1
|
Deligeorgakis D, Skouvaklidou E, Adamichou C. Interferon Inhibition in SLE: From Bench to Bedside. Mediterr J Rheumatol 2024; 35:354-364. [PMID: 39193183 PMCID: PMC11345605 DOI: 10.31138/mjr.010324.iis] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/15/2024] [Accepted: 05/15/2024] [Indexed: 08/29/2024] Open
Abstract
Despite advances in the management of systemic lupus erythematosus (SLE), it remains a chronic disease with frequent flares, requiring constant medical care, laboratory exams, hospitalisations, and the use of immunosuppressive drugs and corticosteroids, increasing the morbidity and mortality of these patients. The past decade of research has brought to light multiple observations on the role of interferons (IFNs) in the pathogenesis of SLE, which paved the way for the development of potential novel therapies targeting the interferon pathway. Following two phase III trials, anifrolumab, a monoclonal antibody which binds to the type I IFN receptor, blocking the activity of type I IFNs, was approved for active SLE. This review summarises the latest research on the role and mechanisms of type I IFNs in SLE and the development and advances on new therapeutic drugs based on IFN inhibition for SLE.
Collapse
Affiliation(s)
- Dimitrios Deligeorgakis
- Department of Rheumatology, 4th Department of Internal Medicine, Hippokration Hospital, Thessaloniki, Greece
| | - Elpida Skouvaklidou
- Department of Rheumatology, 4th Department of Internal Medicine, Hippokration Hospital, Thessaloniki, Greece
| | - Christina Adamichou
- Department of Rheumatology, 4th Department of Internal Medicine, Hippokration Hospital, Thessaloniki, Greece
| |
Collapse
|
2
|
Kell DB, Lip GYH, Pretorius E. Fibrinaloid Microclots and Atrial Fibrillation. Biomedicines 2024; 12:891. [PMID: 38672245 PMCID: PMC11048249 DOI: 10.3390/biomedicines12040891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/27/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Atrial fibrillation (AF) is a comorbidity of a variety of other chronic, inflammatory diseases for which fibrinaloid microclots are a known accompaniment (and in some cases, a cause, with a mechanistic basis). Clots are, of course, a well-known consequence of atrial fibrillation. We here ask the question whether the fibrinaloid microclots seen in plasma or serum may in fact also be a cause of (or contributor to) the development of AF. We consider known 'risk factors' for AF, and in particular, exogenous stimuli such as infection and air pollution by particulates, both of which are known to cause AF. The external accompaniments of both bacterial (lipopolysaccharide and lipoteichoic acids) and viral (SARS-CoV-2 spike protein) infections are known to stimulate fibrinaloid microclots when added in vitro, and fibrinaloid microclots, as with other amyloid proteins, can be cytotoxic, both by inducing hypoxia/reperfusion and by other means. Strokes and thromboembolisms are also common consequences of AF. Consequently, taking a systems approach, we review the considerable evidence in detail, which leads us to suggest that it is likely that microclots may well have an aetiological role in the development of AF. This has significant mechanistic and therapeutic implications.
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads, Building 220, 2800 Kongens Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa
| | - Gregory Y. H. Lip
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart and Chest Hospital, Liverpool L7 8TX, UK;
- Danish Center for Health Services Research, Department of Clinical Medicine, Aalborg University, 9220 Aalborg, Denmark
| | - Etheresia Pretorius
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa
| |
Collapse
|
3
|
Tesser A, Valencic E, Boz V, Tornese G, Pastore S, Zanatta M, Tommasini A. Rheumatological complaints in H syndrome: from inflammatory profiling to target treatment in a case study. Pediatr Rheumatol Online J 2024; 22:21. [PMID: 38263041 PMCID: PMC10807099 DOI: 10.1186/s12969-023-00950-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/21/2023] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND H Syndrome is a rare genetic condition caused by biallelic pathogenic variants in the SLC29A3 gene. It is characterized by a wide range of clinical manifestations, many of which are related to the immune-rheumatological field. These include scleroderma-like skin changes, deforming arthritis, and enlarged lymph nodes. The condition also features cardiac and endocrine defects, as well as hearing loss, for which the immune pathogenesis appears less clear. Immunomodulatory medications have been shown to improve many symptoms in recent experiences. CASE PRESENTATION A 21-year-old girl was referred to our institute after being diagnosed with H syndrome. Her medical history was characterized by the development of finger and toe deformities, which developed since the first years of life and progressively worsened with clinodactyly. At 6 years of age, she was diagnosed with diabetes mellitus without typical autoantibodies and with bilateral sensorineural hearing loss. She also complained of frequent episodes of lymphadenopathy, sometimes with colliquation and growth retardation due to pancreatic insufficiency. It wasn't until the genetic diagnosis of H syndrome that the continual increase in acute phase reactants was noticed, suggesting that an immunological pathogenesis may be the source of her problems. During her visit to our institute, she reported serious pain in both feet and hands and difficulty walking due to knee arthritis and muscle contractures. Conventional therapy with steroid injection in affected joints and methotrexate only led to partial improvement. After a thorough assessment of her inflammatory profile showing a high interferon score, the girl received treatment with baricitinib. Furthermore, based on recent data showing that SLC29A3 deficiency results in interferon production because of Toll-like Receptor 7 activation in lysosomes, hydroxychloroquine was also added. The combination of the two drugs resulted for the first time in a rapid and persistent normalization of inflammatory markers, paralleled by a dramatic improvement in symptoms. CONCLUSIONS We describe the results of inhibiting IFN inflammation in H syndrome and discuss how JAK inhibitors and antimalarials might represent a mechanistically based treatment for this orphan drug disorder.
