic cues, and reverse DNA damage induced by chemotherapies. In this chapter, we summarize the data on epigenetic remodeling during cancer progression and treatment that enable cancer cell survival and describe how these epigenetic changes are being targeted clinically to overcome resistance.
Collapse
Affiliation(s)
- Reddick R Walker
- The George Washington University Cancer Center (GWCC), Washington, DC, United States; Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC, United States
| | - Zainab Rentia
- The George Washington University Cancer Center (GWCC), Washington, DC, United States
| | - Katherine B Chiappinelli
- The George Washington University Cancer Center (GWCC), Washington, DC, United States; Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC, United States.
| |
Collapse
|
12
|
Hua Q, Lu Y, Wang D, Da J, Peng W, Sun G, Gu K, Wang H, Zhu Y. KIAA1199 promotes oxaliplatin resistance and epithelial mesenchymal transition of colorectal cancer via protein O-GlcNAcylation. Transl Oncol 2023; 28:101617. [PMID: 36610242 PMCID: PMC9850197 DOI: 10.1016/j.tranon.2023.101617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/24/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023] Open
Abstract
Oxaliplatin is a commonly used platinum drug for colorectal cancer (CRC). However, the treatment of CRC by oxaliplatin usually fails because of drug resistance, which results in a huge challenge in the therapy of CRC. Elucidation of molecular mechanisms may help to overcome oxaliplatin resistance of CRC. In our study, we revealed that KIAA1199 can promote oxaliplatin resistance of CRC. Mechanistically, KIAA1199 prevents oxaliplatin mediated apoptosis via up-regulated PARP1 derived from reduced endoplasmic reticulum stress induced by protein O-GlcNAcylation. In the meantime, KIAA1199 can also trigger epithelial mesenchymal transition by stabilizing SNAI1 protein via O-GlcNAcylation. Therefore, KIAA1199 has great potential to be a novel biomarker, therapeutic target for oxaliplatin resistance and metastasis of CRC.
Collapse
Affiliation(s)
- Qingling Hua
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, China
| | - Yuanyuan Lu
- Department of Radiation Oncology, The First Affiliated Hospital of Wannan Medical College, Wuhu 241004, China
| | - Dingxiang Wang
- Department of Psychology, The fourth people's hospital, Wuhu, 241003, China
| | - Jie Da
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, China
| | - Wanren Peng
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, China
| | - Guoping Sun
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, China
| | - Kangsheng Gu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, China
| | - Yanzhe Zhu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, China,Corresponding author.
| |
Collapse
|
13
|
Kumar A, Singh AK, Singh H, Thareja S, Kumar P. Regulation of thymidylate synthase: an approach to overcome 5-FU resistance in colorectal cancer. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:3. [PMID: 36308643 DOI: 10.1007/s12032-022-01864-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/29/2022] [Indexed: 01/17/2023]
Abstract
Thymidylate synthase is the rate-limiting enzyme required for DNA synthesis and overexpression of this enzyme causes resistance to cancer cells. Long treatments with 5-FU cause resistance to Thymidylate synthase targeting drugs. We have also compiled different mechanisms of drug resistance including autophagy and apoptosis, drug detoxification and ABC transporters, drug efflux, signaling pathways (AKT/PI3K, RAS-MAPK, WNT/β catenin, mTOR, NFKB, and Notch1 and FOXM1) and different genes associated with resistance in colorectal cancer. We can overcome 5-FU resistance in cancer cells by regulating thymidylate synthase by natural products (Coptidis rhizoma), HDAC inhibitors, mTOR inhibitors, Folate antagonists, and several other drugs which have been used in combination with TS inhibitors. This review is a compilation of different approaches reported for the regulation of thymidylate synthase to overcome resistance in colorectal cancer cells.
Collapse
Affiliation(s)
- Adarsh Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, 151401, India
| | - Ankit Kumar Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, 151401, India
| | - Harshwardhan Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, 151401, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, 151401, India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, 151401, India.
| |
Collapse
|
14
|
Wang D, Tian Y, Zhang Y, Sun X, Wu Y, Liu R, Zeng F, Du J, Hu K. An assembly-inducing PDC enabling the efficient nuclear delivery of nucleic acid for cancer stem-like cell suppression. NANOSCALE 2022; 14:15384-15392. [PMID: 36218134 DOI: 10.1039/d2nr02118h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nucleic acid therapy is attracting great attention in diverse clinical translations because of its therapeutic advantages. As a renowned oligonucleotide therapeutical candidate in the clinical stage, AS1411 has shown outstanding tumor suppressing effects; however, its efficient delivery to the cell nucleus is critical for its anticancer effect. Herein, we identified a multifunctional peptide drug conjugate (PDC) as a safe and efficient carrier to achieve the nuclear delivery of AS1411. This PDC consists of the cell penetration peptide RW9, an HDAC inhibitor warhead (peptide C-terminus), and 5-FU (peptide N-terminus), which can coassemble with AS1411 to form nanospheres. The PDC efficiently delivered AS1411 to the nucleus of several types of cancer cells. Moreover, it reversed the stemness of a cancer stem-like cell line. Significantly, due to the assembly-induced accumulation enhancement and retention, a safe single agent concentration of PDC showed unexpected synergy with AS1411 to augment the cancer cell suppression efficiency, exemplified by the downregulation of the stemness-related proteins and the upregulation of apoptosis-related proteins. Therefore, our work presents a powerful strategy for the nuclear delivery of nucleic acid drugs by leveraging cancer-suppressing PDC as assembly inducers, which provides a powerful combination regimen in treating cancer stem-like cells.
Collapse
Affiliation(s)
- Dongyuan Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Yuan Tian
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Xiaona Sun
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
- Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Yuxuan Wu
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
- Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Ruping Liu
- Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Fang Zeng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Jingjing Du
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, College of Medicine, Hubei Polytechnic University, Huangshi, Hubei 435003, China
| | - Kuan Hu
- Department of Advanced Nuclear Medicine Sciences, Institute of Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan.
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| |
Collapse
|
15
|
Sattar RSA, Verma R, Nimisha, Kumar A, Dar GM, Apurva, Sharma AK, Kumari I, Ahmad E, Ali A, Mahajan B, Saluja SS. Diagnostic and prognostic biomarkers in colorectal cancer and the potential role of exosomes in drug delivery. Cell Signal 2022; 99:110413. [PMID: 35907519 DOI: 10.1016/j.cellsig.2022.110413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/03/2022]
Abstract
Colorectal cancer (CRC) is third most common cancer with second most common cause of death worldwide. One fourth to one fifth of the CRC cases are detected at advance stage. Early detection of colorectal cancer might help in decreasing mortality and morbidity worldwide. CRC being a heterogeneous disease, new non-invasive approaches are needed to complement and improve the screening and management of CRC. Reliable and early detectable biomarkers would improve diagnosis, prognosis, therapeutic responses, and will enable the prediction of drug response and recurrence risk. Over the past decades molecular research has demonstrated the potentials of CTCs, ctDNAs, circulating mRNA, ncRNAs, and exosomes as tumor biomarkers. Non-invasive screening approaches using fecal samples for identification of altered gut microbes in CRC is also gaining attention. Exosomes can be potential candidates that can be employed in the drug delivery system. Further, the integration of in vitro, in vivo and in silico models that involve CRC biomarkers will help to understand the interactions occurring at the cellular level. This review summarizes recent update on CRC biomarkers and their application along with the nanoparticles followed by the application of organoid culture in CRC.
Collapse
Affiliation(s)
- Real Sumayya Abdul Sattar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Renu Verma
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Nimisha
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Arun Kumar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Ghulam Mehdi Dar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Apurva
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Abhay Kumar Sharma
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Indu Kumari
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Ejaj Ahmad
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Asgar Ali
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Bhawna Mahajan
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India; Department of Biochemistry, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Sundeep Singh Saluja
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India; Department of GI Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India.
| |
Collapse
|
16
|
Chauvin A, Bergeron D, Vencic J, Lévesque D, Paquette B, Scott MS, Boisvert FM. Downregulation of KRAB zinc finger proteins in 5-fluorouracil resistant colorectal cancer cells. BMC Cancer 2022; 22:363. [PMID: 35379199 PMCID: PMC8981854 DOI: 10.1186/s12885-022-09417-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 03/15/2022] [Indexed: 12/23/2022] Open
Abstract
Radio-chemotherapy with 5-flu orouracil (5-FU) is the standard of care treatment for patients with colorectal cancer, but it is only effective for a third of them. Despite our understanding of the mechanism of action of 5-FU, drug resistance remains a significant limitation to the clinical use of 5-FU, as both intrinsic and acquired chemoresistance represents the major obstacles for the success of 5-FU-based chemotherapy. In order to identify the mechanism of acquired resistance, 5-FU chemoresistance was induced in CRC cell lines by passaging cells with increasing concentrations of 5-FU. To study global molecular changes, quantitative proteomics and transcriptomics analyses were performed on these cell lines, comparing the resistant cells as well as the effect of chemo and radiotherapy. Interestingly, a very high proportion of downregulated genes were annotated as transcription factors coding for Krüppel-associated box (KRAB) domain-containing zinc-finger proteins (KZFPs), the largest family of transcriptional repressors. Among nearly 350 KRAB-ZFPs, almost a quarter were downregulated after the induction of a 5-FU-resistance including a common one between the three CRC cell lines, ZNF649, whose role is still unknown. To confirm the observations of the proteomic and transcriptomic approaches, the abundance of 20 different KZFPs and control mRNAs was validated by RT-qPCR. In fact, several KZFPs were no longer detectable using qPCR in cell lines resistant to 5-FU, and the KZFPs that were downregulated only in one or two cell lines showed similar pattern of expression as measured by the omics approaches. This proteomic, transcriptomic and genomic analysis of intrinsic and acquired resistance highlights a possible new mechanism involved in the cellular adaptation to 5-FU and therefore identifies potential new therapeutic targets to overcome this resistance.
