1
|
Vastrad B, Vastrad C. Screening and identification of key biomarkers associated with endometriosis using bioinformatics and next-generation sequencing data analysis. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2024; 25:116. [DOI: 10.1186/s43042-024-00572-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/23/2024] [Indexed: 01/04/2025] Open
Abstract
Abstract
Background
Endometriosis is a common cause of endometrial-type mucosa outside the uterine cavity with symptoms such as painful periods, chronic pelvic pain, pain with intercourse and infertility. However, the early diagnosis of endometriosis is still restricted. The purpose of this investigation is to identify and validate the key biomarkers of endometriosis.
Methods
Next-generation sequencing dataset GSE243039 was obtained from the Gene Expression Omnibus database, and differentially expressed genes (DEGs) between endometriosis and normal control samples were identified. After screening of DEGs, gene ontology (GO) and REACTOME pathway enrichment analyses were performed. Furthermore, a protein–protein interaction (PPI) network was constructed and modules were analyzed using the Human Integrated Protein–Protein Interaction rEference database and Cytoscape software, and hub genes were identified. Subsequently, a network between miRNAs and hub genes, and network between TFs and hub genes were constructed using the miRNet and NetworkAnalyst tool, and possible key miRNAs and TFs were predicted. Finally, receiver operating characteristic curve analysis was used to validate the hub genes.
Results
A total of 958 DEGs, including 479 upregulated genes and 479 downregulated genes, were screened between endometriosis and normal control samples. GO and REACTOME pathway enrichment analyses of the 958 DEGs showed that they were mainly involved in multicellular organismal process, developmental process, signaling by GPCR and muscle contraction. Further analysis of the PPI network and modules identified 10 hub genes, including vcam1, snca, prkcb, adrb2, foxq1, mdfi, actbl2, prkd1, dapk1 and actc1. Possible target miRNAs, including hsa-mir-3143 and hsa-mir-2110, and target TFs, including tcf3 (transcription factor 3) and clock (clock circadian regulator), were predicted by constructing a miRNA-hub gene regulatory network and TF-hub gene regulatory network.
Conclusions
This investigation used bioinformatics techniques to explore the potential and novel biomarkers. These biomarkers might provide new ideas and methods for the early diagnosis, treatment and monitoring of endometriosis.
Collapse
|
2
|
Jaykumar AB, Binns D, Taylor CA, Anselmo A, Birnbaum SG, Huber KM, Cobb MH. WNKs regulate mouse behavior and alter central nervous system glucose uptake and insulin signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.09.598125. [PMID: 38915673 PMCID: PMC11195145 DOI: 10.1101/2024.06.09.598125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Certain areas of the brain involved in episodic memory and behavior, such as the hippocampus, express high levels of insulin receptors and glucose transporter-4 (GLUT4) and are responsive to insulin. Insulin and neuronal glucose metabolism improve cognitive functions and regulate mood in humans. Insulin-dependent GLUT4 trafficking has been extensively studied in muscle and adipose tissue, but little work has demonstrated either how it is controlled in insulin-responsive brain regions or its mechanistic connection to cognitive functions. In this study, we demonstrate that inhibition of WNK (With-No-lysine (K)) kinases improves learning and memory in mice. Neuronal inhibition of WNK enhances in vivo hippocampal glucose uptake. Inhibition of WNK enhances insulin signaling output and insulin-dependent GLUT4 trafficking to the plasma membrane in mice primary neuronal cultures and hippocampal slices. Therefore, we propose that the extent of neuronal WNK kinase activity has an important influence on learning, memory and anxiety-related behaviors, in part, by modulation of neuronal insulin signaling.
