1
|
Bchetnia M, Powell J, McCuaig C, Boucher-Lafleur AM, Morin C, Dupéré A, Laprise C. Pathological Mechanisms Involved in Epidermolysis Bullosa Simplex: Current Knowledge and Therapeutic Perspectives. Int J Mol Sci 2024; 25:9495. [PMID: 39273442 PMCID: PMC11394917 DOI: 10.3390/ijms25179495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Epidermolysis bullosa (EB) is a clinically and genetically heterogeneous group of mechanobullous diseases characterized by non-scarring blisters and erosions on the skin and mucous membranes upon mechanical trauma. The simplex form (EBS) is characterized by recurrent blister formation within the basal layer of the epidermis. It most often results from dominant mutations in the genes coding for keratin (K) 5 or 14 proteins (KRT5 and KRT14). A disruptive mutation in KRT5 or KRT14 will not only structurally impair the cytoskeleton, but it will also activate a cascade of biochemical mechanisms contributing to EBS. Skin lesions are painful and disfiguring and have a significant impact on life quality. Several gene expression studies were accomplished on mouse model and human keratinocytes to define the gene expression signature of EBS. Several key genes associated with EBS were identified as specific immunological mediators, keratins, and cell junction components. These data deepened the understanding of the EBS pathophysiology and revealed important functional biological processes, particularly inflammation. This review emphasizes the three EBS subtypes caused by dominant mutations on either KRT5 or KRT14 (localized, intermediate, and severe). It aims to summarize current knowledge about the EBS expression profiling pattern and predicted molecular mechanisms involved and to outline progress in therapy.
Collapse
Affiliation(s)
- Mbarka Bchetnia
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Saguenay, QC G7H 2B1, Canada
- Centre Intersectoriel en Santé Durable, Saguenay, QC G7H 2B1, Canada
| | - Julie Powell
- CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
| | | | - Anne-Marie Boucher-Lafleur
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Saguenay, QC G7H 2B1, Canada
- Centre Intersectoriel en Santé Durable, Saguenay, QC G7H 2B1, Canada
| | - Charles Morin
- Centre Intégré Universitaire de Santé et de Services Sociaux du Saguenay-Lac-Saint-Jean, Hôpital Universitaire de Chicoutimi, Saguenay, QC G7H 7K9, Canada
| | - Audrey Dupéré
- Centre Intégré Universitaire de Santé et de Services Sociaux du Saguenay-Lac-Saint-Jean, Hôpital Universitaire de Chicoutimi, Saguenay, QC G7H 7K9, Canada
| | - Catherine Laprise
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Saguenay, QC G7H 2B1, Canada
- Centre Intersectoriel en Santé Durable, Saguenay, QC G7H 2B1, Canada
| |
Collapse
|
2
|
Zrelski MM, Hösele S, Kustermann M, Fichtinger P, Kah D, Athanasiou I, Esser PR, Wagner A, Herzog R, Kratochwill K, Goldmann WH, Kiritsi D, Winter L. Plectin Deficiency in Fibroblasts Deranges Intermediate Filament and Organelle Morphology, Migration, and Adhesion. J Invest Dermatol 2024; 144:547-562.e9. [PMID: 37716646 DOI: 10.1016/j.jid.2023.08.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 09/18/2023]
Abstract
Plectin, a highly versatile and multifunctional cytolinker, has been implicated in several multisystemic disorders. Most sequence variations in the human plectin gene (PLEC) cause epidermolysis bullosa simplex with muscular dystrophy (EBS-MD), an autosomal recessive skin-blistering disorder associated with progressive muscle weakness. In this study, we performed a comprehensive cell biological analysis of dermal fibroblasts from three different patients with EBS-MD, where PLEC expression analyses revealed preserved mRNA levels in all cases, whereas full-length plectin protein content was significantly reduced or completely absent. Downstream effects of pathogenic PLEC sequence alterations included massive bundling of vimentin intermediate filament networks, including the occurrence of ring-like nuclei-encasing filament bundles, elongated mitochondrial networks, and abnormal nuclear morphologies. We found that essential fibroblast functions such as wound healing, migration, or orientation upon cyclic stretch were significantly impaired in the cells of patients with EBS-MD. Finally, EBS-MD fibroblasts displayed reduced adhesion capacities, which could be attributed to smaller focal adhesion contacts. Our study not only emphasizes plectin's functional role in human skin fibroblasts, it also provides further insights into the understanding of EBS-MD-associated disease mechanisms.