Collapse
Affiliation(s)
- Anaïs Chauvin
- Department of Immunology and Cell Biology, Université de Sherbrooke, 3201 Jean-Mignault, Sherbrooke, Québec, J1E 4K8, Canada
| | - Danny Bergeron
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, 3201 Jean-Mignault, Sherbrooke, Québec, J1E 4K8, Canada
| | - Jean Vencic
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, 3201 Jean-Mignault, Sherbrooke, Québec, J1E 4K8, Canada
| | - Dominique Lévesque
- Department of Immunology and Cell Biology, Université de Sherbrooke, 3201 Jean-Mignault, Sherbrooke, Québec, J1E 4K8, Canada
| | - Benoit Paquette
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, 3201 Jean-Mignault, Sherbrooke, Québec, J1E 4K8, Canada
| | - Michelle S Scott
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, 3201 Jean-Mignault, Sherbrooke, Québec, J1E 4K8, Canada
| | - François-Michel Boisvert
- Department of Immunology and Cell Biology, Université de Sherbrooke, 3201 Jean-Mignault, Sherbrooke, Québec, J1E 4K8, Canada.
| |
Collapse
|
17
|
The Contrasting Delayed Effects of Transient Exposure of Colorectal Cancer Cells to Decitabine or Azacitidine. Cancers (Basel) 2022; 14:cancers14061530. [PMID: 35326680 PMCID: PMC8945888 DOI: 10.3390/cancers14061530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/02/2022] [Accepted: 03/11/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Decitabine and azacitidine are cytosine analogs representing the class of drugs interfering with DNA methylation. Due to their molecular homology and similar clinical application these drugs are viewed as interchangeable. Despite their unique epigenetic mechanism of action, the studies of the prolonged activity of decitabine and azacitidine are rare. Our head-to-head comparison revealed profound differences in the activities of decitabine and azacitidine important in their anti-cancer potential and clinical application. We show that azacitidine, despite significant immediate toxicity, has negligible long-term effects. Contrary, decitabine, which does not exert initial toxicity, profoundly worsened the condition of the cancer cells over time. The effects of decitabine need a relatively long time to develop. This property is crucial for the proper design of studies or therapy involving decitabine. It undermines opinion about the similar therapeutic mechanism and interchangeability of decitabine and azacitidine. Abstract (1) Background: Decitabine and azacitidine are cytosine analogues representing the class of drugs interfering with DNA methylation. Due to their molecular homology and similar clinical application, both drugs are often regarded as interchangeable. Despite their unique mechanism of action the studies designed for observation and comparison of the prolonged activity of these drugs are rare. (2) Methods: The short-time (20–72 h) and long-term (up to 20 days) anti-cancer activity of decitabine and azacitidine has been studied in colorectal cancer cells. We observe the impact on cell culture’s viability, clonogenicity, proliferation, and expression of CDKN1A, CCND1, MDM2, MYC, CDKN2A, GLB1 genes, and activity of SA-β-galactosidase. (3) Results: Decitabine has much stronger anti-clonogenic activity than azacitidine. We show that azacitidine, despite significant immediate toxicity, has negligible long-term effects. Contrary, decitabine, which does not exert initial toxicity, profoundly worsened the condition of the cells over time. On the 13th day after treatment, the viability of cells was decreased and proliferation inhibited. These functional changes were accompanied by up-regulation of expression CDKN1A, CCND1, and CDKN2A genes and increased activation of SA-β-galactosidase, indicating cellular senescence. (4) Conclusions: Our head-to-head comparison revealed profound differences in the activities of decitabine and azacitidine important in their anti-cancer potential and clinical application. The effects of decitabine need relatively long time to develop. This property is crucial for proper design of studies and therapy concerning decitabine and undermines opinion about the similar therapeutic mechanism and interchangeability of these drugs.
Collapse
|
18
|
Liu S, Bu X, Kan A, Luo L, Xu Y, Chen H, Lin X, Lai Z, Wen D, Huang L, Shi M. SP1-induced lncRNA DUBR promotes stemness and oxaliplatin resistance of hepatocellular carcinoma via E2F1-CIP2A feedback. Cancer Lett 2022; 528:16-30. [PMID: 34958891 DOI: 10.1016/j.canlet.2021.12.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/20/2022]
Abstract
Oxaliplatin-based chemotherapy is widely used to treat advanced hepatocellular carcinoma (HCC), but many patients develop drug resistance that leads to tumor recurrence. Cancer stem cells (CSCs) are known to contribute to chemoresistance, the underlying mechanism, however, remains largely unknown. In this study, we discovered a specificity protein 1 (SP1)-induced long noncoding RNA--DPPA2 upstream binding RNA (DUBR) and its high expression in HCC tissues and liver CSCs. DUBR was associated with HCC progression and poor chemotherapy response. Moreover, DUBR facilitated the stemness and oxaliplatin resistance of HCC in vitro and in vivo. Mechanistically, DUBR upregulated cancerous inhibitor of protein phosphatase 2A (CIP2A) expression through E2F1-mediated transcription regulation. DUBR also exerted function by binding microRNA (miR)-520d-5p as a competing endogenous RNA to upregulate CIP2A at mRNA level. CIP2A, in turn, stabilized E2F1 protein and activated the Notch1 signaling pathway, thereby increasing the stemness feature of HCC and leading to chemoresistance. In conclusion, we identified SP1/DUBR/E2F1-CIP2A as a critical axis to activate the Notch1 signaling pathway and promote stemness and chemoresistance of HCC. Therefore, DUBR could be a potential target in HCC treatment.
Collapse
Affiliation(s)
- S Liu
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xy Bu
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Anna Kan
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - L Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yj Xu
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Hl Chen
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xj Lin
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zc Lai
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ds Wen
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Lc Huang
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - M Shi
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| |
Collapse
|
19
|
Grumetti L, Lombardi R, Iannelli F, Pucci B, Avallone A, Di Gennaro E, Budillon A. Epigenetic Approaches to Overcome Fluoropyrimidines Resistance in Solid Tumors. Cancers (Basel) 2022; 14:cancers14030695. [PMID: 35158962 PMCID: PMC8833539 DOI: 10.3390/cancers14030695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Fluoropyrimidines represent the backbone of many combination chemotherapy regimens for the treatment of solid cancers but are still associated with toxicity and mechanisms of resistance. In this review, we focused on the epigenetic modifiers histone deacetylase inhibitors (HDACis) and on their ability to regulate specific genes and proteins involved in the fluoropyrimidine metabolism and resistance mechanisms. We presented emerging preclinical and clinical studies, highlighting the mechanisms by which HDACis can prevent/overcome the resistance and/or enhance the therapeutic efficacy of fluoropyrimidines, potentially reducing their toxicity, and ultimately improving the overall survival of cancer patients. Abstract Although fluoropyrimidines were introduced as anticancer agents over 60 years ago, they are still the backbone of many combination chemotherapy regimens for the treatment of solid cancers. Like other chemotherapeutic agents, the therapeutic efficacy of fluoropyrimidines can be affected by drug resistance and severe toxicities; thus, novel therapeutic approaches are required to potentiate their efficacy and overcome drug resistance. In the last 20 years, the deregulation of epigenetic mechanisms has been shown to contribute to cancer hallmarks. Histone modifications play an important role in directing the transcriptional machinery and therefore represent interesting druggable targets. In this review, we focused on histone deacetylase inhibitors (HDACis) that can increase antitumor efficacy and overcome resistance to fluoropyrimidines by targeting specific genes or proteins. Our preclinical data showed a strong synergistic interaction between HDACi and fluoropyrimidines in different cancer models, but the clinical studies did not seem to confirm these observations. Most likely, the introduction of increasingly complex preclinical models, both in vitro and in vivo, cannot recapitulate human complexity; however, our analysis of clinical studies revealed that most of them were designed without a mechanistic approach and, importantly, without careful patient selection.
Collapse
Affiliation(s)
- Laura Grumetti
- Experimetnal Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Naples, Italy; (L.G.); (R.L.); (F.I.); (B.P.)
| | - Rita Lombardi
- Experimetnal Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Naples, Italy; (L.G.); (R.L.); (F.I.); (B.P.)
| | - Federica Iannelli
- Experimetnal Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Naples, Italy; (L.G.); (R.L.); (F.I.); (B.P.)
| | - Biagio Pucci
- Experimetnal Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Naples, Italy; (L.G.); (R.L.); (F.I.); (B.P.)
| | - Antonio Avallone
- Experimental Clinical Abdominal Oncology Unit, Istituto Nazionale Tumori di Napoli IRCCS “Fondazione Pascale”, 80131 Naples, Italy;
| | - Elena Di Gennaro
- Experimetnal Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Naples, Italy; (L.G.); (R.L.); (F.I.); (B.P.)
- Correspondence: (E.D.G.); (A.B.); Tel.: +39-081-590-3342 (E.D.G.); +39-081-590-3292 (A.B.)
| | - Alfredo Budillon
- Experimetnal Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Naples, Italy; (L.G.); (R.L.); (F.I.); (B.P.)
- Correspondence: (E.D.G.); (A.B.); Tel.: +39-081-590-3342 (E.D.G.); +39-081-590-3292 (A.B.)
| |
Collapse
|
20
|
Dahmardeh Ghalehno A, Boustan A, Abdi H, Aganj Z, Mosaffa F, Jamialahmadi K. The Potential for Natural Products to Overcome Cancer Drug Resistance by Modulation of Epithelial-Mesenchymal Transition. Nutr Cancer 2022; 74:2686-2712. [PMID: 34994266 DOI: 10.1080/01635581.2021.2022169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The acquisition of resistance and ultimately disease relapse after initial response to chemotherapy put obstacles in the way of cancer therapy. Epithelial-mesenchymal transition (EMT) is a biologic process that epithelial cells alter to mesenchymal cells and acquire fibroblast-like properties. EMT plays a significant role in cancer metastasis, motility, and survival. Recently, emerging evidence suggested that EMT pathways are very important in making drug-resistant involved in cancer. Natural products are gradually emerging as a valuable source of safe and effective anticancer compounds. Natural products could interfere with the different processes implicated in cancer drug resistance by reversing the EMT process. In this review, we illustrate the molecular mechanisms of EMT in the emergence of cancer metastasis. We then present the role of natural compounds in the suppression of EMT pathways in different cancers to overcome cancer cell drug resistance and improve tumor chemotherapy. HighlightsDrug-resistance is one of the obstacles to cancer treatment.EMT signaling pathways have been correlated to tumor invasion, metastasis, and drug-resistance.Various studies on the relationship between EMT and resistance to chemotherapy agents were reviewed.Different anticancer natural products with EMT inhibitory properties and drug resistance reversal effects were compared.
Collapse
Affiliation(s)
- Asefeh Dahmardeh Ghalehno
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arad Boustan
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hakimeh Abdi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Aganj
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Mosaffa
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khadijeh Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
21
|
Shadbad MA, Asadzadeh Z, Derakhshani A, Hosseinkhani N, Mokhtarzadeh A, Baghbanzadeh A, Hajiasgharzadeh K, Brunetti O, Argentiero A, Racanelli V, Silvestris N, Baradaran B. A scoping review on the potentiality of PD-L1-inhibiting microRNAs in treating colorectal cancer: Toward single-cell sequencing-guided biocompatible-based delivery. Biomed Pharmacother 2021; 143:112213. [PMID: 34560556 DOI: 10.1016/j.biopha.2021.112213] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 12/15/2022] Open
Abstract
Tumoral programmed cell death ligand 1 (PD-L1) has been implicated in the immune evasion and development of colorectal cancer. Although monoclonal immune checkpoint inhibitors can exclusively improve the prognosis of patients with microsatellite instability-high (MSI-H) and tumor mutational burden-high (TMB-H) colorectal cancer, specific tumor-suppressive microRNAs (miRs) can regulate multiple oncogenic pathways and inhibit the de novo expression of oncoproteins, like PD-L1, both in microsatellite stable (MSS) and MSI-H colorectal cancer cells. This scoping review aimed to discuss the currently available evidence regarding the therapeutic potentiality of PD-L1-inhibiting miRs for colorectal cancer. For this purpose, the Web of Science, Scopus, and PubMed databases were systematically searched to obtain peer-reviewed studies published before 17 March 2021. We have found that miR-191-5p, miR-382-3p, miR-148a-3p, miR-93-5p, miR-200a-3p, miR-200c-3p, miR-138-5p, miR-140-3p, and miR-15b-5p can inhibit tumoral PD-L1 in colorectal cancer cells. Besides inhibiting PD-L1, miR-140-3p, miR-382-3p, miR-148a-3p, miR-93-5p, miR-200a-3p, miR-200c-3p, miR-138-5p, and miR-15b-5p can substantially reduce tumor migration, inhibit tumor development, stimulate anti-tumoral immune responses, decrease tumor viability, and enhance the chemosensitivity of colorectal cancer cells regardless of the microsatellite state. Concerning the specific, effective, and safe delivery of these miRs, the single-cell sequencing-guided biocompatible-based delivery of these miRs can increase the specificity of miR delivery, decrease the toxicity of traditional nanoparticles, transform the immunosuppressive tumor microenvironment into the proinflammatory one, suppress tumor development, decrease tumor migration, and enhance the chemosensitivity of tumoral cells regardless of the microsatellite state.