Collapse
Affiliation(s)
- Ankita B. Jaykumar
- Departments of Pharmacology, UT Southwestern Medical Center, Dallas, USA
| | - Derk Binns
- Departments of Pharmacology, UT Southwestern Medical Center, Dallas, USA
| | - Clinton A. Taylor
- Departments of Pharmacology, UT Southwestern Medical Center, Dallas, USA
| | - Anthony Anselmo
- Departments of Pharmacology, UT Southwestern Medical Center, Dallas, USA
| | - Shari G. Birnbaum
- Departments of Peter O’Donnell Jr. Brain Institute and Psychiatry, UT Southwestern Medical Center, Dallas, USA
| | | | - Melanie H. Cobb
- Departments of Pharmacology, UT Southwestern Medical Center, Dallas, USA
| |
Collapse
|
3
|
Liu X, Chen J, Xu X, Liu J, Zhang J, Cheng H, Ahmed Z, Huang B, Lei C. A missense mutation of the WNK1 gene affects cold tolerance in Chinese domestic cattle. Anim Biotechnol 2023; 34:4803-4808. [PMID: 37079337 DOI: 10.1080/10495398.2023.2196316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Inclement weather conditions, especially cold stress, have threatened the cattle industry. Cattle exposed to cold environments for a longer time suffer developmental delay, immunity decline, and eventually death. WNK1 is a member of With-no-lysine kinases (WNKs), widely expressed in animal organs and tissues. WNK1 and WNK4 are expressed in adipose tissue, and WNK4 promotes adipogenesis. WNK1 does not directly affect adipogenesis but has been shown to promote WNK4 expression in several tissues or organs. One missense mutation NC_037346.1:g.107692244, A > G, rs208265410 in the WNK1 gene was detected from the database of bovine genomic variation (BGVD). Here, we collected 328 individuals of 17 breeds representing four groups of Chinese cattle, northern group cattle, southern group cattle, central group cattle, and special group cattle (Tibetan cattle). We also collected the temperature and humidity data records from their relative locations. The frequencies of the G allele in Chinese breeds increased from northern China to southern China, and the frequencies of the A allele showed an opposite trend. Our results indicate that the WNK1 gene might be a candidate gene marker associated with cold tolerance.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jialei Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xinlong Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jianyong Liu
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Jicai Zhang
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Haijian Cheng
- Shandong Key Lab of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Zulfiqar Ahmed
- Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot Azad Jammu and Kashmir Pakistan, Rawalakot, Pakistan
| | - Bizhi Huang
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
4
|
Jeong Y, Oh AR, Jung YH, Gi H, Kim YU, Kim K. Targeting E3 ubiquitin ligases and their adaptors as a therapeutic strategy for metabolic diseases. Exp Mol Med 2023; 55:2097-2104. [PMID: 37779139 PMCID: PMC10618535 DOI: 10.1038/s12276-023-01087-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/23/2023] [Accepted: 07/06/2023] [Indexed: 10/03/2023] Open
Abstract
Posttranslational modification of proteins via ubiquitination determines their activation, translocation, dysregulation, or degradation. This process targets a large number of cellular proteins, affecting all biological pathways involved in the cell cycle, development, growth, and differentiation. Thus, aberrant regulation of ubiquitination is likely associated with several diseases, including various types of metabolic diseases. Among the ubiquitin enzymes, E3 ubiquitin ligases are regarded as the most influential ubiquitin enzymes due to their ability to selectively bind and recruit target substrates for ubiquitination. Continued research on the regulatory mechanisms of E3 ligases and their adaptors in metabolic diseases will further stimulate the discovery of new targets and accelerate the development of therapeutic options for metabolic diseases. In this review, based on recent discoveries, we summarize new insights into the roles of E3 ubiquitin ligases and their adaptors in the pathogenesis of metabolic diseases by highlighting recent evidence obtained in both human and animal model studies.
Collapse
Affiliation(s)
- Yelin Jeong
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, 22212, Republic of Korea
| | - Ah-Reum Oh
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, 22212, Republic of Korea
| | - Young Hoon Jung
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, 22212, Republic of Korea
| | - HyunJoon Gi
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, 22212, Republic of Korea
| | - Young Un Kim
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, 22212, Republic of Korea
| | - KyeongJin Kim
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea.
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea.
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, 22212, Republic of Korea.
| |
Collapse
|
5
|
Uchida S, Mori T, Susa K, Sohara E. NCC regulation by WNK signal cascade. Front Physiol 2023; 13:1081261. [PMID: 36685207 PMCID: PMC9845728 DOI: 10.3389/fphys.2022.1081261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023] Open
Abstract
With-no-lysine (K) (WNK) kinases have been identified as the causal genes for pseudohypoaldosteronism type II (PHAII), a rare hereditary hypertension condition characterized by hyperkalemia, hyperchloremic metabolic acidosis, and thiazide-hypersensitivity. We thought that clarifying the link between WNK and NaCl cotransporter (NCC) would bring us new mechanism(s) of NCC regulation. For the first time, we were able to produce a knock-in mouse model of PHAII and anti-phosphorylated NCC antibodies against the putative NCC phosphorylation sites and discover that constitutive activation of NCC and increased phosphorylation of NCC are the primary pathogenesis of the disease in vivo. We have since demonstrated that this regulatory mechanism is mediated by the kinases oxidative stress-response protein 1 (OSR1) and STE20/SPS1-related proline/alanine-rich kinase (SPAK) (WNK-OSR1/SPAK-NCC signaling cascade) and that the signaling is not only important in the pathological condition of PHAII but also plays a crucial physiological role in the regulation of NCC.