Collapse
Affiliation(s)
- Michaela M Zrelski
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Sabrina Hösele
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Monika Kustermann
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Petra Fichtinger
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Delf Kah
- Center for Medical Physics and Technology, Department of Physics, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Ioannis Athanasiou
- Department of Dermatology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp R Esser
- Department of Dermatology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anja Wagner
- Core Facility Proteomics, Medical University of Vienna, Vienna, Austria; Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Austria
| | - Rebecca Herzog
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Austria
| | - Klaus Kratochwill
- Core Facility Proteomics, Medical University of Vienna, Vienna, Austria; Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Austria
| | - Wolfgang H Goldmann
- Center for Medical Physics and Technology, Department of Physics, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Dimitra Kiritsi
- Department of Dermatology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lilli Winter
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
3
|
Esser PR, Huber M, Martin SF. Endoplasmic reticulum stress and the inflammatory response in allergic contact dermatitis. Eur J Immunol 2023; 53:e2249984. [PMID: 37016198 DOI: 10.1002/eji.202249984] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/26/2023] [Accepted: 03/03/2023] [Indexed: 04/06/2023]
Abstract
Maintaining homeostasis is central to organismal health. Deviation is detected by a variety of sensors that react to alarm signals arising from injury, infection, and other inflammatory triggers. One important element of this alarm system is the innate immune system, which recognizes pathogen-/microbe- or damage-associated molecular patterns via pattern recognition receptors localized in the cytosol or in membranes of innate immune cells such as macrophages, dendritic cells, and mast cells but also of T cells, B cells, and epithelial cells. Activation of the innate immune system results in inflammation and is a pre-requisite for activation of the adaptive immune system. Another important element is represented by the unfolded protein response (UPR), a stress response of the endoplasmic reticulum. The UPR regulates proteostasis and also contributes to the course of inflammatory diseases such as cancer, diabetes, obesity, and neurodegenerative diseases. In addition, the UPR is instrumental in allergic contact dermatitis. This inflammatory skin disease, affecting 5-10% of the population, is caused by T cells recognizing low-molecular weight organic chemicals and metal ions. In this mini-review, we discuss the orchestration of inflammatory responses by the interplay of the innate immune system with cellular stress responses in allergic contact dermatitis, with a focus on the UPR.
Collapse
Affiliation(s)
- Philipp R Esser
- Allergy Research Group, Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Huber
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Stefan F Martin
- Allergy Research Group, Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
4
|
A Kaleidoscope of Keratin Gene Expression and the Mosaic of Its Regulatory Mechanisms. Int J Mol Sci 2023; 24:ijms24065603. [PMID: 36982676 PMCID: PMC10052683 DOI: 10.3390/ijms24065603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Keratins are a family of intermediate filament-forming proteins highly specific to epithelial cells. A combination of expressed keratin genes is a defining property of the epithelium belonging to a certain type, organ/tissue, cell differentiation potential, and at normal or pathological conditions. In a variety of processes such as differentiation and maturation, as well as during acute or chronic injury and malignant transformation, keratin expression undergoes switching: an initial keratin profile changes accordingly to changed cell functions and location within a tissue as well as other parameters of cellular phenotype and physiology. Tight control of keratin expression implies the presence of complex regulatory landscapes within the keratin gene loci. Here, we highlight patterns of keratin expression in different biological conditions and summarize disparate data on mechanisms controlling keratin expression at the level of genomic regulatory elements, transcription factors (TFs), and chromatin spatial structure.
Collapse
|
5
|
Rietscher K, Jahnke HG, Rübsam M, Lin EW, Has C, Omary MB, Niessen CM, Magin TM. Kinase Inhibition by PKC412 Prevents Epithelial Sheet Damage in Autosomal Dominant Epidermolysis Bullosa Simplex through Keratin and Cell Contact Stabilization. J Invest Dermatol 2022; 142:3282-3293. [PMID: 35691363 DOI: 10.1016/j.jid.2022.05.1088] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/24/2022] [Accepted: 05/22/2022] [Indexed: 01/05/2023]
Abstract
Epidermolysis bullosa simplex (EBS) is a severe and potentially life-threatening disorder for which no adequate therapy exists. Most cases are caused by dominant sequence variations in keratin genes K5 or K14, leading to the formation of cytoplasmic keratin aggregates, profound keratinocyte fragility, and cytolysis. We hypothesized that pharmacological reduction of keratin aggregates, which compromise keratinocyte integrity, represents a viable strategy for the treatment of EBS. In this study, we show that the multikinase inhibitor PKC412, which is currently in clinical use for acute myeloid leukemia and advanced systemic mastocytosis, reduced keratin aggregation by 40% in patient-derived K14.R125C EBS-associated keratinocytes. Using a combination of epithelial shear stress assay and real-time impedance spectroscopy, we show that PKC412 restored intercellular adhesion. Molecularly, global phosphoproteomic analysis together with immunoblots using phosphoepitope-specific antibodies revealed that PKC412 treatment altered phosphorylated sites on keratins and desmoplakin. Thus, our data provide a proof of concept to repurpose existing drugs for the targeted treatment of EBS and showcase how one broad-range kinase inhibitor reduced keratin filament aggregation in patient-derived EBS keratinocytes and the fragility of EBS cell monolayers. Our study paves the way for a clinical trial using PKC412 for systemic or local application in patients with EBS.
Collapse
Affiliation(s)
- Katrin Rietscher
- Institute of Biology, Division of Cell and Developmental Biology, Leipzig University, Leipzig, Germany.