Collapse
Affiliation(s)
- Mahdi Abdoli Shadbad
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Iran
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Iran
| | - Afshin Derakhshani
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | | | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Iran
| | | | - Oronzo Brunetti
- Istituto Tumori BariGiovanni Paolo II, Istituto Nazionale dei Tumori (IRCCS), Bari, Italy
| | - Antonella Argentiero
- Istituto Tumori BariGiovanni Paolo II, Istituto Nazionale dei Tumori (IRCCS), Bari, Italy
| | - Vito Racanelli
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Nicola Silvestris
- Istituto Tumori BariGiovanni Paolo II, Istituto Nazionale dei Tumori (IRCCS), Bari, Italy; Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, Bari, Italy.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Iran.
| |
Collapse
|
22
|
Dobre M, Salvi A, Pelisenco IA, Vasilescu F, De Petro G, Herlea V, Milanesi E. Crosstalk Between DNA Methylation and Gene Mutations in Colorectal Cancer. Front Oncol 2021; 11:697409. [PMID: 34277443 PMCID: PMC8281955 DOI: 10.3389/fonc.2021.697409] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/14/2021] [Indexed: 12/18/2022] Open
Abstract
Colorectal cancer (CRC) is often characterized by mutations and aberrant DNA methylation within the promoters of tumor suppressor genes and proto-oncogenes. The most frequent somatic mutations occur within KRAS and BRAF genes. Mutations of the KRAS gene have been detected in approximately 40% of patients, while mutations in BRAF have been detected less frequently at a rate of 10%. In this study, the DNA methylation levels of 22 candidate genes were evaluated in three types of tissue: mucosal tumoral tissue from 18 CRC patients, normal adjacent tissues from 10 CRC patients who underwent surgical resection, and tissue from a control group of six individuals with normal colonoscopies. A differential methylation profile of nine genes (RUNX3, SFRP1, WIF1, PCDH10, DKK2, DKK3, TMEFF2, OPCML, and SFRP2) presenting high methylation levels in tumoral compared to normal tissues was identified. KRAS mutations (codons 12 or 13) were detected in eight CRC cases, and BRAF mutations (codon 600) in four cases. One of the CRC patients presented concomitant mutations in KRAS codon 12 and BRAF, whereas seven patients did not present these mutations (WT). When comparing the methylation profile according to mutation status, we found that six genes (SFRP2, DKK2, PCDH10, TMEFF2, SFRP1, HS3ST2) showed a methylation level higher in BRAF positive cases than BRAF negative cases. The molecular sub-classification of CRC according to mutations and epigenetic modifications may help to identify epigenetic biomarkers useful in designing personalized strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Maria Dobre
- Laboratory of Histopathology and Immunohistochemistry, Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Alessandro Salvi
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Florina Vasilescu
- Laboratory of Histopathology and Immunohistochemistry, Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Giuseppina De Petro
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Vlad Herlea
- Department of Pathology, Fundeni Clinical Institute, Bucharest, Romania
| | - Elena Milanesi
- Laboratory of Radiobiology, Victor Babes National Institute of Pathology, Bucharest, Romania
| |
Collapse
|
23
|
Chang CL, Huang CR, Chang SJ, Wu CC, Chen HH, Luo CW, Yip HK. CHD4 as an important mediator in regulating the malignant behaviors of colorectal cancer. Int J Biol Sci 2021; 17:1660-1670. [PMID: 33994851 PMCID: PMC8120460 DOI: 10.7150/ijbs.56976] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/28/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) has ranked first in terms of incidence in Taiwan. Surgical resection combined with chemo-, radio-, or targeted-therapies are the main treatments for CRC patients in current clinical practice. However, many CRC patients still respond poorly to these treatments, leading to tumor recurrence and an unacceptably high incidence of metastasis and death. Therefore, appropriate diagnosis, treatment, and drug selection are pressing issues in clinical practice. The Mi-2/nucleosome remodeling and deacetylase complex is an important epigenetic regulator of chromatin structure and gene expression. An important component of this complex is chromodomain-helicase-DNA-binding protein 4 (CHD4), which is involved in DNA repair after injury. Recent studies have indicated that CHD4 has oncogenic functions that inhibit multiple tumor suppressor genes through epigenetic regulation. However, the role of CHD4 in CRC has not yet been well investigated. In this study, we compared CHD4 expression in CRC patients from The Cancer Genome Atlas database. We found higher levels of CHD4 expression in CRC patients. In a series of in vitro experiments, we found that CHD4 affected cell motility and drug sensitivity in CRC cells. In animal models, the depletion of CHD4 affected CRC tumor growth, and the combination of a histone deacetylase 1 (HDAC1) inhibitor and platinum drugs inhibited CHD4 expression and increased the cytotoxicity of platinum drugs. Moreover, CHD4 expression was also a prognostic biomarker in CRC patients. Based on the above results, we believe that CHD4 expression is a viable biomarker for predicting metastasis CRC patients, and it has the potential to become a target for drug development.
Collapse
Affiliation(s)
- Chia-Lo Chang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chi-Ruei Huang
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shu-Jyuan Chang
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Pathology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Chieh Wu
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Hong-Hwa Chen
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chi-Wen Luo
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Division of Breast Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Hon-Kan Yip
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital Kaohsiung, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Department of Nursing, Asia University Taichung, Taiwan.,Division of Cardiology, Department of Internal Medicine, Xiamen Chang Gung Hospital, Xiamen, Fujian, China
| |
Collapse
|
24
|
Zhang YH, Cui SX, Wan SB, Wu SH, Qu XJ. Increased S1P induces S1PR2 internalization to blunt the sensitivity of colorectal cancer to 5-fluorouracil via promoting intracellular uracil generation. Acta Pharmacol Sin 2021; 42:460-469. [PMID: 32647340 PMCID: PMC8027438 DOI: 10.1038/s41401-020-0460-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/07/2020] [Indexed: 12/15/2022] Open
Abstract
Sphingosine-1-phosphate (S1P), the backbone of most sphingolipids, activating S1P receptors (S1PRs) and the downstream G protein signaling has been implicated in chemoresistance. In this study we investigated the role of S1PR2 internalization in 5-fluorouracil (5-FU) resistance in human colorectal cancer (CRC). Clinical data of randomly selected 60 CRC specimens showed the correlation between S1PR2 internalization and increased intracellular uracil (P < 0.001). Then we explored the regulatory mechanisms in CRC model of villin-S1PR2-/- mice and CRC cell lines. We showed that co-administration of S1P promoted S1PR2 internalization from plasma membrane (PM) to endoplasmic reticulum (ER), thus blunted 5-FU efficacy against colorectal tumors in WT mice, compared to that in S1PR2-/- mice. In HCT116 and HT-29 cells, application of S1P (10 μM) empowered S1PR2 to internalize from PM to ER, thus inducing 5-FU resistance, whereas the specific S1PR2 inhibitor JTE-013 (10 μM) effectively inhibited S1P-induced S1PR2 internalization. Using Mag-Fluo-AM-labeling [Ca2+]ER and LC-ESI-MS/MS, we revealed that internalized S1PR2 triggered elevating [Ca2+]ER levels to activate PERK-eLF2α-ATF4 signaling in HCT116 cells. The activated ATF4 upregulated RNASET2-mediated uracil generation, which impaired exogenous 5-FU uptake to blunt 5-FU therapy. Overall, this study reveals a previously unrecognized mechanism of 5-FU resistance resulted from S1PR2 internalization-upregulated uracil generation in colorectal cancer, and provides the novel insight into the significance of S1PR2 localization in predicting the benefit of CRC patients from 5-FU-based chemotherapy.
Collapse
Affiliation(s)
- Yu-Hang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Shu-Xiang Cui
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Sheng-Biao Wan
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266100, China
| | - Shu-Hua Wu
- Department of Pathology, Hospital of Binzhou Medical University, Binzhou 264003, China
| | - Xian-Jun Qu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
25
|
Tung KL, Chen KY, Negrete M, Chen T, Safi A, Aljamal AA, Song L, Crawford GE, Ding S, Hsu DS, Shen X. Integrated chromatin and transcriptomic profiling of patient-derived colon cancer organoids identifies personalized drug targets to overcome oxaliplatin resistance. Genes Dis 2021; 8:203-214. [PMID: 33997167 PMCID: PMC8099686 DOI: 10.1016/j.gendis.2019.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/20/2019] [Accepted: 10/21/2019] [Indexed: 01/05/2023] Open
Abstract
Colorectal cancer is a leading cause of cancer deaths. Most colorectal cancer patients eventually develop chemoresistance to the current standard-of-care therapies. Here, we used patient-derived colorectal cancer organoids to demonstrate that resistant tumor cells undergo significant chromatin changes in response to oxaliplatin treatment. Integrated transcriptomic and chromatin accessibility analyses using ATAC-Seq and RNA-Seq identified a group of genes associated with significantly increased chromatin accessibility and upregulated gene expression. CRISPR/Cas9 silencing of fibroblast growth factor receptor 1 (FGFR1) and oxytocin receptor (OXTR) helped overcome oxaliplatin resistance. Similarly, treatment with oxaliplatin in combination with an FGFR1 inhibitor (PD166866) or an antagonist of OXTR (L-368,899) suppressed chemoresistant organoids. However, oxaliplatin treatment did not activate either FGFR1 or OXTR expression in another resistant organoid, suggesting that chromatin accessibility changes are patient-specific. The use of patient-derived cancer organoids in combination with transcriptomic and chromatin profiling may lead to precision treatments to overcome chemoresistance in colorectal cancer.
Collapse
Affiliation(s)
- Kuei-Ling Tung
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Kai-Yuan Chen
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
- Center for Genomics and Computational Biology, Duke University, Durham, NC, 27708, USA
| | - Marcos Negrete
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
- Center for Genomics and Computational Biology, Duke University, Durham, NC, 27708, USA
| | - Tianyi Chen
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Alexias Safi
- Center for Genomics and Computational Biology, Duke University, Durham, NC, 27708, USA
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, NC, 27708, USA
| | - Abed Alhalim Aljamal
- Department of Medical Oncology, Duke University Medical Center, Durham, NC, 27708, USA
| | - Lingyun Song
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, NC, 27708, USA
| | - Gregory E. Crawford
- Center for Genomics and Computational Biology, Duke University, Durham, NC, 27708, USA
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, NC, 27708, USA
| | - Shengli Ding
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - David S. Hsu
- Center for Genomics and Computational Biology, Duke University, Durham, NC, 27708, USA
- Department of Medical Oncology, Duke University Medical Center, Durham, NC, 27708, USA
| | - Xiling Shen
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
- Center for Genomics and Computational Biology, Duke University, Durham, NC, 27708, USA
- Duke Cancer Institute, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
26
|
Massaro C, Safadeh E, Sgueglia G, Stunnenberg HG, Altucci L, Dell’Aversana C. MicroRNA-Assisted Hormone Cell Signaling in Colorectal Cancer Resistance. Cells 2020; 10:cells10010039. [PMID: 33396628 PMCID: PMC7823834 DOI: 10.3390/cells10010039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 12/17/2022] Open
Abstract
Despite substantial progress in cancer therapy, colorectal cancer (CRC) is still the third leading cause of cancer death worldwide, mainly due to the acquisition of resistance and disease recurrence in patients. Growing evidence indicates that deregulation of hormone signaling pathways and their cross-talk with other signaling cascades inside CRC cells may have an impact on therapy resistance. MicroRNAs (miRNAs) are small conserved non-coding RNAs thatfunction as negative regulators in many gene expression processes. Key studies have identified miRNA alterations in cancer progression and drug resistance. In this review, we provide a comprehensive overview and assessment of miRNAs role in hormone signaling pathways in CRC drug resistance and their potential as future targets for overcoming resistance to treatment.
