1
|
Kaufmann M, Han Z. RPE melanin and its influence on the progression of AMD. Ageing Res Rev 2024; 99:102358. [PMID: 38830546 PMCID: PMC11260545 DOI: 10.1016/j.arr.2024.102358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024]
Abstract
OBJECTIVE The aim of this review article is to summarize the latest findings and current understanding of the origin of melanin in the retinal pigment epithelium (RPE), its function within the RPE, its role in the pathogenesis of age-related macular degeneration (AMD), its effect on retinal development, and its potential therapeutic benefit in the treatment of AMD. METHODS A comprehensive search of peer-reviewed journals was conducted using various combinations of key terms such as "melanin," "retinal pigment epithelium" or "RPE," "age-related macular degeneration" or AMD," "lipofuscin," "oxidative stress," and "albinism." Databases searched include PubMed, Scopus, Science Direct, and Google Scholar. 147 papers published between the years of 1957 and 2023 were considered with an emphasis on recent findings. SUMMARY OF FINDINGS AMD is thought to result from chronic oxidative stress within the RPE that results in cellular dysfunction, metabolic dysregulation, inflammation, and lipofuscin accumulation. Melanin functions as a photoscreener, free radical scavenger, and metal cation binding reservoir within the RPE. RPE melanin does not regenerate, and it undergoes degradation over time in response to chronic light exposure and oxidative stress. RPE melanin is important for retinal development and RPE function, and in the aging eye, melanin loss is associated with increased lipid peroxidation, inflammation, and the accumulation of toxic oxidized cellular products. Therefore, melanin-based treatments may serve to preserve RPE and retinal function in AMD. CONCLUSIONS The pathogenesis of AMD is not fully understood, but RPE dysfunction and melanin loss in response to chronic oxidative stress and inflammation are thought to be primary drivers of the disease. Due to melanin's antioxidative effects, melanin-based nanotechnology represents a promising avenue for the treatment of AMD.
Collapse
Affiliation(s)
- Mary Kaufmann
- University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Zongchao Han
- Department of Ophthalmology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Division of Pharmacoengineering & Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
2
|
Basu B, Karwatka M, China B, McKibbin M, Khan K, Inglehearn CF, Ladbury JE, Johnson CA. Glycogen myophosphorylase loss causes increased dependence on glucose in iPSC-derived retinal pigment epithelium. J Biol Chem 2024; 300:107569. [PMID: 39009342 PMCID: PMC11342771 DOI: 10.1016/j.jbc.2024.107569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/07/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024] Open
Abstract
Loss of glycogen myophosphorylase (PYGM) expression results in an inability to break down muscle glycogen, leading to McArdle disease-an autosomal recessive metabolic disorder characterized by exercise intolerance and muscle cramps. While previously considered relatively benign, this condition has recently been associated with pattern dystrophy in the retina, accompanied by variable sight impairment, secondary to retinal pigment epithelial (RPE) cell involvement. However, the pathomechanism of this condition remains unclear. In this study, we generated a PYGM-null induced pluripotent stem cell line and differentiated it into mature RPE to examine structural and functional defects, along with metabolite release into apical and basal media. Mutant RPE exhibited normal photoreceptor outer segment phagocytosis but displayed elevated glycogen levels, reduced transepithelial resistance, and increased cytokine secretion across the epithelial layer compared to isogenic WT controls. Additionally, decreased expression of the visual cycle component, RDH11, encoding 11-cis-retinol dehydrogenase, was observed in PYGM-null RPE. While glycolytic flux and oxidative phosphorylation levels in PYGM-null RPE were near normal, the basal oxygen consumption rate was increased. Oxygen consumption rate in response to physiological levels of lactate was significantly greater in WT than PYGM-null RPE. Inefficient lactate utilization by mutant RPE resulted in higher glucose dependence and increased glucose uptake from the apical medium in the presence of lactate, suggesting a reduced capacity to spare glucose for photoreceptor use. Metabolic tracing confirmed slower 13C-lactate utilization by PYGM-null RPE. These findings have key implications for retinal health since they likely underlie the vision impairment in individuals with McArdle disease.