| | - Heinz-Georg Jahnke
- Division of Molecular Biological-Biochemical Processing Technology, Center for Biotechnology and Biomedicine, Leipzig University, Leipzig, Germany
| | - Matthias Rübsam
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Department Cell Biology of the Skin, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Eric W Lin
- Division of Gastroenterology and Hepatology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Cristina Has
- Department of Dermatology, Medical Center, University of Freiburg, Freiburg, Germany
| | - M Bishr Omary
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey, USA; Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | - Carien M Niessen
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Department Cell Biology of the Skin, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Thomas M Magin
- Institute of Biology, Division of Cell and Developmental Biology, Leipzig University, Leipzig, Germany
| |
Collapse
|
6
|
Human iPSC-derived-keratinocytes, a useful model to identify and explore pathological phenotype of Epidermolysis Bullosa Simplex. J Invest Dermatol 2022; 142:2695-2705.e11. [PMID: 35490743 DOI: 10.1016/j.jid.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 11/23/2022]
Abstract
Epidermolysis Bullosa Simplex (EBS), an autosomal dominant skin disorder, is characterized by skin fragility. Genetically, majority of cases are related to missense mutations in two keratin genes, KRT5 or KRT14, leading to cytolysis of basal keratinocytes and intraepidermal blistering. Progress towards identification of treatments have been hampered by incomplete understanding of the mechanisms underlying this disease, and availability of relevant and reliable in vitro models recapitulating the physiopathological mechanisms. Recent advances in stem cell field have fueled the prospect that these limitations could be overcome thanks to the availability of disease-specific human induced pluripotent stem cells (hiPSC). Here, we generated hiPSC-derived keratinocytes from patients carrying KRT5 dominant mutations and compared them to non-affected hiPSC-derived keratinocytes as well as their primary counterparts. Our results demonstrated that EBS hiPSC-derived keratinocytes displayed proliferative defects, increased capacity to migrate, alteration of ERK signaling pathway and cytoplasmic keratin filament aggregates as observed in primary EBS keratinocytes. Of interest, EBS hiPSC-derived keratinocytes exhibited a downregulation of hemidesmosomal proteins revealing the different effects of KRT5 mutations on keratin cytoskeletal organization. Combination of culture miniaturization and treatment with the chaperone molecule 4-PBA, our results demonstrated that hiPSC-derived keratinocytes represent a suitable model for identifying novel therapies for EBS.
Collapse
|
7
|
Yilmaz P, Marek SJ, Valari M, He Y, Has C. Characterization of amino acid substitutions and deletions in the kindlin-1 FERM domain: relevance for precision medicine. J Invest Dermatol 2022; 142:2415-2423.e1. [PMID: 35189150 DOI: 10.1016/j.jid.2022.01.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/26/2021] [Accepted: 01/23/2022] [Indexed: 11/30/2022]
Abstract
Kindler epidermolysis bullosa is a genodermatosis that manifests with cutaneous and mucosal fragility, and with photosensitivity. No cure is available to date. Kindlin-1, the deficient protein binds to β intergrin and is required for its activation. Using a previously established experimental workflow we addressed the consequences of three naturally occurring mutations leading either to single amino acid substitutions, p.Y293D and p.W559R, or to a single amino acid deletion p.I623del in kindlin-1. We show that p.Y293D disrupts kindlin-1 localization to focal adhesions and cell spreading. Although, treatment with a chemical chaperone increases the amount of mutant protein, spreading does not improve and cellular stress increases. In contrast, the mutations p.W559R and p.I623del do not interfere with kindlin-1 localization to focal adhesions and support cell adhesion and survival. These mutants are also responsive to the treatment with chemical chaperone, and the increased mutant proteins improve cell spreading. These findings suggest that low levels of mutant kindlins, p.W559R and p.I623del are able to rescue some important cellular functions. Patients carrying these mutations could benefit from treatment with promotors of proteostasis. Our results show that each mutation must be individually tested on genetic, molecular and cellular level to tailor personalized treatments for patients.
Collapse
Affiliation(s)
- Pelinsu Yilmaz
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Faculty of Medicine, University of Freiburg, Germany; Department of Dermatology and Allergy, University Hospital Augsburg, Germany
| | - Sarah-Jane Marek
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Manthoula Valari
- First Department of Pediatrics, Medical School National and Kapodistrian University of Athens, "Agia Sofia Childrens Hospital", Athens, Greece
| | - Yinghong He
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Cristina Has
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Faculty of Medicine, University of Freiburg, Germany.
| |
Collapse
|
8
|
Evtushenko NA, Beilin AK, Kosykh AV, Vorotelyak EA, Gurskaya NG. Keratins as an Inflammation Trigger Point in Epidermolysis Bullosa Simplex. Int J Mol Sci 2021; 22:ijms222212446. [PMID: 34830328 PMCID: PMC8624175 DOI: 10.3390/ijms222212446] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/21/2022] Open
Abstract
Epidermolysis bullosa simplex (EBS) is a group of inherited keratinopathies that, in most cases, arise due to mutations in keratins and lead to intraepidermal ruptures. The cellular pathology of most EBS subtypes is associated with the fragility of the intermediate filament network, cytolysis of the basal layer of the epidermis, or attenuation of hemidesmosomal/desmosomal components. Mutations in keratins 5/14 or in other genes that encode associated proteins induce structural disarrangements of different strengths depending on their locations in the genes. Keratin aggregates display impaired dynamics of assembly and diminished solubility and appear to be the trigger for endoplasmic reticulum (ER) stress upon being phosphorylated by MAPKs. Global changes in cellular signaling mainly occur in cases of severe dominant EBS mutations. The spectrum of changes initiated by phosphorylation includes the inhibition of proteasome degradation, TNF-α signaling activation, deregulated proliferation, abnormal cell migration, and impaired adherence of keratinocytes. ER stress also leads to the release of proinflammatory danger-associated molecular pattern (DAMP) molecules, which enhance avalanche-like inflammation. Many instances of positive feedback in the course of cellular stress and the development of sterile inflammation led to systemic chronic inflammation in EBS. This highlights the role of keratin in the maintenance of epidermal and immune homeostasis.
Collapse
Affiliation(s)
- Nadezhda A. Evtushenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova 1, 117997 Moscow, Russia; (N.A.E.); (A.K.B.); (A.V.K.)
| | - Arkadii K. Beilin
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova 1, 117997 Moscow, Russia; (N.A.E.); (A.K.B.); (A.V.K.)
