1
|
Kempegowda SN, Sugur K, Thimmulappa RK. Dysfunctional HDL Diagnostic Metrics for Cardiovascular Disease Risk Stratification: Are we Ready to Implement in Clinics? J Cardiovasc Transl Res 2024:10.1007/s12265-024-10559-x. [PMID: 39298091 DOI: 10.1007/s12265-024-10559-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/09/2024] [Indexed: 09/21/2024]
Abstract
Epidemiological studies have revealed that patients with higher levels of high-density lipoprotein cholesterol (HDL-C) were more resistant to cardiovascular diseases (CVD), and yet targeting HDL for CVD prevention, risk assessment, and pharmacological management has not proven to be very effective. The mechanistic investigations have demonstrated that HDL exerts anti-atherogenic functions via mediating reverse cholesterol transport, antioxidant action, anti-inflammatory activity, and anti-thrombotic activity. Contrary to expectations, however, adverse cardiovascular events were reported in clinical trials of drugs that raised HDL levels. This has sparked a debate between HDL quantity and quality. Patients with atherosclerotic CVD are associated with dysfunctional HDL, and the degree of HDL dysfunction is correlated with the severity of the disease, independent of HDL-C levels. This growing body of evidence has underscored the need for integrating HDL functional assays in clinical practice for CVD risk management. Because HDL exerts diverse athero-protective functions, there is no single method for capturing HDL functionality. This review critically evaluates the various techniques currently being used for monitoring HDL functionality and discusses key structural changes in HDL indicative of dysfunctional HDL and the technical challenges that need to be addressed to enable the integration of HDL function-based metrics in clinical practice for CVD risk estimation and the development of newer therapies targeting HDL function.
Collapse
Affiliation(s)
- Swetha N Kempegowda
- Department of Biochemistry, Centre of Excellence in Molecular Biology & Regenerative Medicine, JSS Medical College, JSS Academy of Higher Education & Research, Mysore, Karnataka, 570015, India
| | - Kavya Sugur
- Department of Biochemistry, Centre of Excellence in Molecular Biology & Regenerative Medicine, JSS Medical College, JSS Academy of Higher Education & Research, Mysore, Karnataka, 570015, India
| | - Rajesh K Thimmulappa
- Department of Biochemistry, Centre of Excellence in Molecular Biology & Regenerative Medicine, JSS Medical College, JSS Academy of Higher Education & Research, Mysore, Karnataka, 570015, India.
| |
Collapse
|
2
|
Moltó E, Pintado C, Louzada RA, Bernal-Mizrachi E, Andrés A, Gallardo N, Bonzon-Kulichenko E. Unbiased Phosphoproteome Mining Reveals New Functional Sites of Metabolite-Derived PTMs Involved in MASLD Development. Int J Mol Sci 2023; 24:16172. [PMID: 38003361 PMCID: PMC10671570 DOI: 10.3390/ijms242216172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Post-translational modifications (PTMs) of proteins are paramount in health and disease. Phosphoproteome analysis by enrichment techniques is becoming increasingly attractive for biomedical research. Recent findings show co-enrichment of other phosphate-containing biologically relevant PTMs, but these results were obtained by closed searches focused on the modifications sought. Open searches are a breakthrough in high-throughput PTM analysis (OS-PTM), identifying practically all PTMs detectable by mass spectrometry, even unknown ones, with their modified sites, in a hypothesis-free and deep manner. Here we reanalyze liver phosphoproteome by OS-PTM, demonstrating its extremely complex nature. We found extensive Lys glycerophosphorylations (pgK), as well as modification with glycerylphosphorylethanolamine on Glu (gpetE) and flavin mononucleotide on His (fmnH). The functionality of these metabolite-derived PTMs is demonstrated during metabolic dysfunction-associated steatotic liver disease (MASLD) development in mice. MASLD elicits specific alterations in pgK, epgE and fmnH in the liver, mainly on glycolytic enzymes and mitochondrial proteins, suggesting an increase in glycolysis and mitochondrial ATP production from the early insulin-resistant stages. Thus, we show new possible mechanisms based on metabolite-derived PTMs leading to intrahepatic lipid accumulation during MASLD development and reinforce phosphoproteome enrichment as a valuable tool with which to study the functional implications of a variety of low-abundant phosphate-containing PTMs in cell physiology.
Collapse
Affiliation(s)
- Eduardo Moltó
- Biochemistry Section, Regional Center for Biomedical Research (CRIB), Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avda. Carlos III s/n, 45071 Toledo, Spain
| | - Cristina Pintado
- Biochemistry Section, Regional Center for Biomedical Research (CRIB), Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avda. Carlos III s/n, 45071 Toledo, Spain
| | - Ruy Andrade Louzada
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Ernesto Bernal-Mizrachi
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Antonio Andrés
- Biochemistry Section, Regional Center for Biomedical Research (CRIB), Faculty of Sciences and Chemical Technologies, University of Castilla-La Mancha, Avda. Camilo Jose Cela 10, 13071 Ciudad Real, Spain
| | - Nilda Gallardo
- Biochemistry Section, Regional Center for Biomedical Research (CRIB), Faculty of Sciences and Chemical Technologies, University of Castilla-La Mancha, Avda. Camilo Jose Cela 10, 13071 Ciudad Real, Spain
| | - Elena Bonzon-Kulichenko
- Biochemistry Section, Regional Center for Biomedical Research (CRIB), Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avda. Carlos III s/n, 45071 Toledo, Spain
| |
Collapse
|
3
|
Sorokin AV, Hong CG, Aponte AM, Florida EM, Tang J, Patel N, Baranova IN, Li H, Parel PM, Chen V, Wilson SR, Ongstad EL, Collén A, Playford MP, Eggerman TL, Chen MY, Kotani K, Bocharov AV, Remaley AT. Association of oxidized ApoB and oxidized ApoA-I with high-risk coronary plaque features in cardiovascular disease. JCI Insight 2023; 8:e172893. [PMID: 37698922 PMCID: PMC10619497 DOI: 10.1172/jci.insight.172893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Oxidized apolipoprotein B (oxLDL) and oxidized ApoA-I (oxHDL) are proatherogenic. Their prognostic value for assessing high-risk plaques by coronary computed tomography angiography (CCTA) is missing. METHODS In a prospective, observational study, 306 participants with cardiovascular disease (CVD) had extensive lipoprotein profiling. Proteomics analysis was performed on isolated oxHDL, and atherosclerotic plaque assessment was accomplished by quantitative CCTA. RESULTS Patients were predominantly White, overweight men (58.5%) on statin therapy (43.5%). Increase in LDL-C, ApoB, small dense LDL-C (P < 0.001 for all), triglycerides (P = 0.03), and lower HDL function were observed in the high oxLDL group. High oxLDL associated with necrotic burden (NB; β = 0.20; P < 0.0001) and fibrofatty burden (FFB; β = 0.15; P = 0.001) after multivariate adjustment. Low oxHDL had a significant reverse association with these plaque characteristics. Plasma oxHDL levels better predicted NB and FFB after adjustment (OR, 2.22; 95% CI, 1.27-3.88, and OR, 2.80; 95% CI, 1.71-4.58) compared with oxLDL and HDL-C. Interestingly, oxHDL associated with fibrous burden (FB) change over 3.3 years (β = 0.535; P = 0.033) when compared with oxLDL. Combined Met136 mono-oxidation and Trp132 dioxidation of HDL showed evident association with coronary artery calcium score (r = 0.786; P < 0.001) and FB (r = 0.539; P = 0.012) in high oxHDL, whereas Met136 mono-oxidation significantly associated with vulnerable plaque in low oxHDL. CONCLUSION Our findings suggest that the investigated oxidized lipids are associated with high-risk coronary plaque features and progression over time in patients with CVD. TRIAL REGISTRATION CLINICALTRIALS gov NCT01621594. FUNDING National Heart, Lung, and Blood Institute at the NIH Intramural Research Program.
