1
|
Yi M, Chen S, Yi X, Zhang F, Zhou X, Zeng M, Song H. Helicobacter pylori infection process: from the molecular world to clinical treatment. Front Microbiol 2025; 16:1541140. [PMID: 40083792 PMCID: PMC11903457 DOI: 10.3389/fmicb.2025.1541140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 02/10/2025] [Indexed: 03/16/2025] Open
Abstract
Helicobacter pylori is a gram-negative microaerophilic microorganism intricately associated with chronic gastrointestinal disorders and gastric cancer. H. pylori can cause various upper digestive tract diseases, including chronic gastritis, peptic ulcer, gastroesophageal reflux disease, and gastric cancer. The bacterium exhibits a variety of pathogenic mechanisms, including colonization, the expression of virulence factors, and the development of drug resistance. This article presents a comprehensive review of H. pylori pathogenesis, emphasizing recent research advancements concerning the cytotoxin-associated gene A, vacuolating cytotoxin, outer membrane proteins, and other virulence factors. Additionally, it examines the molecular mechanisms underlying drug resistance and evaluates the efficacy of conventional therapeutic approaches. Recently, researchers have attempted novel therapeutic regimens, including probiotics and Chinese medicine-assisted therapies, to enhance therapeutic effects. This article aimed to offer an overview of the academic community's comprehension of H. pylori infection and to highlight the current treatment options.
Collapse
Affiliation(s)
- Meijing Yi
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, China
| | - Silan Chen
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, China
| | - Xinying Yi
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, China
| | - Fan Zhang
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, China
| | - Xuan Zhou
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, China
| | - Meiyan Zeng
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Houpan Song
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
2
|
Li T, Chen J, Xu Y, Ji W, Yang S, Wang X. Hawthorn Pectin Alleviates DSS-Induced Colitis in Mice by Ameliorating Intestinal Barrier Function and Modulating Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40011195 DOI: 10.1021/acs.jafc.4c07965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Pectin, as a kind of soluble dietary fiber in hawthorns, exhibits a wide range of biological activities. Nevertheless, its role and mechanism in ulcerative colitis (UC) remain unclear. In this study, the effect of hawthorn pectin (HP) against dextran sulfate sodium (DSS)-induced UC in mice and its underlying mechanism were evaluated. HP dramatically alleviated the pathological symptoms related to colitis in mice, displaying an increase in body weight and colon length and inhibition in colon damage. Importantly, HP inhibited the serum levels of inflammation-related factors including tumor necrosis factor-α, IL-1β, and IL-6 as well as decreased the number of F4/80-positive macrophages in the colon. Moreover, the expression levels of ZO-1 and occludin proteins related to intestinal permeability were increased. A significant decrease in a dose-dependent manner at the gut bacterial genus level (such as Alistipes, Colidextribacter, and Blautia) was observed after HP treatment. HP improved the metabolic pathways of gut microbiota and increased the concentrations of short-chain fatty acids in cecal contents of UC mice. Intriguingly, fecal microbiota transplantation intervention with an HP-derived microbiome notably increased the length and relieved histopathological changes of colon in UC mice. Conclusively, our study provided valuable insights into the potential of HP as a prebiotic for maintaining intestinal health and confirmed that HP could ameliorate UC in a gut microbiota-dependent manner.
Collapse
Affiliation(s)
- Tao Li
- Shandong Engineering Research Center for Innovation and Application of General Technology for Separation of Natural Products, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Junbo Chen
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yuncong Xu
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Wenhua Ji
- Shandong Engineering Research Center for Innovation and Application of General Technology for Separation of Natural Products, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Shaoqing Yang
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiao Wang
- Shandong Engineering Research Center for Innovation and Application of General Technology for Separation of Natural Products, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| |
Collapse
|
3
|
Pinho AS, Pereira R, Pereira M, Rai A, Ferreira L, Martins MCL, Parreira P. Cholesterol Functionalized Nanoparticles Are Effective against Helicobacter pylori, the Gastric Bug: A Proof-of-Concept Study. Adv Healthc Mater 2025:e2404065. [PMID: 39910897 DOI: 10.1002/adhm.202404065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/20/2025] [Indexed: 02/07/2025]
Abstract
Helicobacter pylori chronic infection is the highest risk factor for the development of gastric cancer, being this Gram-negative bacterium classified as carcinogenic. The mounting resistance of H. pylori to antibiotics calls for innovative therapeutic strategies. Here, the proof-of-concept studies that support the development of a "trojan horse" therapeutic strategy based on cholesterol-grafted nanoparticles (Chol-NP) to counteract H. pylori infection are depicted. The bacterium ability to specifically recognize and bind to surface grafted cholesterol is demonstrated by its adhesion to cholesterol(Chol)-functionalized self-assembled monolayers (SAMs) on gold substrates (2D Chol-SAMs) in a concentration dependent manner, with optimal Chol-SAMs prepared with 25% Chol-polyethylene glycol (PEG)-thiol in solution (75% tetra(ethylene glycol)-thiol). These results further show that cholesterol functionalized gold nanoparticles (3D Chol-SAMs, Chol-NP) eradicate H. pylori at a minimum bactericidal concentration of 125 µg mL-1. Chol-NP kill H. pylori through internalization and membrane rupture, as observed by transmission electron microscopy (TEM). Chol-NP are cytocompatible (human gastric adenocarcinoma (AGS) cell line), non-hemolytic and innocuous to bacteria representative of the gut microbiota (Escherichia coli and Lactobacillus acidophilus). This study supports the further development of cholesterol functionalized biomaterials as an advanced and targeted treatment for H. pylori infection.
Collapse
Affiliation(s)
- Ana Sofia Pinho
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, R. Alfredo Allen 208, Porto, 4200-135, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, Porto, 4050-313, Portugal
| | - Renato Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, R. Alfredo Allen 208, Porto, 4200-135, Portugal
- FEUP - Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, Porto, 4200-465, Portugal
| | - Mariana Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, R. Alfredo Allen 208, Porto, 4200-135, Portugal
| | - Akhilesh Rai
- CNC - Centro de Neurociências e Biologia Celular, Universidade de Coimbra, Rua Larga, 3004-504, Portugal
| | - Lino Ferreira
- CNC - Centro de Neurociências e Biologia Celular, Universidade de Coimbra, Rua Larga, 3004-504, Portugal
- FMUC - Faculdade de Medicina, Universidade de Coimbra, Azinhaga de Santa Comba (Celas), 3000-548, Portugal
- CIBB- Centre for Innovative Biomedicine and Biotechnology Associate Laboratory, Universidade de Coimbra, Rua Larga, 3004-504, Portugal
| | - Maria Cristina Lopes Martins
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, R. Alfredo Allen 208, Porto, 4200-135, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, Porto, 4050-313, Portugal
| | - Paula Parreira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, R. Alfredo Allen 208, Porto, 4200-135, Portugal
| |
Collapse
|
4
|
Casas Deza D, Alcedo J, Lafuente M, López FJ, Perez-Aisa Á, Pavoni M, Tepes B, Jonaitis L, Castro-Fernandez M, Pabón-Carrasco M, Keco-Huerga A, Voynovan I, Bujanda L, Lucendo AJ, Brglez Jurecic N, Denkovski M, Vologzanina L, Rodrigo L, Martínez-Domínguez SJ, Fadieienko G, Huguet JM, Abdulkhakov R, Abdulkhakov SR, Alcaide N, Velayos B, Hernández L, Bordin DS, Gasbarrini A, Kupcinskas J, Babayeva G, Gridnyev O, Leja M, Rokkas T, Marcos-Pinto R, Lerang F, Boltin D, Mestrovic A, Smith SM, Venerito M, Boyanova L, Milivojevic V, Doulberis M, Kunovsky L, Parra P, Cano-Català A, Moreira L, Nyssen OP, Megraud F, Morain CO, Gisbert JP. Probiotics Prescribed With Helicobacter pylori Eradication Therapy in Europe: Usage Pattern, Effectiveness, and Safety. Results From the European Registry on Helicobacter pylori Management (Hp-EuReg). Am J Gastroenterol 2025:00000434-990000000-01573. [PMID: 39902822 DOI: 10.14309/ajg.0000000000003351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/12/2024] [Indexed: 02/06/2025]
Abstract
INTRODUCTION To evaluate the prescription patterns, effectiveness, and safety of adding probiotics to Helicobacter pylori eradication therapy, in Europe. METHODS International, prospective, noninterventional registry of the clinical practice of the European gastroenterologists. Data were collected and quality reviewed until March 2021 at AEG-REDCap. The effectiveness was evaluated by modified intention-to-treat analysis, differentiating by geographic areas. Adverse events (AEs) were categorized as mild, moderate, and severe. RESULTS Overall, 36,699 treatments were recorded, where 8,233 (22%) were prescribed with probiotics. Probiotics use was associated with higher effectiveness in the overall analysis (odds ratio [OR] 1.631, 95% confidence interval [CI] 1.456-1.828), as well as in triple (OR 1.702, 95% CI 1.403-2.065), quadruple (OR 1.383, 95% CI 0.996-1.920), bismuth quadruple (OR 1.248, 95% CI 1.003-1.554), and sequential therapies (OR 3.690, 95% CI 2.686-5.069). Lactobacillus genus was associated with a higher therapy effectiveness in Eastern Europe when triple (OR 2.625, 95% CI 1.911-3.606) and bismuth quadruple (OR 1.587, 95% CI 1.117-2.254) first-line therapies were prescribed. In Central Europe, the use of probiotics was associated with a decrease in both the overall incidence of AEs (OR 0.656, 95% CI 0.516-0.888) and severe AEs (OR 0.312, 95% CI 0.217-0.449). Bifidobacterium genus was associated with lower overall (OR 0.725, 95% CI 0.592-0.888) and severe (OR 0.254, 95% CI 0.185-0.347) AEs, and Saccharomyces was associated with reduced overall (OR 0.54, 95% CI 0.32-0.91) and severe (OR 0.257, 95% CI 0.123-0.536) AEs under quadruple-bismuth regimen. DISCUSSION In Europe, the use of probiotics was associated with higher effectiveness and safety of H. pylori eradication therapy. Lactobacillus improved treatment effectiveness, whereas Bifidobacterium and Saccharomyces were associated with a better safety profile.
Collapse
Affiliation(s)
- Diego Casas Deza
- Department of Gastroenterology, Hospital Universitario Miguel Servet, Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain
| | - Javier Alcedo
- Department of Gastroenterology, Hospital Universitario Miguel Servet, Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain
| | - Miguel Lafuente
- Department of Statistical Methods, Faculty of Science, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain
| | - F Javier López
- Department of Statistical Methods, Faculty of Science, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain
| | - Ángeles Perez-Aisa
- Digestive Unit, Agencia Sanitaria Costa del Sol, Marbella, Spain
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Marbella, Spain
| | - Matteo Pavoni
- Department of Medical and Surgical Sciences, Sant'Orsola-Malpighi University Hospital, Bologna, Italy
| | - Bojan Tepes
- Department of Gastroenterology, DC Rogaska, Slatina, Slovenia
| | - Laimas Jonaitis
- Research and Department of Gastroenterology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | | | | | - Alma Keco-Huerga
- Department of Gastroenterology, Hospital Universitario de Valme, Seville, Spain
| | - Irina Voynovan
- Department of Gastroenterology, A.S. Loginov Moscow Clinical Scientific Center, Moscow, Russia
| | - Luis Bujanda
- Department of Gastroenterology, Biodonostia Health Research Institute, San Sebastián, Spain
- CIBERehd, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Department of Medicine, Universidad del País Vasco (UPV/EHU), San Sebastián, Spain
| | - Alfredo J Lucendo
- Department of Gastroenterology, Hospital General de Tomelloso, Tomelloso, Spain
- CIBERehd, Centro de Investigación en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Gastroenterology, Instituto de Investigación Sanitaria Princesa, Madrid, Spain
| | | | - Maja Denkovski
- Department of Gastroenterology, Interni Oddelek, Diagnostic Centre, Bled, Slovenia
| | | | - Luis Rodrigo
- Gastroenterology, University of Oviedo, Oviedo, Spain
| | - Samuel J Martínez-Domínguez
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain
- Servicio de Aparato Digestivo, Hospital Clínico Universitario "Lozano Blesa," Zaragoza, Spain
- CIBERehd, Zaragoza, Spain
| | - Galyna Fadieienko
- Departments the Division for the Study of the Digestive Diseases and Its Comorbidity With Noncommunicable Diseases, Government Institution L.T. Malaya Therapy National Institute of NAMS of Ukraine, Kharkiv, Ukraine
| | - Jose M Huguet
- Department of Gastroenterology, Hospital General Universitario de Valencia, Valencia, Spain
| | - Rustam Abdulkhakov
- Department of Hospital Medicine, Kazan State Medical University, Kazan, Russia
| | - Sayar R Abdulkhakov
- Department of Hospital Medicine, Kazan State Medical University, Kazan, Russia
| | - Noelia Alcaide
- Department of Gastroenterology, Hospital Clínico de Valladolid, Valladolid, Spain
| | - Benito Velayos
- Department of Gastroenterology, Hospital Clínico de Valladolid, Valladolid, Spain
| | - Luis Hernández
- Gastroenterology Unit, Hospital Santos Reyes, Aranda de Duero, Spain
| | - Dmitry S Bordin
- Department of Pancreatic, Biliary and Upper Digestive Tract Disorders, A.S. Loginov Moscow Clinical Scientific Center, Moscow, Russia
- Department of Propaedeutic of Internal Diseases and Gastroenterology, Russian University of Medicine, Moscow, Russia
- Department of Outpatient Therapy and Family Medicine, Tver State Medical University, Tver, Russia
| | - Antonio Gasbarrini
- Medicina interna e Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Juozas Kupcinskas
- Research and Department of Gastroenterology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Gülüstan Babayeva
- Department of Internal Medicine and Gastroenterology, Azerbaijan State Advanced Training Institute for Doctors named by A. Aliyev, Baku, Azerbaijan
| | - Oleksiy Gridnyev
- Departments the Division for the Study of the Digestive Diseases and Its Comorbidity With Noncommunicable Diseases, Government Institution L.T. Malaya Therapy National Institute of NAMS of Ukraine, Kharkiv, Ukraine
| | - Mārcis Leja
- Department of Gastroenterology, Digestive Diseases Centre, Riga, Latvia
- Institute of Clinical and Preventive Medicine, University of Latvia, Riga, Latvia
| | - Theodore Rokkas
- Gastroenterology Clinic, Henry Dunant Hospital, Athens, Greece
| | - Ricardo Marcos-Pinto
- Gastroenterology Department, Centro Hospitalar do Porto, Porto, Portugal
- Instituto De Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
- Center for Research in Health Technologies and Information Systems (CINTESIS), Porto, Portugal
| | - Frode Lerang
- Department of Gastroenterology, Østfold Hospital Trust, Grålum, Norway
| | - Doron Boltin
- Division of Gastroenterology, Rabin Medical Center, TelAviv, Israel
- Tel Aviv University, TelAviv, Israel
| | - Antonio Mestrovic
- Department of Gastroenterology, University Hospital of Split, Split, Croatia
| | - Sinead M Smith
- School of Medicine, Faculty of Health Sciences, Trinity College Dublin, Dublin, Ireland
| | - Marino Venerito
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital of Magdeburg, Magdeburg, Germany
| | - Lyudmila Boyanova
- Department of Medical Microbiology, Medical University of Sofia, Sofia, Bulgaria
| | - Vladimir Milivojevic
- Clinic of Gastroenterology and Hepatology, Clinical Center of Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Michael Doulberis
- Gastroenterology Department, Kantonsspital Aarau, Aarau, Switzerland
| | - Lumir Kunovsky
- 2nd Department of Internal Medicine-Gastroenterology and Geriatrics, University Hospital Olomouc, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
- Department of Surgery, University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Gastroenterology and Digestive Endoscopy, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Pablo Parra
- Servicio de Aparato Digestivo, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Anna Cano-Català
- Gastrointestinal Oncology, Endoscopy and Surgery (GOES) Research Group, Althaia Xarxa Assistencial Universitària de Manresa FP, Manresa, Spain
- Institut de Recerca i Innovació en Ciències de la Vida i de la Salut de la Catalunya Central (IRIS-CC), Vic, Spain
| | - Leticia Moreira
- Hospital Clínic de Barcelona, Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Olga P Nyssen
- Servicio de Aparato Digestivo, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | | | - Colm O Morain
- School of Medicine, Faculty of Health Sciences, Trinity College Dublin, Dublin, Ireland
| | - Javier P Gisbert
- Servicio de Aparato Digestivo, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| |
Collapse
|
5
|
Zhao H, Wang Y, Ren J. Helicobacter pylori and rheumatoid arthritis: Investigation of relation from traditional Chinese medicine. Microb Pathog 2025; 199:107239. [PMID: 39708982 DOI: 10.1016/j.micpath.2024.107239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/09/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Rheumatoid arthritis (RA) is an autoimmune condition that predominantly affects synovial joints, manifesting with joint swelling, pain, and stiffness. In advanced stages, unchecked inflammation can inflict damage on bone and cartilage, resulting in disabilities and deformities of the joints. Additionally, systemic and extra-articular complications may arise due to the consequences of uncontrolled inflammation. Helicobacter pylori (H. pylori) is one of the most prevalent chronic bacterial infections in humans. This microorganism is a spiral-shaped, flagellated, microaerophilic gram-negative bacterium. Prolonged exposure leads to the activation of the immune system, with infected gastric mucosa epithelial cells continuously producing cytokines. This production, in turn, triggers the generation of antibodies as well as T Helper 1 and T Helper 2 effector T cells. The persistent antigenic stimulation resulting from H. pylori infection could lead to the progression of autoimmune diseases. Numerous clinical and pharmacological trials have illustrated the efficacy of traditional Chinese medicine against H. pylori. This review aims to delve into the connection between H. pylori and rheumatoid arthritis so as understand the pathogenesis. The concluding section of this review explores the interplay of Chinese medicine and Helicobacter pylori concerning rheumatoid arthritis.