Collapse
|
6
|
Liu F, Wei Q, Liang Y, Yang Q, Huang C, Huang Q, Qin J, Pang L, Xu L, Zhong J. Effects of Gypenoside XLIX on fatty liver cell gene expression in vitro: a genome-wide analysis. Am J Transl Res 2023; 15:834-846. [PMID: 36915770 PMCID: PMC10006792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/11/2023] [Indexed: 03/16/2023]
Abstract
OBJECTIVE To perform Genome-wide analysis of Gypenoside XLIX (Gyp-XLIX) in the treatment of fatty liver cells. METHODS The gene profiles of 3 normal liver cells, 3 fatty liver cells, and 3 fatty liver cells treated with Gyp-XLIX were detected by high-throughput sequencing to identify the differentially expressed genes (DEGs) in fatty liver treated by Gyp-XLIX. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were used to explore the biological functions of DEGs. By constructing lncRNA-mRNA co-expression network of DEGs, network node genes were mined. Possible target genes of differentially expressed lncRNA were predicted by cis regulation. RESULTS 782 DEGs were screened out; that is, 172 genes were highly expressed in fatty liver cells, and the expression decreased to the level of normal liver cells after Gyp-XLIX treatment; 610 genes were under expressed in fatty liver cells, and the expression increased to the level of normal liver cells after Gyp-XLIX treatment. Functional analysis of KEGG and GO showed that DEGs process DNA-binding transcription factor activity and ion transmembrane transporter activity in the plasma membrane region. This mediates glycerophospholipid metabolism, bile secretion, fatty acid degradation and other signaling pathways. lncRNA analysis showed that the expression of 16 lncRNAs was low in fatty liver cells, and the expression was increased to the level of normal liver cells after Gyp-XLIX treatment. Target gene prediction showed that 16 differentially expressed lncRNAs had cis potential to regulate target genes, among which lncRNA RPARP-AS1 had a high degree of relationship with other genes. lncRNA-mRNA co-expression network results showed that lncRNA RPARP-AS1 may acted on NFKB2. CONCLUSION LncRNA was differentially expressed in fatty liver cells and Gyp-XLIX treated fatty liver cells, and lncRNA RPARP-AS1 may be a regulatory gene in Gyp-XLIX treated fatty liver.
Collapse
Affiliation(s)
- Fengming Liu
- Department of Critical Care Medicine, The First People's Hospital of Nanning Nanning 530022, Guangxi, China
| | - Qiu Wei
- Department of Traditional Chinese Medicine, The First People's Hospital of Nanning Nanning 530022, Guangxi, China
| | - Yidan Liang
- Department of Traditional Chinese Medicine, The First People's Hospital of Nanning Nanning 530022, Guangxi, China
| | - Qingmei Yang
- Department of Critical Care Medicine, The First People's Hospital of Nanning Nanning 530022, Guangxi, China
| | - Chunxi Huang
- Department of Traditional Chinese Medicine, The First People's Hospital of Nanning Nanning 530022, Guangxi, China
| | - Qiuju Huang
- Department of Traditional Chinese Medicine, The First People's Hospital of Nanning Nanning 530022, Guangxi, China
| | - Jiankang Qin
- Department of Traditional Chinese Medicine, The First People's Hospital of Nanning Nanning 530022, Guangxi, China
| | - Lili Pang
- Department of Traditional Chinese Medicine, The First People's Hospital of Nanning Nanning 530022, Guangxi, China
| | - Liuyan Xu
- Department of Traditional Chinese Medicine, The First People's Hospital of Nanning Nanning 530022, Guangxi, China
| | - Juan Zhong
- Department of Traditional Chinese Medicine, The First People's Hospital of Nanning Nanning 530022, Guangxi, China
| |
Collapse
|
7
|
Jang JH, Lee JW, Cho MJ, Hwang B, Kwon MG, Kim DH, Lee NK, Lee J, Park YJ, Yang YR, Kim J, Kim YH, An TH, Oh KJ, Bae KH, Park JG, Min JK. KLHL3 deficiency in mice ameliorates obesity, insulin resistance, and nonalcoholic fatty liver disease by regulating energy expenditure. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:1250-1261. [PMID: 36028759 PMCID: PMC9440235 DOI: 10.1038/s12276-022-00833-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/17/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022]
Abstract
Obesity is a growing global epidemic that can cause serious adverse health consequences, including insulin resistance (IR) and nonalcoholic fatty liver disease (NAFLD). Obesity development can be attributed to energy imbalance and metabolic inflexibility. Here, we demonstrated that lack of Kelch-like protein 3 (KLHL3) mitigated the development of obesity, IR, and NAFLD by increasing energy expenditure. KLHL3 mutations in humans cause Gordon’s hypertension syndrome; however, the role of KLHL3 in obesity was previously unknown. We examined differences in obesity-related parameters between control and Klhl3−/− mice. A significant decrease in body weight concomitant with fat mass loss and improved IR and NAFLD were observed in Klhl3−/− mice fed a high-fat (HF) diet and aged. KLHL3 deficiency inhibited obesity, IR, and NAFLD by increasing energy expenditure with augmentation of O2 consumption and CO2 production. Delivering dominant-negative (DN) Klhl3 using adeno-associated virus into mice, thereby dominantly expressing DN-KLHL3 in the liver, ameliorated diet-induced obesity, IR, and NAFLD. Finally, adenoviral overexpression of DN-KLHL3, but not wild-type KLHL3, in hepatocytes revealed