Collapse
Affiliation(s)
| | - Christin G. Hong
- Section of Inflammation and Cardiometabolic Diseases, Cardiovascular Branch
| | | | | | - Jingrong Tang
- Section of Lipoprotein Metabolism, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Nidhi Patel
- Section of Inflammation and Cardiometabolic Diseases, Cardiovascular Branch
| | - Irina N. Baranova
- Department of Laboratory Medicine, Clinical Center, NIH, Bethesda, Maryland, USA
| | - Haiou Li
- Section of Inflammation and Cardiometabolic Diseases, Cardiovascular Branch
| | - Philip M. Parel
- Section of Inflammation and Cardiometabolic Diseases, Cardiovascular Branch
| | - Vicky Chen
- Bioinformatics/Integrated Data Sciences Section, Research Technology Branch, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Sierra R. Wilson
- Section of Lipoprotein Metabolism, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | | | - Anna Collén
- Projects, Research and Early Development, Cardiovascular, Renal, and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Martin P. Playford
- Section of Inflammation and Cardiometabolic Diseases, Cardiovascular Branch
| | - Thomas L. Eggerman
- Department of Laboratory Medicine, Clinical Center, NIH, Bethesda, Maryland, USA
| | - Marcus Y. Chen
- Section of Inflammation and Cardiometabolic Diseases, Cardiovascular Branch
| | - Kazuhiko Kotani
- Division of Community and Family Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | | | - Alan T. Remaley
- Section of Lipoprotein Metabolism, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
4
|
Sacher S, Mukherjee A, Ray A. Deciphering structural aspects of reverse cholesterol transport: mapping the knowns and unknowns. Biol Rev Camb Philos Soc 2023; 98:1160-1183. [PMID: 36880422 DOI: 10.1111/brv.12948] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 02/03/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023]
Abstract
Atherosclerosis is a major contributor to the onset and progression of cardiovascular disease (CVD). Cholesterol-loaded foam cells play a pivotal role in forming atherosclerotic plaques. Induction of cholesterol efflux from these cells may be a promising approach in treating CVD. The reverse cholesterol transport (RCT) pathway delivers cholesteryl ester (CE) packaged in high-density lipoproteins (HDL) from non-hepatic cells to the liver, thereby minimising cholesterol load of peripheral cells. RCT takes place via a well-organised interplay amongst apolipoprotein A1 (ApoA1), lecithin cholesterol acyltransferase (LCAT), ATP binding cassette transporter A1 (ABCA1), scavenger receptor-B1 (SR-B1), and the amount of free cholesterol. Unfortunately, modulation of RCT for treating atherosclerosis has failed in clinical trials owing to our lack of understanding of the relationship between HDL function and RCT. The fate of non-hepatic CEs in HDL is dependent on their access to proteins involved in remodelling and can be regulated at the structural level. An inadequate understanding of this inhibits the design of rational strategies for therapeutic interventions. Herein we extensively review the structure-function relationships that are essential for RCT. We also focus on genetic mutations that disturb the structural stability of proteins involved in RCT, rendering them partially or completely non-functional. Further studies are necessary for understanding the structural aspects of RCT pathway completely, and this review highlights alternative theories and unanswered questions.
Collapse
Affiliation(s)
- Sukriti Sacher
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase III, New Delhi, 110019, India
| | - Abhishek Mukherjee
- Dhiti Life Sciences Pvt Ltd, B-107, Okhla Phase I, New Delhi, 110020, India
| | - Arjun Ray
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase III, New Delhi, 110019, India
| |
Collapse
|
5
|
Rani A, Marsche G. A Current Update on the Role of HDL-Based Nanomedicine in Targeting Macrophages in Cardiovascular Disease. Pharmaceutics 2023; 15:1504. [PMID: 37242746 PMCID: PMC10221824 DOI: 10.3390/pharmaceutics15051504] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
High-density lipoproteins (HDL) are complex endogenous nanoparticles involved in important functions such as reverse cholesterol transport and immunomodulatory activities, ensuring metabolic homeostasis and vascular health. The ability of HDL to interact with a plethora of immune cells and structural cells places it in the center of numerous disease pathophysiologies. However, inflammatory dysregulation can lead to pathogenic remodeling and post-translational modification of HDL, rendering HDL dysfunctional or even pro-inflammatory. Monocytes and macrophages play a critical role in mediating vascular inflammation, such as in coronary artery disease (CAD). The fact that HDL nanoparticles have potent anti-inflammatory effects on mononuclear phagocytes has opened new avenues for the development of nanotherapeutics to restore vascular integrity. HDL infusion therapies are being developed to improve the physiological functions of HDL and to quantitatively restore or increase the native HDL pool. The components and design of HDL-based nanoparticles have evolved significantly since their initial introduction with highly anticipated results in an ongoing phase III clinical trial in subjects with acute coronary syndrome. The understanding of mechanisms involved in HDL-based synthetic nanotherapeutics is critical to their design, therapeutic potential and effectiveness. In this review, we provide a current update on HDL-ApoA-I mimetic nanotherapeutics, highlighting the scope of treating vascular diseases by targeting monocytes and macrophages.
Collapse
Affiliation(s)
- Alankrita Rani
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria;
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria;
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| |
Collapse
|
6
|
Kazamia R, Keravnou A, Moushi A, Sokratous K, Michailidou K, Yiangou K, Soteriou M, Xenophontos S, Cariolou MA, Bashiardes E. Tissue and plasma proteomic profiling indicates AHSG as a potential biomarker for ascending thoracic aortic aneurysms. BMC Cardiovasc Disord 2023; 23:138. [PMID: 36922793 PMCID: PMC10018995 DOI: 10.1186/s12872-023-03154-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Thoracic Aortic Aneurysms (TAAs) develop asymptomatically and are characterized by dilatation of the aorta. This is considered a life-threatening vascular disorder due to the risk of aortic dissection and rupture. There is an urgent need to identify blood-borne biomarkers for the early detection of TAA. The goal of the present study was to identify potential protein biomarkers associated with TAAs, using proteomic analysis of aortic tissue and plasma samples. METHODS Extracted proteins from 14 aneurysmal and 12 non-aneurysmal thoracic aortic tissue specimens as well as plasma samples from six TAA patients collected pre-and postoperatively and six healthy controls (HC), were analyzed by liquid chromatography-tandem mass spectrometry. Proteomic data were further processed and following filtering criteria, one protein was selected for verification and validation in a larger cohort of patients and controls using a targeted quantitative proteomic approach and enzyme-linked immunosorbent assay, respectively. RESULTS A total of 1593 and 363 differentially expressed proteins were identified in tissue and plasma samples, respectively. Pathway enrichment analysis on the differentially expressed proteins revealed a number of dysregulated molecular pathways that might be implicated in aneurysm pathology including complement and coagulation cascades, focal adhesion, and extracellular matrix receptor interaction pathways. Alpha-2-HS glycoprotein (AHSG) was selected for further verification in 36 TAA and 21 HC plasma samples using targeted quantitative proteomic approach. The results showed a significantly decreased concentration of AHSG (p = 0.0002) in the preoperative plasma samples compared with HC samples. Further analyses using a larger validation dataset revealed that AHSG protein levels were significantly lower (p = 0.03) compared with HC. Logistic regression analysis on the validation dataset revealed males, advanced age, hypertension and hyperlipidaemia as significant risk factors for TAA. CONCLUSION AHSG concentrations distinguish plasma samples derived from TAA patients and controls. The findings of this study suggest that AHSG may be a potential biomarker for TAA that could lead to better diagnostic capabilities.
Collapse
Affiliation(s)
- Rafailia Kazamia
- Department of Cardiovascular Genetics and The Laboratory of Forensic Genetics, The Cyprus Institute of Neurology and Genetics, Iroon Avenue 6, Agios Dometios, 2371, Nicosia, Cyprus
| | - Anna Keravnou
- Department of Cardiovascular Genetics and The Laboratory of Forensic Genetics, The Cyprus Institute of Neurology and Genetics, Iroon Avenue 6, Agios Dometios, 2371, Nicosia, Cyprus
| | - Areti Moushi
- Department of Cardiovascular Genetics and The Laboratory of Forensic Genetics, The Cyprus Institute of Neurology and Genetics, Iroon Avenue 6, Agios Dometios, 2371, Nicosia, Cyprus
| | - Kleitos Sokratous
- OMass Therapeutics, The Schrödinger Building, Heatley Road, The Oxford Science Park, Oxford, OX4 4GE, UK
| | - Kyriaki Michailidou
- Biostatistics Unit, The Cyprus Institute of Neurology and Genetics, Iroon Avenue 6, Agios Dometios, 2371, Nicosia, Cyprus
| | - Kristia Yiangou
- Department of Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology and Genetics, Iroon Avenue 6, Agios Dometios, 2371, Nicosia, Cyprus
| | - Marinos Soteriou
- Department of Cardiology and Cardiovascular Surgery, American Medical Centre, Spyrou Kyprianou Avenue 215, 2047, Nicosia, Strovolos, Cyprus
| | - Stavroulla Xenophontos
- Department of Cardiovascular Genetics and The Laboratory of Forensic Genetics, The Cyprus Institute of Neurology and Genetics, Iroon Avenue 6, Agios Dometios, 2371, Nicosia, Cyprus
| | - Marios A Cariolou
- Department of Cardiovascular Genetics and The Laboratory of Forensic Genetics, The Cyprus Institute of Neurology and Genetics, Iroon Avenue 6, Agios Dometios, 2371, Nicosia, Cyprus
| | - Evy Bashiardes
- Department of Cardiovascular Genetics and The Laboratory of Forensic Genetics, The Cyprus Institute of Neurology and Genetics, Iroon Avenue 6, Agios Dometios, 2371, Nicosia, Cyprus.