Collapse
Affiliation(s)
- Basudha Basu
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Magdalena Karwatka
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Becky China
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Martin McKibbin
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, UK; Department of Ophthalmology, St James's University Hospital, Leeds, UK
| | - Kamron Khan
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Chris F Inglehearn
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - John E Ladbury
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Colin A Johnson
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, UK.
| |
Collapse
|
3
|
Borella Y, Danielsen N, Markle EM, Snyder VC, Lee DMW, Zhang M, Eller AW, Chhablani J, Paques M, Rossi EA. Are the Hypo-Reflective Clumps Associated With Age-Related Macular Degeneration in Adaptive Optics Ophthalmoscopy Autofluorescent? Invest Ophthalmol Vis Sci 2024; 65:28. [PMID: 39167400 PMCID: PMC11343010 DOI: 10.1167/iovs.65.10.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/03/2024] [Indexed: 08/23/2024] Open
Abstract
Purpose Hypo-reflective clumps (HRCs) are structures associated with age-related macular degeneration (AMD) that were identified using flood-illumination adaptive optics ophthalmoscopy (FIAO) and hypothesized to be either macrophages that have accumulated melanin through the phagocytosis of retinal pigmented epithelial (RPE) cell organelles or transdifferentiated RPE cells. HRCs may be autofluorescent (AF) in the near infrared (NIR) but clinical NIR autofluorescence imaging lacks the resolution to answer this question definitively. Here, we used near infrared autofluorescence (NIRAF) imaging in fluorescence adaptive optics scanning laser ophthalmoscopy (AOSLO) to determine whether HRCs are AF. Methods Patients with AMD and HRCs underwent imaging with FIAO, optical coherence tomography (OCT), and multi-modal AOSLO (confocal, NIRAF, and non-confocal multi-offset detection using a fiber bundle). HRCs were segmented on FIAO and images, co-registered across modalities, and HRC morphometry and AF were quantified. Results Eight patients participated (mean age = 79 years, standard deviation [SD] = 5.7, range = 69-89 years, and 5 female patients). Most HRCs (86%, n = 153/178) were autofluorescent on AOSLO. HRC AF signal varied but most uniformly dark HRCs on FIAO showed corresponding AF on AOSLO, whereas heterogeneous HRCs showed a smaller AF area or no AF. Conclusions These findings are consistent with the hypothesis that HRCs contain AF RPE organelles. A small proportion of HRCs were not AF; these may represent macrophages that have not yet accumulated enough organelles to become AF. HRCs may have clinical significance but further study is needed to understand the interplay among HRCs, RPE cells, and macrophages, and their relationship to geographic atrophy (GA) progression in AMD.
Collapse
Affiliation(s)
- Ysé Borella
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
- Vision Institute, 15-20 National Ophthalmology Hospital, Clinical Investigation Center 1423 and Sorbonne University, Paris, France
| | - Natalie Danielsen
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, Pennsylvania, United States
| | - Evelyn M. Markle
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Valerie C. Snyder
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Daniel M. W. Lee
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, Pennsylvania, United States
| | - Min Zhang
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Andrew W. Eller
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Jay Chhablani
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Michel Paques
- Vision Institute, 15-20 National Ophthalmology Hospital, Clinical Investigation Center 1423 and Sorbonne University, Paris, France
| | - Ethan A. Rossi
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, Pennsylvania, United States
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
4
|
Govindahari V, Dornier R, Ferdowsi S, Moser C, Mantel I, Behar-Cohen F, Kowalczuk L. High-resolution adaptive optics-trans-scleral flood illumination (AO-TFI) imaging of retinal pigment epithelium (RPE) in central serous chorioretinopathy (CSCR). Sci Rep 2024; 14:13689. [PMID: 38871803 DOI: 10.1038/s41598-024-64524-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/10/2024] [Indexed: 06/15/2024] Open
Abstract
This study aims to correlate adaptive optics-transscleral flood illumination (AO-TFI) images of the retinal pigment epithelium (RPE) in central serous chorioretinopathy (CSCR) with standard clinical images and compare cell morphological features with those of healthy eyes. After stitching 125 AO-TFI images acquired in CSCR eyes (including 6 active CSCR, 15 resolved CSCR, and 3 from healthy contralateral), 24 montages were correlated with blue-autofluorescence, infrared and optical coherence tomography images. All 68 AO-TFI images acquired in pathological areas exhibited significant RPE contrast changes. Among the 52 healthy areas in clinical images, AO-TFI revealed a normal RPE mosaic in 62% of the images and an altered RPE pattern in 38% of the images. Morphological features of the RPE cells were quantified in 54 AO-TFI images depicting clinically normal areas (from 12 CSCR eyes). Comparison with data from 149 AO-TFI images acquired in 33 healthy eyes revealed significantly increased morphological heterogeneity. In CSCR, AO-TFI not only enabled high-resolution imaging of outer retinal alterations, but also revealed RPE abnormalities undetectable by all other imaging modalities. Further studies are required to estimate the prognosis value of these abnormalities. Imaging of the RPE using AO-TFI holds great promise for improving our understanding of the CSCR pathogenesis.