an energetic phenotype with an increase in the oxygen consumption rate. The present findings demonstrate a novel function of KLHL3 mutation in extrarenal tissues, such as the liver, and may provide a therapeutic target against obesity and obesity-related diseases. Mice that are genetically engineered to lack a protein involved in regulating energy expenditure are protected against the onset of obesity and the related problems of insulin resistance and non-alcoholic fatty liver disease. Jeong-Ki Min, Jong-Gil Park and colleagues at the Korea Research Institute of Bioscience & Biotechnology in South Korea, Daejon, discovered that the beneficial effect of the lack of the protein, called KLHL3, was due to an increase in energy expenditure. Mutations in the gene for KLHL3 are known to cause a variety of metabolic diseases in humans, including a form of high blood pressure called Gordon’s hypertension syndrome, but the protein’s role in human obesity has not been studied. The results suggest that drugs able to regulate the production or activity of KLHL3 might offer a new approach to treating obesity.
Collapse
Affiliation(s)
- Ju-Hong Jang
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Republic of Korea.,Department of Bioscience, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Jeong Woong Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Min Ji Cho
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Byungtae Hwang
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Min-Gi Kwon
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Republic of Korea.,Department of Bioscience, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Dong-Hwan Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Nam-Kyung Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Jangwook Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Young-Jun Park
- Environmental Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Yong Ryoul Yang
- Aging Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Jinchul Kim
- Aging Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Yong-Hoon Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Tae Hyeon An
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Kyoung-Jin Oh
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Kwang-Hee Bae
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Jong-Gil Park
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Republic of Korea. .,Department of Bioscience, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea.
| | - Jeong-Ki Min
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Republic of Korea. .,Department of Bioscience, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea.
| |
Collapse
|
8
|
Hu Y, Xu J, Gao R, Xu Y, Huangfu B, Asakiya C, Huang X, Zhang F, Huang K, He X, Luo Y. Diallyl Trisulfide Prevents Adipogenesis and Lipogenesis by Regulating the Transcriptional Activation Function of KLF15 on PPARγ to Ameliorate Obesity. Mol Nutr Food Res 2022; 66:e2200173. [PMID: 35983694 DOI: 10.1002/mnfr.202200173] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/19/2022] [Indexed: 11/11/2022]
Abstract
SCOPE Diallyl trisulfide (DATS) is a bioactive compound in garlic. The anti-obesity effect of garlic oil has been reported, but the role and mechanism of DATS in preventing obesity remain to be explored. METHODS AND RESULTS We performed studies with high-fat-diet-induced obese mice and 3T3-L1 adipocytes. The results showed that DATS significantly reduced lipid accumulation and repaired disordered metabolism in vivo by restraining adipogenesis and lipogenesis, and promoting lipolysis and fatty acid oxidation in white adipose tissue. In cells, DATS played different roles at different stages of adipocyte differentiation. Notably, DATS reduced lipid accumulation mainly by inhibiting adipogenesis and lipogenesis at the late stage. KLF15 was knocked down in 3T3-L1 cells, which eliminated the inhibitory effect of DATS on adipogenesis and lipogenesis. The dual-luciferase reporter and ChIP assays indicated that DATS could inhibit the transcriptional activation function of KLF15 on PPARγ by inhibiting the binding of KLF15 to PPARγ promoter. The function comparison of structural analogs and the intervention of dithiothreitol showed that disulfide bond was crucial for DATS to work. CONCLUSION DATS prevents obesity by regulating the transcriptional activation function of KLF15 on PPARγ. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yanzhou Hu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Jia Xu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Ruxin Gao
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Ye Xu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Bingxin Huangfu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Charles Asakiya
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Xianghui Huang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Feng Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, 100083, P. R. China
| | - Xiaoyun He
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, 100083, P. R. China
| | - Yunbo Luo
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, 100083, P. R. China
| |
Collapse
|
9
|
Coccini T, Spinillo A, Roccio M, Lenta E, Valsecchi C, De Simone U. Human Umbilical Cord Mesenchymal Stem Cell-Based in vitro Model for Neurotoxicity Testing. Curr Protoc 2022; 2:e423. [PMID: 35471597 DOI: 10.1002/cpz1.423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Neurotoxicity (NT) testing for regulatory purposes is based on in vivo animal testing. There is general consensus, however, about the need for the development of alternative methodologies to allow researchers to more rapidly and cost effectively screen large numbers of chemicals for their potential to cause NT, or to investigate their mode of action. In vitro assays are considered an important source of information for making regulatory decisions, and human cell-based systems are recommended as one of the most relevant models in toxicity testing, to reduce uncertainty in the extrapolation of results from animal-based models. Human neuronal models range from various neuroblastoma cell lines to stem cell-derived systems, including those derived from mesenchymal stem/stromal cells (hMSC). hMSCs exhibit numerous advantages, including the fact that they can be obtained in high yield from healthy human adult tissues, can be cultured with a minimal laboratory setup and without genetic manipulations, are able of continuous and repeated self-renewal, are nontumorigenic, and can form large populations of stably differentiated cells representative of different tissues, including neuronal cells. hMSCs derived from human umbilical cord (hUC) in particular possess several prominent advantages, including a painless, non-invasive, and ethically acceptable collection procedure, simple and convenient preparation, and high proliferation capacity. In addition, hMSCs can be efficiently differentiated into neuron-like cells (hNLCs), which can then be used for the assessment of neuronal toxicity of potential neurotoxic compounds in humans. Here, we describe a step-by-step procedure to use hMSCs from the umbilical cord for in vitro neurotoxicity testing. First, we describe how to isolate, amplify, and store hMSCs derived from the umbilical cord. We then outline the steps to transdifferentiate these cells into hNLCs, and then use the hNLCs for neurotoxicity testing by employing multiple common cytotoxicity assays after treatment with test compounds. The approach follows the most updated guidance on using human cell-based systems. These protocols will allow investigators to implement an alternative system for obtaining primary NLCs of human origin, and support advancement in neurotoxicity research. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Isolation and maintenance of human mesenchymal stem/stromal cells (hMSCs) obtained from the umbilical cord lining membrane Basic Protocol 2: Transdifferentiation of hMSCs into neuron-like cells (hNLCs) and basic neurotoxicity assessment.
Collapse
Affiliation(s)
- Teresa Coccini
- Laboratory of Clinical and Experimental Toxicology, and Pavia Poison Centre-National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Arsenio Spinillo
- Department of Obstetrics and Gynecology, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Marianna Roccio
- Department of Obstetrics and Gynecology, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Elisa Lenta
- Immunology and Transplantation Laboratory, Pediatric Hematology Oncology Unit, Cell Factory, Department of Maternal and Children's Health, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Chiara Valsecchi
- Immunology and Transplantation Laboratory, Pediatric Hematology Oncology Unit, Cell Factory, Department of Maternal and Children's Health, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Uliana De Simone
- Laboratory of Clinical and Experimental Toxicology, and Pavia Poison Centre-National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| |
Collapse
|
10
|
WNK1-TAK1 signaling suppresses lipopolysaccharide-induced cytokine production and classical activation in macrophages. Biochem Biophys Res Commun 2020; 533:1290-1297. [PMID: 33046244 DOI: 10.1016/j.bbrc.2020.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 10/05/2020] [Indexed: 12/17/2022]
Abstract
With-no-lysine kinase (WNK) plays important roles in regulating electrolyte homeostasis, cell signaling, survival, and proliferation. It has been recently demonstrated that WNK1, a member of the WNK family, modifies the function of immune cells. Here we report that in macrophages, WNK1 has suppressive effects on lipopolysaccharide (LPS)-induced inflammatory responses via TGFβ-activated kinase 1 (TAK1)-mediated activation of nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathway. We found that WNK1 heterozygous (WNK1+/-) mice produced excessive proinflammatory cytokines in an experimental LPS-induced sepsis model, and peritoneal macrophages isolated from WNK1+/- mice produced higher levels of LPS-induced cytokines and NOS2 expression as canonical proinflammatory M1 macrophage markers. We confirmed that small hairpin RNA (shRNA)-mediated knockdown of WNK1 activated LPS-induced cytokine production and NOS2 expression in RAW 264.7 macrophages. Moreover, we demonstrated that WNK1 knockdown increased the nuclear translocation of NF-κB and activated the p38 and Jun N-terminal kinase (JNK) MAPK signaling pathway and that a TAK1 inhibitor diminished these effects of WNK1 knockdown. These results suggest that WNK1 acts as a physiologic immune modulator via interactions with TAK1. WNK1 may be a therapeutic target against the cytokine storm caused by sepsis.