| |
Collapse
|
7
|
Shin MD, Ortega-Rivera OA, Steinmetz NF. Multivalent Display of ApoAI Peptides on the Surface of Tobacco Mosaic Virus Nanotubes Improves Cholesterol Efflux. Bioconjug Chem 2022; 33:1922-1933. [PMID: 36191144 PMCID: PMC9772860 DOI: 10.1021/acs.bioconjchem.2c00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Atherosclerosis is a progressive cardiovascular disease in which cholesterol-rich plaques build up within arteries, increasing the risk of thrombosis, myocardial infarction, and stroke. One promising therapeutic approach is the use of high-density lipoprotein (HDL) biomimetic formulations based on ApoAI peptides that promote cholesterol efflux from plaques, ultimately leading to cholesterol excretion. Here, we describe the multivalent display of ApoAI peptides on the surface of protein nanotubes derived from the plant virus tobacco mosaic virus (TMV) and protein nanoparticles using virus-like particles from bacteriophage Qβ. Bioconjugation yielded ApoAI conjugates varying in size and morphology. We tested ABCA1-mediated cholesterol efflux using macrophage foam cells, the mitigation of reactive oxygen species in endothelial cells, and wound healing in endothelial cells. We found that the multivalent ApoAI platform, in particular the TMV-based nanotube, significantly improved the efficacy of cholesterol efflux compared to free peptides, Qβ nanoparticle formulations, and traditional HDL therapy. Finally, to better understand the mechanistic basis of enhanced cholesterol efflux, we used confocal microscopy to show that while native TMV was taken up by cells, TMV-ApoAI remained at the exterior of foam cell membranes and efflux was documented using fluorescent cholesterol. Together, these data highlight that high aspect ratio materials with multivalent display of ApoAI peptides offer unique capabilities promoting efficient cholesterol efflux and may find applications in cardiovascular therapy.
Collapse
|
8
|
Napolitano G, Fasciolo G, Tomajoli MTM, Carlucci A, Ascione E, Salvatore A. Effects of superoxide anion attack on the lipoprotein HDL. Mol Cell Biochem 2022; 478:1059-1066. [PMID: 36219354 PMCID: PMC10126046 DOI: 10.1007/s11010-022-04563-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 09/15/2022] [Indexed: 11/30/2022]
Abstract
High-density lipoprotein (HDL) is an anti-atherosclerotic lipoprotein. Thanks to the activity of apolipoprotein ApoA1, the principal protein component of HDL, this last is responsible for converting cholesterol into ester form and transporting excessive cholesterol to the liver ("reverse cholesterol transport" RCT). When HDL undergoes oxidation, it becomes dysfunctional and proatherogenic. ApoA1 is a target of oxidation, and its alteration affects RCT and contributes to atherosclerosis development. Until now, the mechanism of HDL oxidation is not fully understood and only hydroxyl radicals seem to induce direct oxidation of protein and lipidic components of lipoproteins. Here we demonstrate that superoxide radical, widely produced in early atherosclerosis, directly oxidizes HDL, and as a consequence, ApoA1 undergoes structural alterations impairing its anti-atherosclerotic functions. Our results highlight in an in vitro system the potential mechanism by which O2·- triggers atherosclerotic pathogenesis in vivo. Our study gets the basis for therapeutic approaches focused on the management of superoxide generation in early atherosclerosis onset.
Collapse
Affiliation(s)
- Gaetana Napolitano
- Dipartimento di Scienze e Tecnologie, Università degli Studi di Napoli Parthenope, via Acton n. 38-I, 80133, Naples, Italy.
- International PhD Programme/UNESCO Chair "Environment, Resources and Sustainable Development", Department of Science and Technology, Parthenope University of Naples, Naples, Italy.
| | - Gianluca Fasciolo
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario Monte Sant'Angelo, Via Cinthia, 80126, Naples, Italy
| | - Maria Teresa Muscari Tomajoli
- Dipartimento di Scienze e Tecnologie, Università degli Studi di Napoli Parthenope, via Acton n. 38-I, 80133, Naples, Italy
- International PhD Programme/UNESCO Chair "Environment, Resources and Sustainable Development", Department of Science and Technology, Parthenope University of Naples, Naples, Italy
| | - Alessandro Carlucci
- S. Antimo Industrial Development Department, Kedrion Biopharma, Strada Statale 7 Bis 19, Sant'Antimo, 80029, Napoli, Italia
| | - Ester Ascione
- S. Antimo Industrial Development Department, Kedrion Biopharma, Strada Statale 7 Bis 19, Sant'Antimo, 80029, Napoli, Italia
| | - Alfonso Salvatore
- S. Antimo Industrial Development Department, Kedrion Biopharma, Strada Statale 7 Bis 19, Sant'Antimo, 80029, Napoli, Italia
| |
Collapse
|
9
|
Bhale AS, Venkataraman K. Leveraging knowledge of HDLs major protein ApoA1: Structure, function, mutations, and potential therapeutics. Biomed Pharmacother 2022; 154:113634. [PMID: 36063649 DOI: 10.1016/j.biopha.2022.113634] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/02/2022] Open
Abstract
Apolipoprotein A1 (ApoA1) is a member of the Apolipoprotein family of proteins. It's a vital protein that helps in the production of high-density lipoprotein (HDL) particles, which are crucial for reverse cholesterol transport (RCT). It also has anti-inflammatory, anti-atherogenic, anti-apoptotic, and anti-thrombotic properties. These functions interact to give HDL particles their cardioprotective characteristics. ApoA1 has recently been investigated for its potential role in atherosclerosis, diabetes, neurological diseases, cancer, and certain infectious diseases. Since ApoA1's discovery, numerous mutations have been reported that affect its structural integrity and alter its function. Hence these insights have led to the development of clinically relevant peptides and synthetic reconstituted HDL (rHDL) that mimics the function of ApoA1. As a result, this review has aimed to provide an organized explanation of our understanding of the ApoA1 protein structure and its role in various essential pathways. Furthermore, we have comprehensively reviewed the important ApoA1 mutations (24 mutations) that are reported to be involved in various diseases. Finally, we've focused on the therapeutic potentials of some of the beneficial mutations, small peptides, and synthetic rHDL that are currently being researched or developed, since these will aid in the development of novel therapeutics in the future.
Collapse
Affiliation(s)
- Aishwarya Sudam Bhale
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Krishnan Venkataraman
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
10
|
Michel JB, Lagrange J, Regnault V, Lacolley P. Conductance Artery Wall Layers and Their Respective Roles in the Clearance Functions. Arterioscler Thromb Vasc Biol 2022; 42:e253-e272. [PMID: 35924557 DOI: 10.1161/atvbaha.122.317759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Evolutionary organization of the arterial wall into layers occurred concomitantly with the emergence of a highly muscularized, pressurized arterial system that facilitates outward hydraulic conductance and mass transport of soluble substances across the arterial wall. Although colliding circulating cells disperse potential energy within the arterial wall, the different layers counteract this effect: (1) the endothelium ensures a partial barrier function; (2) the media comprises smooth muscle cells capable of endocytosis/phagocytosis; (3) the outer adventitia and perivascular adipocytic tissue are the final receptacles of convected substances. While the endothelium forms a physical and a biochemical barrier, the medial layer is avascular, relying on the specific permeability properties of the endothelium for metabolic support. Different components of the media interact with convected molecules: medial smooth muscle cells take up numerous molecules via scavenger receptors and are capable of phagocytosis of macro/micro particles. The outer layers-the highly microvascularized innervated adventitia and perivascular adipose tissue-are also involved in the clearance functions of the media: the adventitia is the seat of immune response development, inward angiogenesis, macromolecular lymphatic drainage, and neuronal stimulation. Consequently, the clearance functions of the arterial wall are physiologically essential, but also may favor the development of arterial wall pathologies. This review describes how the walls of large conductance arteries have acquired physiological clearance functions, how this is determined by the attributes of the endothelial barrier, governed by endocytic and phagocytic capacities of smooth muscle cells, impacting adventitial functions, and the role of these clearance functions in arterial wall diseases.
Collapse
|
11
|
Zeng W, Xiong G, Hua L, Hu Y, Guo X, Peng X. APOA1 mRNA and protein in kidney renal clear cell carcinoma correlate with the disease outcome. Sci Rep 2022; 12:12406. [PMID: 35858961 PMCID: PMC9300670 DOI: 10.1038/s41598-022-16434-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/11/2022] [Indexed: 11/10/2022] Open
Abstract
Renal cancer is one of the most common malignant tumors with high mortality, and kidney renal clear cell carcinoma (KIRC) is the most common type of renal cancer. We attempted to evaluate the clinical and prognostic significance of Apolipoprotein A1 (APOA1) mRNA and protein in KIRC patients. Clinical data along with RNA-sequencing data were downloaded from UCSC Xena. The Human Protein Atlas database was searched to reveal APOA1 protein expression profiles in KIRC and normal renal tissues. The TIMER database was applied to determine the correlations of APOA1 with immune cells and PD-1 and PD-L1 in KIRC. Ninety-one cases of KIRC patients and 93 healthy controls from our hospital were enrolled for clinical validation. Levels of APOA1 mRNA in KIRC tissues (N = 535) are not only lower than the levels in normal renal tissues (N = 117), but also in paired normal renal tissues (N = 72). High expression of APOA1 mRNA at the time of surgery was correlated with worse overall survival (OS) (HR 1.66; p = 0.037) and disease-free survival (DFS) (HR 1.65; p = 0.047), and APOA1 DNA methylation was linked to worse OS (HR 2.1; p = 0.001) rather than DFS (HR 1.12; p = 0.624) in KIRC patients. Concentrations of preoperative serum APOA1 protein were markedly decreased in KIRC patients compared to healthy controls (p < 0.01), and low levels of APOA1 protein predicted less favorable OS than those with high levels (HR = 2.84, p = 0.0407). APOA1 negatively correlated with various immune cell infiltrates and PD-L1 expression (r = − 0.283, p = 2.74e−11) according to the TIMER database. Low levels of APOA1 mRNA at the time of surgery predict favorable survival in KIRC patients. Our results provide insights to identify a novel prognostic index with great clinical utility.
Collapse
Affiliation(s)
- Wei Zeng
- Department of Neurology, The Second Affiliated Hospital of Jianghan University, Wuhan, 430000, Hubei Province, People's Republic of China
| | - Guoguang Xiong
- Department of Urology, The Second Affiliated Hospital of Jianghan University, Wuhan, 430050, Hubei Province, People's Republic of China
| | - Li Hua
- Department of General Medicine, The Second Affiliated Hospital of Jianghan University, Wuhan, 430050, Hubei Province, People's Republic of China
| | - Yugang Hu
- Department of Ultrasonography, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Xufeng Guo
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Xiulan Peng
- Department of Oncology, The Second Affiliated Hospital of Jianghan University, 122 Xianzheng Road, Wuhan, 430050, Hubei Province, People's Republic of China.
| |
Collapse
|
12
|
Rodríguez Donoso J, Martín Ramos E, Aparicio Velasco J, Fonte Eliozondo L, Muñoz Críspulo E, Ruiz Arribas C. [Abdominal aortic aneurysm ultrasound screening in men with risk factors in Primary Care]. Aten Primaria 2022; 54:102234. [PMID: 34920344 PMCID: PMC8685991 DOI: 10.1016/j.aprim.2021.102234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE to describe the implantation of ultrasound screening for Abdominal Aortic Aneurysm (AAA) in our healthcare district in men from 65 to 79 years of age who have had an identifiable risk factor for developing AAA, such as smoking or a history thereof, hypertension, family history of aneurysms, aneurysms in other locations and clinical atherosclerosis, acute myocardial infarction, intermittent claudication, or stroke. Analyse the performance of said screening. SETTING Primary Care. PARTICIPANTS AND INTERVENTIONS 656 patients were screened, representing 40% of the target population of 1,658 patients. The remaining part of the target population could not be screened because of the outbreak of the COVID-19 pandemic. 608 ultrasound examinations were performed. MAIN MEASUREMENTS coverage of the screening programme, prevalence of abdominal aortic aneurysms, prevalence of smoking and other risk factors in patients with/without aneurysms. RESULTS 19 patients with ectatic aorta (25-29mm) and 11 with abdominal aortic aneurysms (1.81%) were found. 5 were active smokers (45%, compared to 20% in the entire sample) and 6 were former smokers. None of the aneurysm patients were non-smokers. 7 of them were hypertensive. CONCLUSIONS The prevalence of aneurysms in our sample was 2.6%, which was lower than expected. The wide use of ultrasound and its progressive generalisation in the Primary Care setting should lead to a decrease in the number of undiagnosed AAA.
Collapse
|
13
|
Grao-Cruces E, Lopez-Enriquez S, Martin ME, Montserrat-de la Paz S. High-density lipoproteins and immune response: A review. Int J Biol Macromol 2022; 195:117-123. [PMID: 34896462 DOI: 10.1016/j.ijbiomac.2021.12.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 01/04/2023]
Abstract
High-density lipoproteins (HDLs) are heterogeneous lipoproteins that modify their composition and functionality depending on physiological or pathological conditions. The main roles of HDL are cholesterol efflux, and anti-inflammatory and antioxidant functions. These functions can be compromised under pathological conditions. HDLs play a role in the immune system as anti-inflammatory molecules but when inflammation occurs, HDLs change their composition and carry pro-inflammatory cargo. Hence, many molecular intermediates that influence inflammatory microenvironments and cell signaling pathways can modulate HDLs structural modification and function. This review provides a comprehensive assessment of the importance of HDL composition and anti-inflammatory function in the onset and progression of atherosclerotic cardiovascular diseases. On the other hand, immune cell activation during progression of atheroma plaque formation can be influenced by HDLs through HDL-derived cholesterol depletion from lipid rafts and through HDL interaction with HDL receptors expressed on T and B lymphocytes. Cholesterol efflux is mediated by HDL receptors located in lipid rafts in peripheral cells, which undergo membrane structural modifications, and interferes with subsequent molecules interactions or intracellular signaling cascades. Regarding antigen-presentation cells such as macrophages or dendritic cells, HDL function may then modulate lymphocytes activation in immune response. Our review also contributes to the understanding of the effects exerted by HDLs in signal transduction associated to our immune cell population during chronic diseases progression.
Collapse
Affiliation(s)
- Elena Grao-Cruces
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Soledad Lopez-Enriquez
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Maria E Martin
- Department of Cell Biology, Faculty of Biology, University of Seville, Av. Reina Mercedes s/n, 41012 Seville, Spain
| | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain.
| |
Collapse
|
14
|
Rodríguez-Carrio J, Cerro-Pardo I, Lindholt JS, Bonzon-Kulichenko E, Martínez-López D, Roldán-Montero R, Escolà-Gil JC, Michel JB, Blanco-Colio LM, Vázquez J, Suárez A, Martín-Ventura JL. Malondialdehyde-modified HDL particles elicit a specific IgG response in abdominal aortic aneurysm. Free Radic Biol Med 2021; 174:171-181. [PMID: 34364980 DOI: 10.1016/j.freeradbiomed.2021.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/22/2021] [Accepted: 08/04/2021] [Indexed: 11/19/2022]
Abstract
High Density Lipoprotein (HDL) plays a protective role in abdominal aortic aneurysm (AAA); however, recent findings suggest that oxidative modifications could lead to dysfunctional HDL in AAA. This study aimed at testing the effect of oxidized HDL on aortic lesions and humoral immune responses in a mouse model of AAA induced by elastase, and evaluating whether antibodies against modified HDL can be found in AAA patients. HDL particles were oxidized with malondialdehyde (HDL-MDA) and the changes were studied by biochemical and proteomics approaches. Experimental AAA was induced in mice by elastase perfusion and then mice were treated with HDL-MDA, HDL or vehicle for 14 days. Aortic lesions were studied by histomorphometric analysis. Levels of anti-HDL-MDA IgG antibodies were measured by an in-house immunoassay in the mouse model, in human tissue-supernatants and in plasma samples from the VIVA cohort. HDL oxidation with MDA was confirmed by enhanced susceptibility to diene formation. Proteomics demonstrated the presence of MDA adducts on Lysine residues of HDL proteins, mainly ApoA-I. MDA-modification of HDL abrogated the protective effect of HDL on cultured endothelial cells as well as on AAA dilation in mice. Exposure to HDL-MDA elicited an anti-HDL-MDA IgG response in mice. Anti-HDL-MDA were also detected in tissue-conditioned media from AAA patients, mainly in intraluminal thrombus. Higher plasma levels of anti-HDL-MDA IgG antibodies were found in AAA patients compared to controls. Anti-HDL-MDA levels were associated with smoking and were independent predictors of overall mortality in AAA patients. Overall, MDA-oxidized HDL trigger a specific humoral immune response in mice. Besides, antibodies against HDL-MDA can be detected in tissue and plasma of AAA patients, suggesting its potential use as surrogate stable biomarkers of oxidative stress in AAA.
Collapse
Affiliation(s)
- Javier Rodríguez-Carrio
- Area of Immunology, University of Oviedo, Instituto de Salud Del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | | | - Jes S Lindholt
- Department of Cardiothoracic and Vascular Surgery, Odense University Hospital, Odense, Denmark
| | - Elena Bonzon-Kulichenko
- Laboratorio de Proteómica Cardiovascular, CNIC, Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | | | | | - Joan-Carles Escolà-Gil
- Institut de Investigació Biomédica Sant Pau, Spain; CIBER de Diabetes y Enfermedades Metabólicas (CIBERDEM), Barcelona, Spain
| | | | - Luis Miguel Blanco-Colio
- IIS-Fundación Jiménez-Díaz, Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Jesús Vázquez
- Laboratorio de Proteómica Cardiovascular, CNIC, Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Ana Suárez
- Area of Immunology, University of Oviedo, Instituto de Salud Del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - José Luis Martín-Ventura
- IIS-Fundación Jiménez-Díaz, Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| |
Collapse
|
15
|
Silencing IL12p35 Promotes Angiotensin II-Mediated Abdominal Aortic Aneurysm through Activating the STAT4 Pathway. Mediators Inflamm 2021; 2021:9450843. [PMID: 34354545 PMCID: PMC8331298 DOI: 10.1155/2021/9450843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023] Open
Abstract
Background and Purpose. Abdominal aortic aneurysm (AAA) is a chronic inflammatory disorder and the important causes of death among men over the age of 65 years. Interleukin-12p35 (IL12p35) is an inflammatory cytokine that participates in a variety of inflammatory diseases. However, the role of IL12p35 in the formation and development of AAA is still unknown. Experimental Approach. Male apolipoprotein E-deficient (Apoe−/−) mice were generated and infused with 1.44 mg/kg angiotensin II (Ang II) per day. We found that IL12p35 expression was noticeably increased in the murine AAA aorta and isolated aortic smooth muscle cells (SMCs) after Ang II stimulation. IL12p35 silencing promoted Ang II-induced AAA formation and rupture in Apoe−/− mice. IL12p35 silencing markedly increased the expression of inflammatory cytokines, including IL-1β, IL-6, and tumor necrosis factor-α (TNF-α), in both the serum and AAA aorta. Additionally, IL12p35 silencing exacerbated SMC apoptosis in Apoe−/− mice after Ang II infusion. IL12p35 silencing significantly increased signal transducer and activator of transcription (STAT) 4 phosphorylation levels in AAA mice, and STAT4 knockdown abolished the IL12p35-mediated proinflammatory response and SMC apoptosis. Interpretation. Silencing IL12p35 promotes AAA formation by activating the STAT4 pathway, and IL12p35 may serve as a novel and promising therapeutic target for AAA treatment.
Collapse
|
16
|
High-Density Lipoprotein Subfractions: Much Ado about Nothing or Clinically Important? Biomedicines 2021; 9:biomedicines9070836. [PMID: 34356900 PMCID: PMC8301429 DOI: 10.3390/biomedicines9070836] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/24/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
High-density lipoproteins (HDL) are a heterogenous group of plasma molecules with a large variety in composition. There is a wide specter in lipid content and the number of different proteins that has been associated with HDL is approaching 100. Given this heterogeneity and the fact that the total amount of HDL is inversely related to the risk of coronary heart disease (CHD), there has been increasing interest in the function of specific HDL subgroups and in what way measuring and quantifying these subgroups could be of clinical importance in determining individual CHD risk. If certain subgroups appear to be more protective than others, it may also in the future be possible to pharmacologically increase beneficial and decrease harmful subgroups in order to reduce CHD risk. In this review we give a short historical perspective, summarize some of the recent clinical findings regarding HDL subclassifications and discuss why such classification may or may not be of clinical relevance.
Collapse
|
17
|
Kudinov VA, Torkhovskaya TI, Zakharova TS, Morozevich GE, Artyushev RI, Zubareva MY, Markin SS. High-density lipoprotein remodeling by phospholipid nanoparticles improves cholesterol efflux capacity and protects from atherosclerosis. Biomed Pharmacother 2021; 141:111900. [PMID: 34328100 DOI: 10.1016/j.biopha.2021.111900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/30/2021] [Accepted: 07/06/2021] [Indexed: 12/20/2022] Open
Abstract
The efficiency of cholesterol efflux from cells promoted by high-density lipoproteins (HDLs) depends on HDL concentration and functional properties. The term "dysfunctional HDL" describes HDLs with impaired protective properties. Cholesterol efflux capacity (CEC) of HDL is reduced in patients with atherosclerosis, but the exact mechanisms underlying this impairment are not well characterized. Enriching HDLs with phospholipids (PLs) improves CEC. Herein, we assessed the potential of PL nanoparticles in improving HDL functionality. We lipidated HDL subfractions by incubating with PL nanoparticles containing soybean polyunsaturated phosphatidylcholine. Incubating blood plasma with PL nanoparticles resulted in the dose-dependent lipidation of all HDL subfractions. Changes in apolipoprotein A1 (apoA-1) and PL concentrations were the most prominent in the HDL2 fraction. Concentrations of PL in the HDL3 fraction and the fraction with a density > 1.21 g/mL increased by 30-50%, whereas apoA-1 levels decreased. We hypothesized that PL nanoparticles may cause HDL remodeling that can improve their functions. The CECs of lipidated HDLs were analyzed by incubating apolipoprotein B (apoB)-depleted plasma with 3H-cholesterol-labeled THP-1 macrophages. The findings revealed a two-fold increase in cholesterol efflux compared with native apoB-depleted plasma. Moreover, intravenous administration of PL nanoparticles restored lipid profiles and effectively protected blood vessels from atherosclerosis progression in cholesterol-fed rabbits compared with that of fenofibrate and atorvastatin. PL nanoparticles also protected against atherosclerosis and decreased the atherogenic index. Altogether, these results indicate that PL nanoparticles can be used to correct the lipid composition and CEC of HDLs. DATA AVAILABILITY: Additional data can be provided upon reasonable request from the date of publication of this article within 5 years. The request should be sent to the author-correspondent at the address cd95@mail.ru.
Collapse
Affiliation(s)
- Vasily A Kudinov
- Scientific Group of Phospholipid Drugs, Institute of Biomedical Chemistry, 119121 Moscow, Russia; Laboratory of Cell Biology and Developmental Pathology, FSBSI Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia.
| | - Tatiana I Torkhovskaya
- Laboratory of Phospholipid Transport Systems and Nanomedicines, Institute of Biomedical Chemistry, 119121 Moscow, Russia.
| | - Tamara S Zakharova
- Laboratory of Phospholipid Transport Systems and Nanomedicines, Institute of Biomedical Chemistry, 119121 Moscow, Russia.
| | - Galina E Morozevich
- Laboratory of Protein Biosynthesis, Institute of Biomedical Chemistry, 119121 Moscow, Russia.
| | - Rafael I Artyushev
- Scientific Group of Phospholipid Drugs, Institute of Biomedical Chemistry, 119121 Moscow, Russia.
| | - Marina Yu Zubareva
- Department of Atherosclerosis Problems, FSBI National Medical Research Center of Cardiology of the Ministry of Health of the Russian Federation, Moscow, Russia.
| | - Sergey S Markin
- Clinical Research Department, Institute of Biomedical Chemistry, 119121 Moscow, Russia.
| |
Collapse
|
18
|
Schoch L, Badimon L, Vilahur G. Unraveling the Complexity of HDL Remodeling: On the Hunt to Restore HDL Quality. Biomedicines 2021; 9:805. [PMID: 34356869 PMCID: PMC8301317 DOI: 10.3390/biomedicines9070805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 12/26/2022] Open
Abstract
Increasing evidence has cast doubt over the HDL-cholesterol hypothesis. The complexity of the HDL particle and its proven susceptibility to remodel has paved the way for intense molecular investigation. This state-of-the-art review discusses the molecular changes in HDL particles that help to explain the failure of large clinical trials intending to interfere with HDL metabolism, and details the chemical modifications and compositional changes in HDL-forming components, as well as miRNA cargo, that render HDL particles ineffective. Finally, the paper discusses the challenges that need to be overcome to shed a light of hope on HDL-targeted approaches.
Collapse
Affiliation(s)
- Leonie Schoch
- Cardiovascular Program, Institut de Recerca, Hospital Santa Creu i Sant Pau, 08025 Barcelona, Spain; (L.S.); (L.B.)
- Faculty of Medicine, University of Barcelona (UB), 08036 Barcelona, Spain
| | - Lina Badimon
- Cardiovascular Program, Institut de Recerca, Hospital Santa Creu i Sant Pau, 08025 Barcelona, Spain; (L.S.); (L.B.)
- CiberCV, 08025 Barcelona, Spain
- Cardiovascular Research Chair, UAB, 08025 Barcelona, Spain
| | - Gemma Vilahur
- Cardiovascular Program, Institut de Recerca, Hospital Santa Creu i Sant Pau, 08025 Barcelona, Spain; (L.S.); (L.B.)
- CiberCV, 08025 Barcelona, Spain
| |
Collapse
|
19
|
Morris G, Berk M, Walder K, O'Neil A, Maes M, Puri BK. The lipid paradox in neuroprogressive disorders: Causes and consequences. Neurosci Biobehav Rev 2021; 128:35-57. [PMID: 34118292 DOI: 10.1016/j.neubiorev.2021.06.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 04/27/2021] [Accepted: 06/06/2021] [Indexed: 02/07/2023]
Abstract
Chronic systemic inflammation is associated with an increased risk of cardiovascular disease in an environment of low low-density lipoprotein (LDL) and low total cholesterol and with the pathophysiology of neuroprogressive disorders. The causes and consequences of this lipid paradox are explored. Circulating activated neutrophils can release inflammatory molecules such as myeloperoxidase and the pro-inflammatory cytokines interleukin-1 beta, interleukin-6 and tumour necrosis factor-alpha. Since activated neutrophils are associated with atherosclerosis and cardiovascular disease and with major depressive disorder, bipolar disorder and schizophrenia, it seems reasonable to hypothesise that the inflammatory molecules released by them may act as mediators of the link between systemic inflammation and the development of atherosclerosis in neuroprogressive disorders. This hypothesis is tested by considering the association at a molecular level of systemic inflammation with increased LDL oxidation; increased small dense LDL levels; increased lipoprotein (a) concentration; secretory phospholipase A2 activation; cytosolic phospholipase A2 activation; increased platelet activation; decreased apolipoprotein A1 levels and function; decreased paroxonase-1 activity; hyperhomocysteinaemia; and metabolic endotoxaemia. These molecular mechanisms suggest potential therapeutic targets.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, the Department of Psychiatry and the Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Ken Walder
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Adrienne O'Neil
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Michael Maes
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, King Chulalongkorn University Hospital, Bangkok, Thailand
| | | |
Collapse
|
20
|
Wu J, Wang W, Chen Z, Xu F, Zheng Y. Proteomics applications in biomarker discovery and pathogenesis for abdominal aortic aneurysm. Expert Rev Proteomics 2021; 18:305-314. [PMID: 33840337 DOI: 10.1080/14789450.2021.1916473] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Abdominal aortic aneurysm (AAA) is a common, complex, and life-threatening disease. Currently, the pathogenesis of AAA is not well understood. No biomarkers or specific drugs are available for AAA in clinical applications. Proteomics is a powerful tool in biomarker discovery, exploration of pathogenesis, and drug target identification.Areas covered: We review the application of mass spectrometry-based proteome analysis in AAA patients within the last ten years. Differentially expressed proteins associated with AAA were identified in multiple sample sources, including vascular tissue, intraluminal thrombus, tissue secretome, blood, and cells. Some potential disease biomarkers, pathogenic mechanisms, or therapeutic targets for AAA were discovered using proteome analysis. The challenges and prospects of proteomics applied to AAA are also discussed.Expert opinion: Since most of the previous proteomic studies used relatively small sample sizes, some promising biomarkers need to be validated in multicenter cohorts to accelerate their clinical application. With the rapid development of mass spectrometry technology, modification-specific proteomics and multi-omics research in the future will enhance our understanding of the pathogenesis of AAA and promote biomarker discovery and drug development for clinical translation.
Collapse
Affiliation(s)
- Jianqiang Wu
- Department of Vascular Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Wang
- Department of Vascular Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhaoran Chen
- Department of Geriatrics, Medical Health Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Fang Xu
- Department of Vascular Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuehong Zheng
- Department of Vascular Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
21
|
Bianchi L, Sframeli M, Vantaggiato L, Vita GL, Ciranni A, Polito F, Oteri R, Gitto E, Di Giuseppe F, Angelucci S, Versaci A, Messina S, Vita G, Bini L, Aguennouz M. Nusinersen Modulates Proteomics Profiles of Cerebrospinal Fluid in Spinal Muscular Atrophy Type 1 Patients. Int J Mol Sci 2021; 22:ijms22094329. [PMID: 33919289 PMCID: PMC8122268 DOI: 10.3390/ijms22094329] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023] Open
Abstract
Spinal muscular atrophy (SMA) type 1 is a severe infantile autosomal-recessive neuromuscular disorder caused by a survival motor neuron 1 gene (SMN1) mutation and characterized by progressive muscle weakness. Without supportive care, SMA type 1 is rapidly fatal. The antisense oligonucleotide nusinersen has recently improved the natural course of this disease. Here, we investigated, with a functional proteomic approach, cerebrospinal fluid (CSF) protein profiles from SMA type 1 patients who underwent nusinersen administration to clarify the biochemical response to the treatment and to monitor disease progression based on therapy. Six months after starting treatment (12 mg/5 mL × four doses of loading regimen administered at days 0, 14, 28, and 63), we observed a generalized reversion trend of the CSF protein pattern from our patient cohort to that of control donors. Notably, a marked up-regulation of apolipoprotein A1 and apolipoprotein E and a consistent variation in transthyretin proteoform occurrence were detected. Since these multifunctional proteins are critically active in biomolecular processes aberrant in SMA, i.e., synaptogenesis and neurite growth, neuronal survival and plasticity, inflammation, and oxidative stress control, their nusinersen induced modulation may support SMN improved-expression effects. Hence, these lipoproteins and transthyretin could represent valuable biomarkers to assess patient responsiveness and disease progression.
Collapse
Affiliation(s)
- Laura Bianchi
- Functional Proteomics Laboratory, Department of Life Sciences, University of Siena, 53100 Siena, Italy; (L.B.); (L.V.); (L.B.)
| | - Maria Sframeli
- Nemo Sud Clinical Centre, 98125 Messina, Italy; (M.S.); (G.L.V.)
| | - Lorenza Vantaggiato
- Functional Proteomics Laboratory, Department of Life Sciences, University of Siena, 53100 Siena, Italy; (L.B.); (L.V.); (L.B.)
| | - Gian Luca Vita
- Nemo Sud Clinical Centre, 98125 Messina, Italy; (M.S.); (G.L.V.)
| | - Annamaria Ciranni
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (A.C.); (F.P.); (R.O.); (S.M.); (M.A.)
| | - Francesca Polito
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (A.C.); (F.P.); (R.O.); (S.M.); (M.A.)
| | - Rosaria Oteri
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (A.C.); (F.P.); (R.O.); (S.M.); (M.A.)
| | - Eloisa Gitto
- Neonatal and Paediatric Intensive Care Unit, Department of Human Pathology in Adult and Developmental Age, University of Messina, 98125 Messina, Italy;
| | - Fabrizio Di Giuseppe
- Dentistry and Biotechnology, and Proteomics Unit, Centre of Advanced Studies and Technoloy, Department Medical, Oral & Biotechnological Sciences, “G. d’Annunzio”, University of Chieti-Pescara, 66100 Chieti, Italy; (F.D.G.); (S.A.)
| | - Stefania Angelucci
- Dentistry and Biotechnology, and Proteomics Unit, Centre of Advanced Studies and Technoloy, Department Medical, Oral & Biotechnological Sciences, “G. d’Annunzio”, University of Chieti-Pescara, 66100 Chieti, Italy; (F.D.G.); (S.A.)
| | - Antonio Versaci
- Intensive Care Unit, AOU Policlinico “G. Martino”, 98125 Messina, Italy;
| | - Sonia Messina
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (A.C.); (F.P.); (R.O.); (S.M.); (M.A.)
| | - Giuseppe Vita
- Nemo Sud Clinical Centre, 98125 Messina, Italy; (M.S.); (G.L.V.)
