1
|
Mahmoudi S, García MJ, Drain PK. Current approaches for diagnosis of subclinical pulmonary tuberculosis, clinical implications and future perspectives: a scoping review. Expert Rev Clin Immunol 2024; 20:715-726. [PMID: 38879875 DOI: 10.1080/1744666x.2024.2326032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 02/28/2024] [Indexed: 06/18/2024]
Abstract
INTRODUCTION Subclinical tuberculosis (TB) is the presence of TB disease among people who are either asymptomatic or have minimal symptoms. AREAS COVERED Currently, there are no accurate diagnostic tools and clear treatment approaches for subclinical TB. In this study, a comprehensive literature search was conducted across major databases. This review aimed to uncover the latest advancements in diagnostic approaches, explore their clinical implications, and outline potential future perspectives. While innovative technologies are in development to enable sputum-free TB tests, there remains a critical need for precise diagnostic tools tailored to the unique characteristics of subclinical TB. Given the complexity of subclinical TB, a multidisciplinary approach involving clinicians, microbiologists, epidemiologists, and public health experts is essential. Further research is needed to establish standardized diagnostic criteria and treatment guidelines specifically tailored for subclinical TB, acknowledging the unique challenges posed by this elusive stage of the disease. EXPERT OPINION Efforts are needed for the detection, diagnosis, and treatment of subclinical TB. In this review, we describe the importance of subclinical TB, both from a clinical and public health perspective and highlight the diagnostic and treatment gaps of this stage.
Collapse
Affiliation(s)
- Shima Mahmoudi
- Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Maria J García
- Department of Preventive Medicine and Public Health and Microbiology, Autonoma University of Madrid, Madrid, Spain
| | - Paul K Drain
- International Clinical Research Center, Department of Global Health, Schools of Medicine and Public Health, University of Washington, Seattle, WA, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
- Division of Allergy and Infectious Diseases, Department of Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
2
|
Mousavian Z, Källenius G, Sundling C. From simple to complex: Protein-based biomarker discovery in tuberculosis. Eur J Immunol 2023; 53:e2350485. [PMID: 37740950 DOI: 10.1002/eji.202350485] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/15/2023] [Accepted: 09/22/2023] [Indexed: 09/25/2023]
Abstract
Tuberculosis (TB) is a deadly infectious disease that affects millions of people globally. TB proteomics signature discovery has been a rapidly growing area of research that aims to identify protein biomarkers for the early detection, diagnosis, and treatment monitoring of TB. In this review, we have highlighted recent advances in this field and how it is moving from the study of single proteins to high-throughput profiling and from only using proteomics to include additional types of data in multi-omics studies. We have further covered the different sample types and experimental technologies used in TB proteomics signature discovery, focusing on studies of HIV-negative adults. The published signatures were defined as either coming from hypothesis-based protein targeting or from unbiased discovery approaches. The methodological approaches influenced the type of proteins identified and were associated with the circulating protein abundance. However, both approaches largely identified proteins involved in similar biological pathways, including acute-phase responses and T-helper type 1 and type 17 responses. By analysing the frequency of proteins in the different signatures, we could also highlight potential robust biomarker candidates. Finally, we discuss the potential value of integration of multi-omics data and the importance of control cohorts and signature validation.