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Vavilova 26, 119334 Moscow, Russia;
| | - Anastasiya V. Kosykh
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova 1, 117997 Moscow, Russia; (N.A.E.); (A.K.B.); (A.V.K.)
| | - Ekaterina A. Vorotelyak
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Vavilova 26, 119334 Moscow, Russia;
| | - Nadya G. Gurskaya
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova 1, 117997 Moscow, Russia; (N.A.E.); (A.K.B.); (A.V.K.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Correspondence:
| |
Collapse
|
9
|
Popp CM, Miller WC, Eide CR, Tolar J. Future applications of 3D bioprinting: A promising technology for treating recessive dystrophic epidermolysis bullosa. Exp Dermatol 2021; 31:384-392. [PMID: 34699623 DOI: 10.1111/exd.14484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/05/2021] [Accepted: 10/24/2021] [Indexed: 02/06/2023]
Abstract
Three-dimensional (3D) bioprinting is a rapidly developing technology that has the potential to initiate a paradigm shift in the treatment of skin wounds arising from burns, ulcers and genodermatoses. Recessive dystrophic epidermolysis bullosa (RDEB), a severe form of epidermolysis bullosa, is a rare genodermatosis that results in mechanically induced blistering of epithelial tissues that leads to chronic wounds. Currently, there is no cure for RDEB, and effective treatment is limited to protection from trauma and extensive bandaging. The care of chronic wounds and burns significantly burdens the healthcare system, further illustrating the dire need for more beneficial wound care. However, in its infancy, 3D bioprinting offers therapeutic potential for wound healing and could be a breakthrough technology for the treatment of rare, incurable genodermatoses like RDEB. This viewpoint essay outlines the promise of 3D bioprinting applications for treating RDEB, including skin regeneration, a delivery system for gene-edited cells and small molecules, and disease modelling. Although the future of 3D bioprinting is encouraging, there are many technical challenges to overcome-including optimizing bioink and cell source-before this approach can be widely implemented in clinical practice.
Collapse
Affiliation(s)
- Courtney M Popp
- Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - William C Miller
- Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Cindy R Eide
- Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jakub Tolar
- Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota, USA.,Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
10
|
Kiritsi D, Tsakiris L, Schauer F. Plectin in Skin Fragility Disorders. Cells 2021; 10:cells10102738. [PMID: 34685719 PMCID: PMC8534787 DOI: 10.3390/cells10102738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022] Open
Abstract
Plectin is a multi-faceted, 500 kDa-large protein, which due to its expression in different isoforms and distinct organs acts diversely as a cytoskeletal crosslinker and signaling scaffold. It functions as a mediator of keratinocyte mechanical stability in the skin, primarily through linking intermediate filaments to hemidesmosomes. Skin fragility may occur through the presence of mutations in the gene encoding for plectin, PLEC, or through the presence of autoantibodies against the molecule. Below, we review the cutaneous manifestations of plectinopathies as well as their systemic involvement in specific disease subtypes. We summarize the known roles of plectin in keratinocytes and fibroblasts and provide an outlook on future perspectives for plectin-associated skin disorders.
Collapse
Affiliation(s)
- Dimitra Kiritsi
- Department of Dermatology, Faculty of Medicine, Medical Center-University of Freiburg, 79104 Freiburg, Germany;
- Correspondence:
| | | | - Franziska Schauer
- Department of Dermatology, Faculty of Medicine, Medical Center-University of Freiburg, 79104 Freiburg, Germany;
| |
Collapse
|
11
|
Tan TS, Common JEA, Lim JSY, Badowski C, Firdaus MJ, Leonardi SS, Lane EB. A cell-based drug discovery assay identifies inhibition of cell stress responses as a new approach to treatment of epidermolysis bullosa simplex. J Cell Sci 2021; 134:272475. [PMID: 34643242 PMCID: PMC8542385 DOI: 10.1242/jcs.258409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 09/07/2021] [Indexed: 11/20/2022] Open
Abstract
In the skin fragility disorder epidermolysis bullosa simplex (EBS), mutations in keratin 14 (K14, also known as KRT14) or keratin 5 (K5, also known as KRT5) lead to keratinocyte rupture and skin blistering. Severe forms of EBS are associated with cytoplasmic protein aggregates, with elevated kinase activation of ERK1 and ERK2 (ERK1/2; also known as MAPK3 and MAPK1, respectively), suggesting intrinsic stress caused by misfolded keratin protein. Human keratinocyte EBS reporter cells stably expressing GFP-tagged EBS-mimetic mutant K14 were used to optimize a semi-automated system to quantify the effects of test compounds on keratin aggregates. Screening of a protein kinase inhibitor library identified several candidates that reduced aggregates and impacted on epidermal growth factor receptor (EGFR) signalling. EGF ligand exposure induced keratin aggregates in EBS reporter keratinocytes, which was reversible by EGFR inhibition. EBS keratinocytes treated with a known EGFR inhibitor, afatinib, were driven out of activation and towards quiescence with minimal cell death. Aggregate reduction was accompanied by denser keratin filament networks with enhanced intercellular cohesion and resilience, which when extrapolated to a whole tissue context would predict reduced epidermal fragility in EBS patients. This assay system provides a powerful tool for discovery and development of new pathway intervention therapeutic avenues for EBS.
Collapse
Affiliation(s)
- Tong San Tan
- Skin Research Institute of Singapore, A*STAR, Immunos Building, 8A Biomedical Grove, Singapore138648.,Institute of Medical Biology, A*STAR, Immunos Building, 8A Biomedical Grove, Singapore138648
| | - John E A Common
- Skin Research Institute of Singapore, A*STAR, Immunos Building, 8A Biomedical Grove, Singapore138648.,Institute of Medical Biology, A*STAR, Immunos Building, 8A Biomedical Grove, Singapore138648
| | - John S Y Lim
- A*STAR Microscopy Platform, Immunos Building, 8A Biomedical Grove, Singapore138648
| | - Cedric Badowski
- Institute of Medical Biology, A*STAR, Immunos Building, 8A Biomedical Grove, Singapore138648
| | - Muhammad Jasrie Firdaus
- Skin Research Institute of Singapore, A*STAR, Immunos Building, 8A Biomedical Grove, Singapore138648.,Institute of Medical Biology, A*STAR, Immunos Building, 8A Biomedical Grove, Singapore138648
| | - Steven S Leonardi
- Skin Research Institute of Singapore, A*STAR, Immunos Building, 8A Biomedical Grove, Singapore138648
| | - E Birgitte Lane
- Skin Research Institute of Singapore, A*STAR, Immunos Building, 8A Biomedical Grove, Singapore138648.,Institute of Medical Biology, A*STAR, Immunos Building, 8A Biomedical Grove, Singapore138648
| |
Collapse
|
12
|
Zrelski MM, Kustermann M, Winter L. Muscle-Related Plectinopathies. Cells 2021; 10:2480. [PMID: 34572129 PMCID: PMC8466646 DOI: 10.3390/cells10092480] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 12/23/2022] Open
Abstract
Plectin is a giant cytoskeletal crosslinker and intermediate filament stabilizing protein. Mutations in the human plectin gene (PLEC) cause several rare diseases that are grouped under the term plectinopathies. The most common disorder is autosomal recessive disease epidermolysis bullosa simplex with muscular dystrophy (EBS-MD), which is characterized by skin blistering and progressive muscle weakness. Besides EBS-MD, PLEC mutations lead to EBS with nail dystrophy, EBS-MD with a myasthenic syndrome, EBS with pyloric atresia, limb-girdle muscular dystrophy type R17, or EBS-Ogna. In this review, we focus on the clinical and pathological manifestations caused by PLEC mutations on skeletal and cardiac muscle. Skeletal muscle biopsies from EBS-MD patients and plectin-deficient mice revealed severe dystrophic features with variation in fiber size, degenerative myofibrillar changes, mitochondrial alterations, and pathological desmin-positive protein aggregates. Ultrastructurally, PLEC mutations lead to a disorganization of myofibrils and sarcomeres, Z- and I-band alterations, autophagic vacuoles and cytoplasmic bodies, and misplaced and degenerating mitochondria. We also summarize a variety of genetically manipulated mouse and cell models, which are either plectin-deficient or that specifically lack a skeletal muscle-expressed plectin isoform. These models are powerful tools to study functional and molecular consequences of PLEC defects and their downstream effects on the skeletal muscle organization.
Collapse
Affiliation(s)
| | | | - Lilli Winter
- Center for Anatomy and Cell Biology, Neuromuscular Research Department, Medical University of Vienna, 1090 Vienna, Austria; (M.M.Z.); (M.K.)
| |
Collapse
|
13
|
Lee J, Geng S, Li S, Li L. Single Cell RNA-Seq and Machine Learning Reveal Novel Subpopulations in Low-Grade Inflammatory Monocytes With Unique Regulatory Circuits. Front Immunol 2021; 12:627036. [PMID: 33708217 PMCID: PMC7940189 DOI: 10.3389/fimmu.2021.627036] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/21/2021] [Indexed: 11/13/2022] Open
Abstract
Subclinical doses of LPS (SD-LPS) are known to cause low-grade inflammatory activation of monocytes, which could lead to inflammatory diseases including atherosclerosis and metabolic syndrome. Sodium 4-phenylbutyrate is a potential therapeutic compound which can reduce the inflammation caused by SD-LPS. To understand the gene regulatory networks of these processes, we have generated scRNA-seq data from mouse monocytes treated with these compounds and identified 11 novel cell clusters. We have developed a machine learning method to integrate scRNA-seq, ATAC-seq, and binding motifs to characterize gene regulatory networks underlying these cell clusters. Using guided regularized random forest and feature selection, our method achieved high performance and outperformed a traditional enrichment-based method in selecting candidate regulatory genes. Our method is particularly efficient in selecting a few candidate genes to explain observed expression pattern. In particular, among 531 candidate TFs, our method achieves an auROC of 0.961 with only 10 motifs. Finally, we found two novel subpopulations of monocyte cells in response to SD-LPS and we confirmed our analysis using independent flow cytometry experiments. Our results suggest that our new machine learning method can select candidate regulatory genes as potential targets for developing new therapeutics against low grade inflammation.
Collapse
Affiliation(s)
- Jiyoung Lee
- Ph.D. Program in Genetics, Bioinformatics and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States.,School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Shuo Geng
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Song Li
- Ph.D. Program in Genetics, Bioinformatics and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States.,School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Liwu Li
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
14
|
Lehmann SM, Leube RE, Windoffer R. Growth, lifetime, directional movement and myosin-dependent motility of mutant keratin granules in cultured cells. Sci Rep 2021; 11:2379. [PMID: 33504849 PMCID: PMC7840912 DOI: 10.1038/s41598-021-81542-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/08/2021] [Indexed: 11/09/2022] Open
Abstract
Intermediate filament polypeptides (IFPs) are prominent components of cytoplasmic aggregates, which are pathognomonic for multiple diseases. Recent observations in cultured cells suggest that they are dynamic and subject to regulated turnover. The emerging concept is that multiple factors contribute to motility and turnover of IFP-containing aggregates. To understand their relative contribution, quantitative tools are needed. The current study addresses this need using epithelial cells producing mutant keratin IFPs that have been identified as the cause of the hereditary blister-forming skin disease epidermolysis bullosa simplex. Digital image analysis of individual granules allowed mapping of their complete life cycle, with information on multiple characteristics at any given time-point. The deduced signet features revealed rapid granule fusion and directed transport from the periphery towards the cell centre, and a limited, ~ 30 min lifetime with a slow, continuous growth phase followed by fast disassembly. As paradigmatic proof-of-principle, we demonstrate that inhibition of myosin II selectively reduces granule movement, linking keratin granule motility to retrograde cortical acto-myosin flow. The newly developed methods and established parameters will help in the characterization of known and the identification of novel regulators of IFP-containing aggregates.