Collapse
Affiliation(s)
- Crescenzo Massaro
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via De Crecchio, 7, 80138 Naples, Italy; (C.M.); (E.S.); (G.S.)
| | - Elham Safadeh
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via De Crecchio, 7, 80138 Naples, Italy; (C.M.); (E.S.); (G.S.)
| | - Giulia Sgueglia
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via De Crecchio, 7, 80138 Naples, Italy; (C.M.); (E.S.); (G.S.)
| | | | - Lucia Altucci
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via De Crecchio, 7, 80138 Naples, Italy; (C.M.); (E.S.); (G.S.)
- Correspondence: (L.A.); (C.D.); Tel.: +39-081-566-7564 (L.A.); +39-081-566-7566 (C.D.)
| | - Carmela Dell’Aversana
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via De Crecchio, 7, 80138 Naples, Italy; (C.M.); (E.S.); (G.S.)
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore” (IEOS)-National Research Council (CNR), Via Sergio Pansini 5, 80131 Naples, Italy
- Correspondence: (L.A.); (C.D.); Tel.: +39-081-566-7564 (L.A.); +39-081-566-7566 (C.D.)
| |
Collapse
|
27
|
RNA-binding protein CELF1 enhances cell migration, invasion, and chemoresistance by targeting ETS2 in colorectal cancer. Clin Sci (Lond) 2020; 134:1973-1990. [PMID: 32677671 DOI: 10.1042/cs20191174] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 06/29/2020] [Accepted: 07/16/2020] [Indexed: 01/26/2023]
Abstract
Colorectal cancer (CRC) is often diagnosed at later stages after it has metastasized to other organs. The development of chemoresistance also contributes to a poor prognosis. Therefore, an increased understanding of the metastatic properties of CRC and chemoresistance could improve patient survival. CUGBP elav-like family member 1 (CELF1) is an RNA-binding protein, which is overexpressed in many human malignant tumors. However, the influence of CELF1 in CRC is unclear. V-ets erythroblastosis virus E26 oncogene homologue 2 (ETS2) is an evolutionarily conserved proto-oncogene known to be overexpressed in a variety of human cancers including CRC. In thespresent tudy, we investigated the association between CELF1 and ETS2 in CRC tumorigenesis and oxaliplatin (L-OHP) resistance. We found a positive correlation between the elevated expression of CELF1 and ETS2 in human CRC tissues. Overexpression of CELF1 increased CRC cell proliferation, migration, and invasion in vitro and in a xenograft tumor growth model in vivo, and induced resistance to L-OHP. In contrast, CELF1 knockdown improved the response of CRC cells to L-OHP. Overexpression of ETS2 increased the malignant behavior of CRC cells (growth, migration, and invasion) and L-OHP resistance in vitro. Moreover, L-OHP resistance induced by CELF1 overexpression was reversed by ETS2 knockdown. The results of luciferase reporter and ribonucleoprotein immunoprecipitation assays indicated that CELF1 up-regulates ETS2 by binding to its 3'-UTR. Taken together, our findings have identified that CELF1 regulates ETS2 in a mechanism that results in CRC tumorigenesis and L-OHP resistance, and CELF1 may be a promising target for overcoming chemoresistance in CRC.
Collapse
|
28
|
Nikulin SV, Alekseev BY, Sergeeva NS, Karalkin PA, Nezhurina EK, Kirsanova VA, Sviridova IK, Akhmedova SA, Volchenko NN, Bolotina LV, Osipyants AI, Hushpulian DM, Topchiy MA, Asachenko AF, Koval AP, Shcherbo DS, Kiselev VI, Mikhaylenko DS, Schumacher U, Poloznikov AA. Breast cancer organoid model allowed to reveal potentially beneficial combinations of 3,3'-diindolylmethane and chemotherapy drugs. Biochimie 2020; 179:217-227. [PMID: 33098909 DOI: 10.1016/j.biochi.2020.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/13/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023]
Abstract
Epigenetic alterations represent promising therapeutic targets in cancer treatment. Recently it was revealed that small molecules have the potential to act as microRNA silencers. Capacity to bind the discrete stem-looped structure of pre-miR-21 and prevent its maturation opens opportunities to utilize such compounds for the prevention of initiation, progression, and chemoresistance of cancer. Molecular simulations performed earlier identified 3,3'-diindolylmethane (DIM) as a potent microRNA-21 antagonist. However, data on DIM and microRNA-21 interplay is controversial, which may be caused by the limitations of the cell lines.
Collapse
Affiliation(s)
- Sergey V Nikulin
- Faculty of Biology and Biotechnologies, Higher School of Economics, Moscow, 101000, Russia; P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, 125284, Russia
| | - Boris Ya Alekseev
- P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, 125284, Russia
| | - Nataliya S Sergeeva
- P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, 125284, Russia
| | - Pavel A Karalkin
- P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, 125284, Russia
| | - Elizaveta K Nezhurina
- P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, 125284, Russia
| | - Valentina A Kirsanova
- P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, 125284, Russia
| | - Irina K Sviridova
- P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, 125284, Russia
| | - Suraja A Akhmedova
- P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, 125284, Russia
| | - Nadezhda N Volchenko
- P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, 125284, Russia
| | - Larisa V Bolotina
- P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, 125284, Russia
| | - Andrey I Osipyants
- School of Biomedicine, Far Eastern Federal University, Vladivostok, 690091, Russia
| | - Dmitry M Hushpulian
- School of Biomedicine, Far Eastern Federal University, Vladivostok, 690091, Russia; Institute of Nanotechnology of Microelectronics, 32A Leninsky Prospekt, Moscow, 119991, Russia
| | - Maxim A Topchiy
- A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Andrey F Asachenko
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov str. 28, Moscow, 119991, Russia
| | - Anastasia P Koval
- Molecular Oncology Laboratory, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| | - Dmitry S Shcherbo
- Molecular Oncology Laboratory, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| | - Vsevolod I Kiselev
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov, Moscow, 117997, Russia
| | - Dmitry S Mikhaylenko
- Institute of Molecular Medicine, Biomedical Science and Technology Park, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991, Russia; Research Centre for Medical Genetics, Moscow, 115522, Russia
| | - Udo Schumacher
- Institute of Anatomy and Experimental Morphology, University Medical Center, Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Andrey A Poloznikov
- Faculty of Biology and Biotechnologies, Higher School of Economics, Moscow, 101000, Russia; P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, 125284, Russia.
| |
Collapse
|
29
|
Jin K, Ren C, Liu Y, Lan H, Wang Z. An update on colorectal cancer microenvironment, epigenetic and immunotherapy. Int Immunopharmacol 2020; 89:107041. [PMID: 33045561 DOI: 10.1016/j.intimp.2020.107041] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/13/2020] [Accepted: 09/21/2020] [Indexed: 12/27/2022]
Abstract
Colorectal cancer (CRC) is considered as the second most common cancer worldwide. For the past few years, the role of immunotherapy has been extensively studied and it has been demonstrated that its related approaches, such as programmed death-1 (PD-1) inhibitors, are promising. In addition to identifying molecular characteristics of tumor cells, recent studies are mainly focused on the profiling of tumor microenvironment. Dissecting immune status of a tumor is interesting, since development of a tumor is associated with deficiencies relate to immune defense, immune surveillance and immune hemostasis. In this review, we discuss main obstacles of immunotherapy including immunosuppressive niche and low immunogenicity of CRC as well as reviewing current achievements in immunotherapy.
Collapse
Affiliation(s)
- Ketao Jin
- Department of Colorectal Surgery, Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, China
| | - Chengcheng Ren
- Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Yuyao Liu
- Department of Colorectal Surgery, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing 312000, Zhejiang Province, PR China
| | - Huanrong Lan
- Department of Breast and Thyroid Surgery, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing 312000, Zhejiang Province, PR China
| | - Zhen Wang
- Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China.
| |
Collapse
|
30
|
Moghadam ER, Ang HL, Asnaf SE, Zabolian A, Saleki H, Yavari M, Esmaeili H, Zarrabi A, Ashrafizadeh M, Kumar AP. Broad-Spectrum Preclinical Antitumor Activity of Chrysin: Current Trends and Future Perspectives. Biomolecules 2020; 10:E1374. [PMID: 32992587 PMCID: PMC7600196 DOI: 10.3390/biom10101374] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Pharmacological profile of phytochemicals has attracted much attention to their use in disease therapy. Since cancer is a major problem for public health with high mortality and morbidity worldwide, experiments have focused on revealing the anti-tumor activity of natural products. Flavonoids comprise a large family of natural products with different categories. Chrysin is a hydroxylated flavonoid belonging to the flavone category. Chrysin has demonstrated great potential in treating different disorders, due to possessing biological and therapeutic activities, such as antioxidant, anti-inflammatory, hepatoprotective, neuroprotective, etc. Over recent years, the anti-tumor activity of chrysin has been investigated, and in the present review, we provide a mechanistic discussion of the inhibitory effect of chrysin on proliferation and invasion of different cancer cells. Molecular pathways, such as Notch1, microRNAs, signal transducer and activator of transcription 3 (STAT3), nuclear factor-kappaB (NF-κB), PI3K/Akt, MAPK, etc., as targets of chrysin are discussed. The efficiency of chrysin in promoting anti-tumor activity of chemotherapeutic agents and suppressing drug resistance is described. Moreover, poor bioavailability, as one of the drawbacks of chrysin, is improved using various nanocarriers, such as micelles, polymeric nanoparticles, etc. This updated review will provide a direction for further studies in evaluating the anti-tumor activity of chrysin.
Collapse
Affiliation(s)
- Ebrahim Rahmani Moghadam
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran;
| | - Hui Li Ang
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore;
| | - Sholeh Etehad Asnaf
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, North Tehran Branch, IslamicAzad University, Tehran 165115331, Iran;
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran; (A.Z.); (H.S.); (H.E.)
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran; (A.Z.); (H.S.); (H.E.)
| | - Mohammad Yavari
- Nursing and Midwifery Department, Islamic Azad University, Tehran Medical Sciences Branch, Tehran 1916893813, Iran;
| | - Hossein Esmaeili
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran; (A.Z.); (H.S.); (H.E.)