Collapse
Affiliation(s)
- Vishal Govindahari
- Department of Retina, Pushpagiri Eye Institute, Hyderabad, 500026, India
- INSERM UMRS 1138 From Physiopathology of Ocular Diseases to Clinical Developments, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie - Paris 6, 75006, Paris, France
| | - Rémy Dornier
- Laboratory of Applied Photonic Devices (LAPD), School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | | | - Christophe Moser
- Laboratory of Applied Photonic Devices (LAPD), School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Irmela Mantel
- Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, CH-1004, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, CH-1005, Lausanne, Switzerland
| | - Francine Behar-Cohen
- INSERM UMRS 1138 From Physiopathology of Ocular Diseases to Clinical Developments, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie - Paris 6, 75006, Paris, France
- Assistance Publique - Hôpitaux de Paris, Ophtalmopôle, Cochin Hospital, 75014, Paris, France
- Université Paris Cité, 75006, Paris, France
- Hôpital Foch, Suresnes, France
| | - Laura Kowalczuk
- Laboratory of Applied Photonic Devices (LAPD), School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
- Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, CH-1004, Lausanne, Switzerland.
- Faculty of Biology and Medicine, University of Lausanne, CH-1005, Lausanne, Switzerland.
| |
Collapse
|
5
|
Kunala K, Tang JAH, Bowles Johnson KE, Huynh KT, Parkins K, Kim HJ, Yang Q, Sparrow JR, Hunter JJ. Near Infrared Autofluorescence Lifetime Imaging of Human Retinal Pigment Epithelium Using Adaptive Optics Scanning Light Ophthalmoscopy. Invest Ophthalmol Vis Sci 2024; 65:27. [PMID: 38758638 PMCID: PMC11107951 DOI: 10.1167/iovs.65.5.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/23/2024] [Indexed: 05/19/2024] Open
Abstract
Purpose To demonstrate the first near-infrared adaptive optics fluorescence lifetime imaging ophthalmoscopy (NIR-AOFLIO) measurements in vivo of the human retinal pigment epithelial (RPE) cellular mosaic and to visualize lifetime changes at different retinal eccentricities. Methods NIR reflectance and autofluorescence were captured using a custom adaptive optics scanning light ophthalmoscope in 10 healthy subjects (23-64 years old) at seven eccentricities and in two eyes with retinal abnormalities. Repeatability was assessed across two visits up to 8 weeks apart. Endogenous retinal fluorophores and hydrophobic whole retinal extracts of Abca4-/- pigmented and albino mice were imaged to probe the fluorescence origin of NIR-AOFLIO. Results The RPE mosaic was resolved at all locations in five of seven younger subjects (<35 years old). The mean lifetime across near-peripheral regions (8° and 12°) was longer compared to near-foveal regions (0° and 2°). Repeatability across two visits showed moderate to excellent correlation (intraclass correlation: 0.88 [τm], 0.75 [τ1], 0.65 [τ2], 0.98 [a1]). The mean lifetime across drusen-containing eyes was longer than in age-matched healthy eyes. Fluorescence was observed in only the extracts from pigmented Abca4-/- mouse. Conclusions NIR-AOFLIO was repeatable and allowed visualization of the RPE cellular mosaic. An observed signal in only the pigmented mouse extract infers the fluorescence signal originates predominantly from melanin. Variations observed across the retina with intermediate age-related macular degeneration suggest NIR-AOFLIO may act as a functional measure of a biomarker for in vivo monitoring of early alterations in retinal health.
Collapse
Affiliation(s)
- Karteek Kunala
- Center for Visual Science, University of Rochester, Rochester, New York, United States
- Byers Eye Institute, Stanford University, Palo Alto, California, United States
| | - Janet A. H. Tang
- Center for Visual Science, University of Rochester, Rochester, New York, United States
- The Institute of Optics, University of Rochester, Rochester, New York, United States
| | - Kristen E. Bowles Johnson
- Center for Visual Science, University of Rochester, Rochester, New York, United States
- Flaum Eye Institute, University of Rochester, Rochester, New York, United States
- School of Optometry, Indiana University, Bloomington, Indiana, United States
| | - Khang T. Huynh
- Center for Visual Science, University of Rochester, Rochester, New York, United States
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, Berkeley, California, United States
| | - Keith Parkins
- Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Hye-Jin Kim
- College of Pharmacy, Keimyung University, Dalseo-gu, Daegu, South Korea
- Department of Ophthalmology, Columbia University Medical Center, New York, New York, United States
| | - Qiang Yang
- Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Janet R. Sparrow
- Department of Ophthalmology, Columbia University Medical Center, New York, New York, United States
| | - Jennifer J. Hunter
- Center for Visual Science, University of Rochester, Rochester, New York, United States
- Flaum Eye Institute, University of Rochester, Rochester, New York, United States
- School of Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
6
|
Gofas-Salas E, Lee DMW, Rondeau C, Grieve K, Rossi EA, Paques M, Gocho K. Comparison between Two Adaptive Optics Methods for Imaging of Individual Retinal Pigmented Epithelial Cells. Diagnostics (Basel) 2024; 14:768. [PMID: 38611681 PMCID: PMC11012195 DOI: 10.3390/diagnostics14070768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
The Retinal Pigment Epithelium (RPE) plays a prominent role in diseases such as age-related macular degeneration, but imaging individual RPE cells is challenging due to their high absorption and low autofluorescence emission. The RPE lies beneath the highly reflective photoreceptor layer (PR) and contains absorptive pigments, preventing direct backscattered light detection when the PR layer is intact. Here, we used near-infrared autofluorescence adaptive optics scanning laser ophthalmoscopy (NIRAF AOSLO) and transscleral flood imaging (TFI) in the same healthy eyes to cross-validate these approaches. Both methods revealed a consistent RPE mosaic pattern and appeared to reflect a distribution of fluorophores consistent with findings from histological studies. Interestingly, even in apparently healthy RPE, we observed dynamic changes over months, suggesting ongoing cellular activity or alterations in fluorophore distribution. These findings emphasize the value of NIRAF AOSLO and TFI in understanding RPE morphology and dynamics.
Collapse
Affiliation(s)
- Elena Gofas-Salas
- Department of Photonics, Institut de la Vision, INSERM, CNRS, Sorbonne Université, 17 rue Moreau, F-75012 Paris, France;
- CIC 1423, CHNO des Quinze-Vingts, INSERM-DGOS 28 rue de Charenton, F-75012 Paris, France; (M.P.); (K.G.)
| | - Daniel M. W. Lee
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA; (D.M.W.L.); (E.A.R.)
| | | | - Kate Grieve
- Department of Photonics, Institut de la Vision, INSERM, CNRS, Sorbonne Université, 17 rue Moreau, F-75012 Paris, France;
- CIC 1423, CHNO des Quinze-Vingts, INSERM-DGOS 28 rue de Charenton, F-75012 Paris, France; (M.P.); (K.G.)
| | - Ethan A. Rossi
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA; (D.M.W.L.); (E.A.R.)
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Michel Paques
- CIC 1423, CHNO des Quinze-Vingts, INSERM-DGOS 28 rue de Charenton, F-75012 Paris, France; (M.P.); (K.G.)
| | - Kiyoko Gocho
- CIC 1423, CHNO des Quinze-Vingts, INSERM-DGOS 28 rue de Charenton, F-75012 Paris, France; (M.P.); (K.G.)
| |
Collapse
|
7
|
Dontsov A, Ostrovsky M. Retinal Pigment Epithelium Pigment Granules: Norms, Age Relations and Pathology. Int J Mol Sci 2024; 25:3609. [PMID: 38612421 PMCID: PMC11011557 DOI: 10.3390/ijms25073609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
The retinal pigment epithelium (RPE), which ensures the normal functioning of the neural retina, is a pigmented single-cell layer that separates the retina from the Bruch's membrane and the choroid. There are three main types of pigment granules in the RPE cells of the human eye: lipofuscin granules (LG) containing the fluorescent "age pigment" lipofuscin, melanoprotein granules (melanosomes, melanolysosomes) containing the screening pigment melanin and complex melanolipofuscin granules (MLG) containing both types of pigments simultaneously-melanin and lipofuscin. This review examines the functional role of pigment granules in the aging process and in the development of oxidative stress and associated pathologies in RPE cells. The focus is on the process of light-induced oxidative degradation of pigment granules caused by reactive oxygen species. The reasons leading to increased oxidative stress in RPE cells as a result of the oxidative degradation of pigment granules are considered. A mechanism is proposed to explain the phenomenon of age-related decline in melanin content in RPE cells. The essence of the mechanism is that when the lipofuscin part of the melanolipofuscin granule is exposed to light, reactive oxygen species are formed, which destroy the melanin part. As more melanolipofuscin granules are formed with age and the development of degenerative diseases, the melanin in pigmented epithelial cells ultimately disappears.
Collapse
Affiliation(s)
| | - Mikhail Ostrovsky
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 119334, Russia;
| |
Collapse
|
8
|
Curcio CA, Kar D, Owsley C, Sloan KR, Ach T. Age-Related Macular Degeneration, a Mathematically Tractable Disease. Invest Ophthalmol Vis Sci 2024; 65:4. [PMID: 38466281 PMCID: PMC10916886 DOI: 10.1167/iovs.65.3.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/19/2024] [Indexed: 03/12/2024] Open
Abstract
A progression sequence for age-related macular degeneration onset may be determinable with consensus neuroanatomical nomenclature augmented by drusen biology and eye-tracked clinical imaging. This narrative review proposes to supplement the Early Treatment of Diabetic Retinopathy Study (sETDRS) grid with a ring to capture high rod densities. Published photoreceptor and retinal pigment epithelium (RPE) densities in flat mounted aged-normal donor eyes were recomputed for sETDRS rings including near-periphery rich in rods and cumulatively for circular fovea-centered regions. Literature was reviewed for tissue-level studies of aging outer retina, population-level epidemiology studies regionally assessing risk, vision studies regionally assessing rod-mediated dark adaptation (RMDA), and impact of atrophy on photopic visual acuity. The 3 mm-diameter xanthophyll-rich macula lutea is rod-dominant and loses rods in aging whereas cone and RPE numbers are relatively stable. Across layers, the largest aging effects are accumulation of lipids prominent in drusen, loss of choriocapillary coverage of Bruch's membrane, and loss of rods. Epidemiology shows maximal risk for drusen-related progression in the central subfield with only one third of this risk level in the inner ring. RMDA studies report greatest slowing at the perimeter of this high-risk area. Vision declines precipitously when the cone-rich central subfield is invaded by geographic atrophy. Lifelong sustenance of foveal cone vision within the macula lutea leads to vulnerability in late adulthood that especially impacts rods at its perimeter. Adherence to an sETDRS grid and outer retinal cell populations within it will help dissect mechanisms, prioritize research, and assist in selecting patients for emerging treatments.
Collapse
Affiliation(s)
- Christine A. Curcio
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, United States
| | - Deepayan Kar
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, United States
| | - Cynthia Owsley
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, United States
| | - Kenneth R. Sloan
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, United States
| | - Thomas Ach
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
9
|
Mead AJ, Ahluwalia K, Ebright B, Zhang Z, Dave P, Li Z, Zhou E, Naik AA, Ngu R, Chester C, Lu A, Asante I, Pollalis D, Martinez JC, Humayun M, Louie S. Loss of 15-Lipoxygenase in Retinodegenerative RCS Rats. Int J Mol Sci 2024; 25:2309. [PMID: 38396985 PMCID: PMC10889776 DOI: 10.3390/ijms25042309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Retinitis pigmentosa (RP) is a retinal degenerative disease associated with a diversity of genetic mutations. In a natural progression study (NPS) evaluating the molecular changes in Royal College of Surgeons (RCS) rats using lipidomic profiling, RNA sequencing, and gene expression analyses, changes associated with retinal degeneration from p21 to p60 were evaluated, where reductions in retinal ALOX15 expression corresponded with disease progression. This important enzyme catalyzes the formation of specialized pro-resolving mediators (SPMs) such as lipoxins (LXs), resolvins (RvDs), and docosapentaenoic acid resolvins (DPA RvDs), where reduced ALOX15 corresponded with reduced SPMs. Retinal DPA RvD2 levels were found to correlate with retinal structural and functional decline. Retinal RNA sequencing comparing p21 with p60 showed an upregulation of microglial inflammatory pathways accompanied by impaired damage-associated molecular pattern (DAMP) clearance pathways. This analysis suggests that ALXR/FPR2 activation can ameliorate disease progression, which was supported by treatment with an LXA4 analog, NAP1051, which was able to promote the upregulation of ALOX12 and ALOX15. This study showed that retinal inflammation from activated microglia and dysregulation of lipid metabolism were central to the pathogenesis of retinal degeneration in RP, where ALXR/FPR2 activation was able to preserve retinal structure and function.
Collapse
Affiliation(s)
- Andrew James Mead
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.J.M.); (K.A.); (B.E.); (Z.Z.); (P.D.); (Z.L.); (E.Z.); (A.A.N.); (R.N.); (C.C.); (A.L.); (I.A.)
| | - Kabir Ahluwalia
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.J.M.); (K.A.); (B.E.); (Z.Z.); (P.D.); (Z.L.); (E.Z.); (A.A.N.); (R.N.); (C.C.); (A.L.); (I.A.)
| | - Brandon Ebright
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.J.M.); (K.A.); (B.E.); (Z.Z.); (P.D.); (Z.L.); (E.Z.); (A.A.N.); (R.N.); (C.C.); (A.L.); (I.A.)
| | - Zeyu Zhang
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.J.M.); (K.A.); (B.E.); (Z.Z.); (P.D.); (Z.L.); (E.Z.); (A.A.N.); (R.N.); (C.C.); (A.L.); (I.A.)
| | - Priyal Dave
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.J.M.); (K.A.); (B.E.); (Z.Z.); (P.D.); (Z.L.); (E.Z.); (A.A.N.); (R.N.); (C.C.); (A.L.); (I.A.)
| | - Zeyang Li
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.J.M.); (K.A.); (B.E.); (Z.Z.); (P.D.); (Z.L.); (E.Z.); (A.A.N.); (R.N.); (C.C.); (A.L.); (I.A.)
| | - Eugene Zhou
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.J.M.); (K.A.); (B.E.); (Z.Z.); (P.D.); (Z.L.); (E.Z.); (A.A.N.); (R.N.); (C.C.); (A.L.); (I.A.)
| | - Aditya Anil Naik
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.J.M.); (K.A.); (B.E.); (Z.Z.); (P.D.); (Z.L.); (E.Z.); (A.A.N.); (R.N.); (C.C.); (A.L.); (I.A.)
| | - Rachael Ngu
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.J.M.); (K.A.); (B.E.); (Z.Z.); (P.D.); (Z.L.); (E.Z.); (A.A.N.); (R.N.); (C.C.); (A.L.); (I.A.)
| | - Catherine Chester
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.J.M.); (K.A.); (B.E.); (Z.Z.); (P.D.); (Z.L.); (E.Z.); (A.A.N.); (R.N.); (C.C.); (A.L.); (I.A.)
| | - Angela Lu
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.J.M.); (K.A.); (B.E.); (Z.Z.); (P.D.); (Z.L.); (E.Z.); (A.A.N.); (R.N.); (C.C.); (A.L.); (I.A.)
| | - Isaac Asante
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.J.M.); (K.A.); (B.E.); (Z.Z.); (P.D.); (Z.L.); (E.Z.); (A.A.N.); (R.N.); (C.C.); (A.L.); (I.A.)
- University of Southern California Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (D.P.); (J.C.M.); (M.H.)
- University of Southern California Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Dimitrios Pollalis
- University of Southern California Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (D.P.); (J.C.M.); (M.H.)
- University of Southern California Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Juan Carlos Martinez
- University of Southern California Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (D.P.); (J.C.M.); (M.H.)
- University of Southern California Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Mark Humayun
- University of Southern California Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (D.P.); (J.C.M.); (M.H.)
- University of Southern California Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Stan Louie
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.J.M.); (K.A.); (B.E.); (Z.Z.); (P.D.); (Z.L.); (E.Z.); (A.A.N.); (R.N.); (C.C.); (A.L.); (I.A.)
- University of Southern California Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (D.P.); (J.C.M.); (M.H.)
- University of Southern California Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
10
|
Różanowska MB. Lipofuscin, Its Origin, Properties, and Contribution to Retinal Fluorescence as a Potential Biomarker of Oxidative Damage to the Retina. Antioxidants (Basel) 2023; 12:2111. [PMID: 38136230 PMCID: PMC10740933 DOI: 10.3390/antiox12122111] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Lipofuscin accumulates with age as intracellular fluorescent granules originating from incomplete lysosomal digestion of phagocytosed and autophagocytosed material. The purpose of this review is to provide an update on the current understanding of the role of oxidative stress and/or lysosomal dysfunction in lipofuscin accumulation and its consequences, particularly for retinal pigment epithelium (RPE). Next, the fluorescence of lipofuscin, spectral changes induced by oxidation, and its contribution to retinal fluorescence are discussed. This is followed by reviewing recent developments in fluorescence imaging of the retina and the current evidence on the prognostic value of retinal fluorescence for the progression of age-related macular degeneration (AMD), the major blinding disease affecting elderly people in developed countries. The evidence of lipofuscin oxidation in vivo and the evidence of increased oxidative damage in AMD retina ex vivo lead to the conclusion that imaging of spectral characteristics of lipofuscin fluorescence may serve as a useful biomarker of oxidative damage, which can be helpful in assessing the efficacy of potential antioxidant therapies in retinal degenerations associated with accumulation of lipofuscin and increased oxidative stress. Finally, amendments to currently used fluorescence imaging instruments are suggested to be more sensitive and specific for imaging spectral characteristics of lipofuscin fluorescence.
Collapse
Affiliation(s)
- Małgorzata B. Różanowska
- School of Optometry and Vision Sciences, College of Biomedical and Life Sciences, Cardiff University, Maindy Road, Cardiff CF24 4HQ, Wales, UK;
- Cardiff Institute for Tissue Engineering and Repair (CITER), Redwood Building, King Edward VII Avenue, Cardiff CF10 3NB, Wales, UK
| |
Collapse
|
11
|
Belcher RH, Thomas G, Willmon PA, Gallant JN, Baregamian N, Lopez ME, Solόrzano CC, Mahadevan-Jansen A. Identifying Parathyroids in Pediatric Thyroid/Parathyroid Surgery by Near Infrared Autofluorescence. Laryngoscope 2023; 133:3208-3215. [PMID: 36866696 PMCID: PMC10475145 DOI: 10.1002/lary.30633] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 03/04/2023]
Abstract
OBJECTIVES Compared to adult patients undergoing thyroid surgery, pediatric patients have higher rates of hypoparathyroidism often related to parathyroid gland (PG) inadvertent injury or devascularization. Previous studies have shown that near-infrared-autofluorescence (NIRAF) can be reliably used intraoperatively for label-free parathyroid identification, but all prior studies have been performed in adult patients. In this study, we assess the utility and accuracy of NIRAF with a fiber-optic probe-based system to identify PGs in pediatric patients undergoing thyroidectomy or parathyroidectomy. METHODS All pediatric patients (under 18 years of age) undergoing thyroidectomy or parathyroidectomy were enrolled in this IRB-approved study. The surgeon's visual assessment of tissues was first noted and the surgeon's confidence level in the tissue identified was recorded. A fiber-optic probe was then used to illuminate tissues-of-interest with a wavelength of 785 nm and resulting NIRAF intensities from these tissues were measured while the surgeon was blinded to results. RESULTS NIRAF intensities were measured intraoperatively in 19 pediatric patients. Normalized NIRAF intensities for PGs (3.63 ± 2.47) were significantly higher than that of thyroid (0.99 ± 0.36, p < 0.001) and other surrounding soft tissues (0.86 ± 0.40, p < 0.001). Based on the PG identification ratio threshold of 1.2, NIRAF yielded a detection rate of 95.8% (46/48 pediatric PGs). CONCLUSION Our findings indicate that NIRAF detection can potentially be a valuable and non-invasive technique to identify PGs during neck operations in the pediatric population. To our knowledge, this is the first study in children to assess the accuracy of probe-based NIRAF detection for intraoperative parathyroid identification. LEVEL OF EVIDENCE Level 4 Laryngoscope, 133:3208-3215, 2023.
Collapse
Affiliation(s)
- Ryan H. Belcher
- Vanderbilt Department of Otolaryngology – Head and Neck Surgery, Vanderbilt University Medical Center
- Division of Pediatric Otolaryngology, Monroe Carrell Jr. Children’s Hospital at Vanderbilt
| | - Giju Thomas
- Department of Biomedical Engineering, Vanderbilt University
- Vanderbilt Biophotonics Center, Vanderbilt University
| | - Parker A. Willmon
- Department of Biomedical Engineering, Vanderbilt University
- Vanderbilt Biophotonics Center, Vanderbilt University
| | - Jean-Nicolas Gallant
- Vanderbilt Department of Otolaryngology – Head and Neck Surgery, Vanderbilt University Medical Center
| | - Naira Baregamian
- Vanderbilt Section of Surgical Sciences – Department of Surgery, Vanderbilt University Medical Center
| | - Monica E. Lopez
- Department of Pediatric Surgery, Section of Surgical Sciences, Vanderbilt University Medical Center, Monroe Carrell Jr. Children’s Hospital at Vanderbilt
| | - Carmen C. Solόrzano
- Vanderbilt Section of Surgical Sciences – Department of Surgery, Vanderbilt University Medical Center
| | - Anita Mahadevan-Jansen
- Department of Biomedical Engineering, Vanderbilt University
- Vanderbilt Biophotonics Center, Vanderbilt University
- Vanderbilt Section of Surgical Sciences – Department of Surgery, Vanderbilt University Medical Center
| |
Collapse
|
12
|
Lyu Y, Tschulakow AV, Wang K, Brash DE, Schraermeyer U. Chemiexcitation and melanin in photoreceptor disc turnover and prevention of macular degeneration. Proc Natl Acad Sci U S A 2023; 120:e2216935120. [PMID: 37155898 PMCID: PMC10194005 DOI: 10.1073/pnas.2216935120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 04/03/2023] [Indexed: 05/10/2023] Open
Abstract
Age-related macular degeneration, Stargardt disease, and their Abca4-/- mouse model are characterized by accelerated accumulation of the pigment lipofuscin, derived from photoreceptor disc turnover in the retinal pigment epithelium (RPE); lipofuscin accumulation and retinal degeneration both occur earlier in albino mice. Intravitreal injection of superoxide (O2•-) generators reverses lipofuscin accumulation and rescues retinal pathology, but neither the target nor mechanism is known. Here we show that RPE contains thin multi-lamellar membranes (TLMs) resembling photoreceptor discs, which associate with melanolipofuscin granules in pigmented mice but in albinos are 10-fold more abundant and reside in vacuoles. Genetically over-expressing tyrosinase in albinos generates melanosomes and decreases TLM-related lipofuscin. Intravitreal injection of generators of O2•- or nitric oxide (•NO) decreases TLM-related lipofuscin in melanolipofuscin granules of pigmented mice by ~50% in 2 d, but not in albinos. Prompted by evidence that O2•- plus •NO creates a dioxetane on melanin that excites its electrons to a high-energy state (termed "chemiexcitation"), we show that exciting electrons directly using a synthetic dioxetane reverses TLM-related lipofuscin even in albinos; quenching the excited-electron energy blocks this reversal. Melanin chemiexcitation assists in safe photoreceptor disc turnover.
Collapse
Affiliation(s)
- Yanan Lyu
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, University of Tuebingen, Tuebingen72076, Germany
| | - Alexander V. Tschulakow
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, University of Tuebingen, Tuebingen72076, Germany
- OcuTox GmbH, Preclinical Drug Assessment, Hechingen72379, Germany
| | - Kun Wang
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, University of Tuebingen, Tuebingen72076, Germany
| | - Douglas E. Brash
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT06520-8040
- Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT06520-8028
| | - Ulrich Schraermeyer
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, University of Tuebingen, Tuebingen72076, Germany
- OcuTox GmbH, Preclinical Drug Assessment, Hechingen72379, Germany
| |
Collapse
|
13
|
Bell BA, Kaul C, Dunaief JL, Hollyfield JG, Bonilha VL. A comparison of optophysiological biomarkers of photoreceptor stress and phototoxicity in BALB/cJ, B6 (Cg)-Tyrc-2J/J, and C57Bl/6J mouse strains. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1128311. [PMID: 38689597 PMCID: PMC11057998 DOI: 10.3389/fopht.2023.1128311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Ophthalmic imaging instruments, including the confocal scanning laser ophthalmoscope and spectral-domain optical coherence tomography system, originally intended for revealing ocular microstructures in the human eye, have been deployed by vision researchers to evaluate the eyes of numerous small and large animal species for more than two decades. In this study, we have used these two instruments to obtain imaging data sequentially from the retinas of three prominent, widely used experimental mouse models to document changes induced by two contrasting vivarium lighting conditions. Mice studied include albino BALB/cJ and B6(Cg)-Tyrc-2J/J and pigmented C57Bl/6J. Mice were reared under dim light conditions until ~8 weeks of age where they underwent baseline imaging. Following, mice were returned to the dim vivarium or relocated to the top rack cage position in a standard vivarium. Mice were then followed for several months by ocular imaging to catalog the retinal dynamics as a function of long-term dim vs. elevated, standard vivarium lighting exposure levels. Upon exposure to elevated light levels, B6(Cg)-Tyrc-2J/J underwent similar changes as BALB/cJ in regard to photoreceptor outer segment shortening, photoreceptor layer proximal aspect hyperreflective changes, and the development of retinal infoldings and autofluorescent sub-retinal inflammatory monocyte infiltrate. Noteworthy, however, is that infoldings and infiltrate occurred at a slower rate of progression in B6(Cg)-Tyrc-2J/J vs. BALB/cJ. The photoreceptor outer nuclear layer thickness of BALB/cJ degenerated steadily following elevated light onset. In contrast, B6(Cg)-Tyrc-2J/J degeneration was unremarkable for many weeks before experiencing a noticeable change in the rate of degeneration that was concomitant with a plateau and decreasing trend in number of retinal infoldings and monocyte infiltrate. Pathological changes in C57Bl/6J mice were unremarkable for all imaging biomarkers assessed with exception to autofluorescent sub-retinal inflammatory monocyte infiltrate, which showed significant accumulation in dim vs. elevated light exposed mice following ~1 year of observation. These data were evaluated using Spearman's correlation and Predictive Power Score matrices to determine the best imaging optophysiological biomarkers for indicating vivarium light stress and light-induced photoreceptor degeneration. This study suggests that changes in proximal aspect hyperreflectivity, outer segment shortening, retinal infoldings and autofluorescent sub-retinal inflammatory monocyte infiltrate are excellent indicators of light stress and light-induced degeneration in albino B6(Cg)-Tyrc-2J/J and BALB/cJ mouse strains.
Collapse
Affiliation(s)
- Brent A. Bell
- Scheie Eye Institute and Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, United States
- Cole Eye Institute/Ophthalmic Research, Cleveland Clinic, Cleveland, OH, United States
| | - Charles Kaul
- Cole Eye Institute/Ophthalmic Research, Cleveland Clinic, Cleveland, OH, United States
| | - Joshua L. Dunaief
- Scheie Eye Institute and Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, United States
| | - Joe G. Hollyfield
- Cole Eye Institute/Ophthalmic Research, Cleveland Clinic, Cleveland, OH, United States
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Vera L. Bonilha
- Cole Eye Institute/Ophthalmic Research, Cleveland Clinic, Cleveland, OH, United States
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
14
|
Brash DE, Goncalves LCP. Chemiexcitation: Mammalian Photochemistry in the Dark †. Photochem Photobiol 2023; 99:251-276. [PMID: 36681894 PMCID: PMC10065968 DOI: 10.1111/php.13781] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 01/18/2023] [Indexed: 01/23/2023]
Abstract
Light is one way to excite an electron in biology. