1
|
You Z, Hu Z, Hou C, Ma C, Xu X, Zheng Y, Sun X, Ke Y, Liang J, Xie Z, Shu L, Liu Y. FABP4 facilitates epithelial-mesenchymal transition via elevating CD36 expression in glioma cells. Neoplasia 2024; 57:101050. [PMID: 39243502 PMCID: PMC11406018 DOI: 10.1016/j.neo.2024.101050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/17/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive brain tumor with poor prognosis. A better understanding of mechanisms concerned in glioma invasion might be critical for treatment optimization. Given that epithelial-mesenchymal transition in tumor cells is closely associated with glioma progression and recurrence, identifying pivotal mediators in GBM EMT process is urgently needed. As a member of Fatty acid binding protein (FABP) family, FABP4 serves as chaperones for free fatty acids and participates in cellular process including fatty acid uptake, transport, and metabolism. In this study, our data revealed that FABP4 expression was elevated in human GBM samples and correlated with a mesenchymal glioma subtype. Gain of function and loss of function experiments indicated that FABP4 potently rendered glioma cells increased filopodia formation and cell invasiveness. Differential expression genes analysis and GSEA in TCGA dataset revealed an EMT-related molecular signature in FABP4-mediated signaling pathways. Cell interaction analysis suggested CD36 as a potential target regulated by FABP4. Furthermore, in vitro mechanistic experiments demonstrated that FABP4-induced CD36 expression promoted EMT via non-canonical TGFβ pathways. An intracranial glioma model was constructed to assess the effect of FABP4 on tumor progression in vivo. Together, our findings demonstrated a critical role for FABP4 in the regulation invasion and EMT in GBM, and suggest that pharmacological inhibition of FABP4 may represent a promising therapeutic strategy for treatment of GBM.
Collapse
Affiliation(s)
- Zhongsheng You
- Key Laboratory of Neurosurgery in Guangdong Province, Southern Medical University, Guangzhou 510060, PR China; Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510060, PR China
| | - Zihao Hu
- School of Medicine, Nankai University, Tianjin, PR China
| | - Chongxian Hou
- Key Laboratory of Neurosurgery in Guangdong Province, Southern Medical University, Guangzhou 510060, PR China; Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510060, PR China
| | - Chengcheng Ma
- Key Laboratory of Neurosurgery in Guangdong Province, Southern Medical University, Guangzhou 510060, PR China; Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510060, PR China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China; Department of Hematological Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, PR China; School of Medicine, Nankai University, Tianjin, PR China
| | - Xiangdong Xu
- Key Laboratory of Neurosurgery in Guangdong Province, Southern Medical University, Guangzhou 510060, PR China; Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510060, PR China
| | - Yaofeng Zheng
- Key Laboratory of Neurosurgery in Guangdong Province, Southern Medical University, Guangzhou 510060, PR China; Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510060, PR China
| | - Xinlin Sun
- Key Laboratory of Neurosurgery in Guangdong Province, Southern Medical University, Guangzhou 510060, PR China; Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510060, PR China
| | - Yiquan Ke
- Key Laboratory of Neurosurgery in Guangdong Province, Southern Medical University, Guangzhou 510060, PR China; Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510060, PR China
| | - Jianli Liang
- Key Laboratory of Neurosurgery in Guangdong Province, Southern Medical University, Guangzhou 510060, PR China; Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510060, PR China
| | - Zijing Xie
- Key Laboratory of Neurosurgery in Guangdong Province, Southern Medical University, Guangzhou 510060, PR China; Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510060, PR China
| | - Lingling Shu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China; Department of Hematological Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, PR China.
| | - Yang Liu
- Key Laboratory of Neurosurgery in Guangdong Province, Southern Medical University, Guangzhou 510060, PR China; Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510060, PR China.
| |
Collapse
|
2
|
Lau V, Nurkolis F, Park MN, Heriyanto DS, Taslim NA, Tallei TE, Permatasari HK, Tjandrawinata RR, Moon S, Kim B. Green Seaweed Caulerpa racemosa as a Novel Non-Small Cell Lung Cancer Inhibitor in Overcoming Tyrosine Kinase Inhibitor Resistance: An Analysis Employing Network Pharmacology, Molecular Docking, and In Vitro Research. Mar Drugs 2024; 22:272. [PMID: 38921583 PMCID: PMC11204876 DOI: 10.3390/md22060272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
The marine environment provides a rich source of distinct creatures containing potentially revolutionary bioactive chemicals. One of these organisms is Caulerpa racemosa, a type of green algae known as green seaweed, seagrapes, or green caviar. This organism stands out because it has great promise for use in medicine, especially in the study of cancer. Through the utilization of computational modeling (in silico) and cellular laboratory experiments (in vitro), the chemical components included in the green seaweed C. racemosa were effectively analyzed, uncovering its capability to treat non-small cell lung cancer (NSCLC). The study specifically emphasized blocking SRC, STAT3, PIK3CA, MAPK1, EGFR, and JAK1 using molecular docking and in vitro. These proteins play a crucial role in the EGFR Tyrosine Kinase Inhibitor Resistance pathway in NSCLC. The chemical Caulersin (C2) included in C. racemosa extract (CRE) has been identified as a potent and effective agent in fighting against non-small cell lung cancer (NSCLC), both in silico and in vitro. CRE and C2 showed a level of inhibition similar to that of osimertinib (positive control/NSCLC drug).
Collapse
Affiliation(s)
- Vincent Lau
- Department of Anatomical Pathology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada/Dr. Sardjito General Hospital, Yogyakarta 55281, Indonesia
| | - Fahrul Nurkolis
- Department of Biological Sciences, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga), Yogyakarta 55281, Indonesia;
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Didik Setyo Heriyanto
- Department of Anatomical Pathology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada/Dr. Sardjito General Hospital, Yogyakarta 55281, Indonesia
- Division of Cardiac, Thoracic, and Vascular Surgery, Department of Surgery, Faculty of Medicine, Public Health, and Nursing/Dr. Sardjito General Hospital, Yogyakarta 55281, Indonesia
- Collaboration Research Center for Precision Oncology Based Omics—PKR PrOmics, Yogyakarta 55281, Indonesia
| | - Nurpudji Astuti Taslim
- Department of Clinical Nutrition, Faculty of Medicine, Hasanuddin University, Makassar 90245, Indonesia
| | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, Indonesia
| | - Happy Kurnia Permatasari
- Biochemistry and Biomolecular, Faculty of Medicine, Brawijaya University, Malang 65145, Indonesia
| | - Raymond R. Tjandrawinata
- Department of Biotechnology, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jakarta 12930, Indonesia
| | - Seungjoon Moon
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
3
|
Khan F, Elsori D, Verma M, Pandey S, Obaidur Rab S, Siddiqui S, Alabdallah NM, Saeed M, Pandey P. Unraveling the intricate relationship between lipid metabolism and oncogenic signaling pathways. Front Cell Dev Biol 2024; 12:1399065. [PMID: 38933330 PMCID: PMC11199418 DOI: 10.3389/fcell.2024.1399065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Lipids, the primary constituents of the cell membrane, play essential roles in nearly all cellular functions, such as cell-cell recognition, signaling transduction, and energy provision. Lipid metabolism is necessary for the maintenance of life since it regulates the balance between the processes of synthesis and breakdown. Increasing evidence suggests that cancer cells exhibit abnormal lipid metabolism, significantly affecting their malignant characteristics, including self-renewal, differentiation, invasion, metastasis, and drug sensitivity and resistance. Prominent oncogenic signaling pathways that modulate metabolic gene expression and elevate metabolic enzyme activity include phosphoinositide 3-kinase (PI3K)/AKT, MAPK, NF-kB, Wnt, Notch, and Hippo pathway. Conversely, when metabolic processes are not regulated, they can lead to malfunctions in cellular signal transduction pathways. This, in turn, enables uncontrolled cancer cell growth by providing the necessary energy, building blocks, and redox potentials. Therefore, targeting lipid metabolism-associated oncogenic signaling pathways could be an effective therapeutic approach to decrease cancer incidence and promote survival. This review sheds light on the interactions between lipid reprogramming and signaling pathways in cancer. Exploring lipid metabolism as a target could provide a promising approach for creating anticancer treatments by identifying metabolic inhibitors. Additionally, we have also provided an overview of the drugs targeting lipid metabolism in cancer in this review.
Collapse
Affiliation(s)
- Fahad Khan
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Deena Elsori
- Faculty of Resilience, Rabdan Academy, Abu Dhabi, United Arab Emirates
| | - Meenakshi Verma
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab, India
| | - Shivam Pandey
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Samra Siddiqui
- Department of Health Service Management, College of Public Health and Health Informatics, University of Hail, Haʼil, Saudi Arabia
| | - Nadiyah M. Alabdallah
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- Basic and Applied Scientific Research Centre, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, Haʼil, Saudi Arabia
| | - Pratibha Pandey
- Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh, India
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab, India
| |
Collapse
|
4
|
Chen M, Wang H, Cui Q, Shi J, Hou Y. Dual function of activated PPARγ by ligands on tumor growth and immunotherapy. Med Oncol 2024; 41:114. [PMID: 38619661 DOI: 10.1007/s12032-024-02363-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/19/2024] [Indexed: 04/16/2024]
Abstract
As one of the peroxisome-proliferator-activated receptors (PPARs) members, PPARγ is a ligand binding and activated nuclear hormone receptor, which is an important regulator in metabolism, proliferation, tumor progression, and immune response. Increased evidence suggests that activation of PPARγ in response to ligands inhibits multiple types of cancer proliferation, metastasis, and tumor growth and induces cell apoptosis including breast cancer, colon cancer, lung cancer, and bladder cancer. Conversely, some reports suggest that activation of PPARγ is associated with tumor growth. In addition to regulating tumor progression, PPARγ could promote or inhibit tumor immunotherapy by affecting macrophage differentiation or T cell activity. These controversial findings may be derived from cancer cell types, conditions, and ligands, since some ligands are independent of PPARγ activity. Therefore, this review discussed the dual role of PPARγ on tumor progression and immunotherapy.
Collapse
Affiliation(s)
- Mingjun Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, People's Republic of China
| | - Huijie Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, People's Republic of China
| | - Qian Cui
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, People's Republic of China
| | - Juanjuan Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, People's Republic of China
| | - Yongzhong Hou
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, People's Republic of China.
| |
Collapse
|
5
|
Li Y, Pan Y, Zhao X, Wu S, Li F, Wang Y, Liu B, Zhang Y, Gao X, Wang Y, Zhou H. Peroxisome proliferator-activated receptors: A key link between lipid metabolism and cancer progression. Clin Nutr 2024; 43:332-345. [PMID: 38142478 DOI: 10.1016/j.clnu.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/26/2023]
Abstract
Lipids represent the essential components of membranes, serve as fuels for high-energy processes, and play crucial roles in signaling and cellular function. One of the key hallmarks of cancer is the reprogramming of metabolic pathways, especially abnormal lipid metabolism. Alterations in lipid uptake, lipid desaturation, de novo lipogenesis, lipid droplets, and fatty acid oxidation in cancer cells all contribute to cell survival in a changing microenvironment by regulating feedforward oncogenic signals, key oncogenic functions, oxidative and other stresses, immune responses, or intercellular communication. Peroxisome proliferator-activated receptors (PPARs) are transcription factors activated by fatty acids and act as core lipid sensors involved in the regulation of lipid homeostasis and cell fate. In addition to regulating whole-body energy homeostasis in physiological states, PPARs play a key role in lipid metabolism in cancer, which is receiving increasing research attention, especially the fundamental molecular mechanisms and cancer therapies targeting PPARs. In this review, we discuss how cancer cells alter metabolic patterns and regulate lipid metabolism to promote their own survival and progression through PPARs. Finally, we discuss potential therapeutic strategies for targeting PPARs in cancer based on recent studies from the last five years.
Collapse
Affiliation(s)
- Yunkuo Li
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yujie Pan
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Xiaodong Zhao
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Shouwang Wu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Faping Li
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yuxiong Wang
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Bin Liu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yanghe Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Xin Gao
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
6
|
Cao Y, Li J, Qiu S, Ni S, Duan Y. ACSM5 inhibits ligamentum flavum hypertrophy by regulating lipid accumulation mediated by FABP4/PPAR signaling pathway. Biol Direct 2023; 18:75. [PMID: 37957699 PMCID: PMC10644428 DOI: 10.1186/s13062-023-00436-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/05/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Ligamentum flavum (LF) hypertrophy is the main cause of lumbar spinal canal stenosis (LSCS). Previous studies have shown that LF hypertrophy tissue exhibits abnormal lipid accumulation, but the regulatory mechanism remains unclear. The objective of this study was to explore the function and potential mechanism of ACSM5 in LF lipid accumulation. METHODS To assess the ACSM5 expression levels, lipid accumulation and triglyceride (TG) level in LF hypertrophy and normal tissue, we utilized RT-qPCR, western blot, oil red O staining, and TG assay kit. The pearson correlation coefficient assay was used to analyze the correlation between ACSM5 levels and lipid accumulation or TG levels in LF hypertrophy tissue. The role of ACSM5 in free fatty acids (FFA)-induced lipid accumulation in LF cells was assessed in vitro, and the role of ACSM5 in LF hypertrophy in mice was verified in vivo. To investigate the underlying mechanisms of ACSM5 regulating lipid accumulation in LF, we conducted the mRNA sequencing, bioinformatics analysis, and rescue experiments. RESULTS In this study, we found that ACSM5, which was significantly down-regulated in LF tissues, correlated with lipid accumulation. In vitro cell experiments demonstrated that overexpression of ACSM5 significantly inhibited FFA-induced lipid accumulation and fibrosis in LF cells. In vivo animal experiments further confirmed that overexpression of ACSM5 inhibited LF thickening, lipid accumulation, and fibrosis. Mechanistically, ACSM5 inhibited lipid accumulation of LF cells by inhibiting FABP4-mediated PPARγ signaling pathway, thereby improving hypertrophy and fibrosis of LF. CONCLUSIONS our findings elucidated the important role of ACSM5 in the regulation of LF lipid accumulation and provide insight into potential therapeutic interventions for the treatment of LF hypertrophy. This study further suggested that therapeutic strategies targeting lipid deposition may be an effective potential approach to treat LF hypertrophy-induced LSCS.
Collapse
Affiliation(s)
- Yanlin Cao
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jianjun Li
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Sujun Qiu
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Songjia Ni
- Department of Orthopaedic Trauma, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yang Duan
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
7
|
Kim SH, Pyo JS, Son BK, Oh IH, Min KW. Clinicopathological significance and prognostic implication of nuclear fatty acid-binding protein 4 expression in colorectal cancer. Pathol Res Pract 2023; 249:154722. [PMID: 37591068 DOI: 10.1016/j.prp.2023.154722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/19/2023]
Abstract
This study aimed to evaluate the clinicopathological significance and prognostic role of fatty acid-binding protein 4 (FABP4) expression in colorectal cancer (CRC). Nuclear expression of FABP4 was investigated by immunohistochemistry for FABP4 on 246 human CRC tissues. The correlations between FABP4 expression, and clinicopathological characteristics and survival, was evaluated in patients with CRC. FABP4 was expressed in 91 of the 246 CRC tissues (37.0%). FABP4 expression was significantly correlated with older age, right-sided colon cancer, perineural invasion, higher pT stage, lymph node metastasis, and higher pTNM stage. However, there was no significant correlation between FABP4 expression and sex, tumor size, tumor differentiation, vascular or lymphatic invasion, or distant metastasis. Nuclear FABP4 expression was not significantly correlated with cytoplasmic FABP4 expression (P = 0.412). FABP4 expression was significantly correlated with nuclear pNF-κB expression (P = 0.001), and was significantly higher in CRC with a low immunoscore than in CRC with a high immunoscore (P < 0.001). There were significant correlations between FABP4 expression and worse overall and recurrence-free survival rates (P < 0.001 and P = 0.007, respectively). FABP4 expression was significantly correlated with aggressive tumor behaviors and pathological characteristics. In addition, patients with CRC with FABP4 expression had worse survival rates.
Collapse
Affiliation(s)
- Soo Hyung Kim
- Department of Internal Medicine, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Gyeonggi-do, the Republic of Korea
| | - Jung-Soo Pyo
- Department of Pathology, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Gyeonggi-do, the Republic of Korea
| | - Byoung Kwan Son
- Department of Internal Medicine, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Gyeonggi-do, the Republic of Korea.
| | - Il Hwan Oh
- Department of Internal Medicine, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Gyeonggi-do, the Republic of Korea
| | - Kyueng-Whan Min
- Department of Pathology, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Gyeonggi-do, the Republic of Korea
| |
Collapse
|
8
|
Ping P, Li J, Lei H, Xu X. Fatty acid metabolism: A new therapeutic target for cervical cancer. Front Oncol 2023; 13:1111778. [PMID: 37056351 PMCID: PMC10088509 DOI: 10.3389/fonc.2023.1111778] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Cervical cancer (CC) is one of the most common malignancies in women. Cancer cells can use metabolic reprogramming to produce macromolecules and ATP needed to sustain cell growth, division and survival. Recent evidence suggests that fatty acid metabolism and its related lipid metabolic pathways are closely related to the malignant progression of CC. In particular, it involves the synthesis, uptake, activation, oxidation, and transport of fatty acids. Similarly, more and more attention has been paid to the effects of intracellular lipolysis, transcriptional regulatory factors, other lipid metabolic pathways and diet on CC. This study reviews the latest evidence of the link between fatty acid metabolism and CC; it not only reveals its core mechanism but also discusses promising targeted drugs for fatty acid metabolism. This study on the complex relationship between carcinogenic signals and fatty acid metabolism suggests that fatty acid metabolism will become a new therapeutic target in CC.
Collapse
|
9
|
Wang C, Mu T, Feng X, Zhang J, Gu Y. Study on fatty acid binding protein in lipid metabolism of livestock and poultry. Res Vet Sci 2023; 158:185-195. [PMID: 37030094 DOI: 10.1016/j.rvsc.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 03/04/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Fatty acid binding proteins (FABPs) are key proteins in lipid transport, and 12 family members have been documented in the literature. In recent years, new insights have been gained into the structure and function of FABPs, which are important regulators of lipid metabolic processes in the body and play a central role in coordinating lipid transport and metabolism in various tissues and organs across species. This paper provides a brief overview of the structure and biological functions of FABPs and reviews related studies on lipid metabolism in livestock and poultry to lay the foundation for research on the mechanism underlying the regulatory effect of FABPs on lipid metabolism in livestock and poultry and for the genetic improvement of livestock and poultry.