Collapse
Affiliation(s)
- Hua Zhao
- Department of Rheumatism and Immunology, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), No.4, Renmin Road, Shibei District, Qingdao, 266033, China
| | - Yige Wang
- Shandong University of Traditional Chinese Medicine, No.16369, Jingshi Road, Lixia District, Jinan, 250013, China
| | - Jiahui Ren
- Department of Rheumatism and Immunology, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), No.4, Renmin Road, Shibei District, Qingdao, 266033, China
| |
Collapse
|
6
|
Heidary M, Akrami S, Madanipour T, Shakib NH, Mahdizade Ari M, Beig M, Khoshnood S, Ghanavati R, Bazdar M. Effect of Helicobacter pylori-induced gastric cancer on gastrointestinal microbiota: a narrative review. Front Oncol 2025; 14:1495596. [PMID: 39868371 PMCID: PMC11757270 DOI: 10.3389/fonc.2024.1495596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/12/2024] [Indexed: 01/28/2025] Open
Abstract
Helicobacter pylori (H. pylori) infection is a typical microbial agent that interferes with the complex mechanisms of gastric homeostasis by disrupting the balance between the host gastric microbiota and mucosa-related factors, ultimately leading to inflammatory changes, dysbiosis, and gastric cancer (GC). We searched this field on the basis of PubMed, Google Scholar, Web of Science, and Scopus databases. Most studies show that H. pylori inhibits the colonization of other bacteria, resulting in a less variety of bacteria in the gastrointestinal (GI) tract. When comparing the patients with H. pylori-positive and H. pylori-negative GC, the composition of the gastric microbiome changes with increasing abundance of H. pylori (where present) in the gastritis stage, whereas, as the gastric carcinogenesis cascade progresses to GC, oral and intestinal-type pathogenic microbial strains predominate. H. pylori infection induces a premalignant milieu of atrophy and intestinal metaplasia, and the resulting change in gastric microbiota appears to play an important role in gastric carcinogenesis. The effect of H. pylori-induced GC on GI microbiota is discussed in this review.
Collapse
Affiliation(s)
- Mohsen Heidary
- Leishmaniasis Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Sousan Akrami
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tohid Madanipour
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nafiseh Hosseinzadeh Shakib
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzie Mahdizade Ari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Beig
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Saeed Khoshnood
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Roya Ghanavati
- School of Medicine, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Monireh Bazdar
- School of Medicine, Razi Hospital, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
7
|
Zhou X, Wu Y, Zhu Z, Lu C, Zhang C, Zeng L, Xie F, Zhang L, Zhou F. Mucosal immune response in biology, disease prevention and treatment. Signal Transduct Target Ther 2025; 10:7. [PMID: 39774607 PMCID: PMC11707400 DOI: 10.1038/s41392-024-02043-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/05/2024] [Accepted: 10/27/2024] [Indexed: 01/11/2025] Open
Abstract
The mucosal immune system, as the most extensive peripheral immune network, serves as the frontline defense against a myriad of microbial and dietary antigens. It is crucial in preventing pathogen invasion and establishing immune tolerance. A comprehensive understanding of mucosal immunity is essential for developing treatments that can effectively target diseases at their entry points, thereby minimizing the overall impact on the body. Despite its importance, our knowledge of mucosal immunity remains incomplete, necessitating further research. The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has underscored the critical role of mucosal immunity in disease prevention and treatment. This systematic review focuses on the dynamic interactions between mucosa-associated lymphoid structures and related diseases. We delve into the basic structures and functions of these lymphoid tissues during disease processes and explore the intricate regulatory networks and mechanisms involved. Additionally, we summarize novel therapies and clinical research advances in the prevention of mucosal immunity-related diseases. The review also addresses the challenges in developing mucosal vaccines, which aim to induce specific immune responses while maintaining tolerance to non-pathogenic microbes. Innovative therapies, such as nanoparticle vaccines and inhalable antibodies, show promise in enhancing mucosal immunity and offer potential for improved disease prevention and treatment.
Collapse
Affiliation(s)
- Xiaoxue Zhou
- School of Medicine, Hangzhou City University, Hangzhou, China
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yuchen Wu
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhipeng Zhu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Chu Lu
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Chunwu Zhang
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Linghui Zeng
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Feng Xie
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China.
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Fangfang Zhou
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
8
|
Li Y, He C, Lu N. Impacts of Helicobacter pylori infection and eradication on gastrointestinal microbiota: An up-to-date critical review and future perspectives. Chin Med J (Engl) 2024; 137:2833-2842. [PMID: 39501846 DOI: 10.1097/cm9.0000000000003348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Indexed: 12/17/2024] Open
Abstract
ABSTRACT Helicobacter pylori ( H. pylori ) infects approximately half of the population worldwide and causes chronic gastritis, peptic ulcers, and gastric cancer. Test-and-treat strategies have been recommended for the prevention of H. pylori -associated diseases. Advancements in high-throughput sequencing technologies have broadened our understanding of the complex gastrointestinal (GI) microbiota and its role in maintaining host homeostasis. Recently, an increasing number of studies have indicated that the colonization of H. pylori induces dramatic alterations in the gastric microbiota, with a predominance of H. pylori and a reduction in microbial diversity. Dysbiosis of the gut microbiome has also been observed after H. pylori infection, which may play a role in the development of colorectal cancer. However, there is concern regarding the impact of antibiotics on the gut microbiota during H. pylori eradication. In this review, we summarize the current literature concerning how H. pylori infection reshapes the GI microbiota and the underlying mechanisms, including changes in the gastric environment, immune responses, and persistent inflammation. Additionally, the impacts of H. pylori eradication on GI microbial homeostasis and the use of probiotics as adjuvant therapy are also discussed. The shifts in the GI microbiota and their crosstalk with H. pylori may provide potential targets for H. pylori -related gastric diseases and extragastric manifestations.
Collapse
Affiliation(s)
- Yu Li
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- HuanKui Academy, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Cong He
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Nonghua Lu
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| |
Collapse
|
9
|
Elbehiry A, Abalkhail A, Anajirih N, Alkhamisi F, Aldamegh M, Alramzi A, AlShaqi R, Alotaibi N, Aljuaid A, Alzahrani H, Alzaben F, Rawway M, Ibrahem M, Abdelsalam MH, Rizk NI, Mostafa MEA, Alfaqir MR, Edrees HM, Alqahtani M. Helicobacter pylori: Routes of Infection, Antimicrobial Resistance, and Alternative Therapies as a Means to Develop Infection Control. Diseases 2024; 12:311. [PMID: 39727641 PMCID: PMC11727528 DOI: 10.3390/diseases12120311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/16/2024] [Accepted: 11/19/2024] [Indexed: 12/28/2024] Open
Abstract
Helicobacter pylori (H. pylori) is a Gram-negative, spiral-shaped bacterium that colonizes the gastric epithelium and is associated with a range of gastrointestinal disorders, exhibiting a global prevalence of approximately 50%. Despite the availability of treatment options, H. pylori frequently reemerges and demonstrates increasing antibiotic resistance, which diminishes the efficacy of conventional therapies. Consequently, it is imperative to explore non-antibiotic treatment alternatives to mitigate the inappropriate use of antibiotics. This review examines H. pylori infection, encompassing transmission pathways, treatment modalities, antibiotic resistance, and eradication strategies. Additionally, it discusses alternative therapeutic approaches such as probiotics, anti-biofilm agents, phytotherapy, phototherapy, phage therapy, lactoferrin therapy, and vaccine development. These strategies aim to reduce antimicrobial resistance and enhance treatment outcomes for H. pylori infections. While alternative therapies can maintain low bacterial levels, they do not achieve complete eradication of H. pylori. These therapies are designed to bolster the immune response, minimize side effects, and provide gastroprotective benefits, rendering them suitable for adjunctive use alongside conventional treatments. Probiotics may serve as adjunctive therapy for H. pylori; however, their effectiveness as a monotherapy is limited. Photodynamic and phage therapies exhibit potential in targeting H. pylori infections, including those caused by drug-resistant strains, without the use of antibiotics. The development of a reliable vaccine is also critical for the eradication of H. pylori. This review identifies candidate antigens such as VacA, CagA, and HspA, along with various vaccine formulations, including vector-based and subunit vaccines. Some vaccines have demonstrated efficacy in clinical trials, while others have shown robust immune protection in preclinical studies. Nevertheless, each of the aforementioned alternative therapies requires thorough preclinical and clinical evaluation to ascertain their efficacy, side effects, cost-effectiveness, and patient compliance.
Collapse
Affiliation(s)
- Ayman Elbehiry
- Department of Public Health, College of Applied Medical Sciences, Qassim University, P.O. Box 6666, Buraydah 51452, Saudi Arabia
| | - Adil Abalkhail
- Department of Public Health, College of Applied Medical Sciences, Qassim University, P.O. Box 6666, Buraydah 51452, Saudi Arabia
| | - Nuha Anajirih
- Medical Emergency Services Department, Faculty of Health Sciences, Umm Al-Qura University, Al-Qunfudah P.O. Box 1109, Saudi Arabia
| | - Fahad Alkhamisi
- Department of Preventive Medicine, King Fahad Armed Hospital, Jeddah 23311, Saudi Arabia
| | - Mohammed Aldamegh
- Pathology and Laboratory Medicine Department, Armed Forces Hospital-Jubail, Jubail 31951, Saudi Arabia
| | - Abdullah Alramzi
- Medical Radiology Department, Armed Forces Hospital-Jubail, Jubail 31951, Saudi Arabia
| | - Riyad AlShaqi
- Biomedical Engineer, Armed Forces Medical Services, Riyadh 12426, Saudi Arabia
| | - Naif Alotaibi
- Medical Hospital Administration Department, Armed Forces Hospital-Jubail, Jubail 31951, Saudi Arabia
| | - Abdullah Aljuaid
- Medical Hospital Administration Department, Armed Forces Hospitals in Al Kharj, AL Kharj 16278, Saudi Arabia
| | - Hilal Alzahrani
- Physical Medicine and Rehabilitation Department, Armed Forces Center for Health Rehabilitation, Taif 21944, Saudi Arabia
| | - Feras Alzaben
- Department of Food Service, King Fahad Armed Forces Hospital, Jeddah 23311, Saudi Arabia
| | - Mohammed Rawway
- Biology Department, College of Science, Jouf University, Sakaka 42421, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Mai Ibrahem
- Department of Public Health, College of Applied Medical Science, King Khalid University, Abha 61421, Saudi Arabia
| | - Moustafa H. Abdelsalam
- Department of Physiology, Faculty of Medicine, University of Tabuk, Tabuk 74191, Saudi Arabia
| | - Nermin I. Rizk
- Department of Physiology, Faculty of Medicine, University of Tabuk, Tabuk 74191, Saudi Arabia
| | - Mohamed E. A. Mostafa
- Department of Anatomy, Faculty of Medicine, University of Tabuk, Tabuk 74191, Saudi Arabia
| | - Moneef Rohail Alfaqir
- Department of Anatomy, Faculty of Medicine, University of Tabuk, Tabuk 74191, Saudi Arabia
| | - Husam M. Edrees
- Department of Physiology, Faculty of Medicine, University of Tabuk, Tabuk 74191, Saudi Arabia
| | - Mubarak Alqahtani
- Department of Radiology, King Fahd Armed Forces Hospital, Jeddah 23311, Saudi Arabia
| |
Collapse
|
10
|
Lin Z, Assaraf YG, Kwok HF. Peptides for microbe-induced cancers: latest therapeutic strategies and their advanced technologies. Cancer Metastasis Rev 2024; 43:1315-1336. [PMID: 39008152 DOI: 10.1007/s10555-024-10197-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 06/14/2024] [Indexed: 07/16/2024]
Abstract
Cancer is a significant global health concern associated with multiple distinct factors, including microbial and viral infections. Numerous studies have elucidated the role of microorganisms, such as Helicobacter pylori (H. pylori), as well as viruses for example human papillomavirus (HPV), hepatitis B virus (HBV), and hepatitis C virus (HCV), in the development of human malignancies. Substantial attention has been focused on the treatment of these microorganism- and virus-associated cancers, with promising outcomes observed in studies employing peptide-based therapies. The current paper provides an overview of microbe- and virus-induced cancers and their underlying molecular mechanisms. We discuss an assortment of peptide-based therapies which are currently being developed, including tumor-targeting peptides and microbial/viral peptide-based vaccines. We describe the major technological advancements that have been made in the design, screening, and delivery of peptides as anticancer agents. The primary focus of the current review is to provide insight into the latest research and development in this field and to provide a realistic glimpse into the future of peptide-based therapies for microbe- and virus-induced neoplasms.