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (A.C.); (F.P.); (R.O.); (S.M.); (M.A.)
- Correspondence:
| | - Luca Bini
- Functional Proteomics Laboratory, Department of Life Sciences, University of Siena, 53100 Siena, Italy; (L.B.); (L.V.); (L.B.)
| | - M’hammed Aguennouz
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (A.C.); (F.P.); (R.O.); (S.M.); (M.A.)
| |
Collapse
|
22
|
Tereshkina YA, Kostryukova LV, Torkhovskaya TI, Khudoklinova YY, Tikhonova EG. [Plasma high density lipoproteins phospholipds as an indirect indicator of their cholesterol efflux capacity - new suspected atherosclerosis risk factor]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2021; 67:119-129. [PMID: 33860768 DOI: 10.18097/pbmc20216702119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
High density lipoproteins (HDL) are a unique natural structure, protecting the body from the development of atherosclerotic vascular lesions and cardiovascular diseases due to this ability to remove cholesterol from cells. Plasma HDL level estimated by their cholesterol content, is a common lipid parameter, and its decrease is considered as an established atherosclerosis risk factor. However, a number of studies have shown the absence of positive clinical effects after drug-induced increase in HDL cholesterol. There is increasing evidence that not only HDL concentration, but also HDL properties, considered in this review are important. Many studies showed the decrease of HDL cholesterol efflux capacity in patients with coronary heart diseases and its association with disease severity. Some authors consider a decrease of this HDL capacity as a new additional risk factor of atherosclerosis. The review summarizes existing information on various protein and lipid components of HDL with a primary emphasis on the HDL. Special attention is paid to correlation between the HDL cholesterol efflux capacity and HDL phospholipids and the ratio "phospholipids/free cholesterol". The accumulated information indicates importance of evaluation in the HDL fraction not only in terms of their cholesterol, but also phospholipids. In addition to the traditionally used lipid criteria, this would provide more comprehensive information about the activity of the reverse cholesterol transport process in the body and could contribute to the targeted correction of the detected disorders.
Collapse
|
23
|
Minami-Takano A, Iwata H, Miyosawa K, Shiozawa T, Hayashi H, Funamizu T, Ishii K, Nozaki Y, Tabuchi H, Sekita G, Shimada K, Sumiyoshi M, Nakazato Y, Daida H, Minamino T. The association between impairment of HDL cholesterol efflux capacity and atrial remodeling in atrial fibrillation. Sci Rep 2021; 11:3547. [PMID: 33574408 PMCID: PMC7878912 DOI: 10.1038/s41598-021-82998-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/27/2021] [Indexed: 11/30/2022] Open
Abstract
This cross-sectional study enrolled 202 patients with atrial fibrillation (AF) who had undergone catheter ablation and evaluated the association between high-density lipoprotein (HDL) functionality, cholesterol efflux capacity (CEC) of HDL, and the pathophysiology of left atrial structural remodeling. Participants were divided into two groups, based on their left atrial volume index (LAVI) (< 34 mL/m2, n = 60 vs. LAVI ≥ 34 mL/m2, n = 142). We quantified three types of HDL CECs by the presence or absence of cyclic-AMP, as entire, and CEC dependent or not dependent on ATP binding cassette transporter A1 (ABCA1) and termed them Global CEC, ABCA1 CEC, and Non-ABCA1 CEC, respectively. Consequently, Global and Non-ABCA1 CECs were significantly impaired in patients with an enlarged LA (Global CEC: p = 0.039, Non-ABCA1 CEC: p = 0.022). Logistic regression analyses demonstrated that Non-ABCA1 CEC was significantly associated with an enlarged LA after adjusting for the conventional risk factors of AF. Furthermore, the association of higher Non-ABCA1 CEC with an enlarged LA was independent of serum levels of HDL cholesterol and serum myeloperoxidase (Odds ratio of 1 standard deviation higher: 0.64, 95% confidence interval: 0.43–0.95, p = 0.027). The findings of this study indicate the potential contribution of reduced Non-ABCA1 CEC in HDL to the pathophysiology in left atrial structural remodeling of patients with AF.
Collapse
Affiliation(s)
- Asuka Minami-Takano
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Clinical Engineering, Juntendo University Hospital, Hongo 2-1-1, Bunkyo, Tokyo, 113-0033, Japan
| | - Hiroshi Iwata
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Katsutoshi Miyosawa
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Tokyo New Drug Research Laboratories, Kowa Company, Ltd, Tokyo, Japan
| | - Tomoyuki Shiozawa
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hidemori Hayashi
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takehiro Funamizu
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kai Ishii
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yui Nozaki
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Haruna Tabuchi
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Gaku Sekita
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kazunori Shimada
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masataka Sumiyoshi
- Department of Cardiovascular Medicine, Juntendo University Nerima Hospital, Tokyo, Japan
| | - Yuji Nakazato
- Department of Cardiovascular Medicine, Juntendo University Urayasu Hospital, Chiba, Japan
| | - Hiroyuki Daida
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
24
|
Marsillach J, Adorni MP, Zimetti F, Papotti B, Zuliani G, Cervellati C. HDL Proteome and Alzheimer's Disease: Evidence of a Link. Antioxidants (Basel) 2020; 9:E1224. [PMID: 33287338 PMCID: PMC7761753 DOI: 10.3390/antiox9121224] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022] Open
Abstract
Several lines of epidemiological evidence link increased levels of high-density lipoprotein-cholesterol (HDL-C) with lower risk of Alzheimer's disease (AD). This observed relationship might reflect the beneficial effects of HDL on the cardiovascular system, likely due to the implication of vascular dysregulation in AD development. The atheroprotective properties of this lipoprotein are mostly due to its proteome. In particular, apolipoprotein (Apo) A-I, E, and J and the antioxidant accessory protein paraoxonase 1 (PON1), are the main determinants of the biological function of HDL. Intriguingly, these HDL constituent proteins are also present in the brain, either from in situ expression, or derived from the periphery. Growing preclinical evidence suggests that these HDL proteins may prevent the aberrant changes in the brain that characterize AD pathogenesis. In the present review, we summarize and critically examine the current state of knowledge on the role of these atheroprotective HDL-associated proteins in AD pathogenesis and physiopathology.
Collapse
Affiliation(s)
- Judit Marsillach
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA;
| | - Maria Pia Adorni
- Unit of Neurosciences, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy;
| | - Francesca Zimetti
- Department of Food and Drug, University of Parma, 43124 Parma, Italy;
| | - Bianca Papotti
- Department of Food and Drug, University of Parma, 43124 Parma, Italy;
| | - Giovanni Zuliani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (G.Z.); (C.C.)
| | - Carlo Cervellati
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (G.Z.); (C.C.)
| |
Collapse
|
25
|
Red Blood Cells and Hemoglobin in Human Atherosclerosis and Related Arterial Diseases. Int J Mol Sci 2020; 21:ijms21186756. [PMID: 32942605 PMCID: PMC7554753 DOI: 10.3390/ijms21186756] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 02/07/2023] Open
Abstract
As the main particulate component of the circulating blood, RBCs play major roles in physiological hemodynamics and impact all arterial wall pathologies. RBCs are the main determinant of blood viscosity, defining the frictional forces exerted by the blood on the arterial wall. This function is used in phylogeny and ontogeny of the cardiovascular (CV) system, allowing the acquisition of vasomotricity adapted to local metabolic demands, and systemic arterial pressure after birth. In pathology, RBCs collide with the arterial wall, inducing both local retention of their membranous lipids and local hemolysis, releasing heme-Fe++ with a high toxicity for arterial cells: endothelial and smooth muscle cells (SMCs) cardiomyocytes, neurons, etc. Specifically, overloading of cells by Fe++ promotes cell death. This local hemolysis is an event associated with early and advanced stages of human atherosclerosis. Similarly, the permanent renewal of mural RBC clotting is the major support of oxidation in abdominal aortic aneurysm. In parallel, calcifications promote intramural hemorrhages, and hemorrhages promote an osteoblastic phenotypic shift of arterial wall cells. Different plasma or tissue systems are able, at least in part, to limit this injury by acting at the different levels of this system.