Collapse
Affiliation(s)
- Zaynab Mousavian
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Gunilla Källenius
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Christopher Sundling
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
3
|
Ndiaye MDB, Ranaivomanana P, Rasoloharimanana LT, Rasolofo V, Ratovoson R, Herindrainy P, Rakotonirina J, Schoenhals M, Hoffmann J, Rakotosamimanana N. Plasma host protein signatures correlating with Mycobacterium tuberculosis activity prior to and during antituberculosis treatment. Sci Rep 2022; 12:20640. [PMID: 36450921 PMCID: PMC9712643 DOI: 10.1038/s41598-022-25236-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
There is a need for rapid non-sputum-based tests to identify and treat patients infected with Mycobacterium tuberculosis (Mtb). The overall objective of this study was to measure and compare the expression of a selected panel of human plasma proteins in patients with active pulmonary tuberculosis (ATB) throughout anti-TB treatment (from baseline to the end of treatment), in Mtb-infected individuals (TBI) and healthy donors (HD) to identify a putative host-protein signature useful for both TB diagnosis and treatment monitoring. A panel of seven human host proteins CLEC3B, SELL, IGFBP3, IP10, CD14, ECM1 and C1Q were measured in the plasma isolated from an HIV-negative prospective cohort of 37 ATB, 24 TBI and 23 HD. The protein signatures were assessed using a Luminex xMAP® to quantify the plasmatic levels in unstimulated blood of the different clinical group as well as the protein levels at baseline and at three timepoints during the 6-months ATB treatment, to compare the plasma protein levels between culture slow and fast converters that may contribute to monitor the TB treatment outcome. Protein signatures were defined using the CombiROC algorithm and multivariate models. The studied plasma host proteins showed different levels between the clinical groups and during the TB treatment. Six of the plasma proteins (CLEC3B, SELL, IGFBP3, IP10, CD14 and C1Q) showed significant differences in normalised median fluorescence intensities when comparing ATB vs HD or TBI groups while ECM1 revealed a significant difference between fast and slow sputum culture converters after 2 months following treatment (p = 0.006). The expression of a four-host protein markers (CLEC3B-ECM1-IP10-SELL) was significantly different between ATB from HD or TBI groups (respectively, p < 0.05). The expression of the same signature was significantly different between the slow vs the fast sputum culture converters after 2 months of treatment (p < 0.05). The results suggest a promising 4 host-plasma marker signature that would be associated with both TB diagnostic and treatment monitoring.
Collapse
Affiliation(s)
| | - Paulo Ranaivomanana
- grid.418511.80000 0004 0552 7303Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | | | - Voahangy Rasolofo
- grid.418511.80000 0004 0552 7303Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Rila Ratovoson
- grid.418511.80000 0004 0552 7303Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Perlinot Herindrainy
- United States Agency for International Development (USAID), Antananarivo, Madagascar
| | - Julio Rakotonirina
- Centre Hospitalier Universitaire de Soins et Santé Publique Analakely (CHUSSPA), Antananarivo, Madagascar
| | - Matthieu Schoenhals
- grid.418511.80000 0004 0552 7303Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Jonathan Hoffmann
- grid.434215.50000 0001 2106 3244Medical and Scientific Department, Fondation Mérieux, Lyon, France
| | | |
Collapse
|
4
|
Zhang W. Deterministic and stochastic in-host tuberculosis models for bacterium-directed and host-directed therapy combination. MATHEMATICAL MEDICINE AND BIOLOGY : A JOURNAL OF THE IMA 2022; 39:126-155. [PMID: 35235658 DOI: 10.1093/imammb/dqac001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 11/22/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Mycobacterium tuberculosis (TB) infection can involve all immune system components and can result in different disease outcomes. The antibiotic TB drugs require strict adherence to prevent both disease relapse and mutation of drug- and multidrug-resistant strains. To overcome the constraints of pathogen-directed therapy, host-directed therapy has attracted more attention in recent years as an adjunct therapy to enhance host immunity to fight against this intractable pathogen. The goal of this paper is to investigate in-host TB models to provide insights into therapy development. Focusing on therapy-targeting parameters, the parameter regions for different disease outcomes are identified from an established ODE model. Interestingly, the ODE model also demonstrates that the immune responses can both benefit and impede disease progression, depending on the number of bacteria engulfed and released by macrophages. We then develop two Itô SDE models, which consider the impact of demographic variations at the cellular level and environmental variations during therapies along with demographic variations. The SDE model with demographic variation suggests that stochastic fluctuations at the cellular level have significant influences on (1) the T-cell population in all parameter regions, (2) the bacterial population when parameters located in the region with multiple disease outcomes and (3) the uninfected macrophage population in the parameter region representing active disease. Further, considering environmental variations from therapies, the second SDE model suggests that disease progression can slow down if therapies (1) can have fast return rates and (2) can bring parameter values into the disease clearance regions.