Collapse
Affiliation(s)
- Alessandra Tesser
- Department of Pediatrics, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, via dell'Istria 65/1, Trieste, 34137, Italy
| | - Erica Valencic
- Department of Pediatrics, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, via dell'Istria 65/1, Trieste, 34137, Italy.
| | - Valentina Boz
- Department of Pediatrics, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, via dell'Istria 65/1, Trieste, 34137, Italy
| | - Gianluca Tornese
- Department of Pediatrics, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, via dell'Istria 65/1, Trieste, 34137, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume, 447, Trieste, 34149, Italy
| | - Serena Pastore
- Department of Pediatrics, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, via dell'Istria 65/1, Trieste, 34137, Italy
| | - Manuela Zanatta
- Centro di Coordinamento Regionale Malattie Rare ASUFC, Piazzale Santa Maria della Misericordia, Udine, 33100, Italy
| | - Alberto Tommasini
- Department of Pediatrics, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, via dell'Istria 65/1, Trieste, 34137, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume, 447, Trieste, 34149, Italy
| |
Collapse
|
4
|
Sun F, Yang CL, Wang FX, Rong SJ, Luo JH, Lu WY, Yue TT, Wang CY, Liu SW. Pancreatic draining lymph nodes (PLNs) serve as a pathogenic hub contributing to the development of type 1 diabetes. Cell Biosci 2023; 13:156. [PMID: 37641145 PMCID: PMC10464122 DOI: 10.1186/s13578-023-01110-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023] Open
Abstract
Type 1 diabetes (T1D) is a chronic, progressive autoinflammatory disorder resulting from the breakdown of self-tolerance and unrestrained β cell-reactive immune response. Activation of immune cells is initiated in islet and amplified in lymphoid tissues, especially those pancreatic draining lymph nodes (PLNs). The knowledge of PLNs as the hub of aberrant immune response is continuously being replenished and renewed. Here we provide a PLN-centered view of T1D pathogenesis and emphasize that PLNs integrate signal inputs from the pancreas, gut, viral infection or peripheral circulation, undergo immune remodeling within the local microenvironment and export effector cell components into pancreas to affect T1D progression. In accordance, we suggest that T1D intervention can be implemented by three major ways: cutting off the signal inputs into PLNs (reduce inflammatory β cell damage, enhance gut integrity and control pathogenic viral infections), modulating the immune activation status of PLNs and blocking the outputs of PLNs towards pancreatic islets. Given the dynamic and complex nature of T1D etiology, the corresponding intervention strategy is thus required to be comprehensive to ensure optimal therapeutic efficacy.
Collapse
Affiliation(s)
- Fei Sun
- Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun-Liang Yang
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fa-Xi Wang
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shan-Jie Rong
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Hui Luo
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wan-Ying Lu
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tian-Tian Yue
- Devision of Nutrition, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cong-Yi Wang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China.
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Shi-Wei Liu
- Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
5
|
Mancuso G, Bechi Genzano C, Fierabracci A, Fousteri G. Type 1 diabetes and inborn errors of immunity: Complete strangers or 2 sides of the same coin? J Allergy Clin Immunol 2023:S0091-6749(23)00427-X. [PMID: 37097271 DOI: 10.1016/j.jaci.2023.03.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/26/2023]
Abstract
Type 1 diabetes (T1D) is a polygenic disease and does not follow a mendelian pattern. Inborn errors of immunity (IEIs), on the other hand, are caused by damaging germline variants, suggesting that T1D and IEIs have nothing in common. Some IEIs, resulting from mutations in genes regulating regulatory T-cell homeostasis, are associated with elevated incidence of T1D. The genetic spectrum of IEIs is gradually being unraveled; consequently, molecular pathways underlying human monogenic autoimmunity are being identified. There is an appreciable overlap between some of these pathways and the genetic variants that determine T1D susceptibility, suggesting that after all, IEI and T1D are 2 sides of the same coin. The study of monogenic IEIs with a variable incidence of T1D has the potential to provide crucial insights into the mechanisms leading to T1D. These insights contribute to the definition of T1D endotypes and explain disease heterogeneity. In this review, we discuss the interconnected pathogenic pathways of autoimmunity, β-cell function, and primary immunodeficiency. We also examine the role of environmental factors in disease penetrance as well as the circumstantial evidence of IEI drugs in preventing and curing T1D in individuals with IEIs, suggesting the repositioning of these drugs also for T1D therapy.
Collapse
Affiliation(s)
- Gaia Mancuso
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Camillo Bechi Genzano
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | | | - Georgia Fousteri
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy.
| |
Collapse
|
6
|
Li H, Ma Q, Ren J, Guo W, Feng K, Li Z, Huang T, Cai YD. Immune responses of different COVID-19 vaccination strategies by analyzing single-cell RNA sequencing data from multiple tissues using machine learning methods. Front Genet 2023; 14:1157305. [PMID: 37007947 PMCID: PMC10065150 DOI: 10.3389/fgene.2023.1157305] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/07/2023] [Indexed: 03/19/2023] Open
Abstract
Multiple types of COVID-19 vaccines have been shown to be highly effective in preventing SARS-CoV-2 infection and in reducing post-infection symptoms. Almost all of these vaccines induce systemic immune responses, but differences in immune responses induced by different vaccination regimens are evident. This study aimed to reveal the differences in immune gene expression levels of different target cells under different vaccine strategies after SARS-CoV-2 infection in hamsters. A machine learning based process was designed to analyze single-cell transcriptomic data of different cell types from the blood, lung, and nasal mucosa of hamsters infected with SARS-CoV-2, including B and T cells from the blood and nasal cavity, macrophages from the lung and nasal cavity, alveolar epithelial and lung endothelial cells. The cohort was divided into five groups: non-vaccinated (control), 2*adenovirus (two doses of adenovirus vaccine), 2*attenuated (two doses of attenuated virus vaccine), 2*mRNA (two doses of mRNA vaccine), and mRNA/attenuated (primed by mRNA vaccine, boosted by attenuated vaccine). All genes were ranked using five signature ranking methods (LASSO, LightGBM, Monte Carlo feature selection, mRMR, and permutation feature importance). Some key genes that contributed to the analysis of immune changes, such as RPS23, DDX5, PFN1 in immune cells, and IRF9 and MX1 in tissue cells, were screened. Afterward, the five feature sorting lists were fed into the feature incremental selection framework, which contained two classification algorithms (decision tree [DT] and random forest [RF]), to construct optimal classifiers and generate quantitative rules. Results showed that random forest classifiers could provide relative higher performance than decision tree classifiers, whereas the DT classifiers provided quantitative rules that indicated special gene expression levels under different vaccine strategies. These findings may help us to develop better protective vaccination programs and new vaccines.
Collapse
Affiliation(s)
- Hao Li
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Qinglan Ma
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Jingxin Ren
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Wei Guo
- Key Laboratory of Stem Cell Biology, Shanghai Institutes for Biological Sciences (SIBS), Shanghai Jiao Tong University School of Medicine (SJTUSM), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Kaiyan Feng
- Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou, China
| | - Zhandong Li
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
7
|
Buckner T, Johnson RK, Vanderlinden LA, Carry PM, Romero A, Onengut-Gumuscu S, Chen WM, Fiehn O, Frohnert BI, Crume T, Perng W, Kechris K, Rewers M, Norris JM. An Oxylipin-Related Nutrient Pattern and Risk of Type 1 Diabetes in the Diabetes Autoimmunity Study in the Young (DAISY). Nutrients 2023; 15:945. [PMID: 36839302 PMCID: PMC9962656 DOI: 10.3390/nu15040945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Oxylipins, pro-inflammatory and pro-resolving lipid mediators, are associated with the risk of type 1 diabetes (T1D) and may be influenced by diet. This study aimed to develop a nutrient pattern related to oxylipin profiles and test their associations with the risk of T1D among youth. The nutrient patterns were developed with a reduced rank regression in a nested case-control study (n = 335) within the Diabetes Autoimmunity Study in the Young (DAISY), a longitudinal cohort of children at risk of T1D. The oxylipin profiles (adjusted for genetic predictors) were the response variables. The nutrient patterns were tested in the case-control study (n = 69 T1D cases, 69 controls), then validated in the DAISY cohort using a joint Cox proportional hazards model (n = 1933, including 81 T1D cases). The first nutrient pattern (NP1) was characterized by low beta cryptoxanthin, flavanone, vitamin C, total sugars and iron, and high lycopene, anthocyanidins, linoleic acid and sodium. After adjusting for T1D family history, the HLA genotype, sex and race/ethnicity, NP1 was associated with a lower risk of T1D in the nested case-control study (OR: 0.44, p = 0.0126). NP1 was not associated with the risk of T1D (HR: 0.54, p-value = 0.1829) in the full DAISY cohort. Future studies are needed to confirm the nested case-control findings and investigate the modifiable factors for oxylipins.
Collapse
Affiliation(s)
- Teresa Buckner
- Department of Epidemiology, Colorado School of Public Health, CU Anschutz, Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Kinesiology, Nutrition, and Dietetics, University of Northern Colorado, Greeley, CO 80639, USA
| | - Randi K. Johnson
- Department of Epidemiology, Colorado School of Public Health, CU Anschutz, Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Biomedical Informatics, CU School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Lauren A. Vanderlinden
- Department of Epidemiology, Colorado School of Public Health, CU Anschutz, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Patrick M. Carry
- Department of Epidemiology, Colorado School of Public Health, CU Anschutz, Anschutz Medical Campus, Aurora, CO 80045, USA
- Colorado Program for Musculoskeletal Research, Department of Orthopedics, CU School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Alex Romero
- Department of Biomedical Informatics, CU School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Suna Onengut-Gumuscu
- Health Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22903, USA
| | - Wei-Min Chen
- Health Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22903, USA
| | - Oliver Fiehn
- NIH-West Coast Metabolomics Center, University of California-Davis, Davis, CA 95616, USA
| | - Brigitte I. Frohnert
- Department of Epidemiology, Colorado School of Public Health, CU Anschutz, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Tessa Crume
- Department of Epidemiology, Colorado School of Public Health, CU Anschutz, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Wei Perng
- Department of Epidemiology, Colorado School of Public Health, CU Anschutz, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Katerina Kechris
- Department of Epidemiology, Colorado School of Public Health, CU Anschutz, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Marian Rewers
- Department of Epidemiology, Colorado School of Public Health, CU Anschutz, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jill M. Norris
- Department of Epidemiology, Colorado School of Public Health, CU Anschutz, Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
8
|
Dhayal S, Leslie KA, Baity M, Akhbari P, Richardson SJ, Russell MA, Morgan NG. Temporal regulation of interferon signalling in human EndoC-βH1 cells. J Mol Endocrinol 2022; 69:299-313. [PMID: 35521765 PMCID: PMC9175560 DOI: 10.1530/jme-21-0224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/19/2022] [Indexed: 11/29/2022]
Abstract
During the development of type 1 diabetes, interferons (IFN) are elaborated from islet-infiltrating immune cells and/or from virally infected β-cells. They act via specific receptors to increase, acutely, the phosphorylation of the transcription factors STAT1 and 2. However, the longer-term impacts of chronic IFN stimulation are poorly understood and were investigated in the current study. Human EndoC-βH1 cells were treated with IFNα, IFNγ or IFNλ either acutely (<2 h) or chronically (≥24 h) and STAT phosphorylation, expression and activity were assessed by Western blotting and transcriptional reporter assays. Exposure of β-cells to IFNα or IFNλ induced a swift increase in the phosphorylation of both STAT1 and STAT2, whereas IFNγ increased only pSTAT1. Over more extended periods (≥24 h), STAT phosphorylation declined but STAT1 and STAT2 expression were enhanced in a sustained manner. All IFNs stimulated ISRE transcriptional activity (but with different time courses), whereas GAS activity was responsive only to IFNγ. The re-addition of a second bolus of IFNα, 24 h after an initial dose, failed to cause renewed STAT1/2 phosphorylation. By contrast, when IFNγ was added 24 h after exposure to IFNα, rapid STAT1 phosphorylation was re-initiated. Exposure of β-cells to IFNs leads to rapid, transient, STAT phosphorylation and to slower and more sustained increases in total STAT1/2 levels. The initial phosphorylation response is accompanied by marked desensitisation to the cognate agonist. Together, the results reveal that the response of β-cells to IFNs is regulated both temporally and quantitatively to achieve effective signal integration.
Collapse
Affiliation(s)
- Shalinee Dhayal
- Islet Biology Group (IBEx), Exeter Centre of Excellence in Diabetes (EXCEED), Institute of Biomedical & Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Kaiyven Afi Leslie
- Islet Biology Group (IBEx), Exeter Centre of Excellence in Diabetes (EXCEED), Institute of Biomedical & Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Mohammad Baity
- Islet Biology Group (IBEx), Exeter Centre of Excellence in Diabetes (EXCEED), Institute of Biomedical & Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Pouria Akhbari
- Islet Biology Group (IBEx), Exeter Centre of Excellence in Diabetes (EXCEED), Institute of Biomedical & Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Sarah J Richardson
- Islet Biology Group (IBEx), Exeter Centre of Excellence in Diabetes (EXCEED), Institute of Biomedical & Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Mark A Russell
- Islet Biology Group (IBEx), Exeter Centre of Excellence in Diabetes (EXCEED), Institute of Biomedical & Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Noel G Morgan
- Islet Biology Group (IBEx), Exeter Centre of Excellence in Diabetes (EXCEED), Institute of Biomedical & Clinical Science, University of Exeter Medical School, Exeter, UK
| |
Collapse
|
9
|
Pathak E, Mishra R. Deciphering the link between Diabetes mellitus and SARS-CoV-2 infection through differential targeting of microRNAs in the human pancreas. J Endocrinol Invest 2022; 45:537-550. [PMID: 34669152 PMCID: PMC8527307 DOI: 10.1007/s40618-021-01693-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/10/2021] [Indexed: 01/08/2023]
Abstract
PURPOSE Coronavirus Disease 2019 (COVID-19) severity and Diabetes mellitus affect each other bidirectionally. However, the cause of severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) infection on the incidence of diabetes is unclear. In the SARS-CoV-2-infected cells, host microRNAs (miRNAs) may target the native gene transcripts as well as the viral genomic and subgenomic RNAs. Here, we investigated the role of miRNAs in linking Diabetes to SARS-CoV-2 infection in the human pancreas. METHODS Differential gene expression and disease enrichment analyses were performed on an RNA-Seq dataset of human embryonic stem cell-derived (hESC) mock-infected and SARS-CoV-2-infected pancreatic organoids to obtain the dysregulated Diabetes-associated genes. The miRNA target prediction for the Diabetes-associated gene transcripts and the SARS-CoV-2 RNAs has been made to determine the common miRNAs targeting them. Minimum Free Energy (MFE) analysis was done to identify the miRNAs, preferably targeting SARS-CoV-2 RNAs over the Diabetes-associated gene transcripts. RESULTS The gene expression and disease enrichment analyses of the RNA-Seq data have revealed five biomarker genes, i.e., CP, SOCS3, AGT, PSMB8 and CFB that are associated with Diabetes and get significantly upregulated in the pancreas following SARS-CoV-2-infection. Four miRNAs, i.e., hsa-miR-298, hsa-miR-3925-5p, hsa-miR-4691-3p and hsa-miR-5196-5p, showed preferential targeting of the SARS-CoV-2 genome over the cell's Diabetes-associated messenger RNAs (mRNAs) in the human pancreas. CONCLUSION Our study proposes that the differential targeting of the Diabetes-associated host genes by the miRNAs may lead to diabetic complications or new-onset Diabetes that can worsen the condition of COVID-19 patients.
Collapse
Affiliation(s)
| | - R Mishra
- Bioinformatics, MMV, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
10
|
MBD2 acts as a repressor to maintain the homeostasis of the Th1 program in type 1 diabetes by regulating the STAT1-IFN-γ axis. Cell Death Differ 2022; 29:218-229. [PMID: 34420035 PMCID: PMC8738722 DOI: 10.1038/s41418-021-00852-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 08/01/2021] [Accepted: 08/10/2021] [Indexed: 02/07/2023] Open
Abstract
The methyl-CpG-binding domain 2 (MBD2) interprets DNA methylome-encoded information through binding to the methylated CpG DNA, by which it regulates target gene expression at the transcriptional level. Although derailed DNA methylation has long been recognized to trigger or promote autoimmune responses in type 1 diabetes (T1D), the exact role of MBD2 in T1D pathogenesis, however, remains poorly defined. Herein, we generated an Mbd2 knockout model in the NOD background and found that Mbd2 deficiency exacerbated the development of spontaneous T1D in NOD mice. Adoptive transfer of Mbd2-/- CD4 T cells into NOD.scid mice further confirmed the observation. Mechanistically, Th1 stimulation rendered the Stat1 promoter to undergo a DNA methylation turnover featured by the changes of DNA methylation levels or patterns along with the induction of MBD2 expression, which then bound to the methylated CpG DNA within the Stat1 promoter, by which MBD2 maintains the homeostasis of Th1 program to prevent autoimmunity. As a result, ectopic MBD2 expression alleviated CD4 T cell diabetogenicity following their adoptive transfer into NOD.scid mice. Collectively, our data suggest that MBD2 could be a viable target to develop epigenetic-based therapeutics against T1D in clinical settings.
Collapse
|
11
|
Type I interferons as key players in pancreatic β-cell dysfunction in type 1 diabetes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 359:1-80. [PMID: 33832648 DOI: 10.1016/bs.ircmb.2021.02.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by pancreatic islet inflammation (insulitis) and specific pancreatic β-cell destruction by an immune attack. Although the precise underlying mechanisms leading to the autoimmune assault remain poorly understood, it is well accepted that insulitis takes place in the context of a conflicting dialogue between pancreatic β-cells and the immune cells. Moreover, both host genetic background (i.e., candidate genes) and environmental factors (e.g., viral infections) contribute to this inadequate dialogue. Accumulating evidence indicates that type I interferons (IFNs), cytokines that are crucial for both innate and adaptive immune responses, act as key links between environmental and genetic risk factors in the development of T1D. This chapter summarizes some relevant pathways involved in β-cell dysfunction and death, and briefly reviews how enteroviral infections and genetic susceptibility can impact insulitis. Moreover, we present the current evidence showing that, in β-cells, type I IFN signaling pathway activation leads to several outcomes, such as long-lasting major histocompatibility complex (MHC) class I hyperexpression, endoplasmic reticulum (ER) stress, epigenetic changes, and induction of posttranscriptional as well as posttranslational modifications. MHC class I overexpression, when combined with ER stress and posttranscriptional/posttranslational modifications, might lead to sustained neoantigen presentation to immune system and β-cell apoptosis. This knowledge supports the concept that type I IFNs are implicated in the early stages of T1D pathogenesis. Finally, we highlight the promising therapeutic avenues for T1D treatment directed at type I IFN signaling pathway.
Collapse
|
12
|
Akhbari P, Richardson SJ, Morgan NG. Type 1 Diabetes: Interferons and the Aftermath of Pancreatic Beta-Cell Enteroviral Infection. Microorganisms 2020; 8:microorganisms8091419. [PMID: 32942706 PMCID: PMC7565444 DOI: 10.3390/microorganisms8091419] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023] Open
Abstract
Enteroviruses (EVs) have long been implicated in the pathogenesis of type 1 diabetes (T1D), and accumulating evidence has associated virus-induced autoimmunity with the loss of pancreatic beta cells in T1D. Inflammatory cytokines including interferons (IFN) form a primary line of defence against viral infections, and their chronic elevation is a hallmark feature of many autoimmune diseases. IFNs play a key role in activating and regulating innate and adaptive immune responses, and to do so they modulate the expression of networks of genes and transcription factors known generically as IFN stimulated genes (ISGs). ISGs in turn modulate critical cellular processes ranging from cellular metabolism and growth regulation to endoplasmic reticulum (ER) stress and apoptosis. More recent studies have revealed that IFNs also modulate gene expression at an epigenetic as well as post-transcriptional and post-translational levels. As such, IFNs form a key link connecting the various genetic, environmental and immunological factors involved in the initiation and progression of T1D. Therefore, gaining an improved understanding of the mechanisms by which IFNs modulate beta cell function and survival is crucial in explaining the pathogenesis of virally-induced T1D. This should provide the means to prevent, decelerate or even reverse beta cell impairment.