Collapse
|
26
|
Canyelles M, Tondo M, Lindholt JS, Santos D, Fernández-Alonso I, de Gonzalo-Calvo D, Blanco-Colio LM, Escolà-Gil JC, Martín-Ventura JL, Blanco-Vaca F. Macrophage Cholesterol Efflux Downregulation Is Not Associated with Abdominal Aortic Aneurysm (AAA) Progression. Biomolecules 2020; 10:biom10040662. [PMID: 32344702 PMCID: PMC7226271 DOI: 10.3390/biom10040662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/08/2020] [Accepted: 04/20/2020] [Indexed: 01/09/2023] Open
Abstract
Recent studies have raised the possibility of a role for lipoproteins, including high-density lipoprotein cholesterol (HDLc), in abdominal aortic aneurysm (AAA). The study was conducted in plasmas from 39 large size AAA patients (aortic diameter > 50 mm), 81 small/medium size AAA patients (aortic diameter between 30 and 50 mm) and 38 control subjects (aortic diameter < 30 mm). We evaluated the potential of HDL-mediated macrophage cholesterol efflux (MCE) to predict AAA growth and/or the need for surgery. MCE was impaired in the large aortic diameter AAA group as compared with that in the small/medium size AAA group and the control group. However, no significant difference in HDL-mediated MCE capacity was observed in 3 different progression subgroups (classified according to growth rate < 1 mm per year, between 1 and 5 mm per year or >5 mm per year) in patients with small/medium size AAA. Moreover, no correlation was found between MCE capacity and the aneurysm growth rate. A multivariate Cox regression analysis revealed a significant association between lower MCE capacity with the need for surgery in all AAA patients. Nevertheless, the significance was lost when only small/medium size AAA patients were included. Our results suggest that MCE, a major HDL functional activity, is not involved in AAA progression.
Collapse
Affiliation(s)
- Marina Canyelles
- Servei de Bioquímica, Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, 08041 Barcelona, Spain; (M.C.); (M.T.)
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| | - Mireia Tondo
- Servei de Bioquímica, Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, 08041 Barcelona, Spain; (M.C.); (M.T.)
| | - Jes S. Lindholt
- Centre of Individualized Medicine in Arterial Disease (CIMA), Department of Cardiology, Odense University Hospital, 5000 Odense, Denmark;
| | - David Santos
- Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau- IIB Sant Pau, 08041 Barcelona, Spain; (D.S.); (I.F.-A.); (D.d.G.-C.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Irati Fernández-Alonso
- Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau- IIB Sant Pau, 08041 Barcelona, Spain; (D.S.); (I.F.-A.); (D.d.G.-C.)
| | - David de Gonzalo-Calvo
- Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau- IIB Sant Pau, 08041 Barcelona, Spain; (D.S.); (I.F.-A.); (D.d.G.-C.)
- Institute of Biomedical Research of Barcelona (IIBB)–Spanish National Research Council (CSIC), 08036 Barcelona, Spain
- CIBER de Cardiovascular (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Luis Miguel Blanco-Colio
- CIBER de Cardiovascular (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- IIS-Fundación Jiménez Díaz, 28040 Madrid, Spain
| | - Joan Carles Escolà-Gil
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
- Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau- IIB Sant Pau, 08041 Barcelona, Spain; (D.S.); (I.F.-A.); (D.d.G.-C.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Correspondence: (J.C.E.-G.); (J.L.M.-V.); (F.B.-V.)
| | - José Luís Martín-Ventura
- CIBER de Cardiovascular (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- IIS-Fundación Jiménez Díaz, 28040 Madrid, Spain
- Correspondence: (J.C.E.-G.); (J.L.M.-V.); (F.B.-V.)
| | - Francisco Blanco-Vaca
- Servei de Bioquímica, Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, 08041 Barcelona, Spain; (M.C.); (M.T.)
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Correspondence: (J.C.E.-G.); (J.L.M.-V.); (F.B.-V.)
| |
Collapse
|
27
|
Advances in HDL: Much More than Lipid Transporters. Int J Mol Sci 2020; 21:ijms21030732. [PMID: 31979129 PMCID: PMC7037660 DOI: 10.3390/ijms21030732] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/17/2020] [Accepted: 01/19/2020] [Indexed: 01/07/2023] Open
Abstract
High Density Lipoprotein (HDL) particles, beyond serving as lipid transporters and playing a key role in reverse cholesterol transport, carry a highly variable number of proteins, micro-RNAs, vitamins, and hormones, which endow them with the ability to mediate a plethora of cellular and molecular mechanisms that promote cardiovascular health. It is becoming increasingly evident, however, that the presence of cardiovascular risk factors and co-morbidities alters HDLs cargo and protective functions. This concept has led to the notion that metrics other than HDL-cholesterol levels, such as HDL functionality and composition, may better capture HDL cardiovascular protection. On the other hand, the potential of HDL as natural delivery carriers has also fostered the design of engineered HDL-mimetics aiming to improve HDL efficacy or as drug-delivery agents with therapeutic potential. In this paper, we first provide an overview of the molecules known to be transported by HDL particles and mainly discuss their functions in the cardiovascular system. Second, we describe the impact of cardiovascular risk factors and co-morbidities on HDL remodeling. Finally, we review the currently developed HDL-based approaches.
Collapse
|
28
|
Marinaro F, Gómez-Serrano M, Jorge I, Silla-Castro JC, Vázquez J, Sánchez-Margallo FM, Blázquez R, López E, Álvarez V, Casado JG. Unraveling the Molecular Signature of Extracellular Vesicles From Endometrial-Derived Mesenchymal Stem Cells: Potential Modulatory Effects and Therapeutic Applications. Front Bioeng Biotechnol 2019; 7:431. [PMID: 31921832 PMCID: PMC6932983 DOI: 10.3389/fbioe.2019.00431] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/05/2019] [Indexed: 12/13/2022] Open
Abstract
Endometrial-derived Mesenchymal Stem Cells (endMSCs) are involved in the regeneration and remodeling of human endometrium, being considered one of the most promising candidates for stem cell-based therapies. Their therapeutic effects have been found to be mediated by extracellular vesicles (EV-endMSCs) with pro-angiogenic, anti-apoptotic, and immunomodulatory effects. Based on that, the main goal of this study was to characterize the proteome and microRNAome of these EV-endMSCs by proteomics and transcriptomics approaches. Additionally, we hypothesized that inflammatory priming of endMSCs may contribute to modify the therapeutic potential of these vesicles. High-throughput proteomics revealed that 617 proteins were functionally annotated as Extracellular exosome (GO:0070062), corresponding to the 70% of the EV-endMSC proteome. Bioinformatics analyses allowed us to identify that these proteins were involved in adaptive/innate immune response, complement activation, antigen processing/presentation, negative regulation of apoptosis, and different signaling pathways, among others. Of note, multiplexed quantitative proteomics and Systems Biology analyses showed that IFNγ priming significantly modulated the protein profile of these vesicles. As expected, proteins involved in antigen processing and presentation were significantly increased. Interestingly, immunomodulatory proteins, such as CSF1, ERAP1, or PYCARD were modified. Regarding miRNAs expression profile in EV-endMSCs, Next-Generation Sequencing (NGS) showed that the preferred site of microRNAome targeting was the nucleus (n = 371 microTargets), significantly affecting signal transduction (GO:0007165), cell proliferation (GO:0008283), and apoptotic processes (GO:0006915), among others. Interestingly, NGS analyses highlighted that several miRNAs, such as hsa-miR-150-5p or hsa-miR-196b-5p, were differentially expressed in IFNγ-primed EV-endMSCs. These miRNAs have a functional involvement in glucocorticoid receptor signaling, IL-6/8/12 signaling, and in the role of macrophages. In summary, these results allowed us to understand the complexity of the molecular networks in EV-endMSCs and their potential effects on target cells. To our knowledge, this is the first comprehensive study based on proteomic and genomic approaches to unravel the therapeutic potential of these extracellular vesicles, that may be used as immunomodulatory effectors in the treatment of inflammatory conditions.
Collapse
Affiliation(s)
- Federica Marinaro
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - María Gómez-Serrano
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain.,Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain.,Center for Tumor Biology and Immunology, Institute of Molecular Biology and Tumor Research, Philipps University, Marburg, Germany
| | - Inmaculada Jorge
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain.,Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | | | - Jesús Vázquez
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain.,Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Francisco Miguel Sánchez-Margallo
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain.,CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Rebeca Blázquez
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain.,CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Esther López
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Verónica Álvarez
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Javier G Casado
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain.,CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| |
Collapse
|