Collapse
Affiliation(s)
- Chuanchuan Wang
- School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Tong Mu
- School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Xiaofang Feng
- School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Juan Zhang
- School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Yaling Gu
- School of Agriculture, Ningxia University, 750021, Yinchuan, China.
| |
Collapse
|
10
|
Liu J, Wang H, Zeng D, Xiong J, Luo J, Chen X, Chen T, Xi Q, Sun J, Ren X, Zhang Y. The novel importance of miR-143 in obesity regulation. Int J Obes (Lond) 2023; 47:100-108. [PMID: 36528726 DOI: 10.1038/s41366-022-01245-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022]
Abstract
Obesity and substantially increased risk of metabolic diseases have become a global epidemic. microRNAs have attracted a great deal of attention as a potential therapeutic target for obesity. MiR-143 has been known to specifically promote adipocyte differentiation by downregulating extracellular signal-regulated kinase 5. Our latest study found that miR-143 knockout is against diet-induced obesity by promoting brown adipose tissue thermogenesis and inhibiting white adipose tissue adipogenesis. Moreover, LPS- or IL-6-induced inhibition of miR-143 expression in brown adipocytes promotes thermogenesis by targeting adenylate cyclase 9. In this review, we will summarize the expression and functions of miR-143 in different tissues, the influence of obesity on miR-143 in various tissues, the important role of adipose-derived miR-143 in the development of obesity, the role of miR-143 in immune cells and thermoregulation and discuss the potential significance and application prospects of miR-143 in obesity management.
Collapse
Affiliation(s)
- Jie Liu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Huan Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Dewei Zeng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jiali Xiong
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Junyi Luo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xingping Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.,Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Ting Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jiajie Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaohui Ren
- Ocean College of Hebei Agricultural University, Qinhuangdao, 066003, China.
| | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
11
|
Yang J, Liu X, Shao Y, Zhou H, Pang L, Zhu W. Diagnostic, Prognostic, and Immunological Roles of FABP4 in Pancancer: A Bioinformatics Analysis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:3764914. [PMID: 36532833 PMCID: PMC9754845 DOI: 10.1155/2022/3764914] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/15/2022] [Accepted: 11/20/2022] [Indexed: 08/27/2023]
Abstract
BACKGROUND Fatty acid binding protein 4 (FABP4) is mainly involved in the regulation of systemic metabolism through various lipid signaling pathways. Metabolic reprogramming is one of the important factors in the development and progression of cancer. It has been recently reported that FABP4 is closely related to the development of cancer and may be involved in tumor invasion and metastasis. METHODS In this study, we explored the expression pattern of FABP4 in pancancer through TCGA and CPTAC. Using TCGA, Kaplan-Meier Plotter, and STRING databases, to explore its diagnostic and prognostic value, and function through GO/KEGG and GSEA. Then, using the TIMER2.0 database, we investigated the correlation between FABP4 expression and immune infiltration in cancers, especially stomach adenocarcinomas (STAD) and colorectal adenocarcinoma (COADREAD). RESULTS Compared with normal tissues, the expression of FABP4 in more than 10 tumor tissues was lower (p < 0.05). Through the receiver operating characteristic (ROC) curve, the diagnostic value was found higher in colorectal cancer, breast cancer, thyroid cancer, and lung cancer, with the area under the curve (AUC) > 0.9. Through the K-M curve, FABP4 was found to correlate to the prognosis of various cancers. The results of gastric cancer and colorectal cancer are consistent. The low-expression group has a better prognosis than the high-expression group, and the expression of FABP4 in the early T and N stages of gastrointestinal tumors is lower. FABP4 highly expressed gene set is mostly enriched in extracellular matrix degradation and cell adhesion functions. Gastrointestinal tumors with high expression of FABP4 may have more immunosuppressive effects on macrophages and have a worse prognosis. CONCLUSION FABP4 can be used as a diagnostic and prognostic biomarker in pancancer, and its high expression in gastrointestinal tumors suggests poor prognosis. This may be correlated to the immune infiltration of macrophages and epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Jing Yang
- Oncology Center, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Wujiang, Jiangsu 215228, China
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xiaojing Liu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Department of Radiotherapy, The Friendship Hospital of Ily Kazak Autonomous Prefecture, Ily, Xinjiang 835000, China
| | - Yueqin Shao
- Oncology Center, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Wujiang, Jiangsu 215228, China
| | - Hong Zhou
- Oncology Center, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Wujiang, Jiangsu 215228, China
| | - Lijun Pang
- Oncology Center, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Wujiang, Jiangsu 215228, China
| | - Wei Zhu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
12
|
Pelaz SG, Tabernero A. Src: coordinating metabolism in cancer. Oncogene 2022; 41:4917-4928. [PMID: 36217026 PMCID: PMC9630107 DOI: 10.1038/s41388-022-02487-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/08/2022]
Abstract
Metabolism must be tightly regulated to fulfil the dynamic requirements of cancer cells during proliferation, migration, stemness and differentiation. Src is a node of several signals involved in many of these biological processes, and it is also an important regulator of cell metabolism. Glucose uptake, glycolysis, the pentose-phosphate pathway and oxidative phosphorylation are among the metabolic pathways that can be regulated by Src. Therefore, this oncoprotein is in an excellent position to coordinate and finely tune cell metabolism to fuel the different cancer cell activities. Here, we provide an up-to-date summary of recent progress made in determining the role of Src in glucose metabolism as well as the link of this role with cancer cell metabolic plasticity and tumour progression. We also discuss the opportunities and challenges facing this field.
Collapse
Affiliation(s)
- Sara G Pelaz
- Instituto de Neurociencias de Castilla y León (INCYL), Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Calle Pintor Fernando Gallego 1, Salamanca, 37007, Spain
| | - Arantxa Tabernero
- Instituto de Neurociencias de Castilla y León (INCYL), Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Calle Pintor Fernando Gallego 1, Salamanca, 37007, Spain.
| |
Collapse
|
13
|
Hermawan A, Putri H. Bioinformatics analysis reveals the potential target of rosiglitazone as an antiangiogenic agent for breast cancer therapy. BMC Genom Data 2022; 23:72. [PMID: 36114448 PMCID: PMC9482259 DOI: 10.1186/s12863-022-01086-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 09/06/2022] [Indexed: 11/19/2022] Open
Abstract
Background Several studies have demonstrated the antitumor activity of rosiglitazone (RGZ) in cancer cells, including breast cancer cells. However, the molecular targets of RGZ in the inhibition of angiogenesis in breast cancer cells remain unclear. This study aimed to explore the potential targets of RGZ in inhibiting breast cancer angiogenesis using bioinformatics-based analysis. Results Venn diagram analysis revealed 29 TR proteins. KEGG pathway enrichment analysis demonstrated that TR regulated the adipocytokine, AMPK, and PPAR signaling pathways. Oncoprint analysis showed genetic alterations in FABP4 (14%), ADIPOQ (2.9%), PPARG (2.8%), PPARGC1A (1.5%), CD36 (1.7%), and CREBBP (11%) in patients with breast cancer in a TCGA study. The mRNA levels of FABP4, ADIPOQ, PPARG, CD36, and PPARGC1A were significantly lower in patients with breast cancer than in those without breast cancer. Analysis of gene expression using bc-GenExMiner showed that the mRNA levels of FABP, ADIPOQ, PPARG, CD36, PPARGC1A, and CREBBP were significantly lower in basal-like and triple-negative breast cancer (TNBC) cells than in non-basal-like and non-TNBC cells. In general, the protein levels of these genes were low, except for that of CREBBP. Patients with breast cancer who had low mRNA levels of FABP4, ADIPOQ, PPARG, and PPARGC1A had lower overall survival rates than those with high mRNA levels, which was supported by the overall survival related to DNA methylation. Correlation analysis of immune cell infiltration with TR showed a correlation between TR and immune cell infiltration, highlighting the potential of RGZ for immunotherapy. Conclusion This study explored the potential targets of RGZ as antiangiogenic agents in breast cancer therapy and highlighted FABP4, ADIPOQ, PPARG, PPARGC1A, CD36, and CREBBP as potential targets of RGZ. These findings require further validation to explore the potential of RGZ as an antiangiogenic agent. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-022-01086-2. Recent studies have focused on the development of indirect angiogenesis inhibitors. Bioinformatics-based identification of potential rosiglitazone target genes to inhibit breast cancer angiogenesis. FABP4, ADIPOQ, PPARG, PPARGC1A, CD36, and CREBBP are potential targets of rosiglitazone.
Collapse
|
14
|
Sun N, Zhao X. Therapeutic Implications of FABP4 in Cancer: An Emerging Target to Tackle Cancer. Front Pharmacol 2022; 13:948610. [PMID: 35899119 PMCID: PMC9310032 DOI: 10.3389/fphar.2022.948610] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Metabolic reprogramming is an emerging hallmark of tumor cells. In order to survive in nutrient-deprived environment, tumor cells rewire their metabolic phenotype to provide sufficient energy and build biomass to sustain their transformed state and promote malignant behaviors. Fatty acid uptake and trafficking is an essential part of lipid metabolism within tumor cells. Fatty acid-binding proteins (FABPs), which belongs to a family of intracellular lipid-binding protein, can bind hydrophobic ligands to regulate lipid trafficking and metabolism. In particular, adipocyte fatty acid binding protein (FABP4), one of the most abundant members, has been found to be upregulated in many malignant solid tumors, and correlated with poor prognosis. In multiple tumor types, FABP4 is critical for tumor proliferation, metastasis and drug resistance. More importantly, FABP4 is a crucial driver of malignancy not only by activating the oncogenic signaling pathways, but also rewiring the metabolic phenotypes of tumor cells to satisfy their enhanced energy demand for tumor development. Thus, FABP4 serves as a tumor-promoting molecule in most cancer types, and may be a promising therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Naihui Sun
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xing Zhao
- Department of Pediatrics, The First Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Xing Zhao,
| |
Collapse
|
15
|
Huang X, Zhou Y, Sun Y, Wang Q. Intestinal fatty acid binding protein: A rising therapeutic target in lipid metabolism. Prog Lipid Res 2022; 87:101178. [PMID: 35780915 DOI: 10.1016/j.plipres.2022.101178] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 10/17/2022]
Abstract
Fatty acid binding proteins (FABPs) are key proteins in lipid transport, and the isoforms are segregated according to their tissue origins. Several isoforms, such as adipose-FABP and epidermal-FABP, have been shown to participate in multiple pathologic processes due to their ubiquitous expression. Intestinal fatty acid binding protein, also termed FABP2 or I-FABP, is specifically expressed in the small intestine. FABP2 can traffic lipids from the intestinal lumen to enterocytes and bind superfluous fatty acids to maintain a steady pool of fatty acids in the epithelium. As a lipid chaperone, FABP2 can also carry lipophilic drugs to facilitate targeted transport. When the integrity of the intestinal epithelium is disrupted, FABP2 is released into the circulation. Thus, it can potentially serve as a clinical biomarker. In this review, we discuss the pivotal role of FABP2 in intestinal lipid metabolism. We also summarize the molecular interactions that have been reported to date, highlighting the clinical prospects of FABP2 research.
Collapse
Affiliation(s)
- Xi Huang
- Shanghai Institute of Immunology, Department of Gastroenterology of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Youci Zhou
- Shanghai Institute of Immunology, Department of Gastroenterology of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yunwei Sun
- Shanghai Institute of Immunology, Department of Gastroenterology of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qijun Wang
- Shanghai Institute of Immunology, Department of Gastroenterology of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
16
|
Lei CX, Xie YJ, Li SJ, Jiang P, Du JX, Tian JJ. Fabp4 contributes toward regulating inflammatory gene expression and oxidative stress in Ctenopharyngodon idella. Comp Biochem Physiol B Biochem Mol Biol 2022; 259:110715. [PMID: 34999220 DOI: 10.1016/j.cbpb.2022.110715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/20/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022]
Abstract
Fatty acid-binding protein (Fabp)-4 is a member of the FABP family. Mammalian fabp4 has been demonstrated to involve in inflammation and immunity, whereas the related data of fish fabp4 remain limited. Therefore, we further investigated the effects of fabp4 on immunity in Ctenopharyngodon idella. The fabp4 sequence spanned 405 bp was cloned first, sharing high identity to fabp4 from other fish and mammals. Fabp4 expression was the highest in the adipose tissue, followed by the heart, muscle, and liver. In vivo, lipopolysaccharide (LPS) triggered the expression of fabp4, toll-like receptor (tlr)-22, interleukin (il)-1β, and tumor necrosis factor (tnf)-α in the kidney and spleen. In vitro, exposing C. idella CIK cells to LPS decreased their viability, and the expression of fabp4 was also increased by LPS. However, BMS309403, an inhibitor of FABP4, mitigated these effects. Furthermore, treating the cells with LPS or fabp4 overexpression plasmids resulted in reactive oxygen species (ROS) generation and upregulation of inflammatory genes expression, including tlr22, type-I interferon (ifn-1), interferon regulatory factor (irf)-7, tnfα, il-1β, and interferon-β promoter stimulator 1. These effects were ameliorated by preincubation with BMS309403. Moreover, incubating the cells with glutathione reduced the production of ROS and the expression of inflammatory genes that were evoked by LPS and plasmid treatments. These results showed that fabp4 acts as a pro-inflammatory molecule via elevating ROS levels, providing a novel understanding of the molecular regulation of innate immunity in teleosts.
Collapse
Affiliation(s)
- Cai-Xia Lei
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, PR China; Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, PR China
| | - Yu-Jing Xie
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, PR China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, PR China
| | - Sheng-Jie Li
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, PR China; Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, PR China.
| | - Peng Jiang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, PR China
| | - Jin-Xing Du
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, PR China
| | - Jing-Jing Tian
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, PR China
| |
Collapse
|
17
|
Bai Q, Yang X, Li Q, Chen W, Tian H, Lian R, Liu X, Wang S, Yang Y. Metastatic Tumor Cell-Specific FABP7 Promotes NSCLC Metastasis via Inhibiting β-Catenin Degradation. Cells 2022; 11:cells11050805. [PMID: 35269427 PMCID: PMC8909100 DOI: 10.3390/cells11050805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/16/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
Metastasis accounts for 90% of cancer-related deaths and represents a prominent malignant feature in non-small cell lung cancer (NSCLC), while tumor cell-specific mechanisms and molecules pivotal for the metastatic capacity remain unclear. By analyzing single-cell RNA sequencing data, we found that fatty acid binding protein 7 (FABP7) was specifically up-regulated in tumor cells of metastatic NSCLC patients and might be a prognostic indicator for poor survival. Experimental studies based on NSCLC cell lines showed that FABP7 promoted the metastatic competencies of NSCLC cells in vitro and in vivo. Mechanistically, we demonstrated that FABP7 was important to canonical Wnt signaling activation and competitively inhibited the interaction between β-catenin and components of its cytoplasmic degradation complex, thereby repressing the phosphorylation-dependent ubiquitination and degradation of β-catenin. Our present study identifies FABP7 as a metastatic tumor cell-specific pro-metastatic gene and uncovers a previously unknown regulatory mechanism underlying Wnt hyperactivation via FABP7-impaired cytoplasmic β-catenin degradation, implicating a novel molecule in regulating NSCLC metastasis.
Collapse
Affiliation(s)
- Qiaorui Bai
- Department of Basic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China;
| | - Xia Yang
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (X.Y.); (X.L.); (S.W.)
| | - Quanfeng Li
- Cancer Institute, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China;
| | - Weizhong Chen
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China;
| | - Han Tian
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China;
| | - Rong Lian
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China;
| | - Ximeng Liu
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (X.Y.); (X.L.); (S.W.)
| | - Shuang Wang
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (X.Y.); (X.L.); (S.W.)
| | - Yi Yang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China;
- Correspondence: ; Tel./Fax: +86-20-8733-5868
| |
Collapse
|
18
|
Lin CH, Chang HH, Lai CR, Wang HH, Tsai WC, Tsai YL, Changchien CY, Cheng YC, Wu ST, Chen Y. Fatty Acid Binding Protein 6 Inhibition Decreases Cell Cycle Progression, Migration and Autophagy in Bladder Cancers. Int J Mol Sci 2022; 23:ijms23042154. [PMID: 35216267 PMCID: PMC8878685 DOI: 10.3390/ijms23042154] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
Bladder cancer (BC) has a high recurrence rate worldwide. The aim of this study was to evaluate the role of fatty acid binding protein 6 (FABP6) in proliferation and migration in human bladder cancer cells. Cell growth was confirmed by MTT and colony formation assay. Western blotting was used to explore protein expressions. Wound healing and Transwell assays were performed to evaluate the migration ability. A xenograft animal model with subcutaneous implantation of BC cells was generated to confirm the tumor progression. Knockdown of FABP6 reduced cell growth in low-grade TSGH-8301 and high-grade T24 cells. Cell cycle blockade was observed with the decrease of CDK2, CDK4, and Ki67 levels in FABP6-knockdown BC cells. Interestingly, knockdown of FBAP6 led to downregulation of autophagic markers and activation of AKT-mTOR signaling. The application of PI3K/AKT inhibitor decreased cell viability mediated by FABP6-knockdown additionally. Moreover, FABP6-knockdown reduced peroxisome proliferator-activated receptor γ and retinoid X receptor α levels but increased p-p65 expression. Knockdown of FABP6 also inhibited BC cell motility with focal adhesive complex reduction. Finally, shFABP6 combined with cisplatin suppressed tumor growth in vivo. These results provide evidence that FABP6 may be a potential target in BC cells progression.
Collapse
Affiliation(s)
- Chieh-Hsin Lin
- National Defense Medical Center, Department of Biology and Anatomy, Taipei 11490, Taiwan; (C.-H.L.); (H.-H.C.); (C.-R.L.); (C.-Y.C.); (Y.-C.C.)
| | - Hsin-Han Chang
- National Defense Medical Center, Department of Biology and Anatomy, Taipei 11490, Taiwan; (C.-H.L.); (H.-H.C.); (C.-R.L.); (C.-Y.C.); (Y.-C.C.)
| | - Chien-Rui Lai
- National Defense Medical Center, Department of Biology and Anatomy, Taipei 11490, Taiwan; (C.-H.L.); (H.-H.C.); (C.-R.L.); (C.-Y.C.); (Y.-C.C.)
| | - Hisao-Hsien Wang
- Department of Urology, Cheng Hsin General Hospital, Taipei 11490, Taiwan;
| | - Wen-Chiuan Tsai
- National Defense Medical Center, Department of Pathology, Tri-Service General Hospital, Taipei 11490, Taiwan; (W.-C.T.); (Y.-L.T.)
| | - Yu-Ling Tsai
- National Defense Medical Center, Department of Pathology, Tri-Service General Hospital, Taipei 11490, Taiwan; (W.-C.T.); (Y.-L.T.)
| | - Chih-Ying Changchien
- National Defense Medical Center, Department of Biology and Anatomy, Taipei 11490, Taiwan; (C.-H.L.); (H.-H.C.); (C.-R.L.); (C.-Y.C.); (Y.-C.C.)
- National Defense Medical Center, Department of Internal Medicine, Tri-Service General Hospital, Taipei 11490, Taiwan
| | - Yu-Chen Cheng
- National Defense Medical Center, Department of Biology and Anatomy, Taipei 11490, Taiwan; (C.-H.L.); (H.-H.C.); (C.-R.L.); (C.-Y.C.); (Y.-C.C.)
| | - Sheng-Tang Wu
- National Defense Medical Center, Division of Urology, Department of Surgery, Tri-Service General Hospital, Taipei 11490, Taiwan
- Correspondence: (S.-T.W.); (Y.C.); Tel.: +886-2-8792-3100 (ext. 18739) (Y.C.)
| | - Ying Chen
- National Defense Medical Center, Department of Biology and Anatomy, Taipei 11490, Taiwan; (C.-H.L.); (H.-H.C.); (C.-R.L.); (C.-Y.C.); (Y.-C.C.)
- Correspondence: (S.-T.W.); (Y.C.); Tel.: +886-2-8792-3100 (ext. 18739) (Y.C.)
| |
Collapse
|
19
|
Li X, Liu L, Li N, Jia Q, Wang X, Zuo L, Long J, Xue P, Sun Z, Zhao H. Metabolomics based plasma biomarkers for diagnosis of oral squamous cell carcinoma and oral erosive lichen planus. J Cancer 2022; 13:76-87. [PMID: 34976172 PMCID: PMC8692701 DOI: 10.7150/jca.59777] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 11/02/2021] [Indexed: 11/05/2022] Open
Abstract
Backgrounds: To identify diagnostic biomarkers for differentiating oral squamous cell carcinoma (OSCC) from oral erosive lichen planus (OELP) and investigate potential biomarkers associated with malignant transformation. Methods: In this study, 72 patients with OSCC, 75 patients with OELP subjects were recruited. Their plasma samples were analyzed by ultra-high-performance liquid chromatography quadrupole-Orbitrap high-resolution accurate mass spectrometry, (UHPLC/Q-Orbitrap HRMS). Principal component analysis, orthogonal partial least square discrimination analysis, t-test analysis and false discovery rate were used to identify different metabolites in patients with OSCC and OELP. The metabolic pathway analysis was performed by MetaboAnalyst. To further screen and identify the biomarkers of OSCC and establish a diagnostic panel, binary logistic regression analysis and receiver operating characteristic analysis were used. The data were then combined with blood samples from healthy individuals for mass spectrometry analysis to obtain biomarkers related to malignant transformation. Results: A total of 20 kinds of endogenous metabolites were identified from plasma samples of OSCC patients and OELP patients. Metabolic pathway analysis showed that the biomarkers associated with OSCC were closely related to cholic acid metabolism and amino acid metabolism. Finally, a diagnostic panel composed of decanoylcarnitine, cysteine and cholic acid was established. This diagnostic panel had good diagnostic efficiency with the AUC=0.998. Other metabolites including uridine, taurine, glutamate, citric acid and LysoPC(18:1) were identified to be general biomarkers for malignant transformation of OELP. Conclusion: Biomarkers based on plasma metabolomics are of great significance for the prediction of malignant transformation of OELP and early diagnosis of OSCC.
Collapse
Affiliation(s)
- Xibo Li
- Department of Oral Emergency, The First Affiliated Hospital of Zhengzhou University· Stomatological Hospital of Henan Province, Zhengzhou, Henan, 450052, China.,School and Hospital of Stomatology of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Liwei Liu
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.,Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, Henan, 450052, China
| | - Na Li
- Department of Prosthodontics, The First Affiliated Hospital of Zhengzhou University· Stomatological Hospital of Henan Province, Zhengzhou, Henan, 450052, China
| | - Qingquan Jia
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.,Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, Henan, 450052, China
| | - Xiaoshuang Wang
- Department of Oral Emergency, The First Affiliated Hospital of Zhengzhou University· Stomatological Hospital of Henan Province, Zhengzhou, Henan, 450052, China.,School and Hospital of Stomatology of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Lihua Zuo
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.,Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, Henan, 450052, China
| | - Jianglan Long
- Beijing Key Laboratory and Joint Laboratory for International Cooperation of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, 100038, China
| | - Peng Xue
- Health Management Center, The First Affiliated Hospital of Zhengzhou University· Stomatological Hospital of Henan Province, Zhengzhou, Henan, 450052, China
| | - Zhi Sun
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.,Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, Henan, 450052, China
| | - Hongyu Zhao
- Department of Oral Emergency, The First Affiliated Hospital of Zhengzhou University· Stomatological Hospital of Henan Province, Zhengzhou, Henan, 450052, China.,School and Hospital of Stomatology of Zhengzhou University, Zhengzhou, Henan, 450052, China
| |
Collapse
|
20
|
Zhang P, Cheng S, Sheng X, Dai H, He K, Du Y. The role of autophagy in regulating metabolism in the tumor microenvironment. Genes Dis 2021; 10:447-456. [DOI: 10.1016/j.gendis.2021.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/23/2021] [Accepted: 10/24/2021] [Indexed: 10/19/2022] Open
|
21
|
Jeong DW, Lee S, Chun YS. How cancer cells remodel lipid metabolism: strategies targeting transcription factors. Lipids Health Dis 2021; 20:163. [PMID: 34775964 PMCID: PMC8590761 DOI: 10.1186/s12944-021-01593-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/02/2021] [Indexed: 12/30/2022] Open
Abstract
Reprogramming of lipid metabolism has received increasing recognition as a hallmark of cancer cells because lipid dysregulation and the alteration of related enzyme profiles are closely correlated with oncogenic signals and malignant phenotypes, such as metastasis and therapeutic resistance. In this review, we describe recent findings that support the importance of lipids, as well as the transcription factors involved in cancer lipid metabolism. With recent advances in transcription factor analysis, including computer-modeling techniques, transcription factors are emerging as central players in cancer biology. Considering the limited number and the crucial role of transcription factors associated with lipid rewiring in cancers, transcription factor targeting is a promising potential strategy for cancer therapy.
Collapse
Affiliation(s)
- Do-Won Jeong
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea.,Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Seulbee Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea.,Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Yang-Sook Chun
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea. .,Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, South Korea. .,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, South Korea.
| |
Collapse
|
22
|
Castelli S, De Falco P, Ciccarone F, Desideri E, Ciriolo MR. Lipid Catabolism and ROS in Cancer: A Bidirectional Liaison. Cancers (Basel) 2021; 13:cancers13215484. [PMID: 34771647 PMCID: PMC8583096 DOI: 10.3390/cancers13215484] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 12/14/2022] Open
Abstract
Although cancer cell metabolism was mainly considered to rely on glycolysis, with the concomitant impairment of mitochondrial metabolism, it has recently been demonstrated that several tumor types are sustained by oxidative phosphorylation (OXPHOS). In this context, endogenous fatty acids (FAs) deriving from lipolysis or lipophagy are oxidised into the mitochondrion, and are used as a source of energy through OXPHOS. Because the electron transport chain is the main source of ROS, cancer cells relying on fatty acid oxidation (FAO) need to be equipped with antioxidant systems that maintain the ROS levels under the death threshold. In those conditions, ROS can act as second messengers, favouring proliferation and survival. Herein, we highlight the different responses that tumor cells adopt when lipid catabolism is augmented, taking into account the different ROS fates. Many papers have demonstrated that the pro- or anti-tumoral roles of endogenous FA usage are hugely dependent on the tumor type, and on the capacity of cancer cells to maintain redox homeostasis. In light of this, clinical studies have taken advantage of the boosting of lipid catabolism to increase the efficacy of tumor therapy, whereas, in other contexts, antioxidant compounds are useful to reduce the pro-survival effects of ROS deriving from FAO.
Collapse
Affiliation(s)
- Serena Castelli
- Department of Biology, University of Rome “Tor Vergata”, Via Della Ricerca Scientifica 1, 00133 Rome, Italy; (S.C.); (P.D.F.); (E.D.)
| | - Pamela De Falco
- Department of Biology, University of Rome “Tor Vergata”, Via Della Ricerca Scientifica 1, 00133 Rome, Italy; (S.C.); (P.D.F.); (E.D.)
| | - Fabio Ciccarone
- IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Enrico Desideri
- Department of Biology, University of Rome “Tor Vergata”, Via Della Ricerca Scientifica 1, 00133 Rome, Italy; (S.C.); (P.D.F.); (E.D.)
| | - Maria Rosa Ciriolo
- Department of Biology, University of Rome “Tor Vergata”, Via Della Ricerca Scientifica 1, 00133 Rome, Italy; (S.C.); (P.D.F.); (E.D.)
- IRCCS San Raffaele Pisana, Via Della Pisana 235, 00163 Rome, Italy
- Correspondence:
| |
Collapse
|
23
|
PPAR Gamma and Viral Infections of the Brain. Int J Mol Sci 2021; 22:ijms22168876. [PMID: 34445581 PMCID: PMC8396218 DOI: 10.3390/ijms22168876] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/29/2022] Open
Abstract
Peroxisome Proliferator-Activated Receptor gamma (PPARγ) is a master regulator of metabolism, adipogenesis, inflammation and cell cycle, and it has been extensively studied in the brain in relation to inflammation or neurodegeneration. Little is known however about its role in viral infections of the brain parenchyma, although they represent the most frequent cause of encephalitis and are a major threat for the developing brain. Specific to viral infections is the ability to subvert signaling pathways of the host cell to ensure virus replication and spreading, as deleterious as the consequences may be for the host. In this respect, the pleiotropic role of PPARγ makes it a critical target of infection. This review aims to provide an update on the role of PPARγ in viral infections of the brain. Recent studies have highlighted the involvement of PPARγ in brain or neural cells infected by immunodeficiency virus 1, Zika virus, or human cytomegalovirus. They have provided a better understanding on PPARγ functions in the infected brain, and revealed that it can be a double-edged sword with respect to inflammation, viral replication, or neuronogenesis. They unraveled new roles of PPARγ in health and disease and could possibly help designing new therapeutic strategies.