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
| | - Milad Ashrafizadeh
- Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore;
| |
Collapse
|
31
|
Papulino C, Chianese U, Nicoletti MM, Benedetti R, Altucci L. Preclinical and Clinical Epigenetic-Based Reconsideration of Beckwith-Wiedemann Syndrome. Front Genet 2020; 11:563718. [PMID: 33101381 PMCID: PMC7522569 DOI: 10.3389/fgene.2020.563718] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/26/2020] [Indexed: 12/26/2022] Open
Abstract
Epigenetics has achieved a profound impact in the biomedical field, providing new experimental opportunities and innovative therapeutic strategies to face a plethora of diseases. In the rare diseases scenario, Beckwith-Wiedemann syndrome (BWS) is a pediatric pathological condition characterized by a complex molecular basis, showing alterations in the expression of different growth-regulating genes. The molecular origin of BWS is associated with impairments in the genomic imprinting of two domains at the 11p15.5 chromosomal region. The first domain contains three different regions: insulin growth like factor gene (IGF2), H19, and abnormally methylated DMR1 region. The second domain consists of cell proliferation and regulating-genes such as CDKN1C gene encoding for cyclin kinase inhibitor its role is to block cell proliferation. Although most cases are sporadic, about 5-10% of BWS patients have inheritance characteristics. In the 11p15.5 region, some of the patients have maternal chromosomal rearrangements while others have Uniparental Paternal Disomy UPD(11)pat. Defects in DNA methylation cause alteration of genes and the genomic structure equilibrium leading uncontrolled cell proliferation, which is a typical tumorigenesis event. Indeed, in BWS patients an increased childhood tumor predisposition is observed. Here, we summarize the latest knowledge on BWS and focus on the impact of epigenetic alterations to an increased cancer risk development and to metabolic disorders. Moreover, we highlight the correlation between assisted reproductive technologies and this rare disease. We also discuss intriguing aspects of BWS in twinning. Epigenetic therapies in clinical trials have already demonstrated effectiveness in oncological and non-oncological diseases. In this review, we propose a potential "epigenetic-based" approaches may unveil new therapeutic options for BWS patients. Although the complexity of the syndrome is high, patients can be able to lead a normal life but tumor predispositions might impair life expectancy. In this sense epigenetic therapies should have a supporting role in order to guarantee a good prognosis.
Collapse
Affiliation(s)
- Chiara Papulino
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Ugo Chianese
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Maddalena Nicoletti
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Rosaria Benedetti
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Lucia Altucci
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
32
|
Blondy S, David V, Verdier M, Mathonnet M, Perraud A, Christou N. 5-Fluorouracil resistance mechanisms in colorectal cancer: From classical pathways to promising processes. Cancer Sci 2020; 111:3142-3154. [PMID: 32536012 PMCID: PMC7469786 DOI: 10.1111/cas.14532] [Citation(s) in RCA: 276] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is a public health problem. It is the third most common cancer in the world, with nearly 1.8 million new cases diagnosed in 2018. The only curative treatment is surgery, especially for early tumor stages. When there is locoregional or distant invasion, chemotherapy can be introduced, in particular 5-fluorouracil (5-FU). However, the disease can become tolerant to these pharmaceutical treatments: resistance emerges, leading to early tumor recurrence. Different mechanisms can explain this 5-FU resistance. Some are disease-specific, whereas others, such as drug efflux, are evolutionarily conserved. These mechanisms are numerous and complex and can occur simultaneously in cells exposed to 5-FU. In this review, we construct a global outline of different mechanisms from disruption of 5-FU-metabolic enzymes and classic cellular processes (apoptosis, autophagy, glucose metabolism, oxidative stress, respiration, and cell cycle perturbation) to drug transporters and epithelial-mesenchymal transition induction. Particular interest is directed to tumor microenvironment function as well as epigenetic alterations and miRNA dysregulation, which are the more promising processes that will be the subject of much research in the future.
Collapse
Affiliation(s)
- Sabrina Blondy
- Faculty of Medicine, Laboratoire EA3842 CAPTuR "Control of cell activation, Tumor progression and Therapeutic resistance", Limoges cedex, France
| | - Valentin David
- Faculty of Medicine, Laboratoire EA3842 CAPTuR "Control of cell activation, Tumor progression and Therapeutic resistance", Limoges cedex, France.,Department of pharmacy, University Hospital of Limoges, Limoges, France
| | - Mireille Verdier
- Faculty of Medicine, Laboratoire EA3842 CAPTuR "Control of cell activation, Tumor progression and Therapeutic resistance", Limoges cedex, France
| | - Muriel Mathonnet
- Faculty of Medicine, Laboratoire EA3842 CAPTuR "Control of cell activation, Tumor progression and Therapeutic resistance", Limoges cedex, France.,Service de Chirurgie Digestive, Department of Digestive, General and Endocrine Surgery, University Hospital of Limoges, Limoges, France
| | - Aurélie Perraud
- Faculty of Medicine, Laboratoire EA3842 CAPTuR "Control of cell activation, Tumor progression and Therapeutic resistance", Limoges cedex, France.,Service de Chirurgie Digestive, Department of Digestive, General and Endocrine Surgery, University Hospital of Limoges, Limoges, France
| | - Niki Christou
- Faculty of Medicine, Laboratoire EA3842 CAPTuR "Control of cell activation, Tumor progression and Therapeutic resistance", Limoges cedex, France.,Service de Chirurgie Digestive, Department of Digestive, General and Endocrine Surgery, University Hospital of Limoges, Limoges, France
| |
Collapse
|
33
|
Lu Y, Huang Y, Huang L, Xu Y, Wang Z, Li H, Zhang T, Zhong M, Gao WQ, Zhang Y. CD16 expression on neutrophils predicts treatment efficacy of capecitabine in colorectal cancer patients. BMC Immunol 2020; 21:46. [PMID: 32770940 PMCID: PMC7414545 DOI: 10.1186/s12865-020-00375-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022] Open
Abstract
Background Early detection of capecitabine-resistance could largely increase overall survival of colorectal cancer (CRC) patients. Previous studies suggested examination of immune cells in peripheral blood would help to predict efficacy of chemotherapy. Methods We examined the immunological characteristics of peripheral blood in CRC patients with capecitabine treatment. We analyzed the relationships between the abnormal immune cell population in capecitabine-resistance patients and major clinical features. Furthermore, RNA sequencing, analyses of cell surface marker expression and the correlations with other major immune cell populations were performed using this population to explore the possible function of these cells. Results The expression level of CD16 on neutrophils was down-regulated in capecitabine-resistant CRC patients. Patients with CD16low/−neutrophils after capecitabine therapy had adverse clinical features. What’s important, the change of CD16 expression level on neutrophils appeared much earlier than CT scan. RNA sequencing revealed that CD16low/−neutrophils in capecitabine-resistant patients had lower expression level of neutrophil-related genes, compared to CD16+neutrophils in capecitabine-sensitive patients, suggesting this CD16low/−population might be immature neutrophils. Furthermore, the expression level of CD16 on neutrophils in patients with capecitabine treatment was positively correlated with the number of anti-tumor immune cell subsets, such as CD8+T cell, CD4+T cell, NK cell and monocyte. Conclusions Our findings indicated that CD16 expression on neutrophils in peripheral blood was a good prognostic marker for predicting efficacy of capecitabine in CRC patients.
Collapse
Affiliation(s)
- Yu Lu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yizhou Huang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Lei Huang
- Med-X Research Institute & School of Biomedical Engineering, Shanghai Jiaotong University, Shanghai, China
| | - Yanjie Xu
- Med-X Research Institute & School of Biomedical Engineering, Shanghai Jiaotong University, Shanghai, China
| | - Zien Wang
- Med-X Research Institute & School of Biomedical Engineering, Shanghai Jiaotong University, Shanghai, China
| | - Han Li
- Med-X Research Institute & School of Biomedical Engineering, Shanghai Jiaotong University, Shanghai, China
| | - Ting Zhang
- Med-X Research Institute & School of Biomedical Engineering, Shanghai Jiaotong University, Shanghai, China
| | - Ming Zhong
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China. .,Med-X Research Institute & School of Biomedical Engineering, Shanghai Jiaotong University, Shanghai, China.
| | - Yan Zhang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China. .,Med-X Research Institute & School of Biomedical Engineering, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
34
|
Shang J, Zhu Z, Chen Y, Song J, Huang Y, Song K, Zhong J, Xu X, Wei J, Wang C, Cui L, Liu CY, Zhang J. Small-molecule activating SIRT6 elicits therapeutic effects and synergistically promotes anti-tumor activity of vitamin D 3 in colorectal cancer. Theranostics 2020; 10:5845-5864. [PMID: 32483423 PMCID: PMC7255010 DOI: 10.7150/thno.44043] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/07/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the leading cause of cancer death; however, targets with broad anti-CRC effects are limited. Sirtuin6 (SIRT6) is a conserved nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase that is widely pathologically downregulated in CRC, but its pharmacological effect in CRC remains undefined due to the lack of small-molecule SIRT6 activators. We searched for a compound activating SIRT6 and investigated its anti-CRC effect in various models. Methods: We identified an allosteric SIRT6 activator, MDL-811. Its ability to enhance SIRT6 deacetylation at protein and cellular levels was evaluated by Fluor de Lys (FDL) and western blots. We assessed the proliferation of 26 CRC cell lines and patient-derived organoids (PDOs) treated with MDL-811. In vivo efficacy of MDL-811 was evaluated in HCT116 cell line- and patient-derived xenografts as well as a spontaneous CRC model. RNA sequencing and real-time quantitative PCR assays were performed to analyze gene expression changes in MDL-811-treated HCT116 cells. Along with controls in SIRT6-overexpressing HCT116 cells, the SIRT6-mediated histone H3 deacetylation at the Cytochrome P450 family 24 subfamily A member 1 (CYP24A1) gene locus was assessed by chromatin immunoprecipitation (ChIP) in MDL-811-treated HCT116 cells. A combination therapy against CRC based on the downstream gene of SIRT6 activation was evaluated in cells and mouse models. Results: MDL-811 significantly activated SIRT6 histone H3 deacetylation (H3K9Ac, H3K18Ac, and H3K56Ac) in vitro and had broad antiproliferative effects on diverse CRC cell lines and PDOs. More importantly, the in vivo anti-tumor efficacy of MDL-811 was demonstrated across cell line- and patient-derived xenografts and in the APCmin/+ spontaneous CRC model. Mechanically, we identified a new downstream target gene of SIRT6 in CRC, CYP24A1. Based on these findings, a combination drug strategy with MDL-811 to synergistically enhance the anti-CRC effect of vitamin D3 was validated in vitro and in vivo. Conclusions: Our data provide proof of concept that targeting SIRT6 using a small-molecule activator is an attractive therapeutic strategy for CRC and that MDL-811 could be a promising lead compound for further preclinical and clinical studies of treatments for CRC.