Collapse
Affiliation(s)
- Wenjing Zhang
- Department of Mathematics and Statistics, Texas Tech University Lubbock, TX 79409-1042, USA
| |
Collapse
|
5
|
Guo J, Zhang X, Chen X, Cai Y. Proteomics in Biomarker Discovery for Tuberculosis: Current Status and Future Perspectives. Front Microbiol 2022; 13:845229. [PMID: 35558124 PMCID: PMC9087271 DOI: 10.3389/fmicb.2022.845229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
Tuberculosis (TB) continues to threaten many peoples' health worldwide, regardless of their country of residence or age. The current diagnosis of TB still uses mainly traditional, time-consuming, and/or culture-based techniques. Efforts have focused on discovering new biomarkers with higher efficiency and accuracy for TB diagnosis. Proteomics-the systematic study of protein diversity-is being applied to the discovery of novel protein biomarkers for different types of diseases. Mass spectrometry (MS) technology plays a revolutionary role in proteomics, and its applicability benefits from the development of other technologies, such as matrix-based and immune-based methods. MS and derivative strategies continuously contribute to disease-related discoveries, and some promising proteomic biomarkers for efficient TB diagnosis have been identified, but challenges still exist. For example, there are discrepancies in the biomarkers identified among different reports and the diagnostic accuracy of clinically applied proteomic biomarkers. The present review summarizes the current status and future perspectives of proteomics in the field of TB biomarker discovery and aims to elicit more promising findings for rapid and accurate TB diagnosis.
Collapse
Affiliation(s)
- Jiubiao Guo
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China.,Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Ximeng Zhang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Xinchun Chen
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Yi Cai
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, School of Medicine, Shenzhen University, Shenzhen, China
| |
Collapse
|
6
|
Singer SN, Ndumnego OC, Kim RS, Ndung'u T, Anastos K, French A, Churchyard G, Paramithiothis E, Kasprowicz VO, Achkar JM. Plasma host protein biomarkers correlating with increasing Mycobacterium tuberculosis infection activity prior to tuberculosis diagnosis in people living with HIV. EBioMedicine 2022; 75:103787. [PMID: 34968761 PMCID: PMC8718743 DOI: 10.1016/j.ebiom.2021.103787] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/30/2021] [Accepted: 12/14/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Biomarkers correlating with Mycobacterium tuberculosis infection activity/burden in asymptomatic individuals are urgently needed to identify and treat those at highest risk for developing active tuberculosis (TB). Our main objective was to identify plasma host protein biomarkers that change over time prior to developing TB in people living with HIV (PLHIV). METHODS Using multiplex MRM-MS, we investigated host protein expressions from 2 years before until time of TB diagnosis in longitudinally collected (every 3-6 months) and stored plasma from PLHIV with incident TB, identified within a South African (SA) and US cohort. We performed temporal trend and discriminant analyses for proteins, and, to assure clinical relevance, we further compared protein levels at TB diagnosis to interferon-gamma release assay (IGRA; SA) or tuberculin-skin test (TST; US) positive and negative cohort subjects without TB. SA and US exploratory data were analyzed separately. FINDINGS We identified 15 proteins in the SA (n=30) and 10 in the US (n=24) incident TB subjects which both changed from 2 years prior until time of TB diagnosis after controlling for 10% false discovery rate, and were significantly different at time of TB diagnosis compared to non-TB subjects (p<0.01). Five proteins, CD14, A2GL, NID1, SCTM1, and A1AG1, overlapped between both cohorts. Furthermore, after cross-validation, panels of 5 - 12 proteins were able to predict TB up to two years before diagnosis. INTERPRETATION Host proteins can be biomarkers for increasing Mycobacterium tuberculosis infection activity/burden, incipient TB, and predict TB development in PLHIV. FUNDING NIH/NIAID AI117927, AI146329, and AI127173 to JMA.