Collapse
|
24
|
Baczewska M, Bojczuk K, Kołakowski A, Dobroch J, Guzik P, Knapp P. Obesity and Energy Substrate Transporters in Ovarian Cancer-Review. Molecules 2021; 26:1659. [PMID: 33809784 PMCID: PMC8002293 DOI: 10.3390/molecules26061659] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 01/12/2023] Open
Abstract
Ovarian cancer is the seventh most common cancer in women. It is characterized by a high mortality rate because of its aggressiveness and advanced stage at the time of diagnosis. It is a nonhomogenous group of neoplasms and, of which the molecular basics are still being investigated. Nowadays, the golden standard in the treatment is debulking cytoreductive surgery combined with platinum-based chemotherapy. We have presented the interactions and the resulting perspectives between fatty acid transporters, glucose transporters and ovarian cancer cells. Studies have shown the association between a lipid-rich environment and cancer progression, which suggests the use of correspondent transporter inhibitors as promising chemotherapeutic agents. This review summarizes preclinical and clinical studies highlighting the role of fatty acid transport proteins and glucose transporters in development, growth, metastasizing and its potential use in targeted therapies of ovarian cancer.
Collapse
Affiliation(s)
- Marta Baczewska
- Department of Gynecology and Gynecological Oncology, Medical University of Białystok, 15-089 Bialystok, Poland; (K.B.); (A.K.); (J.D.); (P.K.)
| | - Klaudia Bojczuk
- Department of Gynecology and Gynecological Oncology, Medical University of Białystok, 15-089 Bialystok, Poland; (K.B.); (A.K.); (J.D.); (P.K.)
| | - Adrian Kołakowski
- Department of Gynecology and Gynecological Oncology, Medical University of Białystok, 15-089 Bialystok, Poland; (K.B.); (A.K.); (J.D.); (P.K.)
| | - Jakub Dobroch
- Department of Gynecology and Gynecological Oncology, Medical University of Białystok, 15-089 Bialystok, Poland; (K.B.); (A.K.); (J.D.); (P.K.)
| | - Paweł Guzik
- Clinical Department of Gynecology and Obstetrics, City Hospital, 35-241 Rzeszów, Poland;
| | - Paweł Knapp
- Department of Gynecology and Gynecological Oncology, Medical University of Białystok, 15-089 Bialystok, Poland; (K.B.); (A.K.); (J.D.); (P.K.)
- University Oncology Center, University Clinical Hospital in Białystok, 15-276 Białystok, Poland
| |
Collapse
|
25
|
PPARγ regulates fabp4 expression to increase DHA content in golden pompano ( Trachinotus ovatus) hepatocytes. Br J Nutr 2021; 127:3-11. [PMID: 33663633 DOI: 10.1017/s0007114521000775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
N-3 long-chain (≥C20) PUFA (LC-PUFA) are vital fatty acids for fish and humans. As a main source of n-3 LC-PUFA for human consumers, the n-3 LC-PUFA content of farmed fish is important. Previously, we identified fatty acid-binding protein (fabp)-4 as a candidate gene for regulating the n-3 LC-PUFA content. Herein, we further assessed the role of fabp4 in this process. First, a 2059 bp promoter sequence of fabp4 in Trachinotus ovatus was cloned and, using progressive deletion, determined -2006 bp to -1521 bp to be the core promoter sequence. The PPAR-γ binding sites were predicted to occur in this region. A luciferase reporter assay showed that the promoter activity of fabp4 decreased following mutation of the PPARγ binding site and that PPARγ increased the fabp4 promoter activity in a dose-dependent manner, implying that T. ovatus fabp4 is a target of PPARγ. The overexpression of fabp4 or PPARγ increased the DHA content in hepatocytes, whereas suppression of their expression diminished this effect, suggesting that both fabp4 and PPARγ play an active role in regulating DHA content. Moreover, the inhibition of fabp4 attenuated the increase in PPARγ-mediated DHA content, and the overexpression of fabp4 alleviated this effect. Collectively, our findings indicated that fabp4, which is controlled by PPARγ, plays an important role in DHA content regulation. The new regulation axis can be considered a promising novel target for increasing the n-3 LC-PUFA content in T. ovatus.
Collapse
|
26
|
Thulasi Raman SN, Latreille E, Gao J, Zhang W, Wu J, Russell MS, Walrond L, Cyr T, Lavoie JR, Safronetz D, Cao J, Sauve S, Farnsworth A, Chen W, Shi PY, Wang Y, Wang L, Rosu-Myles M, Li X. Dysregulation of Ephrin receptor and PPAR signaling pathways in neural progenitor cells infected by Zika virus. Emerg Microbes Infect 2020; 9:2046-2060. [PMID: 32873194 PMCID: PMC7534353 DOI: 10.1080/22221751.2020.1818631] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 08/28/2020] [Indexed: 12/13/2022]
Abstract
Zika virus (ZIKV) infection is a serious public threat with cases reported in about 70 countries and territories. One of the most serious consequences of ZIKV infection is congenital microcephaly in babies. Congenital microcephaly has been suggested to result from infection of neural progenitor cells (NPCs) in the developing fetal brain. However, the molecular and cellular mechanisms underlying microcephaly development remains to be fully elucidated. In this study, we employed quantitative proteomics to determine protein expression profile that occur during viral replication in NPCs. Bioinformatics analysis of the protein expression changes resulted in the identification of a wide range of cell signaling pathways. Specifically, pathways involved in neurogenesis and embryonic development were markedly altered, along with those associated with cell cycle, apoptosis, lipid metabolism and oxidative stress. Notably, the differential regulation of Ephrin Receptor and PPAR signaling pathways, as revealed by quantitative proteomics and validated by qPCR array, underscores the need to explore these pathways in disease development. Collectively, these results indicate that ZIKV-induced pathogenesis involves complex virus-host reactions; the findings reported here could help shed light on the mechanisms underlying ZIKV-induced microcephaly and ZIKV replication in NPCs.
Collapse
Affiliation(s)
- Sathya N. Thulasi Raman
- Centre for Biologics Evaluation, Biologics and Radiopharmaceutical Drugs Directorate, HPFB, Health Canada and WHO Collaborating Centre for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Elyse Latreille
- Centre for Biologics Evaluation, Biologics and Radiopharmaceutical Drugs Directorate, HPFB, Health Canada and WHO Collaborating Centre for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Jun Gao
- Centre for Biologics Evaluation, Biologics and Radiopharmaceutical Drugs Directorate, HPFB, Health Canada and WHO Collaborating Centre for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Wanyue Zhang
- Centre for Biologics Evaluation, Biologics and Radiopharmaceutical Drugs Directorate, HPFB, Health Canada and WHO Collaborating Centre for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jianguo Wu
- Centre for Biologics Evaluation, Biologics and Radiopharmaceutical Drugs Directorate, HPFB, Health Canada and WHO Collaborating Centre for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Marsha S. Russell
- Centre for Biologics Evaluation, Biologics and Radiopharmaceutical Drugs Directorate, HPFB, Health Canada and WHO Collaborating Centre for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Lisa Walrond
- Centre for Biologics Evaluation, Biologics and Radiopharmaceutical Drugs Directorate, HPFB, Health Canada and WHO Collaborating Centre for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Terry Cyr
- Centre for Biologics Evaluation, Biologics and Radiopharmaceutical Drugs Directorate, HPFB, Health Canada and WHO Collaborating Centre for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Jessie R. Lavoie
- Centre for Biologics Evaluation, Biologics and Radiopharmaceutical Drugs Directorate, HPFB, Health Canada and WHO Collaborating Centre for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - David Safronetz
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Jingxin Cao
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Simon Sauve
- Centre for Biologics Evaluation, Biologics and Radiopharmaceutical Drugs Directorate, HPFB, Health Canada and WHO Collaborating Centre for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Aaron Farnsworth
- Centre for Biologics Evaluation, Biologics and Radiopharmaceutical Drugs Directorate, HPFB, Health Canada and WHO Collaborating Centre for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Wangxue Chen
- National Research Council of Canada, Human Health Therapeutics, Ottawa, ON, Canada
| | - Pei-Yong Shi
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Youchun Wang
- National Institute for Food and Drug Control and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, People’s Republic of China
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Michael Rosu-Myles
- Centre for Biologics Evaluation, Biologics and Radiopharmaceutical Drugs Directorate, HPFB, Health Canada and WHO Collaborating Centre for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Xuguang Li
- Centre for Biologics Evaluation, Biologics and Radiopharmaceutical Drugs Directorate, HPFB, Health Canada and WHO Collaborating Centre for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
27
|
Yu J, Ma C, Xu Y, Han L, Wu X, Wang Y, Deng G. Knockdown of fatty acid binding protein 4 exacerbates Bacillus Calmette-Guerin infection-induced RAW264.7 cell apoptosis via the endoplasmic reticulum stress pathway. INFECTION GENETICS AND EVOLUTION 2020; 85:104552. [PMID: 32920196 DOI: 10.1016/j.meegid.2020.104552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 10/23/2022]
Abstract
Mycobacterial infection can induce alveolar macrophage apoptosis, which plays a vital role in the pathogenesis of tuberculosis. Accumulating evidence has demonstrated that fatty acid oxidation is involved in apoptosis during various pathological processes, including bacterial infection. However, whether fatty acid oxidation regulates mycobacterial infection-induced macrophage apoptosis remains unclear. Hence, the present study aimed to investigate the role of fatty acid binding protein 4 (FABP4) which is a carrier protein for fatty acids, in regulating apoptosis in RAW264.7 cells infected with Bacillus Calmette-Guerin (BCG). In our study, the impact of BCG infection on apoptosis and fatty acid oxidation in RAW264.7 cells was examined. Notably, we found that FABP4 was overexpressed during this process. Furthermore, small interfering RNAs targeting FABP4 were used to investigate the role of FABP4 in regulating apoptosis and fatty acid oxidation in BCG-infected RAW264.7 cells. The results indicated that mycobacterial infection promoted apoptosis and enhanced fatty acid oxidation in RAW264.7 cells. Moreover, FABP4 knockdown exacerbated BCG-induced apoptosis and upregulated the expression of p-PERK, p-eIF2α and chop, which are endoplasmic reticulum (ER) stress markers. In addition, FABP4 knockdown promoted fatty acid oxidation and ROS production, which result in the activation of ER stress. Our data suggested that FABP4 knockdown exacerbated BCG-induced apoptosis in RAW264.7 cells via the ER stress pathway.