Collapse
|
11
|
Furusho T, Uchida S, Sohara E. The WNK signaling pathway and salt-sensitive hypertension. Hypertens Res 2020; 43:733-743. [PMID: 32286498 DOI: 10.1038/s41440-020-0437-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 12/19/2022]
Abstract
The distal nephron of the kidney has a central role in sodium and fluid homeostasis, and disruption of this homeostasis due to mutations of with-no-lysine kinase 1 (WNK1), WNK4, Kelch-like 3 (KLHL3), or Cullin 3 (CUL3) causes pseudohypoaldosteronism type II (PHAII), an inherited hypertensive disease. WNK1 and WNK4 activate the NaCl cotransporter (NCC) at the distal convoluted tubule through oxidative stress-responsive gene 1 (OSR1)/Ste20-related proline-alanine-rich kinase (SPAK), constituting the WNK-OSR1/SPAK-NCC phosphorylation cascade. The level of WNK protein is regulated through degradation by the CUL3-KLHL3 E3 ligase complex. In the normal state, the activity of WNK signaling in the kidney is physiologically regulated by sodium intake to maintain sodium homeostasis in the body. In patients with PHAII, however, because of the defective degradation of WNK kinases, NCC is constitutively active and not properly suppressed by a high salt diet, leading to abnormally increased salt reabsorption and salt-sensitive hypertension. Importantly, recent studies have demonstrated that potassium intake, insulin, and TNFα are also physiological regulators of WNK signaling, suggesting that they contribute to the salt-sensitive hypertension associated with a low potassium diet, metabolic syndrome, and chronic kidney disease, respectively. Moreover, emerging evidence suggests that WNK signaling also has some unique roles in metabolic, cardiovascular, and immunological organs. Here, we review the recent literature and discuss the molecular mechanisms of the WNK signaling pathway and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Taisuke Furusho
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinichi Uchida
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Eisei Sohara
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
12
|
WNK1 regulates skeletal muscle cell hypertrophy by modulating the nuclear localization and transcriptional activity of FOXO4. Sci Rep 2018; 8:9101. [PMID: 29904119 PMCID: PMC6002401 DOI: 10.1038/s41598-018-27414-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 05/31/2018] [Indexed: 01/10/2023] Open
Abstract
With-no-lysine (K) (WNK) kinases, which are mutated in the inherited form of hypertension pseudohypoaldosteronism type II, are essential regulators of membrane ion transporters. Here, we report that WNK1 positively regulates skeletal muscle cell hypertrophy via mediating the function of the pro-longevity transcription factor forkhead box protein O4 (FOXO4) independent of the conventional WNK signaling pathway linking SPS/STE20-related proline-alanine–rich kinase (SPAK)/oxidative stress response kinase 1 (OSR1) to downstream effector ion transporters. Small interfering RNA (siRNA)-mediated silencing of WNK1, but not SPAK/OSR1 kinases, induced myotube atrophy and remarkable increases in the mRNA expression of the muscle atrophy ubiquitin ligases MAFbx and MuRF1 in C2C12 mouse skeletal muscle cells. WNK1 silencing also increased FOXO4 nuclear localization, and co-transfection of Foxo4-targeted siRNA completely reversed the myotube atrophy and upregulation of atrogene transcription induced by WNK1 silencing. We further illustrated that WNK1 protein abundance in skeletal muscle was increased by chronic voluntary wheel running exercise (hypertrophic stimulus) and markedly decreased by adenine-induced chronic kidney disease (atrophic stimulus) in mice. These findings suggest that WNK1 is involved in the physiological regulation of mammalian skeletal muscle hypertrophy and atrophy via interactions with FOXO4. The WNK1-FOXO4 axis may be a potential therapeutic target in human diseases causing sarcopenia.