Collapse
|
13
|
Genetic Susceptibility of the Host in Virus-Induced Diabetes. Microorganisms 2020; 8:microorganisms8081133. [PMID: 32727064 PMCID: PMC7464158 DOI: 10.3390/microorganisms8081133] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/07/2020] [Accepted: 07/24/2020] [Indexed: 12/13/2022] Open
Abstract
Enteroviruses, especially Coxsackie B viruses, are among the candidate environmental factors causative of type 1 diabetes. Host genetic factors have an impact on the development of virus-induced diabetes (VID). Host background, in terms of whether the host is prone to autoimmunity, should also be considered when analyzing the role of target genes in VID. In this review, we describe the genetic susceptibility of the host based on studies in humans and VID animal models. Understanding the host genetic factors should contribute not only to revealing the mechanisms of VID development, but also in taking measures to prevent VID.
Collapse
|
14
|
Abstract
PURPOSE OF THE REVIEW The aim of this review is to discuss recent data pointing at an involvement of human endogenous retroviruses (HERVs) in type 1 diabetes (T1D) onset and progression. RECENT FINDINGS The envelope protein of HERV-W family, named HERV-W-Env, was detected in pancreata from T1D patients and was shown to display pro-inflammatory properties and direct toxicity toward pancreatic beta cells. The etiopathogenesis of T1D remains elusive, even if conventional environmental viral infections have been recurrently involved. Nonetheless, a new category of pathogens may provide the missing link between genetic susceptibility and environmental factors long thought to contribute to T1D onset. A number of studies have now shown that HERV sequences, which are normally inactivated or repressed in the human genome, could be activated by environmental viruses. Thus, if similarly activated by viruses associated with T1D, disregarded HERV genes may underlie T1D genetic susceptibility. Moreover, once expressed, HERV elements may display broad pathogenic properties, which identify them as potential new therapeutic targets.
Collapse
Affiliation(s)
- Sandrine Levet
- GeNeuro Innovation, 60 avenue Rockefeller, 69008 Lyon, France
| | - B. Charvet
- GeNeuro Innovation, 60 avenue Rockefeller, 69008 Lyon, France
| | - A. Bertin
- Faculté de Médecine, CHU Lille, Laboratoire de Virologie EA3610, Université Lille, F-59000 Lille, France
| | - A. Deschaumes
- Faculté de Médecine, CHU Lille, Laboratoire de Virologie EA3610, Université Lille, F-59000 Lille, France
| | - H. Perron
- GeNeuro Innovation, 60 avenue Rockefeller, 69008 Lyon, France
- Laboratoire des déficits immunitaires, University of Lyon, Lyon, France
- Plan-les-Ouates, GeNeuro SA, Geneva, Switzerland
| | - D. Hober
- Faculté de Médecine, CHU Lille, Laboratoire de Virologie EA3610, Université Lille, F-59000 Lille, France
| |
Collapse
|
15
|
Neil JA, Cadwell K. The Intestinal Virome and Immunity. THE JOURNAL OF IMMUNOLOGY 2019; 201:1615-1624. [PMID: 30181300 DOI: 10.4049/jimmunol.1800631] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 05/21/2018] [Indexed: 12/12/2022]
Abstract
The composition of the human microbiome is considered a major source of interindividual variation in immunity and, by extension, susceptibility to diseases. Intestinal bacteria have been the major focus of research. However, diverse communities of viruses that infect microbes and the animal host cohabitate the gastrointestinal tract and collectively constitute the gut virome. Although viruses are typically investigated as pathogens, recent studies highlight a relationship between the host and animal viruses in the gut that is more akin to host-microbiome interactions and includes both beneficial and detrimental outcomes for the host. These viruses are likely sources of immune variation, both locally and extraintestinally. In this review, we describe the components of the gut virome, in particular mammalian viruses, and their ability to modulate host responses during homeostasis and disease.
Collapse
Affiliation(s)
- Jessica A Neil
- Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016; and Department of Microbiology, New York University School of Medicine, New York, NY 10016
| | - Ken Cadwell
- Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016; and Department of Microbiology, New York University School of Medicine, New York, NY 10016
| |
Collapse
|
16
|
He W, Wang B, Li Q, Yao Q, Jia X, Song R, Li S, Zhang JA. Aberrant Expressions of Co-stimulatory and Co-inhibitory Molecules in Autoimmune Diseases. Front Immunol 2019; 10:261. [PMID: 30842773 PMCID: PMC6391512 DOI: 10.3389/fimmu.2019.00261] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/29/2019] [Indexed: 12/26/2022] Open
Abstract
Co-signaling molecules include co-stimulatory and co-inhibitory molecules and play important roles in modulating immune responses. The roles of co-signaling molecules in autoimmune diseases have not been clearly defined. We assessed the expressions of co-stimulatory and co-inhibitory molecules in autoimmune diseases through a bioinformatics-based study. By using datasets of whole-genome transcriptome, the expressions of 54 co-stimulatory or co-inhibitory genes in common autoimmune diseases were analyzed using Robust rank aggregation (RRA) method. Nineteen array datasets and 6 RNA-seq datasets were included in the RRA discovery study and RRA validation study, respectively. Significant genes were further validated in several autoimmune diseases including Graves' disease (GD). RRA discovery study suggested that CD160 was the most significant gene aberrantly expressed in autoimmune diseases (Adjusted P = 5.9E-12), followed by CD58 (Adjusted P = 5.7E-06) and CD244 (Adjusted P = 9.5E-05). RRA validation study also identified CD160 as the most significant gene aberrantly expressed in autoimmune diseases (Adjusted P = 5.9E-09). We further found that the aberrant expression of CD160 was statistically significant in multiple autoimmune diseases including GD (P < 0.05), and CD160 had a moderate role in diagnosing those autoimmune diseases. Flow cytometry confirmed that CD160 was differentially expressed on the surface of CD8+ T cells between GD patients and healthy controls (P = 0.002), which proved the aberrant expression of CD160 in GD at the protein level. This study suggests that CD160 is the most significant co-signaling gene aberrantly expressed in autoimmune diseases. Treatment strategy targeting CD160-related pathway may be promising for the therapy of autoimmune diseases.