Collapse
Affiliation(s)
- S M Lehmann
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - R E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany.
| | - R Windoffer
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| |
Collapse
|
15
|
Oral peptide delivery: challenges and the way ahead. Drug Discov Today 2021; 26:931-950. [PMID: 33444788 DOI: 10.1016/j.drudis.2021.01.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/16/2020] [Accepted: 01/06/2021] [Indexed: 12/14/2022]
Abstract
Peptides and proteins have emerged as potential therapeutic agents and, in the search for the best treatment regimen, the oral route has been extensively evaluated because of its non-invasive and safe nature. The physicochemical properties of peptides and proteins along with the hurdles in the gastrointestinal tract (GIT), such as degrading enzymes and permeation barriers, are challenges to their delivery. To address these challenges, several conventional and novel approaches, such as nanocarriers, site-specific and stimuli specific delivery, are being used. In this review, we discuss the challenges to the oral delivery of peptides and the approaches used to tackle these challenges.
Collapse
|
16
|
Titeux M, Bonnet des Claustres M, Izmiryan A, Ragot H, Hovnanian A. Emerging drugs for the treatment of epidermolysis bullosa. Expert Opin Emerg Drugs 2020; 25:467-489. [DOI: 10.1080/14728214.2020.1839049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Matthias Titeux
- Imagine Institute, Laboratory of Genetic Skin Diseases, INSERM UMR 1163, Université de Paris, Paris, France
| | | | - Araksya Izmiryan
- Imagine Institute, Laboratory of Genetic Skin Diseases, INSERM UMR 1163, Université de Paris, Paris, France
| | - Helene Ragot
- Imagine Institute, Laboratory of Genetic Skin Diseases, INSERM UMR 1163, Université de Paris, Paris, France
| | - Alain Hovnanian
- Imagine Institute, Laboratory of Genetic Skin Diseases, INSERM UMR 1163, Université de Paris, Paris, France
- Départment de Génétique, AP-HP, Hôpital Necker-Enfants Malades, Paris, France
| |
Collapse
|
17
|
Bachar-Wikstrom E, Manchanda M, Bansal R, Karlsson M, Kelly-Pettersson P, Sköldenberg O, Wikstrom JD. Endoplasmic reticulum stress in human chronic wound healing: Rescue by 4-phenylbutyrate. Int Wound J 2020; 18:49-61. [PMID: 33225583 PMCID: PMC7949014 DOI: 10.1111/iwj.13525] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022] Open
Abstract
During wound healing, cells have a high rate of protein synthesis and many proteins need to be folded post‐translationally to function, which occurs in the endoplasmic reticulum (ER). In addition to proliferation, several cellular stress conditions, such as hypoxia, in the wound micro‐environment lead to the accumulation of unfolded or misfolded proteins in the ER, causing ER stress. Eukaryotic cells have a signalling system to manage ER stress called the unfolded protein response (UPR). Mild UPR activation has a beneficial homeostatic effect; however, excessive UPR induces cell death. Herein, we examined venous leg ulcer biopsies versus normal acute incisional wounds in age‐matched elderly subjects and found a large increase in ER stress markers. To study the underlying mechanism, we established several cell cultures from amputated legs from the elderly that showed inherent ER stress. While both keratinocytes and fibroblasts migration was impaired by ER stress, migration of elderly leg skin keratinocytes was markedly improved after treatment with the chemical chaperone and clinically established drug 4‐phenylbutyrate (4‐PBA) and demonstrated a reduction in ER stress markers. In a full‐thickness human skin wound healing model, 4‐PBA improved the reepithelialisation rate, which suggests it as a promising drug repurposing candidate for wound healing.