Collapse
Affiliation(s)
- Sarah N Singer
- Departments of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Ryung S Kim
- Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Thumbi Ndung'u
- Africa Health Research Institute, Durban 4013, South Africa; HIV Pathogenesis Programme, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa; Ragon Institute of MGH, MIT and Harvard University, Cambridge, MA, USA; Max Planck Institute of Infection Biology, Berlin, Germany; Division of Infection and Immunity, University College London, London, UK
| | - Kathryn Anastos
- Departments of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Audrey French
- Department of Medicine, Stroger Hospital of Cook County, Chicago, IL, USA
| | - Gavin Churchyard
- Aurum Institute, Johannesburg, South Africa; School of Public Health, University of Witwatersrand, Johannesburg, South Africa; Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Eustache Paramithiothis
- CellCarta Biosciences Inc, 201 President-Kennedy Ave., Suite 3900 Montreal, H2×3Y7, Quebec, Canada
| | - Victoria O Kasprowicz
- Africa Health Research Institute, Durban 4013, South Africa; HIV Pathogenesis Programme, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa; Ragon Institute of MGH, MIT and Harvard University, Cambridge, MA, USA
| | - Jacqueline M Achkar
- Departments of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
7
|
Foster M, Hill PC, Setiabudiawan TP, Koeken VACM, Alisjahbana B, van Crevel R. BCG-induced protection against Mycobacterium tuberculosis infection: Evidence, mechanisms, and implications for next-generation vaccines. Immunol Rev 2021; 301:122-144. [PMID: 33709421 PMCID: PMC8252066 DOI: 10.1111/imr.12965] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 12/20/2022]
Abstract
The tuberculosis (TB) vaccine Bacillus Calmette-Guérin (BCG) was introduced 100 years ago, but as it provides insufficient protection against TB disease, especially in adults, new vaccines are being developed and evaluated. The discovery that BCG protects humans from becoming infected with Mycobacterium tuberculosis (Mtb) and not just from progressing to TB disease provides justification for considering Mtb infection as an endpoint in vaccine trials. Such trials would require fewer participants than those with disease as an endpoint. In this review, we first define Mtb infection and disease phenotypes that can be used for mechanistic studies and/or endpoints for vaccine trials. Secondly, we review the evidence for BCG-induced protection against Mtb infection from observational and BCG re-vaccination studies, and discuss limitations and variation of this protection. Thirdly, we review possible underlying mechanisms for BCG efficacy against Mtb infection, including alternative T cell responses, antibody-mediated protection, and innate immune mechanisms, with a specific focus on BCG-induced trained immunity, which involves epigenetic and metabolic reprogramming of innate immune cells. Finally, we discuss the implications for further studies of BCG efficacy against Mtb infection, including for mechanistic research, and their relevance to the design and evaluation of new TB vaccines.
Collapse
Affiliation(s)
- Mitchell Foster
- Department of Microbiology and ImmunologyUniversity of OtagoDunedinNew Zealand
| | - Philip C. Hill
- Centre for International HealthUniversity of OtagoDunedinNew Zealand
| | - Todia Pediatama Setiabudiawan
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI)Radboud University Medical CenterNijmegenThe Netherlands
| | - Valerie A. C. M. Koeken
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI)Radboud University Medical CenterNijmegenThe Netherlands
- Department of Computational Biology for Individualised Infection MedicineCentre for Individualised Infection Medicine (CiiM) & TWINCOREJoint Ventures between The Helmholtz‐Centre for Infection Research (HZI) and The Hannover Medical School (MHH)HannoverGermany
| | - Bachti Alisjahbana
- Tuberculosis Working GroupFaculty of MedicineUniversitas PadjadjaranBandungIndonesia
| | - Reinout van Crevel
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI)Radboud University Medical CenterNijmegenThe Netherlands
| |
Collapse
|
8
|
Abebe F. Immunological basis of early clearance of Mycobacterium tuberculosis infection: the role of natural killer cells. Clin Exp Immunol 2021; 204:32-40. [PMID: 33315236 DOI: 10.1111/cei.13565] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022] Open
Abstract