Collapse
Affiliation(s)
- Ziqi Lin
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Lab, Faculty of Biology, Technion-Israel Instituteof Technology, Haifa, 3200003, Israel
| | - Hang Fai Kwok
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR.
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR.
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Avenida de Universidade, Taipa, Macau SAR.
| |
Collapse
|
11
|
Liu Z, Xu H, You W, Pan K, Li W. Helicobacter pylori eradication for primary prevention of gastric cancer: progresses and challenges. JOURNAL OF THE NATIONAL CANCER CENTER 2024; 4:299-310. [PMID: 39735441 PMCID: PMC11674435 DOI: 10.1016/j.jncc.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 12/31/2024] Open
Abstract
Gastric cancer remains a significant global health challenge, causing a substantial number of cancer-related deaths, particularly in China. While the exact causes of gastric cancer are still being investigated, Helicobacter pylori (H. pylori) infection has been identified as the primary risk factor, which triggers chronic inflammation and a multistage progression of gastric lesions that may lead to carcinogenesis over a long latency time. Since the 1990s, numerous efforts have focused on assessing the effectiveness of H. pylori eradication in preventing new cases of gastric cancer among both the general population and patients who have undergone early-stage cancer treatment. This body of work, including several community-based interventions and meta-analyses, has shown a reduction in both the incidence of and mortality from gastric cancer following H. pylori treatment, alongside a decreased risk of metachronous gastric cancer. In this review, we seek to consolidate current knowledge on the effects of H. pylori treatment on gastric cancer prevention, its systemic consequences, cost-effectiveness, and the influence of antibiotic resistance and host characteristics on treatment outcomes. We further discuss the potential for precision primary prevention of H. pylori treatment and comment on the efficient implementation of test-and-treat policies and allocation of health resources towards minimizing the burden of gastric cancer globally.
Collapse
Affiliation(s)
- Zongchao Liu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Hengmin Xu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Weicheng You
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Kaifeng Pan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Wenqing Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
12
|
Yan Y, Dong L, Xu J, Zhang Z, Jia P, Zhang J, Chen W, Gao W. Preliminary study on the potential impact of probiotic combination therapy on Helicobacter pylori infection in children using 16S gene sequencing and untargeted metabolomics approach. Front Microbiol 2024; 15:1487978. [PMID: 39545236 PMCID: PMC11560915 DOI: 10.3389/fmicb.2024.1487978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024] Open
Abstract
Objective The purpose of this study was to explore the potential mechanism of Helicobacter pylori (Hp) eradication by probiotic therapy through 16S rRNA gene sequencing technology and untargeted metabolomics. Methods Twenty four Hp-infected children were recruited from the Shanxi Bethune Hospital, and 24 healthy children were recruited as a blank control group. Group A: fecal samples from 24 healthy children. Group B: fecal samples of 24 children with Hp infection. Group B1 (n = 15): fecal samples of group B treated with probiotic therapy for 2 weeks. Group B2 (n = 19): fecal samples of group B treated with probiotic therapy for 4 weeks. The above fecal samples were analyzed by 16S rRNA gene sequencing technology and untargeted metabolomics. Results There was no significant difference in alpha diversity and beta diversity among the four groups, but many bacteria with statistical difference were found in each group at the bacterial genus level and phylum level. LEfSe results showed that in group B, Porphyromonadaceae, Shigella and other microorganisms related to intestinal microecological dysbiosis were enriched. And in group B2, abundant characteristic microorganisms were found, namely Bacillales and Prevotella. KEGG metabolic pathway enrichment analysis showed that groups B1 and B2 were involved in 10 metabolic pathways potentially related to probiotic treatment: purine metabolism, nitrogen metabolism, arginine biosynthesis, alanine, aspartic acid and glutamate metabolism, glyoxylic acid and dicarboxylic acid metabolism, unsaturated fatty acid biosynthesis, fatty acid extension, fatty acid degradation, pyrimidine metabolism, fatty acid biosynthesis. Conclusion Probiotic therapy can inhibit Hp to some extent and can relieve gastrointestinal symptoms, making it a preferred therapy for children with Hp infection and functional abdominal pain. Hp infection can reduce the diversity of intestinal microbes, resulting in the disturbance of intestinal microbiota and changes in the relative abundance of microbiota in children, while probiotic therapy can restore the diversity of intestinal microbes and intestinal microecological balance.
Collapse
Affiliation(s)
- Ya Yan
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Lingjun Dong
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Juan Xu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Zhijiao Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Pengyan Jia
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Jingmin Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Weihong Chen
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Weiqi Gao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
- Shanxi Academy of Advanced Research and Innovation (SAARI), Taiyuan, China
| |
Collapse
|
13
|
Savitri CMA, Fauzia KA, Alfaray RI, Aftab H, Syam AF, Lubis M, Yamaoka Y, Miftahussurur M. Opportunities for Helicobacter pylori Eradication beyond Conventional Antibiotics. Microorganisms 2024; 12:1986. [PMID: 39458296 PMCID: PMC11509656 DOI: 10.3390/microorganisms12101986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/14/2024] [Accepted: 09/19/2024] [Indexed: 10/28/2024] Open
Abstract
Helicobacter pylori (H. pylori) is a bacterium known to be associated with a significant risk of gastric cancer in addition to chronic gastritis, peptic ulcer, and MALT lymphoma. Although only a small percentage of patients infected with H. pylori develop gastric cancer, Gastric cancer causes more than 750,000 deaths worldwide, with 90% of cases being caused by H. pylori. The eradication of this bacterium rests on multiple drug regimens as guided by various consensus. However, the efficacy of empirical therapy is decreasing due to antimicrobial resistance. In addition, biofilm formation complicates eradication. As the search for new antibiotics lags behind the bacterium's ability to mutate, studies have been directed toward finding new anti-H. pylori agents while also optimizing current drug functions. Targeting biofilm, repurposing outer membrane vesicles that were initially a virulence factor of the bacteria, phage therapy, probiotics, and the construction of nanoparticles might be able to complement or even be alternatives for H. pylori treatment. This review aims to present reports on various compounds, either new or combined with current antibiotics, and their pathways to counteract H. pylori resistance.
Collapse
Affiliation(s)
- Camilia Metadea Aji Savitri
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu 879-5593, Oita, Japan; (C.M.A.S.); (R.I.A.)
- Helicobacter Pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60286, Indonesia;
| | - Kartika Afrida Fauzia
- Helicobacter Pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60286, Indonesia;
- Research Centre for Preclinical and Clinical Medicine, National Research and Innovation Agency, Cibinong Science Center, Bogor 16915, Indonesia
| | - Ricky Indra Alfaray
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu 879-5593, Oita, Japan; (C.M.A.S.); (R.I.A.)
- Helicobacter Pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60286, Indonesia;
| | - Hafeza Aftab
- Department of Gastroenterology, Dhaka Medical College and Hospital, Dhaka 1000, Bangladesh;
| | - Ari Fahrial Syam
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia;
| | - Masrul Lubis
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia;
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu 879-5593, Oita, Japan; (C.M.A.S.); (R.I.A.)
- Helicobacter Pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60286, Indonesia;
- Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX 77030, USA
- Division of Genome-Wide Microbiology, Research Center for Global and Local Infectious Diseases (RCGLID), Oita University, Yufu 879-5593, Oita, Japan
- Division of Gastroentero-Hepatology, Department of Internal Medicine, Faculty of Medicine—Dr. Soetomo Teaching Hospital, Universitas Airlangga, Surabaya 60286, Indonesia
| | - Muhammad Miftahussurur
- Helicobacter Pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60286, Indonesia;
- Division of Gastroentero-Hepatology, Department of Internal Medicine, Faculty of Medicine—Dr. Soetomo Teaching Hospital, Universitas Airlangga, Surabaya 60286, Indonesia
| |
Collapse
|
14
|
Pădureanu V, Dop D, Caragea DC, Rădulescu D, Pădureanu R, Forțofoiu MC. Cardiovascular and Neurological Diseases and Association with Helicobacter Pylori Infection-An Overview. Diagnostics (Basel) 2024; 14:1781. [PMID: 39202269 PMCID: PMC11353373 DOI: 10.3390/diagnostics14161781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/05/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
This article investigates the link between Helicobacter pylori (H. pylori) infection and cardiovascular and neurological disorders. Recent research suggests that H. pylori may play a role in cardiovascular diseases like atherosclerosis, myocardial infarction, and stroke, as well as neurological diseases including Alzheimer's disease, multiple sclerosis, and Parkinson's disease. Cardiovascular Diseases: H. pylori induces endothelial dysfunction and chronic inflammation, promoting atherosclerotic plaque formation and other cardiac complications. High infection prevalence in cardiovascular patients implies that systemic inflammation from H. pylori accelerates disease progression. Eradication therapies combined with anti-inflammatory and lipid-lowering treatments may reduce cardiovascular risk. Neurological Diseases: H. pylori may contribute to Alzheimer's, multiple sclerosis, and Parkinson's through systemic inflammation, neuroinflammation, and autoimmune responses. Increased infection prevalence in these patients suggests bacterial involvement in disease pathogenesis. The eradication of H. pylori could reduce neuroinflammation and improve outcomes. Discussions and Future Research: Managing H. pylori infection in clinical practice could impact public health and treatment approaches. Further research is needed to clarify these relationships. Longitudinal and mechanistic studies are essential to fully understand H. pylori's role in these conditions. Conclusions: H. pylori infection is a potential risk factor for various cardiovascular and neurological conditions. Additional research is critical for developing effective prevention and treatment strategies. Targeted therapies, including H. pylori eradication combined with anti-inflammatory treatments, could improve clinical outcomes. These findings highlight the need for an integrated clinical approach to include H. pylori evaluation and treatment.
Collapse
Affiliation(s)
- Vlad Pădureanu
- Department of Internal Medicine, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania; (V.P.); (M.-C.F.)
| | - Dalia Dop
- Department of Pediatrics, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania;
| | - Daniel Cosmin Caragea
- Department of Nephrology, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania;
| | - Dumitru Rădulescu
- Department of Surgery, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania
| | - Rodica Pădureanu
- Department of Internal Medicine, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania; (V.P.); (M.-C.F.)
| | - Mircea-Cătălin Forțofoiu
- Department of Internal Medicine, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania; (V.P.); (M.-C.F.)
| |
Collapse
|
15
|
Wang Y, Zhang M, Li K, Zhang C, Tian H, Luo Y. Investigation of Deoxynivalenol Contamination in Local Area and Evaluation of Its Multiple Intestinal Toxicity. Toxins (Basel) 2024; 16:353. [PMID: 39195763 PMCID: PMC11359542 DOI: 10.3390/toxins16080353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/27/2024] [Accepted: 08/03/2024] [Indexed: 08/29/2024] Open
Abstract
Deoxynivalenol (DON) is a mycotoxin produced by Fusarium fungi widespread in wheat, corn, barley and other grain crops, posing the potential for being toxic to human and animal health, especially in the small intestine, which is the primary target organ for defense against the invasion of toxins. This study firstly investigated DON contamination in a local area of a wheat production district in China. Subsequently, the mechanism of DON toxicity was analyzed through cellular molecular biology combining with intestinal flora and gene transcription analysis; the results indicated that DON exposure can decrease IPEC-J2 cell viability and antioxidant capacity, stimulate the secretion and expression of proinflammatory factors, destroy the gut microbiota and affect normal functions of the body. It is illustrated that DON could induce intestinal damage through structural damage, functional injury and even intestinal internal environment disturbance, and, also, these intestinal toxicity effects are intrinsically interrelated. This study may provide multifaceted information for the treatment of intestinal injury induced by DON.
Collapse
Affiliation(s)
- Yebo Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (Y.W.); (M.Z.); (K.L.)
| | - Minjie Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (Y.W.); (M.Z.); (K.L.)
| | - Ke Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (Y.W.); (M.Z.); (K.L.)
| | - Chune Zhang
- Ningxia Hui Autonomous Region Grain and Oil Product Quality Inspection Center, Yinchuan 750001, China;
| | - Honglei Tian
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (Y.W.); (M.Z.); (K.L.)
| | - Ying Luo
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (Y.W.); (M.Z.); (K.L.)
| |
Collapse
|
16
|
Zhao JT, Zhang Y, Wang XW, Zou PY, Zhao Z, Mei H, Liu YX, Su NY, Zhu YJ, Wang B, Wei YL, Chen DF, Lan CH. Long-term effects of fecal microbiota transplantation on gut microbiota after Helicobacter pylori eradication with bismuth quadruple therapy: A randomized controlled trial. Helicobacter 2024; 29:e13079. [PMID: 38984661 DOI: 10.1111/hel.13079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 03/29/2024] [Accepted: 04/09/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND Eradicating Helicobacter pylori infection by bismuth quadruple therapy (BQT) is effective. However, the effect of BQT and subsequent fecal microbiota transplant (FMT) on the gut microbiota is less known. MATERIALS AND METHODS This prospective randomized controlled trial was conducted at a tertiary hospital in China from January 2019 to October 2020, with the primary endpoints the effect of BQT on the gut microbiota and the effect of FMT on the gut microbiota after bismuth quadruple therapy eradication therapy. A 14-day BQT with amoxicillin and clarithromycin was administered to H. pylori-positive subjects, and after eradication therapy, patients received a one-time FMT or placebo treatment. We then collected stool samples to assess the effects of 14-day BQT and FMT on the gut microbiota. 16 s rDNA and metagenomic sequencing were used to analyze the structure and function of intestinal flora. We also used Gastrointestinal Symptom Rating Scale (GSRS) to evaluate gastrointestinal symptom during treatment. RESULTS A total of 30 patients were recruited and 15 were assigned to either FMT or placebo groups. After eradication therapy, alpha-diversity was decreased in both groups. At the phylum level, the abundance of Bacteroidetes and Firmicutes decreased, while Proteobacteria increased. At the genus level, the abundance of beneficial bacteria decreased, while pathogenic bacteria increased. Eradication therapy reduced some resistance genes abundance while increased the resistance genes abundance linked to Escherichia coli. While they all returned to baseline by Week 10. Besides, the difference was observed in Week 10 by the diarrhea score between two groups. Compared to Week 2, the GSRS total score and diarrhea score decreased in Week 3 only in FMT group. CONCLUSIONS The balance of intestinal flora in patients can be considerably impacted by BQT in the short term, but it has reverted back to baseline by Week 10. FMT can alleviate gastrointestinal symptoms even if there was no evidence it promoted restoration of intestinal flora.