Collapse
Affiliation(s)
- Etty Bachar-Wikstrom
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Mansi Manchanda
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Ritu Bansal
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | | | - Paula Kelly-Pettersson
- Department of Clinical Sciences, Danderyd Hospital, Division of Orthopaedics, Karolinska Institutet, Stockholm, Sweden
| | - Olof Sköldenberg
- Department of Clinical Sciences, Danderyd Hospital, Division of Orthopaedics, Karolinska Institutet, Stockholm, Sweden
| | - Jakob D Wikstrom
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden.,Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
18
|
246th ENMC International Workshop: Protein aggregate myopathies 24-26 May 2019, Hoofddorp, The Netherlands. Neuromuscul Disord 2020; 31:158-166. [PMID: 33303357 DOI: 10.1016/j.nmd.2020.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 11/05/2020] [Indexed: 12/30/2022]
|
19
|
Herrmann H, Cabet E, Chevalier NR, Moosmann J, Schultheis D, Haas J, Schowalter M, Berwanger C, Weyerer V, Agaimy A, Meder B, Müller OJ, Katus HA, Schlötzer-Schrehardt U, Vicart P, Ferreiro A, Dittrich S, Clemen CS, Lilienbaum A, Schröder R. Dual Functional States of R406W-Desmin Assembly Complexes Cause Cardiomyopathy With Severe Intercalated Disc Derangement in Humans and in Knock-In Mice. Circulation 2020; 142:2155-2171. [PMID: 33023321 DOI: 10.1161/circulationaha.120.050218] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Mutations in the human desmin gene cause myopathies and cardiomyopathies. This study aimed to elucidate molecular mechanisms initiated by the heterozygous R406W-desmin mutation in the development of a severe and early-onset cardiac phenotype. METHODS We report an adolescent patient who underwent cardiac transplantation as a result of restrictive cardiomyopathy caused by a heterozygous R406W-desmin mutation. Sections of the explanted heart were analyzed with antibodies specific to 406W-desmin and to intercalated disc proteins. Effects of the R406W mutation on the molecular properties of desmin were addressed by cell transfection and in vitro assembly experiments. To prove the genuine deleterious effect of the mutation on heart tissue, we further generated and analyzed R405W-desmin knock-in mice harboring the orthologous form of the human R406W-desmin. RESULTS Microscopic analysis of the explanted heart revealed desmin aggregates and the absence of desmin filaments at intercalated discs. Structural changes within intercalated discs were revealed by the abnormal organization of desmoplakin, plectin, N-cadherin, and connexin-43. Next-generation sequencing confirmed the DES variant c.1216C>T (p.R406W) as the sole disease-causing mutation. Cell transfection studies disclosed a dual behavior of R406W-desmin with both its integration into the endogenous intermediate filament system and segregation into protein aggregates. In vitro, R406W-desmin formed unusually thick filaments that organized into complex filament aggregates and fibrillar sheets. In contrast, assembly of equimolar mixtures of mutant and wild-type desmin generated chimeric filaments of seemingly normal morphology but with occasional prominent irregularities. Heterozygous and homozygous R405W-desmin knock-in mice develop both a myopathy and a cardiomyopathy. In particular, the main histopathologic results from the patient are recapitulated in the hearts from R405W-desmin knock-in mice of both genotypes. Moreover, whereas heterozygous knock-in mice have a normal life span, homozygous animals die at 3 months of age because of a smooth muscle-related gastrointestinal phenotype. CONCLUSIONS We demonstrate that R406W-desmin provokes its severe cardiotoxic potential by a novel pathomechanism, where the concurrent dual functional states of mutant desmin assembly complexes underlie the uncoupling of desmin filaments from intercalated discs and their structural disorganization.
Collapse
Affiliation(s)
- Harald Herrmann
- Institute of Neuropathology (H.H., D.S., M.S., R.S.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany.,Molecular Genetics, German Cancer Research Center, Heidelberg, Germany (H.H.)
| | - Eva Cabet
- Basic and Translational Myology, Unit of Functional and Adaptive Biology (E.C., P.V., A.F., A.L.), University of Paris, France
| | - Nicolas R Chevalier
- Laboratoire Matière et Systèmes Complexes (N.R.C.), University of Paris, France
| | - Julia Moosmann
- Department of Pediatric Cardiology (J.M., S.D.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | - Dorothea Schultheis
- Institute of Neuropathology (H.H., D.S., M.S., R.S.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | - Jan Haas
- Institute for Cardiomyopathies Heidelberg, Heart Center Heidelberg, University of Heidelberg, Germany (J.H., B.M.)
| | - Mirjam Schowalter
- Institute of Neuropathology (H.H., D.S., M.S., R.S.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | - Carolin Berwanger
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany (C.B., C.S.C.)
| | - Veronika Weyerer
- Institute of Pathology (V.W., A.A.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | - Abbas Agaimy
- Institute of Pathology (V.W., A.A.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | - Benjamin Meder
- Institute for Cardiomyopathies Heidelberg, Heart Center Heidelberg, University of Heidelberg, Germany (J.H., B.M.).,Department of Genetics, Stanford University School of Medicine, CA (B.M.)
| | - Oliver J Müller
- Internal Medicine III, University Hospital Schleswig-Holstein and University of Kiel, and German Center for Cardiovascular Research, partner site Hamburg/Kiel/Lübeck, Kiel, Germany (O.J.M.)
| | - Hugo A Katus
- Department of Cardiology, Medical University Hospital Heidelberg, and German Center for Cardiovascular Research, partner site Heidelberg/Mannheim, Heidelberg, Germany (H.A.K.)
| | - Ursula Schlötzer-Schrehardt
- Department of Ophthalmology (U.S.-S.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | - Patrick Vicart
- Basic and Translational Myology, Unit of Functional and Adaptive Biology (E.C., P.V., A.F., A.L.), University of Paris, France
| | - Ana Ferreiro
- Basic and Translational Myology, Unit of Functional and Adaptive Biology (E.C., P.V., A.F., A.L.), University of Paris, France.,Reference Center for Neuromuscular Disorders, Pitié-Salpêtrière Hospital, Assistance publique-Hôpitaux de Paris, France (A.F.)
| | - Sven Dittrich
- Department of Pediatric Cardiology (J.M., S.D.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | - Christoph S Clemen
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany (C.B., C.S.C.).,Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, Medical Faculty, and Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, Germany(C.S.C.)