Tuberculosis (TB) kills more people than any other single infectious disease globally. Despite decades of research, there is no vaccine to prevent TB transmission. Bacille Calmette-Guérin (BCG) vaccine, developed a century ago, is effective against childhood (disseminated and miliary) TB. However, its protective efficacy against pulmonary TB varies from 0 to 80% in different populations. One of the main reasons for the lack of an effective vaccine against TB is the lack of complete understanding about correlates of protective immunity on which to base vaccine design and development. However, some household contacts who are extensively exposed to Mtb infection remain persistently negative to tuberculin skin test and interferon-gamma assay. These individuals, called 'resisters', clear Mtb infection early before the development of acquired immunity. The immunological basis of early Mtb clearance is yet to be established; however, innate lymphocytes such as monocytes/macrophages, dendritic cells, neutrophils and natural killer cells, and innate-like T cells such as mucosal-associated invariant T cells, invariant natural killer (NK) T cells and gamma-delta (γδ) T cells, have been implicated in this early protection. In recent years, NK cells have attracted increasing attention because of their role in controlling Mtb infection. Emerging data from animal and epidemiological studies indicate that NK cells play a significant role in the fight against Mtb. NK cells express various surface markers to recognize and kill both Mtb and Mtb-infected cells. This review presents recent advances in our understanding of NK cells in the fight against Mtb early during infection, with emphasis on cohort studies.
Collapse
Affiliation(s)
- F Abebe
- Faculty of Medicine, Department of Community Medicine and Global Health, Institute of Health and Society, University of Oslo, Oslo, Norway
| |
Collapse
|
9
|
Abstract
Mycobacterium tuberculosis remains the leading cause of death attributed to a single infectious organism. Bacillus Calmette-Guerin (BCG), the standard vaccine against M. tuberculosis, is thought to prevent only 5% of all vaccine-preventable deaths due to tuberculosis, thus an alternative vaccine is required. One of the principal barriers to vaccine development against M. tuberculosis is the complexity of the immune response to infection, with uncertainty as to what constitutes an immunological correlate of protection. In this paper, we seek to give an overview of the immunology of M. tuberculosis infection, and by doing so, investigate possible targets of vaccine development. This encompasses the innate, adaptive, mucosal and humoral immune systems. Though MVA85A did not improve protection compared with BCG alone in a large-scale clinical trial, the correlates of protection this has revealed, in addition to promising results from candidate such as VPM1002, M72/ASO1E and H56:IC31 point to a brighter future in the field of TB vaccine development.
Collapse
Affiliation(s)
- Benedict Brazier
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ UK
| | - Helen McShane
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ UK
| |
Collapse
|
10
|
Mallikarjunappa S, Adnane M, Cormican P, Karrow NA, Meade KG. Characterization of the bovine salivary gland transcriptome associated with Mycobacterium avium subsp. paratuberculosis experimental challenge. BMC Genomics 2019; 20:491. [PMID: 31195975 PMCID: PMC6567491 DOI: 10.1186/s12864-019-5845-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/24/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Mycobacterium avium subsp. paratuberculosis (MAP), the etiologic agent of Johne's disease is spread between cattle via the fecal-oral route, yet the functional changes in the salivary gland associated with infection remain uncharacterized. In this study, we hypothesized that experimental challenge with MAP would induce stable changes in gene expression patterns in the salivary gland that may shed light on the mucosal immune response as well as the regional variation in immune capacity of this extensive gland. Holstein-Friesian cattle were euthanized 33 months' post oral challenge with MAP strain CIT003 and both the parotid and mandibular salivary glands were collected from healthy control (n = 5) and MAP exposed cattle (n = 5) for histopathological and transcriptomic analysis. RESULTS A total of 205, 21, 61, and 135 genes were significantly differentially expressed between control and MAP exposed cattle in dorsal mandibular (M1), ventral mandibular (M2), dorsal parotid (P1) and ventral parotid salivary glands (P2), respectively. Expression profiles varied between the structurally divergent parotid and mandibular gland sections which was also reflected in the enriched biological pathways identified. Changes in gene expression associated with MAP exposure were detected with significantly elevated expression of BoLA DR-ALPHA, BOLA-DRB3 and complement factors in MAP exposed cattle. In contrast, reduced expression of genes such as polymeric immunoglobin receptor (PIGR), TNFSF13, and the antimicrobial genes lactoferrin (LF) and lactoperoxidase (LPO) was detected in MAP exposed animals. CONCLUSIONS This first analysis of the transcriptomic profile of salivary glands in cattle adds an important layer to our understanding of salivary gland immune function. Transcriptomic changes associated with MAP exposure have been identified including reduced LF and LPO. These critical antimicrobial and immunoregulatory proteins are known to be secreted into saliva and their downregulation may contribute to disease susceptibility. Future work will focus on the validation of their expression levels in saliva from additional cattle of known infection status as a potential strategy to augment disease diagnosis.
Collapse
Affiliation(s)
- Sanjay Mallikarjunappa
- Animal & Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Co. Meath, Ireland.,Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Mounir Adnane
- Animal & Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Co. Meath, Ireland.,Institute of Veterinary Sciences, Ibn Khaldoun University, Tiaret, Algeria
| | - Paul Cormican
- Animal & Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Co. Meath, Ireland
| | - Niel A Karrow
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Kieran G Meade
- Animal & Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Co. Meath, Ireland.
| |
Collapse
|
11
|
Incipient and Subclinical Tuberculosis: a Clinical Review of Early Stages and Progression of Infection. Clin Microbiol Rev 2018; 31:31/4/e00021-18. [PMID: 30021818 DOI: 10.1128/cmr.00021-18] [Citation(s) in RCA: 322] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Tuberculosis (TB) is the leading infectious cause of mortality worldwide, due in part to a limited understanding of its clinical pathogenic spectrum of infection and disease. Historically, scientific research, diagnostic testing, and drug treatment have focused on addressing one of two disease states: latent TB infection or active TB disease. Recent research has clearly demonstrated that human TB infection, from latent infection to active disease, exists within a continuous spectrum of metabolic bacterial activity and antagonistic immunological responses. This revised understanding leads us to propose two additional clinical states: incipient and subclinical TB. The recognition of incipient and subclinical TB, which helps divide latent and active TB along the clinical disease spectrum, provides opportunities for the development of diagnostic and therapeutic interventions to prevent progression to active TB disease and transmission of TB bacilli. In this report, we review the current understanding of the pathogenesis, immunology, clinical epidemiology, diagnosis, treatment, and prevention of both incipient and subclinical TB, two emerging clinical states of an ancient bacterium.
Collapse
|
12
|
Meermeier EW, Lewinsohn DM. Early clearance versus control: what is the meaning of a negative tuberculin skin test or interferon-gamma release assay following exposure to Mycobacterium tuberculosis? F1000Res 2018; 7. [PMID: 29904578 PMCID: PMC5974584 DOI: 10.12688/f1000research.13224.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/22/2018] [Indexed: 01/01/2023] Open
Abstract
The elimination of tuberculosis (TB) cannot reasonably be achieved by treatment of individual cases and will require an improved vaccine or immunotherapy. A challenge in developing an improved TB vaccine has been the lack of understanding what is needed to generate sterilizing immunity against
Mycobacterium tuberculosis (Mtb) infection. Several epidemiological observations support the hypothesis that humans can eradicate Mtb following exposure. This has been termed early clearance and is defined as elimination of Mtb infection prior to the development of an adaptive immune response, as measured by a tuberculin skin test or interferon-gamma release assay. Here, we examine research into the likelihood of and possible mechanisms responsible for early clearance in household contacts of patients with active TB. We explore both innate and adaptive immune responses in the lung. Enhanced understanding of these mechanisms could be harnessed for the development of a preventative vaccine or immunotherapy.
Collapse
Affiliation(s)
- Erin W Meermeier
- Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, USA
| | - David M Lewinsohn
- Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, USA.,Department of Medicine, VA Portland Health Care System, Portland, OR, USA
| |
Collapse
|