Collapse
Affiliation(s)
- Jing-Tao Zhao
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yi Zhang
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Xing-Wei Wang
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Pei-Ying Zou
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhe Zhao
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Hao Mei
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yu-Xiang Liu
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Na-Yun Su
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yang-Jie Zhu
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Bin Wang
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yan-Ling Wei
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Dong-Feng Chen
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Chun-Hui Lan
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
17
|
Wang H, Wei W, Liu F, Wang M, Zhang Y, Du S. Effects of fucoidan and synbiotics supplementation during bismuth quadruple therapy of Helicobacter pylori infection on gut microbial homeostasis: an open-label, randomized clinical trial. Front Nutr 2024; 11:1407736. [PMID: 39010853 PMCID: PMC11246856 DOI: 10.3389/fnut.2024.1407736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/18/2024] [Indexed: 07/17/2024] Open
Abstract
Background The eradication regimen for Helicobacter pylori (H. pylori) infection can induce gut dysbiosis. In this open-label, prospective, and randomized clinical trial, we aimed to assess the effects of fucoidan supplementation on the eradication rate and gut microbial homeostasis in the context of quadruple therapy, as well as to investigate the combined effects of fucoidan and synbiotics supplementations. Methods Eighty patients with H. pylori infection were enrolled and randomly assigned to one of four treatment groups: the QT (a 2-week quadruple therapy alone), QF (quadruple therapy plus a 6-week fucoidan supplementation), QS (quadruple therapy plus a 6-week synbiotics supplementation), and QFS (quadruple therapy with a 6-week fucoidan and synbiotics supplementation), with 20 patients in each group. The QT regimen included rabeprazole, minocycline, amoxicillin, and bismuth potassium citrate. The synbiotics supplementation contained three strains of Bifidobacterium, three strains of Lactobacillus, along with three types of dietary fiber. All of the patients underwent 13C-urea breath test (13C-UBT) at baseline and at the end of the 6th week after the initiation of the interventions. Fresh fecal samples were collected at baseline and at the end of the 6th week for gut microbiota analysis via 16S rRNA gene sequencing. Results The eradication rates among the four groups showed no significant difference. In the QT group, a significant reduction in α-diversity of gut microbiota diversity and a substantial shift in microbial composition were observed, particularly an increase in Escherichia-Shigella and a decrease in the abundance of genera from the Lachnospiraceae and Ruminococcaceae families. The Simpson index was significantly higher in the QF group than in the QT group. Neither the QS nor QFS groups exhibited significant changes in α-diversity or β-diversity. The QFS group was the only one that did not show a significant increase in the relative abundance of Escherichia-Shigella, and the relative abundance of Klebsiella significantly decreased in this group. Conclusion The current study provided supporting evidence for the positive role of fucoidan and synbiotics supplementation in the gut microbiota. The combined use of fucoidan and synbioticss might be a promising adjuvant regimen to mitigate gut dysbiosis during H. pylori eradication therapy.
Collapse
Affiliation(s)
- Huifen Wang
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
| | - Wei Wei
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
- Department of Clinical Nutrition, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Fang Liu
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
| | - Miao Wang
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
| | - Yanli Zhang
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
| | - Shiyu Du
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
18
|
Tohumcu E, Kaitsas F, Bricca L, Ruggeri A, Gasbarrini A, Cammarota G, Ianiro G. Helicobacter pylori and the Human Gastrointestinal Microbiota: A Multifaceted Relationship. Antibiotics (Basel) 2024; 13:584. [PMID: 39061266 PMCID: PMC11274338 DOI: 10.3390/antibiotics13070584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Helicobacter pylori is a type of Gram-negative bacteria belonging to the Proteobacteria phylum which is known to cause gastrointestinal disorders such as gastritis and gastric ulcers. Its treatment is based on current eradication regimens, which are composed of combinations of antibiotics such as clarithromycin, metronidazole, levofloxacin and amoxicillin, often combined with a proton pump inhibitor (PPI). With the development of sequencing technologies, it has been demonstrated that not only does the colonization of the gastric and gut environment by H. pylori cause microbial changes, but also the treatment regimens used for its eradication have a significant altering effect on both the gastric and gut microbiota. Here, we review current knowledge on microbiota modulations of current therapies in both environments. We also summarize future perspectives regarding H. pylori infection, the integration of probiotics into therapy and what challenges are being faced on a global basis when we talk about eradication.
Collapse
Affiliation(s)
- Ege Tohumcu
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (E.T.); (F.K.); (A.R.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
| | - Francesco Kaitsas
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (E.T.); (F.K.); (A.R.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
| | - Ludovica Bricca
- Department of Surgical, Oncological and Gastroenterological Sciences (DiSCOG), Padua Univeristy, 35123 Padova, Italy;
| | - Alessandro Ruggeri
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (E.T.); (F.K.); (A.R.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (E.T.); (F.K.); (A.R.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
| | - Giovanni Cammarota
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (E.T.); (F.K.); (A.R.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
| | - Gianluca Ianiro
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (E.T.); (F.K.); (A.R.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
19
|
Yang H, Lin Y, Ma Y, Li J, Li J, Huo Z, Yang P, Zhang C. Screening Probiotics for Anti- Helicobacter pylori and Investigating the Effect of Probiotics on Patients with Helicobacter pylori Infection. Foods 2024; 13:1851. [PMID: 38928794 PMCID: PMC11202727 DOI: 10.3390/foods13121851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Probiotics are natural microbial agents with beneficial properties such as bacteriostatic and anti-infective properties. Lactobacillus plantarum Q21, Q25 and QA85, were isolated from the Chinese specialty fermented food "Jiangshui" and proved to be highly resistant to Helicobacter pylori (p < 0.0001). In vitro results showed that Q21, Q25 and QA85 strongly inhibited H. pylori and could specifically co-aggregate H. pylori in vitro (more than 56%). Strains have the potential to adhere to cells and hinder H. pylori colonization (p < 0.0001). To assess the anti-H. pylori efficacy of strains in vivo, volunteers were recruited and a self-controlled study of probiotic intervention was conducted. Compared to pre-probiotics, volunteers who took Q21, Q25 and QA85 for 1 month showed significant improvement in discomfort, a significant reduction in GSRS scores (p < 0.05), and modulation of inflammatory response (p < 0.05). Q21, Q25 and QA85 resulted in a decreasing trend of H. pylori load in volunteers (454.30 ± 327.00 vs. 328.35 ± 237.19, p = 0.06). However, the strains were not significantly effective in modulating the imbalance of the gut microbiota caused by H. pylori infection. In addition, strains affect metabolic pathways by increasing the levels of O-Phosphoethanolamine and other related metabolites, which may ameliorate associated symptoms. Therefore, Lactobacillus plantarum Q21, Q25 and QA85 can be regarded as a candidate probiotic preparation that exerts direct or indirect anti-H. pylori effects by inhibiting H. pylori activity and colonization, reducing inflammation and discomfort, maintaining homeostasis in the internal environment, affecting the metabolic pathways and repairing the body barrier. They can play a role in relieving H. pylori infection.
Collapse
Affiliation(s)
- Hui Yang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yang Lin
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
| | - Yuchan Ma
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Jiaru Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Junxiang Li
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
| | - Zeqi Huo
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
| | - Pingrong Yang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Chunjiang Zhang
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
20
|
Nelwan EJ, Herdiman A, Kalaij AGI, Lauditta RK, Yusuf SM, Suarthana E. Role of probiotic as adjuvant in treating various infections: a systematic review and meta-analysis. BMC Infect Dis 2024; 24:505. [PMID: 38773400 PMCID: PMC11106949 DOI: 10.1186/s12879-024-09259-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/26/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Research on the advantages of probiotics has attracted increasing interest based on the number of publications, products, and public awareness of their benefits. This review evaluated the role of probiotics (single and multiple regimens) as an additional regimen to treat common infectious diseases, including Helicobacter. pylori, diarrheal infections, urinary tract infections (UTIs), upper respiratory tract infections (URTIs), and HIV infections. METHODS We searched randomized controlled trials from PubMed, Scopus, Embase, and Cochrane and identified 6,950 studies. Duplicates were removed, and titles and abstracts were filtered. Bias was evaluated using the Cochrane Risk of Bias Tool for Randomized Trials (ROB 1.0 and 2.0). The certainty of the evidence was evaluated using GRADE. Data were extracted and meta-analysis was performed using RevMan. RESULTS A total of 32 studies were included in this study (22 H. pylori studies, 2 diarrheal infection studies, 6 UTI studies, and 2 HIV infection studies). There was no study on URTI. Probiotics, in addition to primary treatment, could improve the eradication of H. pylori versus the control (RR: 1.09; 95% CI:1.04 - 1.13, p value = 0.001) and achieve a cure range of Nugent score in UTI patients (RR 1.38; 95% CI: 1.01 - 1.89, p value = 0.04). For eradicating H. pylori infection, subgroup analysis based on the therapy regimen showed that standard triple therapy was slightly superior compared to quadruple therapy in eradicating H. pylori (RR: 1.14 vs. 1.01, respectively). Single strain probiotics showed a similar effect to multiple strain probiotic regimens (both had an RR of 1.09). The effect estimates of the use of single strain probiotics as adjuvant therapy in eradicating H. pylori and the use of probiotics in UTI had a high certainty of evidence. Meta-analysis was not performed for infectious diarrheal because there were only two eligible studies with different probiotic supplementations and outcome parameters. Nonetheless, they showed that the diarrheal incidence was lower and complete remission of diarrheal was higher after the regimen of probiotics. Similarly, a meta-analysis was not performed for HIV infection because the two eligible studies used different designs and comparators with contradicting findings. CONCLUSION This meta-analysis showed beneficial use of single strain probiotics as adjuvant therapy in eradicating H. pylori and the use of probiotics in UTI. Probiotic supplementation might not be beneficial for patients given a quadruple therapy. Single-strain and multi-strain probiotic regimens had similar effects in increasing the eradication rate of H. pylori. Our study also suggested that the benefits of probiotics as an additional regimen in infectious diarrheal and HIV infections remain unclear; more studies are needed to confirm the benefits.
Collapse
Affiliation(s)
- Erni Juwita Nelwan
- Faculty of Medicine, Universitas Indonesia, DKI Jakarta, 10430, Indonesia.
- Division of Tropical and Infectious Disease, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, DKI Jakarta, 10430, Indonesia.
- Infectious Disease and Immunology Research Center, Indonesia Medical and Education Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, DKI Jakarta, 10430, Indonesia.
| | - Allerma Herdiman
- Faculty of Medicine, Universitas Indonesia, DKI Jakarta, 10430, Indonesia
| | | | - Richella Khansa Lauditta
- Division of Tropical and Infectious Disease, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, DKI Jakarta, 10430, Indonesia
| | - Syarif Maulana Yusuf
- Infectious Disease and Immunology Research Center, Indonesia Medical and Education Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, DKI Jakarta, 10430, Indonesia
| | - Eva Suarthana
- Health Technology Assessment Unit (TAU) of the McGill University Health Center, Montreal, Canada
| |
Collapse
|
21
|
Shadvar N, Akrami S, Mousavi Sagharchi SMA, Askandar RH, Merati A, Aghayari M, Kaviani N, Afkhami H, Kashfi M. A review for non-antibiotic treatment of Helicobacter pylori: new insight. Front Microbiol 2024; 15:1379209. [PMID: 38774508 PMCID: PMC11106852 DOI: 10.3389/fmicb.2024.1379209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/12/2024] [Indexed: 05/24/2024] Open
Abstract
Gastric ulcers and gastric cancer are brought on by the Helicobacter pylori bacteria, which colonizes under the stomach mucous membrane. Different medication regimens are used to remove it, but the illness returns and becomes more resistant, which lowers the treatment rates. Additionally, this bacterium now exhibits a skyrocketing level of multi-drug resistance, necessitating recurrent therapeutic treatments. The negative effects of synthetic medications in comparison to conventional therapies are another significant factor in favor of non-pharmacological therapy. The most significant side effects of popular anti-gastric ulcer medications include nausea, vomiting, and diarrhea. Stomach ulcers have previously been treated with herbal remedies and complementary treatments like probiotics. When probiotics are ingested, the host experiences several advantages that may be brought about by altering the bacterial flora in the digestive system. Additionally, stronger-acting chemical compounds and plant extracts can be employed to treat patients. In this article, we look at the substances and medications that are utilized in place of synthetic stomach ulcer-curing treatments.
Collapse
Affiliation(s)
- Neda Shadvar
- Department of Microbiology and Parasitology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
- Student Research Committee, Bushehr University of Medical Sciences, Bushehr, Iran
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sousan Akrami
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Alireza Merati
- Department of Psychology and Educational Sciences, Payame Noor University, Tehran, Iran
| | - Masoomeh Aghayari
- Department of Microbiology, Faculty of Sciences, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Nikki Kaviani
- School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hamed Afkhami
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Mojtaba Kashfi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Fellowship in Clinical Laboratory Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
22
|
Luzko I, P Nyssen O, Moreira L, Gisbert JP. Safety profile of Helicobacter pylori eradication treatments: literature review and updated data of the European Registry on Helicobacter pylori management (Hp-EuReg). Expert Opin Drug Saf 2024; 23:553-564. [PMID: 38557327 DOI: 10.1080/14740338.2024.2338245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Abstract
INTRODUCTION Helicobacter pylori (H. pylori), the most prevalent chronic infection globally, is the major cause of relevant diseases such as gastric cancer, leading to high morbidity and mortality worldwide. Several studies have focused on optimize H. pylori eradication treatment through combination therapies and antibiotic resistance. However, the adverse events profile and its impact, as a primary outcome, remains underexplored.The aim of this review was to summarize the available data on the safety of the most common regimens for H. pylori eradication and its impact on the compliance. AREAS COVERED This review encompassed the published evidence from the years 2008 to 2023 regarding both the safety and compliance for most common H. pylori eradication regimens. The main sources for this review comprised MEDLINE, PubMed, and Cochrane electronic databases. Furthermore, it included a safety analysis of unpublished data from the European Registry on H. pylori management (Hp-EuReg). EXPERT OPINION Poor compliance is correlated with significantly lower cure rates, and this is a unique modifiable source of H. pylori treatment failure. Eradication treatments have become complex, involving multiple drugs and dosing intervals. Thus, patient education is crucial; doctors must explain to the patient about potential temporary and most often harmless side effects.
Collapse
Affiliation(s)
- Irina Luzko
- Hospital Clínic de Barcelona, Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), IDIBAPS (Institut d'Investigacions Biomèdiques August Pi i Sunyer), University of Barcelona, Barcelona, Spain
| | - Olga P Nyssen
- Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Leticia Moreira
- Hospital Clínic de Barcelona, Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), IDIBAPS (Institut d'Investigacions Biomèdiques August Pi i Sunyer), University of Barcelona, Barcelona, Spain
| | - Javier P Gisbert
- Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| |
Collapse
|
23
|
Elghannam MT, Hassanien MH, Ameen YA, Turky EA, ELattar GM, ELRay AA, ELTalkawy MD. Helicobacter pylori and oral-gut microbiome: clinical implications. Infection 2024; 52:289-300. [PMID: 37917397 PMCID: PMC10954935 DOI: 10.1007/s15010-023-02115-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023]
Abstract
More than half of the world's population are colonized with H. pylori; however, the prevalence varies geographically with the highest incidence in Africa. H. pylori is probably a commensal organism that has been associated with the development of gastritis, ulcers, and gastric cancer. H. pylori alone is most probably not enough for the development of gastric carcinoma, but evidence for its association with the disease is high and has, therefore, been classified by the International Agency for Research on Cancer as a Class 1 carcinogen. Bacteroidetes and Fusobacteria positively coexisted during H. pylori infection along the oral-gut axis. The eradication therapy required to treat H. pylori infection can also have detrimental consequences for the gut microbiota, leading to a decreased alpha diversity. Therefore, therapy regimens integrated with probiotics may abolish the negative effects of antibiotic therapy on the gut microbiota. These eradication therapies combined with probiotics have also higher rates of eradication, when compared to standard treatments, and are associated with reduced side effects, improving the patient's compliance. The eradication therapy not only affects gut microbiome but also affects the oral microbiome with robust predominance of harmful bacteria. However, there have been reports of a protective role of H. pylori in Barrett's esophagus, esophageal adenocarcinoma, eosinophilic esophagitis, IBD, asthma, and even multiple sclerosis. Therefore, eradication therapy should be carefully considered, and test to treat policy should be tailored to specific communities especially in highly endemic areas. Supplementation of probiotics, prebiotics, herbals, and microbial metabolites to reduce the negative effects of eradication therapy should be considered. After failure of many eradication attempts, the benefits of H. pylori eradication should be carefully balanced against the risk of adverse effects especially in the elderly, persons with frailty, and intolerance to antibiotics.