Collapse
|
13
|
Tan Z, Niu B, Tsang KY, Melhado IG, Ohba S, He X, Huang Y, Wang C, McMahon AP, Jauch R, Chan D, Zhang MQ, Cheah KSE. Synergistic co-regulation and competition by a SOX9-GLI-FOXA phasic transcriptional network coordinate chondrocyte differentiation transitions. PLoS Genet 2018; 14:e1007346. [PMID: 29659575 PMCID: PMC5919691 DOI: 10.1371/journal.pgen.1007346] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 04/26/2018] [Accepted: 03/29/2018] [Indexed: 11/18/2022] Open
Abstract
The growth plate mediates bone growth where SOX9 and GLI factors control chondrocyte proliferation, differentiation and entry into hypertrophy. FOXA factors regulate hypertrophic chondrocyte maturation. How these factors integrate into a Gene Regulatory Network (GRN) controlling these differentiation transitions is incompletely understood. We adopted a genome-wide whole tissue approach to establish a Growth Plate Differential Gene Expression Library (GP-DGEL) for fractionated proliferating, pre-hypertrophic, early and late hypertrophic chondrocytes, as an overarching resource for discovery of pathways and disease candidates. De novo motif discovery revealed the enrichment of SOX9 and GLI binding sites in the genes preferentially expressed in proliferating and prehypertrophic chondrocytes, suggesting the potential cooperation between SOX9 and GLI proteins. We integrated the analyses of the transcriptome, SOX9, GLI1 and GLI3 ChIP-seq datasets, with functional validation by transactivation assays and mouse mutants. We identified new SOX9 targets and showed SOX9-GLI directly and cooperatively regulate many genes such as Trps1, Sox9, Sox5, Sox6, Col2a1, Ptch1, Gli1 and Gli2. Further, FOXA2 competes with SOX9 for the transactivation of target genes. The data support a model of SOX9-GLI-FOXA phasic GRN in chondrocyte development. Together, SOX9-GLI auto-regulate and cooperate to activate and repress genes in proliferating chondrocytes. Upon hypertrophy, FOXA competes with SOX9, and control toward terminal differentiation passes to FOXA, RUNX, AP1 and MEF2 factors. In the development of the mammalian growth plate, while several transcription factors are individually well known for their key roles in regulating phases of chondrocyte differentiation, there is little information on how they interact and cooperate with each other. We took an unbiased genome wide approach to identify the transcription factors and signaling pathways that play dominant roles in the chondrocyte differentiation cascade. We developed a searchable library of differentially expressed genes, GP-DGEL, which has fine spatial resolution and global transcriptomic coverage for discovery of processes, pathways and disease candidates. Our work identifies a novel regulatory mechanism that integrates the action of three transcription factors, SOX9, GLI and FOXA. SOX9-GLI auto-regulate and cooperate to activate and repress genes in proliferating chondrocytes. Upon entry into prehypertrophy, FOXA competes with SOX9, and control of hypertrophy passes to FOXA, RUNX, AP1 and MEF2 factors.
Collapse
Affiliation(s)
- Zhijia Tan
- School of Biomedical Sciences, LKS Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong
| | - Ben Niu
- School of Biomedical Sciences, LKS Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong
| | - Kwok Yeung Tsang
- School of Biomedical Sciences, LKS Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong
| | - Ian G. Melhado
- School of Biomedical Sciences, LKS Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong
| | - Shinsuke Ohba
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
| | - Xinjun He
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
| | - Yongheng Huang
- Genome Regulation Laboratory, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | - Cheng Wang
- School of Biomedical Sciences, LKS Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong
| | - Andrew P. McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
| | - Ralf Jauch
- Genome Regulation Laboratory, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | - Danny Chan
- School of Biomedical Sciences, LKS Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong
| | - Michael Q. Zhang
- Department of Biological Sciences, Center for Systems Biology, The University of Texas at Dallas, Dallas, Texas, United States of America
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, TNLIST, Tsinghua University, Beijing, China
| | - Kathryn S. E. Cheah
- School of Biomedical Sciences, LKS Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong
- * E-mail:
| |
Collapse
|
14
|
Li H, Ouyang XP, Jiang T, Zheng XL, He PP, Zhao GJ. MicroRNA-296: a promising target in the pathogenesis of atherosclerosis? Mol Med 2018; 24:12. [PMID: 30134788 PMCID: PMC6016874 DOI: 10.1186/s10020-018-0012-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/06/2018] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis has been recognized as an inflammatory disease involving the vascular wall. MicroRNAs are a group of small noncoding RNAs to regulate gene expression at the transcriptional level through mRNA degradation or translation repression. Recent studies suggest that miR-296 may play crucial roles in the regulation of angiogenesis, inflammatory response, cholesterol metabolism, hypertension, cellular proliferation and apoptosis. In this review, we primarily discussed the molecular targets of miR-296 involved in the development of atherosclerosis, which may provide a basis for future investigation and a better understanding of the biological functions of miR-296 in atherosclerosis.
Collapse
Affiliation(s)
- Heng Li
- The Clinic Medical College, Guilin Medical University, No. 1 Zhiyuan Road, Guilin, Guangxi, 541100, China
| | - Xin-Ping Ouyang
- Hunan Province Cooperative innovation Center for Molecular Target New Drug Study, 28 West Changsheng Road, Hengyang, Hunan, 421001, China.,Department of Physiology, The Neuroscience Institute, Medical College, University of South China, Hengyang, Hunan, 421001, China
| | - Ting Jiang
- Department of Practice educational, Office of Academic Affairs, Guilin Medical University, Guilin, 541100, China
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, The Libin Cardiovascular Institute of Alberta, The University of Calgary, Health Sciences Center, 3330 Hospital Dr. NW, Calgary, AB, T2N 4N1, Canada.,Key Laboratory of Molecular Targets & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Ping-Ping He
- Hunan Province Cooperative innovation Center for Molecular Target New Drug Study, 28 West Changsheng Road, Hengyang, Hunan, 421001, China. .,Nursing School, University of South China, Hengyang, Hunan, 421001, China.