Collapse
Affiliation(s)
- Weiwei He
- Department of Endocrinology, Affiliated Hospital of Yanan Medical University, Yanan, China
| | - Bin Wang
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai, China
| | - Qian Li
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai, China
| | - Qiuming Yao
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai, China
| | - Xi Jia
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai, China
| | - Ronghua Song
- Department of Endocrinology and Rheumatology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Sheli Li
- Department of Endocrinology, Affiliated Hospital of Yanan Medical University, Yanan, China
| | - Jin-An Zhang
- Department of Endocrinology and Rheumatology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
17
|
Rogal J, Zbinden A, Schenke-Layland K, Loskill P. Stem-cell based organ-on-a-chip models for diabetes research. Adv Drug Deliv Rev 2019; 140:101-128. [PMID: 30359630 DOI: 10.1016/j.addr.2018.10.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 09/10/2018] [Accepted: 10/19/2018] [Indexed: 12/22/2022]
Abstract
Diabetes mellitus (DM) ranks among the severest global health concerns of the 21st century. It encompasses a group of chronic disorders characterized by a dysregulated glucose metabolism, which arises as a consequence of progressive autoimmune destruction of pancreatic beta-cells (type 1 DM), or as a result of beta-cell dysfunction combined with systemic insulin resistance (type 2 DM). Human cohort studies have provided evidence of genetic and environmental contributions to DM; yet, these studies are mostly restricted to investigating statistical correlations between DM and certain risk factors. Mechanistic studies, on the other hand, aimed at re-creating the clinical picture of human DM in animal models. A translation to human biology is, however, often inadequate owing to significant differences between animal and human physiology, including the species-specific glucose regulation. Thus, there is an urgent need for the development of advanced human in vitro models with the potential to identify novel treatment options for DM. This review provides an overview of the technological advances in research on DM-relevant stem cells and their integration into microphysiological environments as provided by the organ-on-a-chip technology.
Collapse
Affiliation(s)
- Julia Rogal
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University, Silcherstrasse 7/1, 72076 Tübingen, Germany; Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstrasse 12, 70569 Stuttgart, Germany
| | - Aline Zbinden
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University, Silcherstrasse 7/1, 72076 Tübingen, Germany
| | - Katja Schenke-Layland
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University, Silcherstrasse 7/1, 72076 Tübingen, Germany; The Natural and Medical Sciences Institute (NMI) at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany; Department of Medicine/Cardiology, Cardiovascular Research Laboratories, David Geffen School of Medicine at UCLA, 675 Charles E. Young Drive South, MRL 3645, Los Angeles, CA, USA.
| | - Peter Loskill
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University, Silcherstrasse 7/1, 72076 Tübingen, Germany; Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstrasse 12, 70569 Stuttgart, Germany
| |
Collapse
|
18
|
Rodriguez-Calvo T. Enterovirus infection and type 1 diabetes: unraveling the crime scene. Clin Exp Immunol 2018; 195:15-24. [PMID: 30307605 DOI: 10.1111/cei.13223] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/02/2018] [Accepted: 10/02/2018] [Indexed: 12/15/2022] Open
Abstract
Enteroviruses (EV) have been historically associated to type 1 diabetes. Definitive proof for their implication in disease development is lacking, but growing evidence suggests that they could be involved in beta cell destruction either directly by killing beta cells or indirectly by creating an exacerbated inflammatory response in the islets, capable of attracting autoreactive T cells to the 'scene of the crime'. Epidemiological and serological studies have been associated with the appearance of islet autoimmunity and EV RNA has been detected in prospective studies. In addition, the EV capsid protein has been detected in the islets of recent-onset type 1 diabetic donors, suggesting the existence of a low-grade EV infection that could become persistent. Increasing evidence in the field shows that a 'viral signature' exists in type 1 diabetes and involves interferon responses that could be sustained during prolonged periods. These include the up-regulation of markers such as protein kinase R (PKR), melanoma differentiation-associated protein 5 (MDA5), retinoic acid inducible gene I (RIG-I), myxovirus resistance protein (MxA) and human leukocyte antigen-I (HLA-I) and the release of chemokines able to attract immune cells to the islets leading to insulitis. In this scenario, the hyperexpression of HLA-I molecules would promote antigen presentation to autoreactive T cells, favoring beta cell recognition and, ultimately, destruction. In this review, an overview is provided of the standing evidence that implicates EVs in beta cell 'murder', the time-line of events is investigated from EV entry in the cell to beta cell death and possible accomplices are highlighted that might be involved in beta cell demise.
Collapse
Affiliation(s)
- T Rodriguez-Calvo
- Institute for Diabetes Research, Helmholtz Diabetes Center at Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW The immunosuppressive agent cyclosporine was first reported to lower daily insulin dose and improve glycemic control in patients with new-onset type 1 diabetes (T1D) in 1984. While renal toxicity limited cyclosporine's extended use, this observation ignited collaborative efforts to identify immunotherapeutic agents capable of safely preserving β cells in patients with or at risk for T1D. RECENT FINDINGS Advances in T1D prediction and early diagnosis, together with expanded knowledge of the disease mechanisms, have facilitated trials targeting specific immune cell subsets, autoantigens, and pathways. In addition, clinical responder and non-responder subsets have been defined through the use of metabolic and immunological readouts. Herein, we review emerging T1D biomarkers within the context of recent and ongoing T1D immunotherapy trials. We also discuss responder/non-responder analyses in an effort to identify therapeutic mechanisms, define actionable pathways, and guide subject selection, drug dosing, and tailored combination drug therapy for future T1D trials.