Collapse
|
35
|
Matsuoka T, Yashiro M. Precision medicine for gastrointestinal cancer: Recent progress and future perspective. World J Gastrointest Oncol 2020; 12:1-20. [PMID: 31966910 PMCID: PMC6960076 DOI: 10.4251/wjgo.v12.i1.1] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 10/12/2019] [Accepted: 11/04/2019] [Indexed: 02/05/2023] Open
Abstract
Gastrointestinal (GI) cancer has a high tumor incidence and mortality rate worldwide. Despite significant improvements in radiotherapy, chemotherapy, and targeted therapy for GI cancer over the last decade, GI cancer is characterized by high recurrence rates and a dismal prognosis. There is an urgent need for new diagnostic and therapeutic approaches. Recent technological advances and the accumulation of clinical data are moving toward the use of precision medicine in GI cancer. Here we review the application and status of precision medicine in GI cancer. Analyses of liquid biopsy specimens provide comprehensive real-time data of the tumor-associated changes in an individual GI cancer patient with malignancy. With the introduction of gene panels including next-generation sequencing, it has become possible to identify a variety of mutations and genetic biomarkers in GI cancer. Although the genomic aberration of GI cancer is apparently less actionable compared to other solid tumors, novel informative analyses derived from comprehensive gene profiling may lead to the discovery of precise molecular targeted drugs. These progressions will make it feasible to incorporate clinical, genome-based, and phenotype-based diagnostic and therapeutic approaches and apply them to individual GI cancer patients for precision medicine.
Collapse
Affiliation(s)
- Tasuku Matsuoka
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka 5458585, Japan
| | - Masakazu Yashiro
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka 5458585, Japan
- Oncology Institute of Geriatrics and Medical Science, Osaka City University Graduate School of Medicine, Osaka 5458585, Japan
| |
Collapse
|
36
|
Liu Z, Xie Y, Xiong Y, Liu S, Qiu C, Zhu Z, Mao H, Yu M, Wang X. TLR 7/8 agonist reverses oxaliplatin resistance in colorectal cancer via directing the myeloid-derived suppressor cells to tumoricidal M1-macrophages. Cancer Lett 2020; 469:173-185. [DOI: 10.1016/j.canlet.2019.10.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/09/2019] [Accepted: 10/11/2019] [Indexed: 12/22/2022]
|
37
|
Miranda Furtado CL, Dos Santos Luciano MC, Silva Santos RD, Furtado GP, Moraes MO, Pessoa C. Epidrugs: targeting epigenetic marks in cancer treatment. Epigenetics 2019; 14:1164-1176. [PMID: 31282279 PMCID: PMC6791710 DOI: 10.1080/15592294.2019.1640546] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/22/2019] [Accepted: 06/28/2019] [Indexed: 12/14/2022] Open
Abstract
Growing evidence suggests that aberrant epigenetic regulation of gene function is strongly related to the genesis of cancer. Unlike genetic mutations, the ability to reprogram the epigenetic landscape in the cancer epigenome is one of the most promising target therapies in both treatment and reversibility of drug resistance. Epigenetic alterations in cancer development and progression may be the basis for the individual variation in drug response. Thus, this review focuses on the emerging area of pharmaco(epi)genomics, specifically highlighting epigenetic reprogramming during tumorigenesis and how epigenetic markers are targeted as a therapy (epidrugs) and the clinical implications of this for cancer treatment.
Collapse
Affiliation(s)
| | | | - Renan Da Silva Santos
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceara, Fortaleza, Brazil
| | | | - Manoel Odorico Moraes
- Department of Surgery, Drug Research and Development Center, Federal University of Ceara, Fortaleza, Brazil
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceara, Fortaleza, Brazil
| | - Claudia Pessoa
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceara, Fortaleza, Brazil
| |
Collapse
|
38
|
Li J, Hu J, Luo Z, Zhou C, Huang L, Zhang H, Chi J, Chen Z, Li Q, Deng M, Chen J, Tao K, Wang G, Wang L, Wang Z. AGR2 is controlled by DNMT3a-centered signaling module and mediates tumor resistance to 5-Aza in colorectal cancer. Exp Cell Res 2019; 385:111644. [PMID: 31614132 DOI: 10.1016/j.yexcr.2019.111644] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 09/17/2019] [Accepted: 09/21/2019] [Indexed: 12/22/2022]
Abstract
Human anterior gradient-2 (AGR2), a member of protein disulfide isomerase (PDI) family, is upregulated in various human cancers and reportedly has oncogenic activities. However, the functional roles of AGR2 and its regulation in colorectal cancer (CRC) remain unclear. Here, we showed that AGR2 promoted CRC tumorigenesis and progression in vitro and in vivo and acted as an independent prognostic factor of poor outcome. AGR2 was negatively regulated by DNA methyltransferase 3a (DNMT3a) through directly methylating AGR2 promoter and by a DNMT3a-SPRY2-miR-194 axis. Moreover, AGR2 mediated the resistance to 5-Aza-2'-deoxycytidine (5-Aza) treatment. Knockdown of AGR2 improved the therapeutic effect of 5-Aza in human CRC xenograft tumor model. Thus, our work supports AGR2's oncogenic role in CRC, reveals DNMT3a-mediated epigenetic modulation on AGR2 promoter, and uncovers a new DNMT3a signaling module controlling expression of AGR2. Upregulated AGR2 offset 5-Aza mediated epigenetic therapy. This work might provide potential targets for clinical anti-cancer therapy.
Collapse
Affiliation(s)
- Jing Li
- Research Centre for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jia Hu
- Research Centre for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhen Luo
- Research Centre for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Caihong Zhou
- Research Centre for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lifeng Huang
- Research Centre for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hongyan Zhang
- Research Centre for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiangyang Chi
- Research Centre for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhenzhen Chen
- Research Centre for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qilin Li
- Research Centre for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Meizhou Deng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Junhua Chen
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Guobin Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Lin Wang
- Research Centre for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zheng Wang
- Research Centre for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
39
|
Xu X, Chen X, Xu M, Liu X, Pan B, Qin J, Xu T, Zeng K, Pan Y, He B, Sun H, Sun L, Wang S. miR-375-3p suppresses tumorigenesis and partially reverses chemoresistance by targeting YAP1 and SP1 in colorectal cancer cells. Aging (Albany NY) 2019; 11:7357-7385. [PMID: 31543507 PMCID: PMC6781994 DOI: 10.18632/aging.102214] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 08/13/2019] [Indexed: 02/07/2023]
Abstract
Clinically, one of the principal factors in the failure of advanced colorectal cancer (CRC) treatment is chemoresistance to 5-fluorouracil (5FU)-based chemotherapy. Although microRNA-375-3p (miR-375) is considered a tumor suppressor in multiple cancers, the mechanism of miR-375 in the regulation of drug resistance in CRC remains unclear. In this study, we investigated the chemosensitivity of miR-375 to 5FU in CRC from biological and clinical aspects. We found that miR-375 was significantly downregulated in CRC tissues and cell lines, and low miR-375 expression was strongly correlated with poor overall survival in CRC patients. Overexpression of miR-375 sensitized CRC cells to a broad spectrum of chemotherapeutic drugs in vitro and in vivo. Further mechanistic analysis demonstrated that miR-375 enhanced CRC cell sensitivity to 5FU by directly targeting YAP1 and SP1. MiR-375 downregulated YAP1, resulting in reduced expression of the Hippo-YAP1 pathway downstream genes CTGF, cyclin D1 and BIRC5 (also known as survivin). Overall, miR-375 was confirmed as a prospective molecular biomarker in the chemoresistance and prognosis of CRC patients, and the synergy between miR-375 and chemotherapeutic drugs could be a promising therapeutic strategy for CRC patients, especially with chemoresistance.
Collapse
Affiliation(s)
- Xueni Xu
- School of Medicine, Southeast University, Nanjing 210009, China
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Xiaoxiang Chen
- School of Medicine, Southeast University, Nanjing 210009, China
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Mu Xu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Xiangxiang Liu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Bei Pan
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Jian Qin
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Tao Xu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Kaixuan Zeng
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Yuqin Pan
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Bangshun He
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Huiling Sun
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Li Sun
- Department of Laboratory Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Shukui Wang
- School of Medicine, Southeast University, Nanjing 210009, China
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| |
Collapse
|
40
|
Mani C, Jonnalagadda S, Lingareddy J, Awasthi S, Gmeiner WH, Palle K. Prexasertib treatment induces homologous recombination deficiency and synergizes with olaparib in triple-negative breast cancer cells. Breast Cancer Res 2019; 21:104. [PMID: 31492187 PMCID: PMC6729044 DOI: 10.1186/s13058-019-1192-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 08/28/2019] [Indexed: 12/17/2022] Open
Abstract
Background Breast cancer remains as one of the most lethal types of cancer in women. Among various subtypes, triple-negative breast cancer (TNBC) is the most aggressive and hard to treat type of breast cancer. Mechanistically, increased DNA repair and cell cycle checkpoint activation remain as the foremost reasons behind TNBC tumor resistance to chemotherapy and disease recurrence. Methods We evaluated the mechanism of prexasertib-induced regulation of homologous recombination (HR) proteins using 20S proteasome inhibitors and RT-PCR. HR efficiency and DNA damages were evaluated using Dr-GFP and comet assays. DNA morphology and DNA repair focus studies were analyzed using immunofluorescence. UALCAN portal was used to evaluate the expression of RAD51 and survival probability based on tumor stage, subtype, and race in breast cancer patients. Results Our results show that prexasertib treatment promotes both post-translational and transcriptional mediated regulation of BRCA1 and RAD51 proteins. Additionally, prexasertib-treated TNBC cells revealed over 55% reduction in HR efficiency compared to control cells. Based on these results, we hypothesized that prexasertib treatment induced homologous recombination deficiency (HRD) and thus should synergize with PARP inhibitors (PARPi) in TNBC cells. As predicted, combined treatment of prexasertib and PARPi olaparib increased DNA strand breaks, γH2AX foci, and nuclear disintegration relative to single-agent treatment. Further, the prexasertib and olaparib combination was synergistic in multiple TNBC cell lines, as indicated by combination index (CI) values. Analysis of TCGA data revealed elevated RAD51 expression in breast tumors compared to normal breast tissues, especially in TNBC subtype. Interestingly, there was a discrepancy in RAD51 expression in racial groups, with African-American and Asian breast cancer patients showing elevated RAD51 expression compared to Caucasian breast cancer patients. Consistent with these observations, African-American and Asian TNBC patients show decreased survival. Conclusions Based on these data, RAD51 could be a biomarker for aggressive TNBC and for racial disparity in breast cancer. As positive correlation exists between RAD51 and CHEK1 expression in breast cancer, the in vitro preclinical data presented here provides additional mechanistic insights for further evaluation of the rational combination of prexasertib and olaparib for improved outcomes and reduced racial disparity in TNBC.