Collapse
Affiliation(s)
- Jialin Yu
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in western China, NingXia University, NingXia, Yinchuan 750021, PR China; School of Life Science, NingXia University, NingXia, Yinchuan 750021, PR China
| | - Chenjie Ma
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in western China, NingXia University, NingXia, Yinchuan 750021, PR China; School of Life Science, NingXia University, NingXia, Yinchuan 750021, PR China
| | - Yanan Xu
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in western China, NingXia University, NingXia, Yinchuan 750021, PR China; School of Life Science, NingXia University, NingXia, Yinchuan 750021, PR China
| | - Lu Han
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in western China, NingXia University, NingXia, Yinchuan 750021, PR China; School of Life Science, NingXia University, NingXia, Yinchuan 750021, PR China
| | - Xiaoling Wu
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in western China, NingXia University, NingXia, Yinchuan 750021, PR China; School of Life Science, NingXia University, NingXia, Yinchuan 750021, PR China.
| | - Yujiong Wang
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in western China, NingXia University, NingXia, Yinchuan 750021, PR China; School of Life Science, NingXia University, NingXia, Yinchuan 750021, PR China.
| | - Guangcun Deng
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in western China, NingXia University, NingXia, Yinchuan 750021, PR China; School of Life Science, NingXia University, NingXia, Yinchuan 750021, PR China.
| |
Collapse
|
28
|
Li C, Chen Q, Zhou Y, Niu Y, Wang X, Li X, Zheng H, Wei T, Zhao L, Gao H. S100A2 promotes glycolysis and proliferation via GLUT1 regulation in colorectal cancer. FASEB J 2020; 34:13333-13344. [PMID: 32816365 DOI: 10.1096/fj.202000555r] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/16/2020] [Accepted: 07/19/2020] [Indexed: 01/05/2023]
Abstract
The deregulation of S100A2 has been implicated in the pathogenesis of several types of cancers. However, the molecular mechanisms underlying the protumorigenic capacities of S100A2 have not been fully elucidated. Here, we demonstrated the molecular mechanisms underlying the roles of S100A2 in glycolysis reprogramming and proliferation of colorectal cancer (CRC) cells. The results indicated that S100A2 overexpression raises glucose metabolism and proliferation. Mechanistically, S100A2 activated the PI3K/AKT signaling pathway, upregulated GLUT1 expression, induced glycolytic reprogramming, and consequently increased proliferation. Clinical data showed significantly increased S100A2 levels in CRC tissues and the Oncomine database. In addition, analysis revealed a positive correlation between S100A2 and GLUT1 mRNA expression in CRC tissues. Together, these results demonstrate that the S100A2/GLUT1 axis can promote the progression of CRC by modulating glycolytic reprogramming. Our results further suggest that targeting S100A2 could present a promising therapeutic avenue for the prevention of colorectal cancer progression.
Collapse
Affiliation(s)
- Chen Li
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qinbo Chen
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yi Zhou
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yan Niu
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xinyi Wang
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiang Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hong Zheng
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Tingting Wei
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Liangcai Zhao
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hongchang Gao
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
29
|
Hua TNM, Oh J, Kim S, Antonio JM, Vo VTA, Om J, Choi JW, Kim JY, Jung CW, Park MJ, Jeong Y. Peroxisome proliferator-activated receptor gamma as a theragnostic target for mesenchymal-type glioblastoma patients. Exp Mol Med 2020; 52:629-642. [PMID: 32280134 PMCID: PMC7210935 DOI: 10.1038/s12276-020-0413-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 01/18/2023] Open
Abstract
Glioblastomas (GBMs) are characterized by four subtypes, proneural (PN), neural, classical, and mesenchymal (MES) GBMs, and they all have distinct activated signaling pathways. Among the subtypes, PN and MES GBMs show mutually exclusive genetic signatures, and the MES phenotype is, in general, believed to be associated with more aggressive features of GBM: tumor recurrence and drug resistance. Therefore, targeting MES GBMs would improve the overall prognosis of patients with fatal tumors. In this study, we propose peroxisome proliferator-activated receptor gamma (PPARγ) as a potential diagnostic and prognostic biomarker as well as therapeutic target for MES GBM; we used multiple approaches to assess PPARγ, including biostatistics analysis and assessment of preclinical studies. First, we found that PPARγ was exclusively expressed in MES glioblastoma stem cells (GSCs), and ligand activation of endogenous PPARγ suppressed cell growth and stemness in MES GSCs. Further in vivo studies involving orthotopic and heterotopic xenograft mouse models confirmed the therapeutic efficacy of targeting PPARγ; compared to control mice, those that received ligand treatment exhibited longer survival as well as decreased tumor burden. Mechanistically, PPARγ activation suppressed proneural-mesenchymal transition (PMT) by inhibiting the STAT3 signaling pathway. Biostatistical analysis using The Cancer Genomics Atlas (TCGA, n = 206) and REMBRANDT (n = 329) revealed that PPARγ upregulation is linked to poor overall survival and disease-free survival of GBM patients. Analysis was performed on prospective (n = 2) and retrospective (n = 6) GBM patient tissues, and we finally confirmed that PPARγ expression was distinctly upregulated in MES GBM. Collectively, this study provides insight into PPARγ as a potential therapeutic target for patients with MES GBM.
Collapse
Affiliation(s)
- Tuyen N M Hua
- Departments of Biochemistry, Yonsei University, Wonju, Republic of Korea
- Departments of Global Medical Science, Yonsei University, Wonju, Republic of Korea
- Departments of Mitohormesis Research Center, Yonsei University, Wonju, Republic of Korea
| | - Jiwoong Oh
- Department of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Sohyun Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jayson M Antonio
- Departments of Biochemistry, Yonsei University, Wonju, Republic of Korea
- Departments of Global Medical Science, Yonsei University, Wonju, Republic of Korea
- Departments of Mitohormesis Research Center, Yonsei University, Wonju, Republic of Korea
| | - Vu T A Vo
- Departments of Biochemistry, Yonsei University, Wonju, Republic of Korea
- Departments of Global Medical Science, Yonsei University, Wonju, Republic of Korea
- Departments of Mitohormesis Research Center, Yonsei University, Wonju, Republic of Korea
| | - Jiyeon Om
- Departments of Biochemistry, Yonsei University, Wonju, Republic of Korea
| | - Jong-Whan Choi
- Departments of Biochemistry, Yonsei University, Wonju, Republic of Korea
| | - Jeong-Yub Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Chan-Woong Jung
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Myung-Jin Park
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea.
| | - Yangsik Jeong
- Departments of Biochemistry, Yonsei University, Wonju, Republic of Korea.
- Departments of Global Medical Science, Yonsei University, Wonju, Republic of Korea.
- Departments of Mitohormesis Research Center, Yonsei University, Wonju, Republic of Korea.
- Institutes of Lifestyle Medicine, Yonsei University, Wonju, Republic of Korea.
- Departments of Mitochondrial Medicine, Yonsei University, Wonju, Republic of Korea.
- Departments of Nuclear Receptor Research Consortium, Wonju College of Medicine, Yonsei University, Wonju, Gangwon-Do, 26426, Republic of Korea.
| |
Collapse
|
30
|
Serpa J. Metabolic Remodeling as a Way of Adapting to Tumor Microenvironment (TME), a Job of Several Holders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1219:1-34. [PMID: 32130691 DOI: 10.1007/978-3-030-34025-4_1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The microenvironment depends and generates dependence on all the cells and structures that share the same niche, the biotope. The contemporaneous view of the tumor microenvironment (TME) agrees with this idea. The cells that make up the tumor, whether malignant or not, behave similarly to classes of elements within a living community. These elements inhabit, modify and benefit from all the facilities the microenvironment has to offer and that will contribute to the survival and growth of the tumor and the progression of the disease.The metabolic adaptation to microenvironment is a crucial process conducting to an established tumor able to grow locally, invade and metastasized. The metastatic cancer cells are reasonable more plastic than non-metastatic cancer cells, because the previous ones must survive in the microenvironment where the primary tumor develops and in addition, they must prosper in the microenvironment in the metastasized organ.The metabolic remodeling requires not only the adjustment of metabolic pathways per se but also the readjustment of signaling pathways that will receive and obey to the extracellular instructions, commanding the metabolic adaptation. Many diverse players are pivotal in cancer metabolic fitness from the initial signaling stimuli, going through the activation or repression of genes, until the phenotype display. The new phenotype will permit the import and consumption of organic compounds, useful for energy and biomass production, and the export of metabolic products that are useless or must be secreted for a further recycling or controlled uptake. In the metabolic network, three subsets of players are pivotal: (1) the organic compounds; (2) the transmembrane transporters, and (3) the enzymes.This chapter will present the "Pharaonic" intent of diagraming the interplay between these three elements in an attempt of simplifying and, at the same time, of showing the complex sight of cancer metabolism, addressing the orchestrating role of microenvironment and highlighting the influence of non-cancerous cells.