| | - Alain Lilienbaum
- Basic and Translational Myology, Unit of Functional and Adaptive Biology (E.C., P.V., A.F., A.L.), University of Paris, France
| | - Rolf Schröder
- Institute of Neuropathology (H.H., D.S., M.S., R.S.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| |
Collapse
|
20
|
Bornert O, Hogervorst M, Nauroy P, Bischof J, Swildens J, Athanasiou I, Tufa SF, Keene DR, Kiritsi D, Hainzl S, Murauer EM, Marinkovich MP, Platenburg G, Hausser I, Wally V, Ritsema T, Koller U, Haisma EM, Nyström A. QR-313, an Antisense Oligonucleotide, Shows Therapeutic Efficacy for Treatment of Dominant and Recessive Dystrophic Epidermolysis Bullosa: A Preclinical Study. J Invest Dermatol 2020; 141:883-893.e6. [PMID: 32946877 DOI: 10.1016/j.jid.2020.08.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 07/21/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023]
Abstract
Dystrophic epidermolysis bullosa (DEB) is a blistering skin disease caused by mutations in the gene COL7A1 encoding collagen VII. DEB can be inherited as recessive DEB (RDEB) or dominant DEB (DDEB) and is associated with a high wound burden. Perpetual cycles of wounding and healing drive fibrosis in DDEB and RDEB, as well as the formation of a tumor-permissive microenvironment. Prolonging wound-free episodes by improving the quality of wound healing would therefore confer substantial benefit for individuals with DEB. The collagenous domain of collagen VII is encoded by 82 in-frame exons, which makes splice-modulation therapies attractive for DEB. Indeed, antisense oligonucleotide-based exon skipping has shown promise for RDEB. However, the suitability of antisense oligonucleotides for treatment of DDEB remains unexplored. Here, we developed QR-313, a clinically applicable, potent antisense oligonucleotide specifically targeting exon 73. We show the feasibility of topical delivery of QR-313 in a carbomer-composed gel for treatment of wounds to restore collagen VII abundance in human RDEB skin. Our data reveal that QR-313 also shows direct benefit for DDEB caused by exon 73 mutations. Thus, the same topically applied therapeutic could be used to improve the wound healing quality in RDEB and DDEB.
Collapse
Affiliation(s)
- Olivier Bornert
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg, Germany
| | | | - Pauline Nauroy
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg, Germany
| | - Johannes Bischof
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Jim Swildens
- ProQR Therapeutics N.V., Leiden, The Netherlands
| | - Ioannis Athanasiou
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg, Germany
| | - Sara F Tufa
- Micro-Imaging Center, Shriners Hospital for Children, Portland, Oregon, USA
| | - Douglas R Keene
- Micro-Imaging Center, Shriners Hospital for Children, Portland, Oregon, USA
| | - Dimitra Kiritsi
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg, Germany
| | - Stefan Hainzl
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Eva M Murauer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria
| | - M Peter Marinkovich
- Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA; Dermatology, Veteran's Affairs Medical Center, Palo Alto, California, USA
| | | | - Ingrid Hausser
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Verena Wally
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Tita Ritsema
- ProQR Therapeutics N.V., Leiden, The Netherlands
| | - Ulrich Koller
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria
| | | | - Alexander Nyström
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg, Germany.
| |
Collapse
|
21
|
Lin EW, Brady GF, Kwan R, Nesvizhskii AI, Omary MB. Genotype-phenotype analysis of LMNA-related diseases predicts phenotype-selective alterations in lamin phosphorylation. FASEB J 2020; 34:9051-9073. [PMID: 32413188 PMCID: PMC8059629 DOI: 10.1096/fj.202000500r] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/12/2020] [Accepted: 04/15/2020] [Indexed: 12/17/2022]
Abstract
Laminopathies are rare diseases associated with mutations in LMNA, which encodes nuclear lamin A/C. LMNA variants lead to diverse tissue-specific phenotypes including cardiomyopathy, lipodystrophy, myopathy, neuropathy, progeria, bone/skin disorders, and overlap syndromes. The mechanisms underlying these heterogeneous phenotypes remain poorly understood, although post-translational modifications, including phosphorylation, are postulated as regulators of lamin function. We catalogued all known lamin A/C human mutations and their associated phenotypes, and systematically examined the putative role of phosphorylation in laminopathies. In silico prediction of specific LMNA mutant-driven changes to lamin A phosphorylation and protein structure was performed using machine learning methods. Some of the predictions we generated were validated via assessment of ectopically expressed wild-type and mutant LMNA. Our findings indicate phenotype- and mutant-specific alterations in lamin phosphorylation, and that some changes in phosphorylation may occur independently of predicted changes in lamin protein structure. Therefore, therapeutic targeting of phosphorylation in the context of laminopathies will likely require mutant- and kinase-specific approaches.
Collapse
Affiliation(s)
- Eric W Lin
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Graham F Brady
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Raymond Kwan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Alexey I Nesvizhskii
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - M Bishr Omary
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
22
|
Funk T, Hansen C, Paller A, O'Toole E. Update on pachyonychia congenita research. Br J Dermatol 2019; 182:788-789. [DOI: 10.1111/bjd.18630] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- T. Funk
- Dermatology Oregon Health& Science University Portland OR 97239‐3098 U.S.A
| | - C.D. Hansen
- Dermatology University of Utah Salt Lake City UT U.S.A
| | - A. Paller
- Northwestern University Feinberg School of Medicine Chicago IL U.S.A
| | - E.A. O'Toole
- Centre for Cell Biology and Cutaneous Research Blizard Institute, Barts and the London School of Medicine and Dentistry Queen Mary University of London London U.K
| |
Collapse
|