Collapse
Affiliation(s)
- Maged T Elghannam
- Hepatogastroenterology Department, Theodor Bilharz Research Institute, Giza, Egypt.
| | - Moataz H Hassanien
- Hepatogastroenterology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Yosry A Ameen
- Hepatogastroenterology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Emad A Turky
- Hepatogastroenterology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Gamal M ELattar
- Hepatogastroenterology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Ahmed A ELRay
- Hepatogastroenterology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mohammed D ELTalkawy
- Hepatogastroenterology Department, Theodor Bilharz Research Institute, Giza, Egypt
| |
Collapse
|
24
|
Abdulkhakov S, Markelova M, Safina D, Siniagina M, Khusnutdinova D, Abdulkhakov R, Grigoryeva T. Butyric Acid Supplementation Reduces Changes in the Taxonomic and Functional Composition of Gut Microbiota Caused by H. pylori Eradication Therapy. Microorganisms 2024; 12:319. [PMID: 38399723 PMCID: PMC10892928 DOI: 10.3390/microorganisms12020319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
H. pylori eradication therapy leads to significant changes in the gut microbiome, including influence on the gut microbiome's functional potential. Probiotics are one of the most studied potential methods for reducing the microbiota-related consequences of antibiotics. However, the beneficial effects of probiotics are still under discussion. In addition, there are some concerns about the safety of probiotics, emphasizing the need for research of other therapeutic interventions. The aim of our study was to evaluate the influence of butyric acid+inulin supplements on gut microbiota changes (the gut microbiota composition, abundance of metabolic pathways, and gut resistome) caused by H. pylori eradication therapy. MATERIALS AND METHODS Twenty two H. pylori-positive patients, aged 19 to 64 years, were enrolled in the study and randomized into two treatment groups, as follows: (1) ECAB-14 (n = 11), with esomeprazole 20 mg, clarithromycin 500 mg, amoxicillin 1000 mg, and bismuthate tripotassium dicitrate 240 mg, twice daily, per os, for 14 days, and (2), ECAB-Z-14 (n = 11), with esomeprazole 20 mg, clarithromycin 500 mg, amoxicillin 1000 mg, and bismuthate tripotassium dicitrate 240 mg, twice daily, along with butyric acid+inulin (Zacofalk), two tablets daily, each containing 250 mg of butyric acid, and 250 mg of inulin, per os, for 14 days. Fecal samples were collected from each subject prior to eradication therapy (time point I), after the end of eradication therapy (time point II), and a month after the end of eradication therapy (time point III). The total DNA from the fecal samples was isolated for whole genome sequencing using the Illumina NextSeq 500 platform. Qualitative and quantitative changes in gut microbiota were assessed, including alpha and beta diversity, functional potential and antibiotic resistance gene profiling. RESULTS Gut microbiota alpha diversity significantly decreased compared with the baseline immediately after eradication therapy in both treatment groups (ECAB-14 and ECAB-Z-14). This diversity reached its baseline in the ECAB-Z-14 treatment group a month after the end of eradication therapy. However, in the ECAB-14 treatment arm, a reduction in the Shannon index was observed up to a month after the end of H. pylori eradication therapy. Fewer alterations in the gut microbiota functional potential were observed in the ECAB-Z-14 treatment group. The abundance of genes responsible for the metabolic pathway associated with butyrate production decreased only in the ECAB-14 treatment group. The prevalence of antibiotic-resistant genes in the gut microbiota increased significantly in both treatment groups by the end of treatment. However, more severe alterations were noted in the ECAB-14 treatment group. CONCLUSIONS H. pylori eradication therapy leads to taxonomic changes, a reduction in the alpha diversity index, and alterations in the functional potential of the gut microbiota and gut resistome. Taking butyric acid+inulin supplements during H. pylori eradication therapy could help maintain the gut microbiota in its initial state and facilitate its recovery after H. pylori eradication.
Collapse
Affiliation(s)
- Sayar Abdulkhakov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia; (M.M.); (D.S.); (M.S.); (D.K.); (T.G.)
- Department of Outpatient Therapy and General Medical Practice, Kazan State Medical University, 420012 Kazan, Russia
| | - Maria Markelova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia; (M.M.); (D.S.); (M.S.); (D.K.); (T.G.)
| | - Dilyara Safina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia; (M.M.); (D.S.); (M.S.); (D.K.); (T.G.)
| | - Maria Siniagina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia; (M.M.); (D.S.); (M.S.); (D.K.); (T.G.)
| | - Dilyara Khusnutdinova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia; (M.M.); (D.S.); (M.S.); (D.K.); (T.G.)
| | - Rustam Abdulkhakov
- Department of Hospital Therapy, Kazan State Medical University, 420012 Kazan, Russia;
| | - Tatiana Grigoryeva
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia; (M.M.); (D.S.); (M.S.); (D.K.); (T.G.)
| |
Collapse
|
25
|
Gildner TE, Urlacher SS, Nemeth KL, Beauregard JA, Pfaff Nash M, Zhang A, Waimon S, Cepon-Robins TJ. Dual burden of infectious and chronic disease in low-resource U.S. communities: examining relationships between infection, adiposity, and inflammation. Ann Hum Biol 2024; 51:2368851. [PMID: 38934696 DOI: 10.1080/03014460.2024.2368851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Rising global obesity rates are linked with inflammation and associated morbidities. These negative outcomes are generally more common in low-resource communities within high-income countries; however, it is unclear how frequent infectious disease exposures in these settings may influence the relationship between adiposity and inflammation. AIM We test associations between adiposity measures and distinct forms of inflammation among adults (n = 80) living in low-resource U.S. communities experiencing high levels of obesity and pathogen exposure. SUBJECTS AND METHODS Adiposity measures included BMI and percent body fat. Inflammation measures included systemic inflammation (C-reactive protein [CRP]) and localised intestinal inflammation (faecal calprotectin [FC]). The relationship between a condition characterised by elevated inflammation (Helicobacter pylori infection) and adiposity was also considered. RESULTS Adiposity was not significantly related to FC concentration. However, both adiposity measures were positively related with odds of CRP elevation and H. pylori infection was associated with significantly lower adiposity measures (all p < 0.05). CONCLUSION For this disadvantaged U.S. sample, the association between adiposity and inflammation varies by the systemic/localised nature of inflammation and the likely underlying cause of inflammation. Defining these associations will improve understanding of how rising obesity rates shape long-term health inequities, with implications for more effective intervention design.
Collapse
Affiliation(s)
- Theresa E Gildner
- Department of Anthropology, Washington University in St. Louis, St. Louis, MO, USA
| | - Samuel S Urlacher
- Department of Anthropology, Baylor University, Waco, TX, USA
- Child and Brain Development Program, CIFAR, Toronto, Canada
| | - Katherine L Nemeth
- Department of Anthropology, Washington University in St. Louis, St. Louis, MO, USA
| | - Jade A Beauregard
- Department of Anthropology, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Angela Zhang
- Department of Anthropology, Washington University in St. Louis, St. Louis, MO, USA
| | - Sophie Waimon
- Department of Anthropology, Washington University in St. Louis, St. Louis, MO, USA
| | - Tara J Cepon-Robins
- Department of Anthropology, University of Colorado Colorado Springs, Colorado Springs, CO, USA
| |
Collapse
|
26
|
Engelsberger V, Gerhard M, Mejías-Luque R. Effects of Helicobacter pylori infection on intestinal microbiota, immunity and colorectal cancer risk. Front Cell Infect Microbiol 2024; 14:1339750. [PMID: 38343887 PMCID: PMC10853882 DOI: 10.3389/fcimb.2024.1339750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/10/2024] [Indexed: 02/15/2024] Open
Abstract
Infecting about half of the world´s population, Helicobacter pylori is one of the most prevalent bacterial infections worldwide and the strongest known risk factor for gastric cancer. Although H. pylori colonizes exclusively the gastric epithelium, the infection has also been associated with various extragastric diseases, including colorectal cancer (CRC). Epidemiological studies reported an almost two-fold increased risk for infected individuals to develop CRC, but only recently, direct causal and functional links between the chronic infection and CRC have been revealed. Besides modulating the host intestinal immune response, H. pylori is thought to increase CRC risk by inducing gut microbiota alterations. It is known that H. pylori infection not only impacts the gastric microbiota at the site of infection but also leads to changes in bacterial colonization in the distal large intestine. Considering that the gut microbiome plays a driving role in CRC, H. pylori infection emerges as a key factor responsible for promoting changes in microbiome signatures that could contribute to tumor development. Within this review, we want to focus on the interplay between H. pylori infection, changes in the intestinal microbiota, and intestinal immunity. In addition, the effects of H. pylori antibiotic eradication therapy will be discussed.
Collapse
Affiliation(s)
| | | | - Raquel Mejías-Luque
- Institute for Medical Microbiology, Immunology and Hygiene, TUM School of Medicine and Health, Department Preclinical Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
27
|
Ouyang ML, Zou SP, Cheng Q, Shi X, Zhao YZ, Sun MH. Effect of potassium-competitive acid blockers on human gut microbiota: a systematic review and meta-analysis. Front Pharmacol 2023; 14:1269125. [PMID: 38192408 PMCID: PMC10773775 DOI: 10.3389/fphar.2023.1269125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024] Open
Abstract
Background: Vonoprazan has been reported to exert more potent and long-lasting gastric acid inhibition than proton pump inhibitors, potentially leading to a greater impact on the gut microbiota. This study aimed to clarify changes in microbial diversity and bacterial composition after VPZ treatments. Methods: We searched from PubMed, Embase, WOS, Scopus, Cochrane Library, and ClinicalTrials.gov (all years up to May 2023). The primary outcomes were alpha and beta diversity, as well as differences in gut microbiota composition between before and after VPZ treatments. We performed a meta-analysis to uncover the potential changes in human gut microbiota among VPZ users by pooled mean difference (MD) with a 95% confidence interval (CI). The risk of bias was assessed using the ROBINS-I tool. Results: A total of 12 studies were included to compare differences before and after VPZ treatments. Compared with baseline, alpha diversity was significantly reduced after VPZ treatments and gradually returned to baseline with longer follow-up. At the phylum level, there was a decrease in the relative abundance of Firmicutes and Actinobacteria, while Bacteroidetes increased compared with baseline. At the genus level, we found a significant decrease in the relative abundance of Coprococcus and Bifidobacterium and a significant increase in the relative abundance of Bacteroides compared with those before treatment. In subgroup analyses according to country and participants, we found differences in microbial changes after VPZ treatments. Conclusion: Vonoprazan can affect the changes of gut microbiota, which may be potentially associated with its strong ability of acid inhibition. However, due to the large heterogeneity, further studies are required to validate these findings. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42023412265.
Collapse
Affiliation(s)
| | | | | | | | | | - Ming-Hui Sun
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
28
|
Zhang J, Hu Y, Wu L, Zeng Q, Hu B, Luo Z, Wang Y. Causal effect of gut microbiota on Gastroduodenal ulcer: a two-sample Mendelian randomization study. Front Cell Infect Microbiol 2023; 13:1322537. [PMID: 38156322 PMCID: PMC10753992 DOI: 10.3389/fcimb.2023.1322537] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/20/2023] [Indexed: 12/30/2023] Open
Abstract
Background Gastroduodenal ulcers are associated with Helicobacter pylori infection and the use of nonsteroidal anti-inflammatory drugs (NSAIDs). However, the causal relationship between gastroduodenal ulcers and gut microbiota, especially specific gut microbiota, remains unclear. Methods We conducted an analysis of published data on the gut microbiota and Gastroduodenal ulcer using genome-wide association studies (GWAS). Two-sample Mendelian randomization (MR) analysis was performed to determine the causal relationship between gut microbiota and Gastroduodenal ulcer. Sensitivity, heterogeneity, and pleiotropy analyses were conducted to confirm the accuracy of the research findings. Results Our study showed that the abundance of Enterobacteriaceae, Butyricicoccus, Candidatus Soleaferrea, Lachnospiraceae NC2004 group, Peptococcus, and Enterobacteriales was negatively correlated with the risk of Gastroduodenal ulcer. Conversely, the abundance of Streptococcaceae, Lachnospiraceae UCG010, Marvinbryantia, Roseburia, Streptococcus, Mollicutes RF9, and NB1n was positively correlated with the risk of Gastroduodenal ulcer. MR analysis revealed causal relationships between 13 bacterial genera and Gastroduodenal ulcer. Conclusion This study represents a groundbreaking endeavor by furnishing preliminary evidence regarding the potentially advantageous or detrimental causal link between the gut microbiota and Gastroduodenal ulcer, employing Mendelian Randomization (MR) analysis for the first time. These discoveries have the potential to yield fresh perspectives on the prevention and therapeutic approaches concerning Gastroduodenal ulcer, with a specific focus on the modulation of the gut microbiota.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Emergency, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Province, China
| | - Yingqiu Hu
- Department of Emergency, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Province, China
| | - Lidong Wu
- Department of Emergency, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Province, China
| | - Qi Zeng
- Queen Mary University of London, Nanchang University, Jiangxi Province, China
| | - Bin Hu
- Department of Emergency, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Province, China
| | - Zhiqiang Luo
- Department of Emergency, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Province, China
| | - Yibing Wang
- Department of Emergency, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Province, China
| |
Collapse
|
29
|
Kingkaew E, Woraprayote W, Booncharoen A, Niwasabutra K, Janyaphisan T, Vilaichone RK, Yamaoka Y, Visessanguan W, Tanasupawat S. Functional genome analysis and anti-Helicobacter pylori activity of a novel bacteriocinogenic Lactococcus sp. NH2-7C from Thai fermented pork (Nham). Sci Rep 2023; 13:20362. [PMID: 37990119 PMCID: PMC10663479 DOI: 10.1038/s41598-023-47687-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/16/2023] [Indexed: 11/23/2023] Open
Abstract
Helicobacter pylori, linked to gastric diseases, is targeted for probiotic treatment through bacteriocin production. Bacteriocins have gained recognition for their non-toxic effects on host cells and their ability to combat a wide range of pathogens. This study aimed to taxonomically characterize and evaluate the safety and probiotic properties of the novel species of Lactococcus sp. NH2-7C isolated from fermented pork, as well as its bacteriocin NH2-7C, both in vitro and in silico. Comparative genotypic analysis revealed an average nucleotide identity of 94.96%, an average amino acid identity of 94.29%, and a digital DNA-DNA hybridization value of 63.80% when compared to Lactococcus lactis subsp. lactis JCM 5805T. These findings suggest that strain NH2-7C represents a novel species within the genus Lactococcus. In silico assessments confirmed the non-pathogenic nature of strain NH2-7C and the absence of genes associated with virulence and biogenic amine formation. Whole-genome analysis revealed the presence of the nisA gene responsible for nisin A production, indicating its potential as a beneficial compound with anti-Helicobacter pylori activity and non-toxic characteristics. Probiotic assessments indicated bile salt hydrolase and cholesterol assimilation activities, along with the modulation of interleukin-6 and tumour necrosis factor-α secretion. Strain NH2-7C demonstrated gastrointestinal tolerance and the ability to adhere to Caco-2 cells, affirming its safety and probiotic potential. Additionally, its ability to produce bacteriocins supports its suitability as a functional probiotic strain with therapeutic potential. However, further in vitro and in vivo investigations are crucial to ensure its safety and explore potential applications for Lactococcus sp. NH2-7C as a probiotic agent.