Collapse
Affiliation(s)
- Jacinta Serpa
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School | Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal.
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisbon, Portugal.
| |
Collapse
|
31
|
Jiramongkol Y, Lam EWF. Multifaceted Oncogenic Role of Adipocytes in the Tumour Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1219:125-142. [PMID: 32130697 DOI: 10.1007/978-3-030-34025-4_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Obesity has for decades been recognised as one of the major health concerns. Recently accumulated evidence has established that obesity or being overweight is strongly linked to an increased risk of cancer. However, it is still not completely clear how adipose tissue (fat), along with other stromal connective tissues and cells, contribute to tumour initiation and progression. In the tumour microenvironment, the adipose tissue cells, in particular the adipocytes, secrete a number of adipokines, including growth factors, hormones, collagens, fatty acids, and other metabolites as well as extracellular vesicles to shape and condition the tumour and its microenvironment. In fact, the adipocytes, through releasing these factors and materials, can directly and indirectly facilitate cancer cell proliferation, apoptosis, metabolism, angiogenesis, metastasis and even chemotherapy resistance. In this chapter, the multidimensional role played by adipocytes, a major and functional component of the adipose tissue, in promoting cancer development and progression within the tumour microenvironment will be discussed.
Collapse
Affiliation(s)
- Yannasittha Jiramongkol
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK.
| |
Collapse
|
32
|
Fan M, Choi YJ, Tang Y, Bae SM, Yang HP, Kim EK. Efficacy and Mechanism of Polymerized Anthocyanin from Grape-Skin Extract on High-Fat-Diet-Induced Nonalcoholic Fatty Liver Disease. Nutrients 2019; 11:nu11112586. [PMID: 31717842 PMCID: PMC6893447 DOI: 10.3390/nu11112586] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/01/2019] [Accepted: 10/08/2019] [Indexed: 12/14/2022] Open
Abstract
We investigated the therapeutic potential of polymerized anthocyanin (PA) on a nonalcoholic fatty liver disease (NAFLD) model in mice. C57BL/6 mice were fed a high-fat diet (HFD) for 8 weeks to establish the NAFLD mouse model and randomly divided into four groups: control diet (con), NAFLD mice treated with saline (NAFLD), NAFLD mice treated with PA (PA), and NAFLD mice treated with orlistat (Orlistat) for four weeks. Mice were euthanized at the end of the four weeks. Total cholesterol (TC) and triglyceride (TG) levels were estimated, and pathological changes in the liver, white adipose tissue, and signaling pathways related to lipid metabolism were evaluated. Results revealed that the body, liver, and white fat weight of the NAFLD group was significantly increased compared to that of the con group, while that of the PA group showed significant reduction. NAFLD led to an increase in blood lipids in mice (except for HDL). Conversely, PA effectively reduced TC and LDL-C. Compared to the control group, the degree of steatosis in the mice of PA group was decreased. Moreover, PA also regulated the NAFLD signaling pathway. In agreement with improved lipid deposition, PA supplementation inhibited the activation of inflammatory pathways, depressing oxidative stress through increased antioxidant levels, and increasing β-oxidation to inhibit mitochondrial dysfunction. Taken together, our results demonstrate that PA can improve the liver function of NAFLD mice, regulating blood lipids, reducing liver-fat accumulation, and regulating lipid metabolism.
Collapse
Affiliation(s)
- Meiqi Fan
- Division of Food Bioscience, College of Biomedical and Health Sciences, Konkuk University, Chungju 27478, Korea; (M.F.); (Y.-J.C.); ; (Y.T.)
| | - Young-Jin Choi
- Division of Food Bioscience, College of Biomedical and Health Sciences, Konkuk University, Chungju 27478, Korea; (M.F.); (Y.-J.C.); ; (Y.T.)
| | - Yujiao Tang
- Division of Food Bioscience, College of Biomedical and Health Sciences, Konkuk University, Chungju 27478, Korea; (M.F.); (Y.-J.C.); ; (Y.T.)
- Changchun University of Science and Technology, Changchun 130-600, China
| | - Sung Mun Bae
- Gyeongnam Agricultural Research and Extension Services, Jinju 52733, Korea;
| | - Hyun Pil Yang
- Technical R and D Center, Kitto Life Co., Ltd., Pyeongtacek 17749, Korea;
| | - Eun-Kyung Kim
- Division of Food Bioscience, College of Biomedical and Health Sciences, Konkuk University, Chungju 27478, Korea; (M.F.); (Y.-J.C.); ; (Y.T.)
- Correspondence:
| |
Collapse
|
33
|
Quintão NLM, Santin JR, Stoeberl LC, Corrêa TP, Melato J, Costa R. Pharmacological Treatment of Chemotherapy-Induced Neuropathic Pain: PPARγ Agonists as a Promising Tool. Front Neurosci 2019; 13:907. [PMID: 31555078 PMCID: PMC6722212 DOI: 10.3389/fnins.2019.00907] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/14/2019] [Indexed: 12/24/2022] Open
Abstract
Chemotherapy-induced neuropathic pain (CINP) is one of the most severe side effects of anticancer agents, such as platinum- and taxanes-derived drugs (oxaliplatin, cisplatin, carboplatin and paclitaxel). CINP may even be a factor of interruption of treatment and consequently increasing the risk of death. Besides that, it is important to take into consideration that the incidence of cancer is increasing worldwide, including colorectal, gastric, lung, cervical, ovary and breast cancers, all treated with the aforementioned drugs, justifying the concern of the medical community about the patient’s quality of life. Several physiopathological mechanisms have already been described for CINP, such as changes in axonal transport, mitochondrial damage, increased ion channel activity and inflammation in the central nervous system (CNS). Another less frequent event that may occur after chemotherapy, particularly under oxaliplatin treatment, is the central neurotoxicity leading to disorders such as mental confusion, catatonia, hyporeflexia, etc. To date, no pharmacological therapy has shown satisfactory effect in these cases. In this scenario, duloxetine is the only drug currently in clinical use. Peroxisome proliferator-activated receptors (PPARs) belong to the class of nuclear receptors and are present in several tissues, mainly participating in lipid and glucose metabolism and inflammatory response. There are three PPAR isoforms: α, β/δ and γ. PPARγ, the protagonist of this review, is expressed in adipose tissue, large intestine, spleen and neutrophils. This subtype also plays important role in energy balance, lipid biosynthesis and adipogenesis. The effects of PPARγ agonists, known for their positive activity on type II diabetes mellitus, have been explored and present promising effects in the control of neuropathic pain, including CINP, and also cancer. This review focuses largely on the mechanisms involved in chemotherapy-induced neuropathy and the effects of the activation of PPARγ to treat CINP. It is the aim of this review to help understanding and developing novel CINP therapeutic strategies integrating PPARγ signalling.
Collapse
Affiliation(s)
| | | | | | | | - Jéssica Melato
- School of Heath Science, Universidade do Vale do Itajaí, Itajaí, Brazil
| | - Robson Costa
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| |
Collapse
|
34
|
Wu M, Yuan H, Li X, Liao Q, Liu Z. Identification of a Five-Gene Signature and Establishment of a Prognostic Nomogram to Predict Progression-Free Interval of Papillary Thyroid Carcinoma. Front Endocrinol (Lausanne) 2019; 10:790. [PMID: 31803141 PMCID: PMC6872544 DOI: 10.3389/fendo.2019.00790] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 10/30/2019] [Indexed: 12/12/2022] Open
Abstract
Background: The incidence of papillary thyroid carcinoma (PTC) is high and increasing worldwide. Although prognosis is relatively good, it is important to select the minority of patients with poorer prognosis to avoid side effects associated with unnecessary over-treatment in low-risk patients; this requires accurate prognostic predictions. Materials and Methods: Six PTC expression datasets were obtained from the gene expression omnibus (GEO) database. Level 3 mRNA expression and clinicopathological data were obtained from The Cancer Genome Atlas Thyroid Cancer (TCGA-THCA) database. Through integrated analysis of these datasets, highly reliable differentially-expressed genes (DEGs) between tumor and normal tissue were identified and lasso Cox regression was applied to identify DEGs related to the progression-free interval (PFI) and to establish a prognostic gene signature. The performance of a five-gene signature was evaluated based on a Kaplan-Meier curve, receiver operating characteristic (ROC), and Harrell's concordance index (C-index). Multivariate Cox regression analysis was used to identify factors associated with PTC prognosis. Finally, a prognostic nomogram was established based on the TCGA-THCA dataset. Results: A novel five-gene signature was established to predict the PTC PFI, which included PLP2, LYVE1, FABP4, TGFBR3, and FXYD6, and the ROC curve and C-index showed good performance in both training and validation datasets. This could classify patients into high- and low-risk groups with distinct PFIs and differentiate PTC tumors from normal tissue. Univariate Cox regression revealed that this signature was an independent prognostic factor for PTC. The established nomogram, incorporating the prognostic gene signature and clinical parameters, was able to predict the PFI with high efficiency. The gene signature-based nomogram was superior to the American Thyroid Association (ATA) risk stratification to predict PTC PFI. Conclusions: Our study identified a five-gene signature and established a prognostic nomogram, which were reliable in predicting the PFI of PTC; this could be beneficial for individualized treatment and medical decision making.
Collapse
|