Collapse
Affiliation(s)
- Chinnadurai Mani
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Centre, Lubbock, TX, 79430, USA
| | - Shirisha Jonnalagadda
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Centre, Lubbock, TX, 79430, USA
| | - Jojireddy Lingareddy
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Centre, Lubbock, TX, 79430, USA.,Present Address: Loyola Academic Degree PG College, Old Alwal, Secunderabad, Telangana, 500010, India
| | - Sanjay Awasthi
- Department of Internal Medicine, Texas Tech University Health Sciences Centre, Lubbock, TX, 79430, USA
| | - William H Gmeiner
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Komaraiah Palle
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Centre, Lubbock, TX, 79430, USA.
| |
Collapse
|
41
|
Sun Y, Lai X, Yu Y, Li J, Cao L, Lin W, Huang C, Liao J, Chen W, Li C, Yang C, Ying M, Chen Q, Ye Y. Inhibitor of DNA binding 1 (Id1) mediates stemness of colorectal cancer cells through the Id1-c-Myc-PLAC8 axis via the Wnt/β-catenin and Shh signaling pathways. Cancer Manag Res 2019; 11:6855-6869. [PMID: 31440083 PMCID: PMC6664424 DOI: 10.2147/cmar.s207167] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/15/2019] [Indexed: 01/14/2023] Open
Abstract
Background Inhibitor of DNA binding 1 (Id1) is upregulated in multiple cancers, and Id1overexpression correlates with cancer aggressiveness and poor clinical outcomes in cancer patients. However, its roles in cancer stem-like cells (CSCs) and epithelial-mesenchymal transition (EMT) are still elusive. Purpose This study aimed to examine the role of Id1 on the mediation of CRC stemness and explore the underlying mechanisms. Methods Id1 and CD133 expression was detected by qPCR assay and immunohistochemistry (IHC) in normal mucosal and primary colorectal cancer (CRC) specimens. Id1 was stably knocked down (KD) in human CRC cell lines. Spheres forming assay and tumorigenic assay were performed to evaluate self-renewal capacity and tumor initiation. Expression of CSC- and EMT-related markers and TCF/LEF activity were assessed in HCT116 cells after Id1 KD. Results qPCR assay showed higher Id1 and CD133 expression in CRC specimens than in normal mucosal specimens (P<0.05). IHC detected high cytoplasmic Id1 expression in 35 CRC specimens (46.7%), and high CD133 expression in 22 CRC specimens (29.3%) and negative expression in 18 normal mucosal specimens. High Id1 expression positively correlated with poor differentiation (P=0.034), and CD133 expression correlated with T category in CRC patients (P=0.002). Spearman correlation analysis revealed a positive correlation between Id1 and CD133 expression in CRC patients (P<0.05). Id1 KD resulted in suppression of proliferation, cell-colony formation, self-renewal capability and CSC-like features in HCT116 cells, and impaired the tumor-initiating capability in CRC cells. In addition, Id1 maintained the stemness of CRC cells via the Id1-c-Myc-PLAC8 axis through activating the Wnt/β-catenin and Shh signaling pathways. Conclusions Id1 expression significantly correlates with CD133 expression in CRC patients, and Id1 KD impairs CSC-like capacity and reverses EMT traits, partially via the Wnt/β-catenin signaling. Id1 may be a promising therapeutic target against colon CSCs.
Collapse
Affiliation(s)
- Yanxia Sun
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, Fujian Province, People's Republic of China.,Laboratory of Immuno-Oncology, Fujian Provincial Cancer Hospital, Fuzhou 350014, Fujian Province, People's Republic of China
| | - Xiaolan Lai
- Department of Medical Oncology, Union Hospital of Fujian Medical University, Fuzhou 350001, Fujian Province, People's Republic of China
| | - Yue Yu
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, Fujian Province, People's Republic of China.,Laboratory of Immuno-Oncology, Fujian Provincial Cancer Hospital, Fuzhou 350014, Fujian Province, People's Republic of China
| | - Jieyu Li
- Laboratory of Immuno-Oncology, Fujian Provincial Cancer Hospital, Fuzhou 350014, Fujian Province, People's Republic of China.,Fujian Key Laboratory of Translational Cancer Medicine , Fuzhou 350014, Fujian Province, People's Republic of China
| | - Lei Cao
- Department of Medical Oncology, Union Hospital of Fujian Medical University, Fuzhou 350001, Fujian Province, People's Republic of China
| | - Wansong Lin
- Laboratory of Immuno-Oncology, Fujian Provincial Cancer Hospital, Fuzhou 350014, Fujian Province, People's Republic of China.,Fujian Key Laboratory of Translational Cancer Medicine , Fuzhou 350014, Fujian Province, People's Republic of China
| | - Chuanzhong Huang
- Laboratory of Immuno-Oncology, Fujian Provincial Cancer Hospital, Fuzhou 350014, Fujian Province, People's Republic of China.,Fujian Key Laboratory of Translational Cancer Medicine , Fuzhou 350014, Fujian Province, People's Republic of China
| | - Jinrong Liao
- Laboratory of Immuno-Oncology, Fujian Provincial Cancer Hospital, Fuzhou 350014, Fujian Province, People's Republic of China.,Fujian Key Laboratory of Translational Cancer Medicine , Fuzhou 350014, Fujian Province, People's Republic of China
| | - Wei Chen
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, Fujian Province, People's Republic of China.,Laboratory of Immuno-Oncology, Fujian Provincial Cancer Hospital, Fuzhou 350014, Fujian Province, People's Republic of China
| | - Chao Li
- Department of Pathology, Fujian Provincial Cancer Hospital, Fuzhou 350014, Fujian Province, People's Republic of China
| | - Chunkang Yang
- Department of Abdominal Surgery, Fujian Provincial Cancer Hospital, Fuzhou 350014, Fujian Province, People's Republic of China
| | - Mingang Ying
- Department of Abdominal Surgery, Fujian Provincial Cancer Hospital, Fuzhou 350014, Fujian Province, People's Republic of China
| | - Qiang Chen
- Department of Medical Oncology, Union Hospital of Fujian Medical University, Fuzhou 350001, Fujian Province, People's Republic of China
| | - Yunbin Ye
- Laboratory of Immuno-Oncology, Fujian Provincial Cancer Hospital, Fuzhou 350014, Fujian Province, People's Republic of China.,Fujian Key Laboratory of Translational Cancer Medicine , Fuzhou 350014, Fujian Province, People's Republic of China
| |
Collapse
|
42
|
Mansouri N, Alivand MR, Bayat S, Khaniani MS, Derakhshan SM. The hopeful anticancer role of oleuropein in breast cancer through histone deacetylase modulation. J Cell Biochem 2019; 120:17042-17049. [PMID: 31119806 DOI: 10.1002/jcb.28965] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/26/2019] [Accepted: 02/28/2019] [Indexed: 12/24/2022]
Abstract
Breast cancer (BC) is one of the most common cancers among women worldwide. Genetic, epigenetic, and environmental factors play a crucial role in BC development. Because epigenetic imbalance occurs earlier than expression in carcinogenesis and is reversible, epigenetic reprogramming strategies could be more useful for cancer prevention and therapy. There is evidence indicating that the use of herbal compounds with low toxicity can offer a real benefit in the prevention or treatment of cancer. Oleuropein (OLE), as a natural polyphenol, has shown the anticancer property in cancers. In this study, we investigated for the first time the link between histone deacetylase (HDAC) and OLE to have an anticancer effect in BC. The potential apoptotic and anti-invasive effects of OLE were tested using MCF-7 cells. Transcript expression of HDAC1 and HDAC4 genes after treatment was determined using quantitative reverse transcription polymerase chain reaction. OLE obviously reduced invasiveness and cell viability and simultaneously induced cell apoptosis in MCF-7 cancer cells. Dose-dependent reduction of HDAC4 was observed, whereas apparent changes could not be observed in HDAC1 expression. The current research indicated that OLE can inhibit proliferation and invasion of cells by inducing apoptosis likely through modulation of an important epigenetic factor, HDAC4, in MCF-7 cells. OLE has the potential to be a therapeutic drug for BC prevention and treatment.
Collapse
Affiliation(s)
- Neda Mansouri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Faculty of Basic Sciences, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Mohammad Reza Alivand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahar Bayat
- Faculty of Basic Sciences, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Mahmoud Shekari Khaniani
- Faculty of Basic Sciences, Tabriz Branch, Islamic Azad University, Tabriz, Iran.,Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sima Mansoori Derakhshan
- Faculty of Basic Sciences, Tabriz Branch, Islamic Azad University, Tabriz, Iran.,Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
43
|
An Y, Zhou L, Huang Z, Nice EC, Zhang H, Huang C. Molecular insights into cancer drug resistance from a proteomics perspective. Expert Rev Proteomics 2019; 16:413-429. [PMID: 30925852 DOI: 10.1080/14789450.2019.1601561] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Resistance to chemotherapy and development of specific and effective molecular targeted therapies are major obstacles facing current cancer treatment. Comparative proteomic approaches have been employed for the discovery of putative biomarkers associated with cancer drug resistance and have yielded a number of candidate proteins, showing great promise for both novel drug target identification and personalized medicine for the treatment of drug-resistant cancer. Areas covered: Herein, we review the recent advances and challenges in proteomics studies on cancer drug resistance with an emphasis on biomarker discovery, as well as understanding the interconnectivity of proteins in disease-related signaling pathways. In addition, we highlight the critical role that post-translational modifications (PTMs) play in the mechanisms of cancer drug resistance. Expert opinion: Revealing changes in proteome profiles and the role of PTMs in drug-resistant cancer is key to deciphering the mechanisms of treatment resistance. With the development of sensitive and specific mass spectrometry (MS)-based proteomics and related technologies, it is now possible to investigate in depth potential biomarkers and the molecular mechanisms of cancer drug resistance, assisting the development of individualized therapeutic strategies for cancer patients.
Collapse
Affiliation(s)
- Yao An
- a West China School of Basic Medical Sciences & Forensic Medicine , Sichuan University , Chengdu , PR China.,b Department of Oncology , The Second Affiliated Hospital of Hainan Medical University , Haikou , P.R. China
| | - Li Zhou
- a West China School of Basic Medical Sciences & Forensic Medicine , Sichuan University , Chengdu , PR China
| | - Zhao Huang
- a West China School of Basic Medical Sciences & Forensic Medicine , Sichuan University , Chengdu , PR China
| | - Edouard C Nice
- c Department of Biochemistry and Molecular Biology , Monash University , Clayton , Australia
| | - Haiyuan Zhang
- b Department of Oncology , The Second Affiliated Hospital of Hainan Medical University , Haikou , P.R. China
| | - Canhua Huang
- a West China School of Basic Medical Sciences & Forensic Medicine , Sichuan University , Chengdu , PR China.,b Department of Oncology , The Second Affiliated Hospital of Hainan Medical University , Haikou , P.R. China
| |
Collapse
|
44
|
Skarkova V, Kralova V, Vitovcova B, Rudolf E. Selected Aspects of Chemoresistance Mechanisms in Colorectal Carcinoma-A Focus on Epithelial-to-Mesenchymal Transition, Autophagy, and Apoptosis. Cells 2019; 8:cells8030234. [PMID: 30871055 PMCID: PMC6468859 DOI: 10.3390/cells8030234] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 12/15/2022] Open
Abstract
Chemoresistance has been found in all malignant tumors including colorectal carcinoma (CRC). Nowadays chemoresistance is understood as a major reason for therapy failure, with consequent tumor growth and spreading leading ultimately to the patient's premature death. The chemotherapy-related resistance of malignant colonocytes may be manifested in diverse mechanisms that may exist both prior to the onset of the therapy or after it. The ultimate function of this chemoresistance is to ensure the survival of malignant cells through continuing adaptation within an organism, therefore, the nature and spectrum of cell-survival strategies in CRC represent a highly significant target of scientific inquiry. Among these survival strategies employed by CRC cells, three unique but significantly linked phenomena stand out-epithelial-to-mesenchymal transition (EMT), autophagy, and cell death. In this mini-review, current knowledge concerning all three mechanisms including their emergence, timeline, regulation, and mutual relationships will be presented and discussed.