Collapse
Affiliation(s)
- Laura M Jacobsen
- Department of Pediatrics, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Brittney N Newby
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, 1275 Center Drive, Biomedical Sciences Building J-589, Box 100275, Gainesville, FL, 32610, USA
| | - Daniel J Perry
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, 1275 Center Drive, Biomedical Sciences Building J-589, Box 100275, Gainesville, FL, 32610, USA
| | - Amanda L Posgai
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, 1275 Center Drive, Biomedical Sciences Building J-589, Box 100275, Gainesville, FL, 32610, USA
| | - Michael J Haller
- Department of Pediatrics, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, 1275 Center Drive, Biomedical Sciences Building J-589, Box 100275, Gainesville, FL, 32610, USA.
| |
Collapse
|
20
|
Qaisar N, Jurczyk A, Wang JP. Potential role of type I interferon in the pathogenic process leading to type 1 diabetes. Curr Opin Endocrinol Diabetes Obes 2018; 25:94-100. [PMID: 29369915 PMCID: PMC5836805 DOI: 10.1097/med.0000000000000399] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Understanding the relationship between viral infections and the development of type 1 diabetes (T1D) is essential for T1D prevention. Virus-induced innate immune responses, specifically type I interferon (IFN-I) and the IFN gene signature, orchestrate early events of β-cell dysfunction preceding islet autoimmunity. We summarize recent advances in how IFN-I and the IFN gene signature can drive T1D development. RECENT FINDINGS IFN-I, particularly IFN-α, and the IFN gene signature have been detected in islets and peripheral blood of T1D patients. T1D risk genes in the IFN-I signaling pathway regulate antiviral responses in β cells driven by IFN-I and proinflammatory cytokines. Polymorphisms in these genes may cause chronic dysregulated IFN signaling in islets, characterized by hyperexpression of IFN-I, the IFN gene signature, and major histocompatibility complex class I during viral infection. Islet-cell inflammation mediated by aberrant IFN signaling drives β-cell apoptosis by initiating autoreactivity against β-cell antigens. The profound elevation in IFN-I and the IFN gene signature observed in some forms of T1D are also seen in a novel group of human autoimmune and autoinflammatory diseases called interferonopathies. SUMMARY Despite significant advances, further studies are required to functionally dissect the mechanisms by which excessive IFN-I contributes to the evolution of autoimmunity that destroys β cells.
Collapse
Affiliation(s)
- Natasha Qaisar
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Agata Jurczyk
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Jennifer P. Wang
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
- Corresponding author: Jennifer P. Wang, M.D., Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, Phone: 508-856-8414, Fax: 508-856-6176,
| |
Collapse
|
21
|
Nyalwidhe JO, Gallagher GR, Glenn LM, Morris MA, Vangala P, Jurczyk A, Bortell R, Harlan DM, Wang JP, Nadler JL. Coxsackievirus-Induced Proteomic Alterations in Primary Human Islets Provide Insights for the Etiology of Diabetes. J Endocr Soc 2017; 1:1272-1286. [PMID: 29264452 PMCID: PMC5686651 DOI: 10.1210/js.2017-00278] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 09/06/2017] [Indexed: 12/15/2022] Open
Abstract
Enteroviral infections have been associated with the development of type 1 diabetes (T1D), a chronic inflammatory disease characterized by autoimmune destruction of insulin-producing pancreatic beta cells. Cultured human islets, including the insulin-producing beta cells, can be infected with coxsackievirus B4 (CVB4) and thus are useful for understanding cellular responses to infection. We performed quantitative mass spectrometry analysis on cultured primary human islets infected with CVB4 to identify molecules and pathways altered upon infection. Corresponding uninfected controls were included in the study for comparative protein expression analyses. Proteins were significantly and differentially regulated in human islets challenged with virus compared with their uninfected counterparts. Complementary analyses of gene transcripts in CVB4-infected primary islets over a time course validated the induction of RNA transcripts for many of the proteins that were increased in the proteomics studies. Notably, infection with CVB4 results in a considerable decrease in insulin. Genes/proteins modulated during CVB4 infection also include those involved in activation of immune responses, including type I interferon pathways linked to T1D pathogenesis and with antiviral, cell repair, and inflammatory properties. Our study applies proteomics analyses to cultured human islets challenged with virus and identifies target proteins that could be useful in T1D interventions.
Collapse
Affiliation(s)
- Julius O Nyalwidhe
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia 23501.,Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, Virginia 23501
| | - Glen R Gallagher
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Lindsey M Glenn
- Department of Internal Medicine and Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia 23501
| | - Margaret A Morris
- Department of Internal Medicine and Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia 23501
| | - Pranitha Vangala
- Department of Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Agata Jurczyk
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Rita Bortell
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - David M Harlan
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Jennifer P Wang
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Jerry L Nadler
- Department of Internal Medicine and Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia 23501
| |
Collapse
|
22
|
Mine K, Hirakawa K, Kondo S, Minami M, Okada A, Tsutsu N, Yokogawa Y, Hibio Y, Kojima F, Fujimoto S, Kurisaki H, Anzai K, Yoshikai Y, Nagafuchi S. Subtyping of Type 1 Diabetes as Classified by Anti-GAD Antibody, IgE Levels, and Tyrosine kinase 2 (TYK2) Promoter Variant in the Japanese. EBioMedicine 2017; 23:46-51. [PMID: 28826655 PMCID: PMC5605380 DOI: 10.1016/j.ebiom.2017.08.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/10/2017] [Accepted: 08/10/2017] [Indexed: 12/14/2022] Open
Abstract
Objective Type 1 diabetes (T1D) is known to be caused by Th1 cell-dependent autoimmunity. Recently, we reported that TYK2 promoter variant serves as a putative virus-induced diabetes susceptibility gene associated with deteriorated interferon-dependent antiviral response. TYK2 is also related to HIES, that is, Th2 cell-dependent. Therefore, TYK2 promoter variant may be also associated with the pathogenesis of T1D, modulating Th1/Th2 balance. Research Design and Methods We assessed the association between anti- GAD Ab, IgE levels, and TYK2 promoter variant among 313 T1D patients, 184 T2D patients, and 264 YH controls in the Japanese. Results T1D patients had elevated IgE (median, 56.7 U/ml; p < 0.0001) compared with T2D patients (22.5 U/ml) and controls (43.3 U/ml). Contrary to our expectations, there was no correlation between TYK2 promoter variant and IgE levels. We found that T1D could be subtyped as four groups based on anti-GAD Ab and IgE profile: Subtype 1, anti-GAD Ab positive and non-elevated IgE (47.0%); Subtype 2, anti-GAD Ab negative and non-elevated IgE (35.1%); Subtype 3, anti-GAD Ab positive and elevated IgE (10.9%); and Subtype 4, anti-GAD Ab negative and elevated IgE (7.0%). In Subtype 2, a significantly higher incidence was observed in T1D cases carrying the TYK2 promoter variant (OR, 2.60; 95%CI, 1.03–6.97; p = 0.032), and also showing a flu-like syndrome at diabetes onset (OR, 2.34; 95%CI, 1.27–4.35; p = 0.003). Interpretation Anti-GAD Ab and IgE profiling helps classifying T1D into four groups that recognize variable pathogenic bases of T1D. T1D can be subtyped into 4 groups based on anti-GAD Ab, IgE levels and TYK2 promoter variant. Only one subtype, without anti-GAD Ab or elevated IgE, was associated with TYK2 promoter variant and flu-like syndrome. Profiling of T1D by anti-GAD Ab and IgE levels is useful to realize the variable immuno-pathogenesis of T1D.