| | - Guo-Jun Zhao
- Department of Biochemistry and Molecular Biology, The Libin Cardiovascular Institute of Alberta, The University of Calgary, Health Sciences Center, 3330 Hospital Dr. NW, Calgary, AB, T2N 4N1, Canada. .,Department of Histology and Embryology, Guilin Medical University, Guilin, Guangxi, 541004, China.
| |
Collapse
|
15
|
Torre-Villalvazo I, Cervantes-Pérez LG, Noriega LG, Jiménez JV, Uribe N, Chávez-Canales M, Tovar-Palacio C, Marfil-Garza BA, Torres N, Bobadilla NA, Tovar AR, Gamba G. Inactivation of SPAK kinase reduces body weight gain in mice fed a high-fat diet by improving energy expenditure and insulin sensitivity. Am J Physiol Endocrinol Metab 2018; 314:E53-E65. [PMID: 29066461 DOI: 10.1152/ajpendo.00108.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The STE20/SPS1-related proline-alanine-rich protein kinase (SPAK) controls the activity of the electroneutral cation-chloride cotransporters (SLC12 family) and thus physiological processes such as modulation of cell volume, intracellular chloride concentration [Cl-]i, and transepithelial salt transport. Modulation of SPAK kinase activity may have an impact on hypertension and obesity, as STK39, the gene encoding SPAK, has been suggested as a hypertension and obesity susceptibility gene. In fact, the absence of SPAK activity in mice in which the activating threonine in the T loop was substituted by alanine (SPAK-KI mice) is associated with decreased blood pressure; however its consequences in metabolism have not been explored. Here, we fed wild-type and homozygous SPAK-KI mice a high-fat diet for 17 wk to evaluate weight gain, circulating substrates and hormones, energy expenditure, glucose tolerance, and insulin sensitivity. SPAK-KI mice exhibit resistance to HFD-induced obesity and hepatic steatosis associated with increased energy expenditure, higher thermogenic activity in brown adipose tissue, increased mitochondrial activity in skeletal muscle, and reduced white adipose tissue hypertrophy mediated by augmented whole body insulin sensitivity and glucose tolerance. Our data reveal a previously unrecognized role for the SPAK kinase in the regulation of energy balance, thermogenesis, and insulin sensitivity, suggesting that this kinase could be a new drug target for the treatment of obesity and the metabolic syndrome.
Collapse
Affiliation(s)
- Ivan Torre-Villalvazo
- Department of Nutrition Physiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán , Mexico City, Mexico
| | | | - Lilia G Noriega
- Department of Nutrition Physiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán , Mexico City, Mexico
| | - Jose V Jiménez
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán , Mexico City, Mexico
| | - Norma Uribe
- Department of Pathology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán , México City, Mexico
| | - María Chávez-Canales
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México , Mexico City, Mexico
| | - Claudia Tovar-Palacio
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán , Mexico City, Mexico
| | - Braulio A Marfil-Garza
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán , Mexico City, Mexico
| | - Nimbe Torres
- Department of Nutrition Physiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán , Mexico City, Mexico
| | - Norma A Bobadilla
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán , Mexico City, Mexico
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México , Mexico City, Mexico
| | - Armando R Tovar
- Department of Nutrition Physiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán , Mexico City, Mexico
| | - Gerardo Gamba
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán , Mexico City, Mexico
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México , Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y de Ciencias de la Salud, Monterrey, Mexico
| |
Collapse
|
16
|
Qin L, Zhao Y, Zhang B, Li Y. Amentoflavone improves cardiovascular dysfunction and metabolic abnormalities in high fructose and fat diet-fed rats. Food Funct 2018; 9:243-252. [PMID: 29168869 DOI: 10.1039/c7fo01095h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metabolic syndrome (MS) is a leading cause of mortality and morbidity in Western countries.
Collapse
Affiliation(s)
- Li Qin
- Cardiovascular Medicine Ward 2
- Zhengzhou Central Hospital Affiliated to Zhengzhou University (Zhengzhou Central Hospital)
- Zhengzhou 450000
- China
| | - Ying Zhao
- Cardiovascular Medicine Ward 5
- The First Affiliated Hospital of Zhengzhou University
- Zhengzhou 450000
- China
| | - Bin Zhang
- The clinical Laboratory
- The First Affiliated Hospital of Xinxiang Medical University
- Weihui 453100
- China
| | - Yan Li
- Cardiovascular Medicine Ward 2
- Zhengzhou Central Hospital Affiliated to Zhengzhou University (Zhengzhou Central Hospital)
- Zhengzhou 450000
- China
| |
Collapse
|