Collapse
Affiliation(s)
- Engkarat Kingkaew
- Department of Biology, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Weerapong Woraprayote
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Auttaporn Booncharoen
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Kanidta Niwasabutra
- Thailand Institute of Scientific and Technological Research (TISTR) Biodiversity Research Centre, Pathum Thani, 12120, Thailand
| | - Thitiphorn Janyaphisan
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Ratha-Korn Vilaichone
- GI Unit, Department of Medicine, and Center of Excellence in Digestive Diseases, Thammasat University, Thailand Science Research and Innovation Fundamental Fund, Bualuang ASEAN Chair Professorship at Thammasat University, Pathum Thani, 12120, Thailand
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Faculty of Medicine Oita University, Yufu, Oita, Japan
| | - Wonnop Visessanguan
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand.
| | - Somboon Tanasupawat
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
30
|
Han Z, Min Y, Pang K, Wu D. Therapeutic Approach Targeting Gut Microbiome in Gastrointestinal Infectious Diseases. Int J Mol Sci 2023; 24:15654. [PMID: 37958637 PMCID: PMC10650060 DOI: 10.3390/ijms242115654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
While emerging evidence highlights the significance of gut microbiome in gastrointestinal infectious diseases, treatments like Fecal Microbiota Transplantation (FMT) and probiotics are gaining popularity, especially for diarrhea patients. However, the specific role of the gut microbiome in different gastrointestinal infectious diseases remains uncertain. There is no consensus on whether gut modulation therapy is universally effective for all such infections. In this comprehensive review, we examine recent developments of the gut microbiome's involvement in several gastrointestinal infectious diseases, including infection of Helicobacter pylori, Clostridium difficile, Vibrio cholerae, enteric viruses, Salmonella enterica serovar Typhimurium, Pseudomonas aeruginosa Staphylococcus aureus, Candida albicans, and Giardia duodenalis. We have also incorporated information about fungi and engineered bacteria in gastrointestinal infectious diseases, aiming for a more comprehensive overview of the role of the gut microbiome. This review will provide insights into the pathogenic mechanisms of the gut microbiome while exploring the microbiome's potential in the prevention, diagnosis, prediction, and treatment of gastrointestinal infections.
Collapse
Affiliation(s)
- Ziying Han
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Dongcheng District, Beijing 100730, China
| | - Yiyang Min
- Peking Union Medical College, Beijing 100730, China
| | - Ke Pang
- Peking Union Medical College, Beijing 100730, China
| | - Dong Wu
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Dongcheng District, Beijing 100730, China
| |
Collapse
|
31
|
Hong Q, Wang J, Zhang H, Liu X, Liu Z. Study of the effect of Lactobacillus crispatus FSCDJY67L3 on Helicobacter Pylori eradication: a double-blind randomized controlled clinical trial. Front Immunol 2023; 14:1265995. [PMID: 38022520 PMCID: PMC10645133 DOI: 10.3389/fimmu.2023.1265995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/29/2023] [Indexed: 12/01/2023] Open
Abstract
Helicobacter pylori (H. pylori) is a gram-negative bacterium exhibiting high pathogenicity. Traditional antibiotic treatments are considered ineffective as the H. pylori resistance has increased. Recently, a quadruple therapy strategy of probiotics and antibiotics to eliminate H. pylori was proposed. Probiotics play a therapeutic role as supplements in this process. The present research screened a probiotic strain (Lactobacillus crispatus FSCDJY67L3) that co-aggregates strongly with H. pylori. L. crispatus FSCDJY67L3 was demonstrated to significantly reduce H. pylori load (14C breath test) in clinical trials with H. pylori-positive patients. The Gastrointestinal Symptom Rating Scale (GSRS) score decreased, indicating improvement in the gastrointestinal discomfort of patients. Furthermore, L. crispatus FSCDJY67L3 showed no change in the structure of the intestinal flora of patients. Routine blood indices and blood biochemical indices related to liver and kidney function were also not affected in the patients. Therefore, L. crispatus FSCDJY67L3 may be used clinically as a supplement for the treatment of H. pylori. Clinical Trial Registration https://www.chictr.org.cn/, Chinese Clinical Trial Registry (ChiCTR2100053710).
Collapse
Affiliation(s)
- Qing Hong
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Jidong Wang
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Huayue Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiaoming Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zhenmin Liu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| |
Collapse
|
32
|
Yao G, Fan X, Lu D. Efficacy and safety of probiotic-supplemented bismuth quadruple therapy for the treatment of Helicobacter pylori infection: a systematic review and meta-analysis. J Int Med Res 2023; 51:3000605231203841. [PMID: 37848344 PMCID: PMC10586011 DOI: 10.1177/03000605231203841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/11/2023] [Indexed: 10/19/2023] Open
Abstract
OBJECTIVE We performed a meta-analysis to determine whether the addition of probiotics to the bismuth quadruple therapy (BQT) for Helicobacter pylori would improve the incidence of eradication and reduce that of side effects. METHODS Randomized controlled trials matching the inclusion criteria were collected from PubMed, Embase, Web of Science, and The Cochrane Central Register of Controlled Trials. A Mantel-Haenszel random-effects model was used to calculate pooled risk ratios (RRs) and 95% confidence intervals (CIs) for the incidences of eradication rate, side effects as a whole, diarrhea, and other side effects. RESULTS Ten studies were selected for inclusion in the meta-analysis. The pooled RRs for the eradication rates in intention-to-treat and per-protocol analyses of the probiotic group vs. the control group were 1.07 (95% CI: 1.02-1.11) and 1.04 (95% CI: 1.00-1.07), respectively. Probiotic supplementation reduced the incidences of side effects (RR 0.58, 95% CI: 0.37-0.91), diarrhea (RR 0.41, 95% CI: 0.25-0.67), and bitter taste (RR 0.63, 95% CI: 0.40-0.99). CONCLUSIONS The results of this meta-analysis support the use of probiotics in combination with BQT in the clinical management of patients with H. pylori infection.
Collapse
Affiliation(s)
- Gaoyan Yao
- Department of Gastroenterology, The Affiliated People’s Hospital of Ningbo University, Ningbo, China
| | - Xiaoyuan Fan
- Department of Gastroenterology, The Affiliated People’s Hospital of Ningbo University, Ningbo, China
| | - Dewen Lu
- Department of Gastroenterology, The Affiliated People’s Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
33
|
Paraskevaidis I, Xanthopoulos A, Tsougos E, Triposkiadis F. Human Gut Microbiota in Heart Failure: Trying to Unmask an Emerging Organ. Biomedicines 2023; 11:2574. [PMID: 37761015 PMCID: PMC10526035 DOI: 10.3390/biomedicines11092574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/08/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
There is a bidirectional relationship between the heart and the gut. The gut microbiota, the community of gut micro-organisms themselves, is an excellent gut-homeostasis keeper since it controls the growth of potentially harmful bacteria and protects the microbiota environment. There is evidence suggesting that a diet rich in fatty acids can be metabolized and converted by gut microbiota and hepatic enzymes to trimethyl-amine N-oxide (TMAO), a product that is associated with atherogenesis, platelet dysfunction, thrombotic events, coronary artery disease, stroke, heart failure (HF), and, ultimately, death. HF, by inducing gut ischemia, congestion, and, consequently, gut barrier dysfunction, promotes the intestinal leaking of micro-organisms and their products, facilitating their entrance into circulation and thus stimulating a low-grade inflammation associated with an immune response. Drugs used for HF may alter the gut microbiota, and, conversely, gut microbiota may modify the pharmacokinetic properties of the drugs. The modification of lifestyle based mainly on exercise and a Mediterranean diet, along with the use of pre- or probiotics, may be beneficial for the gut microbiota environment. The potential role of gut microbiota in HF development and progression is the subject of this review.
Collapse
Affiliation(s)
| | - Andrew Xanthopoulos
- Department of Cardiology, University Hospital of Larissa, 41110 Larissa, Greece; (A.X.); (F.T.)
| | - Elias Tsougos
- 6th Department of Cardiology, Hygeia Hospital, 15123 Athens, Greece
| | - Filippos Triposkiadis
- Department of Cardiology, University Hospital of Larissa, 41110 Larissa, Greece; (A.X.); (F.T.)
| |
Collapse
|
34
|
Lee TH, Wu MC, Lee MH, Liao PL, Lin CC, Wei JCC. Influence of Helicobacter pylori infection on risk of rheumatoid arthritis: a nationwide population-based study. Sci Rep 2023; 13:15125. [PMID: 37704688 PMCID: PMC10499872 DOI: 10.1038/s41598-023-42207-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023] Open
Abstract
The relationship between Helicobacter pylori infection and rheumatoid arthritis has been investigated, but the results remain controversial. This study aims to determine the association between the two diseases via a 17-year retrospective cohort study. Using the National Health Insurance Research Database, a nationwide population based in Taiwan, we identified 97,533 individuals with H. pylori infection and matched controls between 2000 and 2017 using propensity score matching at a 1:1 ratio. The adjusted hazard ratio of rheumatoid arthritis was determined by multiple Cox regression. The incidence rate of rheumatoid arthritis was 1.28 per 10,000 person-months in the H. pylori cohort, with a higher risk compared to the control group. In the < 30 years old subgroup, the risk was highest, especially in women < 30 years old with H. pylori infection. Patients with < 1 year follow-up showed 1.58 times higher susceptibility to rheumatoid arthritis. Individuals with follow-ups of 1-5 years and over 5 years demonstrated 1.43 and 1.44 times higher risks of rheumatoid arthritis, respectively. Our study showed H. pylori infection was associated with the development of rheumatoid arthritis. Clinicians should note higher risk, especially < 30 years old. More research needed to understand underlying mechanism.
Collapse
Affiliation(s)
- Tzu-Hsuan Lee
- Division of Gastroenterology, Children's Medical Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Meng-Che Wu
- Division of Gastroenterology, Children's Medical Center, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Post-Baccalaureate, Medicine College of Medicine, National Chung Hsing University, Taichung, Taiwan
- Pediatric Inflammatory Bowel Disease Center, Massachusetts General Hospital, Boston, MA, USA
| | - Ming-Hung Lee
- Department of Otolaryngology-Head & Neck Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Pei-Lun Liao
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chieh-Chung Lin
- Division of Gastroenterology, Children's Medical Center, Taichung Veterans General Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, No. 110, Sec 1, Jianguo N. Road, Taichung, 40201, Taiwan
| | - James Cheng-Chung Wei
- Institute of Medicine, Chung Shan Medical University, No. 110, Sec 1, Jianguo N. Road, Taichung, 40201, Taiwan.
- Department of Nursing, Chung Shan Medical University, Taichung, Taiwan.
- Department of Allergy, Immunology and Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan.
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
35
|
Sharma P, Phatak SM, Warikoo P, Mathur A, Mahant S, Das K, Das R. Crosstalk between Helicobacter pylori and gastrointestinal microbiota in various gastroduodenal diseases-A systematic review. 3 Biotech 2023; 13:303. [PMID: 37588796 PMCID: PMC10425313 DOI: 10.1007/s13205-023-03734-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/21/2023] [Indexed: 08/18/2023] Open
Abstract
Gastroduodenal diseases have prevailed for a long time and more so due to dominance of gut bacteria Helicobacter pylori in most of the cases. But habitation by other gut microbiota in gastroduodenal diseases and the relationship between Helicobacter pylori and gastrointestinal microbiota in different gastroduodenal diseases is somewhat being unravelled in the current times. For this systematic review, we did a literature search of various gastroduodenal diseases and the effect on gut microbiota pertaining to it. A search of the online bibliographic databases PUBMED and PUBMED CENTRAL was carried out to identify articles published between 1977 and May 2022. The analysis of these selected studies highlighted the inhabitation of other gut microbiota such as Fusobacteria, Bacteroidetes, Streptococcaceae, Prevotellaceae, Fusobacteriaceae, and many others. Interplay between these microbiota and H. pylori have also been noted which suggested that gastroduodenal diseases and gut microbiota are intertwined by a symbiotic association regardless of the H. pylori status. The relationship between the gut microbiota and many gastroduodenal diseases, such as gastritis, gastric cancer, lymphomas, and ulcers, demonstrates the dysbiosis of the gut microbiota in both the presence and absence of H. pylori. The evolving ways for eliminating H. pylori are provided along with inhibiting qualities of other species on H. pylori. Most significant member of our gut system is Helicobacter pylori which has been associated with numerous diseases like gastric cancer, gastritis, duodenal ulcer.
Collapse
Affiliation(s)
- Prateek Sharma
- Center for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, U.P. India
| | - Shravani M. Phatak
- Center for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, U.P. India
| | - Prisha Warikoo
- Center for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, U.P. India
| | - Akshita Mathur
- Center for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, U.P. India
| | - Shweta Mahant
- Center for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, U.P. India
| | - Kunal Das
- Department of Gastroenterology, Yashoda Super Speciality Hospital, Kaushambi, Ghaziabad, Uttar Pradesh India
| | - Rajashree Das
- Center for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, U.P. India
| |
Collapse
|
36
|
Feilstrecker Balani G, dos Santos Cortez M, Picasky da Silveira Freitas JE, Freire de Melo F, Zarpelon-Schutz AC, Teixeira KN. Immune response modulation in inflammatory bowel diseases by Helicobacter pylori infection. World J Gastroenterol 2023; 29:4604-4615. [PMID: 37662864 PMCID: PMC10472898 DOI: 10.3748/wjg.v29.i30.4604] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/01/2023] [Accepted: 07/24/2023] [Indexed: 08/10/2023] Open
Abstract
Many studies point to an association between Helicobacter pylori (H. pylori) infection and inflammatory bowel diseases (IBD). Although controversial, this association indicates that the presence of the bacterium somehow affects the course of IBD. It appears that H. pylori infection influences IBD through changes in the diversity of the gut microbiota, and hence in local chemical characteristics, and alteration in the pattern of gut immune response. The gut immune response appears to be modulated by H. pylori infection towards a less aggressive inflammatory response and the establishment of a targeted response to tissue repair. Therefore, a T helper 2 (Th2)/macrophage M2 response is stimulated, while the Th1/macrophage M1 response is suppressed. The immunomodulation appears to be associated with intrinsic factors of the bacteria, such as virulence factors - such oncogenic protein cytotoxin-associated antigen A, proteins such H. pylori neutrophil-activating protein, but also with microenvironmental changes that favor permanence of H. pylori in the stomach. These changes include the increase of gastric mucosal pH by urease activity, and suppression of the stomach immune response promoted by evasion mechanisms of the bacterium. Furthermore, there is a causal relationship between H. pylori infection and components of the innate immunity such as the NLR family pyrin domain containing 3 inflammasome that directs IBD toward a better prognosis.