Since TYK2 gene is associated with T1D and HIES, we assessed the association between anti-GAD Ab, IgE levels, and TYK2 promoter variant in patients with T1D. Consequently, T1D can be subtyped into 4 distinct groups based on these clinical laboratory and genetic markers. Only those patients without anti-GAD Ab or elevated IgE were associated with TYK2 promoter variant and with flu-like syndrome at the diabetes onset, suggestive of association with virus-induced diabetes. This study describes the usefulness of subtyping of T1D with variable immunological bases and provides a clue to delineate the pathogenesis of T1D.
Collapse
Affiliation(s)
- Keiichiro Mine
- Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, Japan.
| | - Kanako Hirakawa
- Department of Medical Science and Technology, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, Japan.
| | - Shiori Kondo
- Matsuyama Red Cross Hospital, 1, Bunkyo-machi, Matsuyama-shi, Ehime, Japan.
| | - Masae Minami
- Minami Masae Naika Clinic, 1-4-6, Heiwa, Minami-ku, Fukuoka, Japan.
| | - Akira Okada
- Okada Naika Clinic, 7-8-8, Hakozaki, Higashi-ku, Fukuoka, Japan.
| | - Nobutaka Tsutsu
- Department of Diabetes and Metabolism, Fukuoka Red Cross Hospital, 3-1-1, Minami-ku, Fukuoka, Japan.
| | | | - Yumi Hibio
- Department of Medical Science and Technology, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, Japan; Center for Clinical Laboratory Examination, Fukuoka Medical Association, 1-6-9, Sawara-ku, Fukuoka, Japan.
| | - Fumiko Kojima
- Department of Medical Science and Technology, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, Japan.
| | - Shuji Fujimoto
- Department of Medical Science and Technology, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, Japan.
| | - Hironori Kurisaki
- Department of Medical Science and Technology, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, Japan.
| | - Keizo Anzai
- Department of Hepatology, Diabetes and Endocrinology, Faculty of Medicine, Saga University, 5-1-1, Nabeshima, Saga, Japan.
| | - Yasunobu Yoshikai
- Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, Japan.
| | - Seiho Nagafuchi
- Department of Medical Science and Technology, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, Japan; Department of Hepatology, Diabetes and Endocrinology, Faculty of Medicine, Saga University, 5-1-1, Nabeshima, Saga, Japan.
| | | |
Collapse
|
23
|
Mouat IC, Morse ZJ, Jean-Baptiste VSE, Allanach JR, Horwitz MS. Fresh Ideas, Foundational Experiments (FIFE): Immunology and Diabetes 2016 FIFE Symposium. Front Endocrinol (Lausanne) 2017; 8:238. [PMID: 28974943 PMCID: PMC5610696 DOI: 10.3389/fendo.2017.00238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/30/2017] [Indexed: 12/16/2022] Open
Abstract
The first Fresh Ideas, Foundational Experiments (FIFE): Immunology and Diabetes symposia workshop took place in 2016 and exemplified the active interest of a number of several investigators interested the global rise in the incidence of type 1 diabetes (T1D). This increase does not correlate with genetic drift and indicates that environmental exposures are playing an increasingly significant role. Despite major biomedical and technological advances in diagnosis and treatment, treatments are frequently insufficient as they do not inhibit the progression of the underlying autoimmune response and often fail to prevent life-threatening complications. T1D is the result of autoimmune destruction of the insulin-producing beta cells of the pancreas, and the precise, mechanistic contribution of the immune system to disease pathogenesis and progression remains to be fully characterized. Ultimately, the combinatorial effect of concurrent factors, including beta cell fragility, exogenous stressors, and genetic priming of the innate and adaptive immune system, work together to induce T1D autoimmunity. Thus, T1D is the result of immunological defects and environmental pathogens, requiring the sustained attention of collaborative research teams such as FIFE: I & D with varied perspectives, unified by the universally held goal of finding a sustainable, life-long cure. Herein, the authors provide perspective on various fields in T1D research highlighted by speakers participating in the inaugural FIFE symposium.
Collapse
Affiliation(s)
- Isobel C. Mouat
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Zachary J. Morse
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | | | - Jessica R. Allanach
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Marc S. Horwitz
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Marc S. Horwitz,
| |
Collapse
|
24
|
Morse ZJ, Horwitz MS. Innate Viral Receptor Signaling Determines Type 1 Diabetes Onset. Front Endocrinol (Lausanne) 2017; 8:249. [PMID: 29018409 PMCID: PMC5623193 DOI: 10.3389/fendo.2017.00249] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 09/12/2017] [Indexed: 12/25/2022] Open
Abstract
Heritable susceptibility of the autoimmune disorder, type 1 diabetes (T1D), only partially equates for the incidence of the disease. Significant evidence attributes several environmental stressors, such as vitamin D deficiency, gut microbiome, dietary antigens, and most notably virus infections in triggering the onset of T1D in these genetically susceptible individuals. Extensive epidemiological and clinical studies have provided credibility to this causal relationship. Infection by the enterovirus, coxsackievirus B, has been closely associated with onset of T1D and is considered a significant etiological agent for disease induction. Recognition of viral antigens via innate pathogen-recognition receptors induce inflammatory events which contribute to autoreactivity of pancreatic self-antigens and ultimately the destruction of insulin-secreting beta cells. The activation of these specific innate pathways and expression of inflammatory molecules, including type I and III interferon, prime the immune system to elicit either a protective regulatory response or a diabetogenic effector response. Therefore, sensing of viral antigens by retinoic acid-inducible gene I-like receptors and toll-like receptors may be detrimental to inducing autoreactivity initiated by viral stress and resulting in T1D.
Collapse
Affiliation(s)
- Zachary J. Morse
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Marc S. Horwitz
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Marc S. Horwitz,
| |
Collapse
|