Collapse
Affiliation(s)
- Veronika Skarkova
- Department of Medical Biology and Genetics, Charles University, Faculty of Medicine in Hradec Králové, Zborovská 2089, 500 03 Hradec Králové, Czech Republic.
| | - Vera Kralova
- Department of Medical Biology and Genetics, Charles University, Faculty of Medicine in Hradec Králové, Zborovská 2089, 500 03 Hradec Králové, Czech Republic.
| | - Barbora Vitovcova
- Department of Medical Biology and Genetics, Charles University, Faculty of Medicine in Hradec Králové, Zborovská 2089, 500 03 Hradec Králové, Czech Republic.
| | - Emil Rudolf
- Department of Medical Biology and Genetics, Charles University, Faculty of Medicine in Hradec Králové, Zborovská 2089, 500 03 Hradec Králové, Czech Republic.
| |
Collapse
|
45
|
Tan Y, Zhang S, Zhu H, Chu Y, Zhou H, Liu D, Huo J. Histone deacetylase 6 selective inhibitor ACY1215 inhibits cell proliferation and enhances the chemotherapeutic effect of 5-fluorouracil in HCT116 cells. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:2. [PMID: 30788349 DOI: 10.21037/atm.2018.11.48] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Background ACY1215 is a selective histone deacetylase 6 (HDAC6) inhibitor, and can suppress tumor growth for many human cancers. However, its role in colon cancer and its impact on the chemotherapeutic effect of 5-fluorouracil (5-Fu) are largely unknown. The aim of the present study is to explore the effect of ACY1215 on cell growth, migration, invasion and apoptosis, along with its impact on the chemotherapeutic effect of 5-Fu in HCT116 cells. Methods HCT116 cells were treated with ACY1215 with or without 5-Fu, and cell viability, proliferation, migration, invasion and apoptosis were explored. Results The cell viability, colony formation number, wound closure rate, and migrated cell numbers of HCT116 cells significantly decreased, while the apoptotic cells significantly increased with the increased concentration of ACY1215 (P<0.05). The combination of ACY1215 and 5-Fu was more potent than either drug alone, as indicated by an increase of apoptotic cells, and by a decrease of cell viability, colony formation number, wound closure rate and migrated cell numbers. The expression of phosphorylated mitogen-activated protein kinases (pMEK) and phosphorylated extracellular-signal regulated protein kinase (pERK) were decreased when HCT116 cells were cultured with ACY1215. Conclusions Selective HDAC6 inhibitor, ACY1215, could inhibit the cell proliferation, migration and invasion, and induce apoptosis of HCT116 colon cancer cells. Furthermore, ACY1215 may enhance the chemotherapeutic effect of 5-Fu in HCT116 cells.
Collapse
Affiliation(s)
- Yuyong Tan
- Department of Gastroenterology, the Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Shilan Zhang
- Department of Gastroenterology, the Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Hongyi Zhu
- Department of Gastroenterology, the Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yi Chu
- Department of Gastroenterology, the Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Hejun Zhou
- Department of Gastroenterology, the Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Deliang Liu
- Department of Gastroenterology, the Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Jirong Huo
- Department of Gastroenterology, the Second Xiangya Hospital, Central South University, Changsha 410011, China
| |
Collapse
|
46
|
Vacante M, Borzì AM, Basile F, Biondi A. Biomarkers in colorectal cancer: Current clinical utility and future perspectives. World J Clin Cases 2018; 6:869-881. [PMID: 30568941 PMCID: PMC6288499 DOI: 10.12998/wjcc.v6.i15.869] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/30/2018] [Accepted: 11/07/2018] [Indexed: 02/05/2023] Open
Abstract
Colorectal cancer (CRC) is a major cause of cancer death worldwide. CRC has poor prognosis and there is a crucial need for new diagnostic and prognostic biomarkers to avoid CRC-related deaths. CRC can be considered a sporadic disease in most cases (75%-80%), but it has been suggested that crosstalk between gene mutations (i.e., mutations of BRAF, KRAS, and p53 as well as microsatellite instability) and epigenetic alterations (i.e., DNA methylation of CpG island promoter regions) could play a pivotal role in cancer development. A number of studies have focused on molecular testing to guide targeted and conventional treatments for patients with CRC, sometimes with contrasting results. Some of the most useful innovations in the management of CRC include the possibility to detect the absence of KRAS, BRAF, NRAS and PIK3CA gene mutations with the subsequent choice to administer targeted adjuvant therapy with anti-epidermal growth factor receptor antibodies. Moreover, CRC patients can benefit from tests for microsatellite instability and for the detection of loss of heterozygosity of chromosome 18q that can be helpful in guiding therapeutic decisions as regards the administration of 5-FU. The aim of this review was to summarize the most recent evidence on the possible use of genetic or epigenetic biomarkers for diagnosis, prognosis and response to therapy in CRC patients.
Collapse
Affiliation(s)
- Marco Vacante
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania 95123, Italy
| | - Antonio Maria Borzì
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania 95123, Italy
| | - Francesco Basile
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania 95123, Italy
| | - Antonio Biondi
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania 95123, Italy
| |
Collapse
|
47
|
ANRIL promotes chemoresistance via disturbing expression of ABCC1 by regulating the expression of Let-7a in colorectal cancer. Biosci Rep 2018; 38:BSR20180620. [PMID: 30279206 PMCID: PMC6246772 DOI: 10.1042/bsr20180620] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/03/2018] [Accepted: 08/20/2018] [Indexed: 12/18/2022] Open
Abstract
Increasing evidence indicates that long non-coding RNAs (lncRNAs) antisense non-coding RNA in the INK4 locus (ANRIL) has been involved in various diseases and promotes tumorigenesis and cancer progression as an oncogenic gene. However, the effect of ANRIL on chemoresistance remains still unknown in colorectal cancer (CRC). Here, we investigated ANRIL expression in 63 cases of colorectal cancer specimens and matched normal tissues. Results revealed that ANRIL was up-regulated in tumor tissues samples from patients with CRC and CRC cell lines. Increased ANRIL expression in CRC was associated with poor clinical prognosis. Kaplan–Meier analysis showed that ANRIL was associated with overall survival of patients with colorectal cancer, and patients with high ANRIL expression tended to have unfavorable outcome. In vitro experiments revealed that ANRIL knockdown significantly inhibited CRC cell proliferation, improved the sensitivity of chemotherapy and promoted apoptosis. Further functional assays indicated that ANRIL overexpression significantly promoted cell chemoresistance by regulating ATP-binding cassette subfamily C member 1 through binding Let-7a. Taken together, our study demonstrates that ANRIL could act as a functional oncogene in CRC, as well as a potential therapeutic target to inhibit CRC chemoresistance.
Collapse
|
48
|
4-Acetyl-Antroquinonol B Suppresses SOD2-Enhanced Cancer Stem Cell-Like Phenotypes and Chemoresistance of Colorectal Cancer Cells by Inducing hsa-miR-324 re-Expression. Cancers (Basel) 2018; 10:cancers10080269. [PMID: 30103475 PMCID: PMC6116152 DOI: 10.3390/cancers10080269] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/04/2018] [Accepted: 08/07/2018] [Indexed: 01/07/2023] Open
Abstract
Background: Colorectal cancer (CRC) remains a leading cause of cancer-related morbidity and mortality in both sexes globally. This is not unconnected with the heterogeneity and plasticity of CRC stem cells (CRC-SCs) which stealthily exploit the niche-related and (epi)genetic factors to facilitate metastasis, chemoresistance, tumor recurrence, and disease progression. Despite the accumulating evidence of the role of dysregulated microRNAs in malignancies, the therapeutic efficacy of pharmacological-targeting of CRC-SC-associated microRNAs is relatively under-explored. Experimental approach: In this present study, we employed relatively new bioinformatics approaches, analyses of microarray data, Western blot, real-time polymerase chain reaction (RT-PCR), and functional assays to show that hsa-miR-324-5p expression is significantly suppressed in CRC cells, and inversely correlates with the aberrant expression of SOD2. Results: This converse hsa-miR-324-5p/SOD2 relationship is associated with enhanced oncogenicity, which is effectively inhibited by 4-acetylantroquinonol B (4-AAQB), as evidenced by inhibited cell viability and proliferation, as well as attenuated migration, invasion, and clonogenicity in 4-AAQB-treated DLD1 and HCT116 cells. Interestingly, 4-AAQB did not affect the viability and proliferation of normal colon cells. We also showed that 4-AAQB-induced re-expression of hsa-miR-324-5p, akin to short-interfering RNA, reduced SOD2 expression, correlates with the concurrent down-regulation of SOD2, N-cadherin, vimentin, c-Myc, and BcL-xL2, with concomitant up-regulation of E-cadherin and BAX2 proteins. Enhanced expression of hsa-miR-324-5p in the CRC cells suppressed their tumorigenicity in vitro and in vivo. Additionally, 4-AAQB synergistically potentiates the FOLFOX (folinate (leucovorin), fluorouracil (5FU), and oxaliplatin) anticancer effect by eliciting the re-expression of SOD2-suppressed hsa-miR-324, and inhibiting SOD2-mediated tumorigenicity. Conclusion: Our findings highlight the pre-clinical anti-CSC efficacy of 4-AAQB, with or without FOLFOX in CRC, and suggest a potential novel therapeutic strategy for CRC patients.
Collapse
|
49
|
Skarkova V, Kralova V, Krbal L, Matouskova P, Soukup J, Rudolf E. Oxaliplatin and irinotecan induce heterogenous changes in the EMT markers of metastasizing colorectal carcinoma cells. Exp Cell Res 2018; 369:295-303. [PMID: 29842879 DOI: 10.1016/j.yexcr.2018.05.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/25/2018] [Accepted: 05/26/2018] [Indexed: 01/25/2023]
|
50
|
Chrysin Attenuates Cell Viability of Human Colorectal Cancer Cells through Autophagy Induction Unlike 5-Fluorouracil/Oxaliplatin. Int J Mol Sci 2018; 19:ijms19061763. [PMID: 29899208 PMCID: PMC6032318 DOI: 10.3390/ijms19061763] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/07/2018] [Accepted: 06/11/2018] [Indexed: 01/05/2023] Open
Abstract
Chemotherapeutic 5-fluorouracil (5-FU) combined with oxaliplatin is often used as the standard treatment for colorectal cancer (CRC). The disturbing side effects and drug resistance commonly observed in chemotherapy motivate us to develop alternative optimal therapeutic options for CRC treatment. Chrysin, a natural and biologically active flavonoid abundant in propolis, is reported to have antitumor effects on a few CRCs. However, whether and how chrysin achieves similar effectiveness to the 5-FU combination is not clear. In this study, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), western blotting, fluorescence microscopy, and reactive oxygen species (ROS) production were assayed. We found that chrysin exhibited similar inhibition of cell viability as the 5-FU combination in a panel of human CRC cells. Furthermore, the results showed that chrysin significantly increased the levels of LC3-II, an autophagy-related marker, in CRC cells, which was not observed with the 5-FU combination. More importantly, blockage of autophagy induction restored chrysin-attenuated CRC cell viability. Further mechanistic analysis revealed that chrysin, not the 5-FU combination, induced ROS generation, and in turn, inhibited the phosphorylation of protein kinase B (Akt) and mammalian target of rapamycin (mTOR). Collectively, these results imply that chrysin may be a potential replacement for the 5-FU and oxaliplatin combination to achieve antitumor activity through autophagy for CRC treatment in the future.
Collapse
|