Collapse
Affiliation(s)
| | | | | | - Fabrício Freire de Melo
- Campus Anísio Teixeira, Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Vitória da Conquista 45.029-094, Bahia, Brazil
| | - Ana Carla Zarpelon-Schutz
- Campus Toledo, Universidade Federal do Paraná, Toledo 85.919-899, Paraná, Brazil
- Programa de Pós-graduação em Biotecnologia - Setor Palotina, Universidade Federal do Paraná, Palotina 85.950-000, Paraná, Brazil
| | - Kádima Nayara Teixeira
- Campus Toledo, Universidade Federal do Paraná, Toledo 85.919-899, Paraná, Brazil
- Programa Multicêntrico de Pós-graduação em Bioquímica e Biologia Molecular - Setor Palotina, Universidade Federal do Paraná, Palotina 85.950-000, Paraná, Brazil
| |
Collapse
|
37
|
Justich MB, Rojas OL, Fasano A. The Role of Helicobacter pylori and Small Intestinal Bacterial Overgrowth in Parkinson's Disease. Semin Neurol 2023; 43:553-561. [PMID: 37562451 DOI: 10.1055/s-0043-1771468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder whose etiology remains largely unexplained. Several studies have aimed to describe a causative effect in the interactions between the gastrointestinal tract and the brain, for both PD pathogenesis and disease course. However, the results have been controversial. Helicobacter pylori and small intestinal bacterial overgrowth (SIBO) are theorized to be agents capable of triggering chronic proinflammatory changes with a possible neurotoxic effect, as well as a cause of erratic L-dopa response in PD patients. This review evaluates the individual and possibly synergistic influence of H. pylori and SIBO on PD, to provide an opportunity to consider prospective therapeutic approaches.
Collapse
Affiliation(s)
- Maria Belen Justich
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Olga L Rojas
- Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Ontario, Canada
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Division of Neurology, University of Toronto, Toronto, Ontario, Canada
- Department of Parkinson's Disease and Movement Disorders Rehabilitation, Moriggia-Pelascini Hospital - Gravedona ed Uniti, Como, Italy
| |
Collapse
|
38
|
Wang S, Tian ZB, Chen JW, Cong PS, Ding XL, Zhang CP, Yin XY, Yang L, Jing X, Mao T, Li XY, Sun ZY, Jiang JJ, Yu YN. Effect of fucoidan on gut microbiota and its clinical efficacy in Helicobacter pylori eradication: A randomized controlled trial. J Dig Dis 2023; 24:461-471. [PMID: 37548312 DOI: 10.1111/1751-2980.13215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/18/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023]
Abstract
OBJECTIVE To assess the clinical efficacy of fucoidan-assisted standard quadruple therapy (SQT) in Helicobacter pylori (H. pylori) eradication and the improvement of gut microbiota. METHODS An open-label randomized controlled trial was conducted at the Affiliated Hospital of Qingdao University in Shandong Province, China. Ninety patients who tested positive for H. pylori were randomized to the standard quadruple therapy (SQT) group (SQ), SQT + fucoidan combination group (SF), and fucoidan + sequential SQT group (FS), respectively. Stool samples were collected for gut microbiota composition at baseline and after treatment. RESULTS After H. pylori eradication, the relative abundances of most conditional pathogens in the SQ decreased, while those of several beneficial bacteria increased or decreased (P < 0.05). In FS, the abundances of most beneficial bacteria increased gradually from baseline to week 12, while those of the conditional pathogens decreased (P < 0.05). The abundance of Bifidobacterium had a decreasing trend in SQ, but remained unchanged in SF and increased in FS (P < 0.05). The abundances of most beneficial bacteria were significantly higher in FS than in SQ and SF (P < 0.05). Addition of fucoidan enhanced symptom improvement during H. pylori eradication compared with SQT alone. CONCLUSIONS Fucoidan considerably improved gut dysbiosis during SQT for H. pylori eradication. Gut microbiota can be maintained by the addition of fucoidan before eradication therapy with SQT rather than by concomitant addition with therapy. Fucoidan-assisted SQT could relieve gastrointestinal symptoms during H. pylori eradication.
Collapse
Affiliation(s)
- Shu Wang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
- Department of Gastroenterology, Liaocheng People's Hospital, Liaocheng, Shandong Province, China
| | - Zi Bin Tian
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Jian Wei Chen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Pei Shan Cong
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Xue Li Ding
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Cui Ping Zhang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Xiao Yan Yin
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Lin Yang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Xue Jing
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Tao Mao
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Xiao Yu Li
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Zhan Yi Sun
- State Key Laboratory of Bioactive Seaweed Substances, Qingdao Bright Moon Seaweed Group Co Ltd, Qingdao, Shandong Province, China
| | - Jin Ju Jiang
- State Key Laboratory of Bioactive Seaweed Substances, Qingdao Bright Moon Seaweed Group Co Ltd, Qingdao, Shandong Province, China
| | - Ya Nan Yu
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|
39
|
Huang H, Zhong W, Wang X, Yang Y, Wu T, Chen R, Liu Y, He F, Li J. The role of gastric microecological dysbiosis in gastric carcinogenesis. Front Microbiol 2023; 14:1218395. [PMID: 37583514 PMCID: PMC10423824 DOI: 10.3389/fmicb.2023.1218395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/10/2023] [Indexed: 08/17/2023] Open
Abstract
Gastric cancer (GC) is the leading cause of cancer-related death worldwide, and reducing its mortality has become an urgent public health issue. Gastric microecological dysbiosis (including bacteria, fungi, viruses, acid suppressants, antibiotics, and surgery) can lead to gastric immune dysfunction or result in a decrease in dominant bacteria and an increase in the number and virulence of pathogenic microorganisms, which in turn promotes development of GC. This review analyzes the relationship between gastric microecological dysbiosis and GC, elucidates dynamic alterations of the microbiota in Correa's cascade, and identifies certain specific microorganisms as potential biomarkers of GC to aid in early screening and diagnosis. In addition, this paper presents the potential of gastric microbiota transplantation as a therapeutic target for gastric cancer, providing a new direction for future research in this field.
Collapse
Affiliation(s)
- Hui Huang
- Chengdu Medical College, Chengdu, Sichuan, China
| | - Wei Zhong
- Chengdu Medical College, Chengdu, Sichuan, China
| | | | - Ying Yang
- Chengdu Medical College, Chengdu, Sichuan, China
| | - Tianmu Wu
- Chengdu Medical College, Chengdu, Sichuan, China
| | - Runyang Chen
- Chengdu Medical College, Chengdu, Sichuan, China
| | - Yanling Liu
- Chengdu Medical College, Chengdu, Sichuan, China
| | - Feng He
- Chengdu Medical College, Chengdu, Sichuan, China
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Jun Li
- Chengdu Medical College, Chengdu, Sichuan, China
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
40
|
Éliás AJ, Barna V, Patoni C, Demeter D, Veres DS, Bunduc S, Erőss B, Hegyi P, Földvári-Nagy L, Lenti K. Probiotic supplementation during antibiotic treatment is unjustified in maintaining the gut microbiome diversity: a systematic review and meta-analysis. BMC Med 2023; 21:262. [PMID: 37468916 DOI: 10.1186/s12916-023-02961-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/26/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Probiotics are often used to prevent antibiotic-induced low-diversity dysbiosis, however their effect is not yet sufficiently summarized in this regard. We aimed to investigate the effects of concurrent probiotic supplementation on gut microbiome composition during antibiotic therapy. METHODS We performed a systematic review and meta-analysis of randomized controlled trials reporting the differences in gut microbiome diversity between patients on antibiotic therapy with and without concomitant probiotic supplementation. The systematic search was performed in three databases (MEDLINE (via PubMed), Embase, and Cochrane Central Register of Controlled Trials (CENTRAL)) without filters on 15 October 2021. A random-effects model was used to estimate pooled mean differences (MD) with 95% confidence intervals (CI). This review was registered on PROSPERO (CRD42021282983). RESULTS Of 11,769 identified articles, 15 were eligible in the systematic review and 5 in the meta-analyses. Quantitative data synthesis for Shannon (MD = 0.23, 95% CI: [(-)0.06-0.51]), Chao1 (MD = 11.59 [(-)18.42-41.60]) and observed OTUs (operational taxonomic unit) (MD = 17.15 [(-)9.43-43.73]) diversity indices revealed no significant difference between probiotic supplemented and control groups. Lacking data prevented meta-analyzing other diversity indices; however, most of the included studies reported no difference in the other reported α- and ß-diversity indices between the groups. Changes in the taxonomic composition varied across the eligible studies but tended to be similar in both groups. However, they showed a potential tendency to restore baseline levels in both groups after 3-8 weeks. This is the first meta-analysis and the most comprehensive review of the topic to date using high quality methods. The limited number of studies and low sample sizes are the main limitations of our study. Moreover, there was high variability across the studies regarding the indication of antibiotic therapy and the type, dose, and duration of antimicrobials and probiotics. CONCLUSIONS Our results showed that probiotic supplementation during antibiotic therapy was not found to be influential on gut microbiome diversity indices. Defining appropriate microbiome diversity indices, their standard ranges, and their clinical relevance would be crucial.
Collapse
Affiliation(s)
- Anna Júlia Éliás
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Doctoral School of Health Sciences, Semmelweis University, Budapest, Hungary
| | - Viktória Barna
- Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| | - Cristina Patoni
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Dóra Demeter
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Military Hospital Medical Centre, Hungarian Defense Forces, Budapest, Hungary
| | - Dániel Sándor Veres
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Stefania Bunduc
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Fundeni Clinical Institute, Bucharest, Romania
| | - Bálint Erőss
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Institute of Pancreatic Diseases, Semmelweis University, Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Péter Hegyi
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Institute of Pancreatic Diseases, Semmelweis University, Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - László Földvári-Nagy
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary.
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary.
| | - Katalin Lenti
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| |
Collapse
|
41
|
Wang Y, Wang X, Cao XY, Zhu HL, Miao L. Comparative effectiveness of different probiotics supplements for triple helicobacter pylori eradication: a network meta-analysis. Front Cell Infect Microbiol 2023; 13:1120789. [PMID: 37256113 PMCID: PMC10226649 DOI: 10.3389/fcimb.2023.1120789] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/24/2023] [Indexed: 06/01/2023] Open
Abstract
Background Probiotics has been reported as an effective supplement for Helicobacter pylori eradication. However, knowledge of their comparative efficacy is still lacking. Aim In this study, we used network meta-analysis of current probiotics supplement used in standard triple therapy to assess and rank their comparative effectiveness. Methods All randomized controlled trials from three main databases (PubMed, Embase and Cochrane Library) up to April 2022 were collected and filtered to meet our criterion. We used Bayesian network meta-analysis to evaluate the eligible randomized controlled trials and gave a rank for the efficiency and incidence of side effects of each probiotics supplement. The ranking probability for each therapy was assessed by means of surfaces under cumulative ranking values. Subgroup analysis was conducted to evaluate other possible influencing factors. Results 34 eligible randomized controlled trials entered the following meta-analysis, including 9,004 patients randomized to 10 kinds of therapies. Result showed that most probiotics added therapies had better outcomes than triple therapy, among which Bifidobacterium-Lactobacillus and Bifidobacterium-Lactobacillus-Saccharomyces adjuvant therapy could obtain comprehensive benefit with high eradication rate (78.3% and 88.2% respectively), and cause few side effects. Combination of different probiotics, adding probiotics before or after triple therapy and longer duration of probiotics can improve therapeutic effect in H.pylori infected individuals. Conclusion For triple therapy of H.pylori infection, adding probiotics can increase eradication rate and bring protective effect. Considering the overall influence, Bifidobacterium-Lactobacillus or Bifidobacterium-Lactobacillus-Saccharomyces therapy can be a better choice in improving H.pylori eradication process.
Collapse
Affiliation(s)
- Yue Wang
- Medical Centre for Digestive Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xue Wang
- Medical Centre for Digestive Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xue-Yan Cao
- Medical Centre for Digestive Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Han-Long Zhu
- Department of Gastroenterology and Hepatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Lin Miao
- Medical Centre for Digestive Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
42
|
Miri AH, Kamankesh M, Rad-Malekshahi M, Yadegar A, Banar M, Hamblin MR, Haririan I, Aghdaei HA, Zali MR. Factors associated with treatment failure, and possible applications of probiotic bacteria in the arsenal against Helicobacter pylori. Expert Rev Anti Infect Ther 2023; 21:617-639. [PMID: 37171213 DOI: 10.1080/14787210.2023.2203382] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
INTRODUCTION Helicobacter pylori is a widespread helical Gram-negative bacterium, which causes a variety of stomach disorders, such as peptic ulcer, chronic atrophic gastritis, and gastric cancer. This microbe frequently colonizes the mucosal layer of the human stomach and survives in the inhospitable microenvironment, by adapting to this hostile milieu. AREAS COVERED In this extensive review, we describe conventional antibiotic treatment regimens used against H. pylori including, empirical, tailored, and salvage therapies. Then, we present state-of-the-art information about reasons for treatment failure against H. pylori. Afterward, the latest advances in the use of probiotic bacteria against H. pylori infection are discussed. Finally, we propose a polymeric bio-platform to provide efficient delivery of probiotics for H. pylori infection. EXPERT OPINION For effective probiotic delivery systems, it is necessary to avoid the early release of probiotics at the acidic stomach pH, to protect them against enzymes and antimicrobials, and precisely target H. pylori bacteria which have colonized the antrum area of the stomach (basic pH).
Collapse
Affiliation(s)
- Amir Hossein Miri
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Kamankesh
- Polymer Chemistry Department, School of Science, University of Tehran, Tehran, Iran
| | - Mazda Rad-Malekshahi
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Banar
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg Doornfontein, Johannesburg, South Africa
| | - Ismaeil Haririan
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
43
|
Wang R, Huang S, Gan P, Pan X, Wang P, Zhong X, Lü M, Zhou X, Tang X. States and hotspots in Helicobacter pylori research from 2002 to 2021: A bibliometric analysis. Helicobacter 2023:e12986. [PMID: 37133423 DOI: 10.1111/hel.12986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/26/2023] [Accepted: 04/01/2023] [Indexed: 05/04/2023]
Abstract
BACKGROUND Recently, numerous publications on Helicobacter pylori (H. pylori) have been published, but bibliometric analyses on this research field are scarce. To address this gap, we conducted a bibliometric analysis to provide a comprehensive overview and to explore the current research states and hotspots in this field. MATERIALS AND METHODS Publications on H. pylori from 2002 to 2021 were retrieved from the Web of Science Core Collection database (WoSCC). Trends in publications and citations were analyzed using Excel 2021. VOSviewer and Citespace were used to perform bibliometrics analysis. RESULTS 36,266 publications on H. pylori were retrieved from the WoSCC database. In general, we observed an increasing trend in the number of publications over the past 20 years. The United States was the most productive and influential country, with the largest proportion of both publications and total citations. Helicobacter, US Department of Veterans Affairs, and Graham, David were the most productive journals, institutions and authors, respectively. Further analysis the co-occurrence and burst detection of keywords revealed that the most common keywords were "Helicobacter pylori," "gastric cancer," and "gastritis," all keywords were divided into eight main clusters, and the most important current research hotspot was the relationship between H. pylori infection and the changes of gut microbiota. CONCLUSIONS The United States has been the most productive and influential country on H. pylori research, and H. pylori-related research remains an active research field. The relationship between H. pylori infection and the changes of gut microbiota is a research hotspot attracting significant attention.
Collapse
Affiliation(s)
- Ruiyu Wang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
| | - Shu Huang
- Department of Gastroenterology, Lianshui County People' Hospital, Huaian, China
- Department of Gastroenterology, Lianshui People' Hospital of Kangda College Affiliated to Nanjing Medical University, Huaian, China
| | - Peiling Gan
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
| | - Xiao Pan
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
| | - Ping Wang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
| | - Xiaolin Zhong
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
| | - Muhan Lü
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
| | - Xian Zhou
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
| | - Xiaowei Tang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
| |
Collapse
|
44
|
Wang L, Yao H, Morgan DC, Lau KS, Leung SY, Ho JWK, Leung WK. Altered human gut virome in patients undergoing antibiotics therapy for Helicobacter pylori. Nat Commun 2023; 14:2196. [PMID: 37069161 PMCID: PMC10110541 DOI: 10.1038/s41467-023-37975-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/04/2023] [Indexed: 04/19/2023] Open
Abstract
Transient gut microbiota alterations have been reported after antibiotic therapy for Helicobacter pylori. However, alteration in the gut virome after H. pylori eradication remains uncertain. Here, we apply metagenomic sequencing to fecal samples of 44 H. pylori-infected patients at baseline, 6-week (N = 44), and 6-month (N = 33) after treatment. Following H. pylori eradication, we discover contraction of the gut virome diversity, separation of virome community with increased community difference, and shifting towards a higher proportion of core virus. While the gut microbiota is altered at 6-week and restored at 6-month, the virome community shows contraction till 6-month after the treatment with enhanced phage-bacteria interactions at 6-week. Multiple courses of antibiotic treatments further lead to lower virus community diversity when compared with treatment naive patients. Our results demonstrate that H. pylori eradication therapies not only result in transient alteration in gut microbiota but also significantly alter the previously less known gut virome community.
Collapse
Affiliation(s)
- Lingling Wang
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Haobin Yao
- School of Biomedical Science, The University of Hong Kong, Hong Kong, China
- Laboratory of Data Discovery for Health, Hong Kong Science Park, Hong Kong, China
| | - Daniel C Morgan
- School of Biomedical Science, The University of Hong Kong, Hong Kong, China
- Laboratory of Data Discovery for Health, Hong Kong Science Park, Hong Kong, China
| | - Kam Shing Lau
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Suet Yi Leung
- Centre for PanorOmic Sciences (CPOS), The University of Hong Kong, Pokfulam, Hong Kong, China
- Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong, China
- The Jockey Club Centre for Clinical Innovation and Discovery, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Joshua W K Ho
- School of Biomedical Science, The University of Hong Kong, Hong Kong, China
- Laboratory of Data Discovery for Health, Hong Kong Science Park, Hong Kong, China
- Centre for PanorOmic Sciences (CPOS), The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Wai K Leung
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
45
|
Fiorani M, Tohumcu E, Del Vecchio LE, Porcari S, Cammarota G, Gasbarrini A, Ianiro G. The Influence of Helicobacter pylori on Human Gastric and Gut Microbiota. Antibiotics (Basel) 2023; 12:765. [PMID: 37107126 PMCID: PMC10135037 DOI: 10.3390/antibiotics12040765] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Helicobacter pylori is a Gram-negative bacterium that is able to colonize the human stomach, whose high prevalence has a major impact on human health, due to its association with several gastric and extra-gastric disorders, including gastric cancer. The gastric microenvironment is deeply affected by H. pylori colonization, with consequent effects on the gastrointestinal microbiota, exerted via the regulation of various factors, including gastric acidity, host immune responses, antimicrobial peptides, and virulence factors. The eradication therapy required to treat H. pylori infection can also have detrimental consequences for the gut microbiota, leading to a decreased alpha diversity. Notably, therapy regimens integrated with probiotics have been shown to reduce the negative effects of antibiotic therapy on the gut microbiota. These eradication therapies combined with probiotics have also higher rates of eradication, when compared to standard treatments, and are associated with reduced side effects, improving the patient's compliance. In light of the deep impact of gut microbiota alterations on human health, the present article aims to provide an overview of the complex interaction between H. pylori and the gastrointestinal microbiota, focusing also on the consequences of eradication therapies and the effects of probiotic supplementation.
Collapse
Affiliation(s)
- Marcello Fiorani
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Ege Tohumcu
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Livio Enrico Del Vecchio
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Serena Porcari
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Giovanni Cammarota
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Gianluca Ianiro
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
46
|
Imoto I, Yasuma T, D’Alessandro-Gabazza CN, Oka S, Misaki M, Horiki N, Gabazza EC. Antimicrobial Effects of Lactoferrin against Helicobacter pylori Infection. Pathogens 2023; 12:599. [PMID: 37111484 PMCID: PMC10144760 DOI: 10.3390/pathogens12040599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Helicobacter (H.) pylori is the primary causative agent of various gastroduodenal diseases. H. pylori is an adapted microorganism that has evolved to survive in the acidic conditions of the human stomach, possessing a natural strategy for colonizing harsh environments. Despite the implementation of various eradication regimens worldwide, the eradication rate of H. pylori has decreased to less than 80% in recent years due to the emergence of antibiotic-resistant strains. This has posed a significant challenge in treating H. pylori infection, as antibiotic resistance and side effects have become increasingly problematic. Lactoferrin, a member of the transferrin family, is an iron-binding protein with antioxidant, antibacterial, antiviral, and anti-inflammatory properties that promote human health. The concentrations of lactoferrin in the gastric juice and mucosa significantly increase during H. pylori infection and are strongly correlated with the severity of gastric mucosal inflammation. Numerous researchers have studied the antimicrobial properties of lactoferrin both in vitro and in vivo. In addition, recent studies have investigated the addition of oral lactoferrin supplementation to H. pylori eradication therapy, even though monotherapy with lactoferrin does not eradicate the microorganism. In this article, we reviewed the survival strategy of H. pylori to evade the antimicrobial activity of human lactoferrin and explore the potential of lactoferrin in H. pylori eradication therapy.
Collapse
Affiliation(s)
- Ichiro Imoto
- Digestive Endoscopy Center, Doshinkai Tohyama Hospital, Minami-shinmachi 17-22, Tsu, Mie 514-0043, Japan;
| | - Taro Yasuma
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan; (T.Y.)
| | - Corina N. D’Alessandro-Gabazza
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan; (T.Y.)
| | - Satoko Oka
- Department of Internal Medicine, Doshinkai Tohyama Hospital, Minami-shinmachi 17-22, Tsu, Mie 514-0043, Japan
| | - Moriharu Misaki
- Department of Internal Medicine, Doshinkai Tohyama Hospital, Minami-shinmachi 17-22, Tsu, Mie 514-0043, Japan
| | - Noriyuki Horiki
- Digestive Center, Mie University Hospital, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Esteban C. Gabazza
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan; (T.Y.)
| |
Collapse
|
47
|
Ai B, Mei Y, Liang D, Wang T, Cai H, Yu D. Uncovering the special microbiota associated with occurrence and progression of gastric cancer by using RNA-sequencing. Sci Rep 2023; 13:5722. [PMID: 37029259 PMCID: PMC10082026 DOI: 10.1038/s41598-023-32809-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
Gastric cancer (GC) has been identified as the third deadly cancer in the world. Accumulating researches suggest a potential role of microorganisms in tumorigenesis. However, the composition of microbiota in GC tissues is not clear and it changes throughout the different stages of GC remain mostly elusive. Our study integrated RNA-Seq data of 727 samples derived from gastric tissues across four datasets and revealed its microbial composition. In order to remove the false positive results, core taxa were defined and characterized. Based on it, we analyzed the influence of biological factors on its composition. The pan-microbiome of gastric tissues was estimated to be over than 1400 genera. Seventeen core genera were identified. Among them, Helicobacter, Lysobacter were significantly enriched in normal tissues, while Pseudomonas was enriched in tumor tissues. Interestingly, Acinetobacter, Pasteurella, Streptomyces, Chlamydia, and Lysobacter, showed a significant increase trend during tumor development and formed strong intra/inter-correlations among them or with other genera. Furthermore, we found that tumor stage played an important role in altering the microbial composition of GC tissues. This study provides support for the in-depth study of tumor microbiome, and the specific microbiome excavated provides a possibility for the subsequent identification of potential biomarkers for GC.
Collapse
Affiliation(s)
- Bin Ai
- Department of Precision Medicine, Translational Medicine Research Center, Naval Medical University, Shanghai, China
- Shanghai Key Laboratory of Cell Engineering, Shanghai, China
| | - Yue Mei
- Department of Precision Medicine, Translational Medicine Research Center, Naval Medical University, Shanghai, China
- Shanghai Key Laboratory of Cell Engineering, Shanghai, China
| | - Dong Liang
- Department of Precision Medicine, Translational Medicine Research Center, Naval Medical University, Shanghai, China
- Shanghai Key Laboratory of Cell Engineering, Shanghai, China
| | - Tengjiao Wang
- Department of Precision Medicine, Translational Medicine Research Center, Naval Medical University, Shanghai, China
- Shanghai Key Laboratory of Cell Engineering, Shanghai, China
| | - Hui Cai
- Department of Gastrointestinal Surgery, Changhai Hospital, Shanghai, China.
| | - Dong Yu
- Department of Precision Medicine, Translational Medicine Research Center, Naval Medical University, Shanghai, China.
- Shanghai Key Laboratory of Cell Engineering, Shanghai, China.
| |
Collapse
|
48
|
Shu C, Xu Z, He C, Xu X, Zhou Y, Cai B, Zhu Y. Application of biomaterials in the eradication of Helicobacter pylori: A bibliometric analysis and overview. Front Microbiol 2023; 14:1081271. [PMID: 37007524 PMCID: PMC10061102 DOI: 10.3389/fmicb.2023.1081271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Helicobacter pylori is a prominent cause of gastritis, peptic ulcer, and gastric cancer. It is naturally colonized on the surface of the mucus layer and mucosal epithelial cells of the gastric sinus, surrounded not only by mucus layer with high viscosity that prevents the contact of drug molecules with bacteria but also by multitudinous gastric acid and pepsin, inactivating the antibacterial drug. With high-performance biocompatibility and biological specificity, biomaterials emerge as promising prospects closely associated with H. pylori eradication recently. Aiming to thoroughly summarize the progressing research in this field, we have screened 101 publications from the web of science database and then a bibliometric investigation was performed on the research trends of the application of biomaterials in eradicating H. pylori over the last decade utilizing VOSviewer and CiteSpace to establish the relationship between the publications, countries, institutions, authors, and most relevant topics. Keyword analysis illustrates biomaterials including nanoparticles (NPs), metallic materials, liposomes, and polymers are employed most frequently. Depending on their constituent materials and characterized structures, biomaterials exhibit diverse prospects in eradicating H. pylori regarding extending drug delivery time, avoiding drug inactivation, target response, and addressing drug resistance. Furthermore, we overviewed the challenges and forthcoming research perspective of high-performance biomaterials in H. pylori eradication based on recent studies.
Collapse
Affiliation(s)
- Chunxi Shu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhou Xu
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Cong He
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xinbo Xu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yanan Zhou
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Baihui Cai
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Yin Zhu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- *Correspondence: Yin Zhu,
| |
Collapse
|
49
|
Cao X, Yang Y, Zhang Y, Ji R, Zhao X, Zheng W, Yang A. Impact of Helicobacter pylori on the gastric microbiome in patients with chronic gastritis: a systematic review and meta-analysis protocol. BMJ Open 2023; 13:e050476. [PMID: 36927582 PMCID: PMC10030478 DOI: 10.1136/bmjopen-2021-050476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
INTRODUCTION Chronic gastritis is a common disease worldwide. Studies have consistently shown that chronic gastritis is usually associated with gastric microbial dysbiosis, especially the infection of Helicobacter pylori. However, the interaction between H. pylori and non-H. pylori bacteria in patients with chronic gastritis has not been clearly identified yet. Consequently, we designed a protocol for a systematic review and meta-analysis, which focused on identifying the changes in gastrointestinal microbiota composition between patients with H. pylori-infective and non-infective chronic gastritis. METHOD AND ANALYSIS We will search PubMed, EMBASE and Cochrane Library databases to retrieve observational studies on humans. The eligible studies must include data about the relative abundance of the gastrointestinal microbiome in patients with H. pylori-infective or non-infective chronic gastritis. Only the data of adults aged over 18 years will be analysed. Two researchers will extract the data independently, and Newcastle-Ottawa Scale will be used to assess the risk of bias. Random-effects model will be performed in quantitative analyses. Correlation analysis, bioinformatics analysis and function analysis will be performed. DISCUSSION Currently, numerous studies have revealed the role of H. pylori in chronic gastritis. However, the alterations of non-H. pylori bacteria in patients with chronic gastritis remain an open question. The results of our study might provide new insights into future diagnosis and treatments. ETHICS AND DISSEMINATION This study is based on published documents, unrelated to personal data, so ethical approval is not in need. The results of this study are expected to be published in journals or conference proceedings. PROSPERO REGISTRATION NUMBER CRD42020205260; Pre-results.
Collapse
Affiliation(s)
- Xinyuan Cao
- Department of Gastroenterology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Yingyun Yang
- Department of Gastroenterology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Yizhen Zhang
- Department of Gastroenterology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Ruoyu Ji
- Department of Gastroenterology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Xinyu Zhao
- Department of Clinical Epidemiology and EBM, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Weiyang Zheng
- Department of Gastroenterology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Aiming Yang
- Department of Gastroenterology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| |
Collapse
|
50
|
Xi J, Li Y, Zhang H, Bai Z. Dynamic variations of the gastric microbiota: Key therapeutic points in the reversal of Correa's cascade. Int J Cancer 2023; 152:1069-1084. [PMID: 36029278 DOI: 10.1002/ijc.34264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 01/21/2023]
Abstract
Correa's cascade is a dynamic process in the development of intestinal-type gastric cancer (GC), and its pathological features, gastric microbiota and interactions between microorganisms and their hosts vary at different developmental stages. The characteristics of cells, tissues and gastric microbiota before or after key therapeutic points are critical for monitoring malignant transformation and early tumour reversal. This review summarises the pathological features of gastric mucosa, characteristics of gastric microbiota, specific microbial markers, microbe-microbe interactions and microbe-host interactions at different stages in Correa's cascade. The markers related to each Correa's cascade point were analysed in detail. We attempted to identify key therapeutic points for early cancer reversal and provide a novel approach to reduce the incidence of GC and improve precise treatment.
Collapse
Affiliation(s)
- Jiahui Xi
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,Key Laboratory of Biotherapy and Regenerative Medicine, Gansu Province, Lanzhou, China
| | - Yonghong Li
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumour, Gansu Provincial Hospital, Lanzhou, China
| | - Hui Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,General Surgery Department, The First Hospital of Lanzhou University, Lanzhou, China
| | - Zhongtian Bai
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,Key Laboratory of Biotherapy and Regenerative Medicine, Gansu Province, Lanzhou, China.,General Surgery Department, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|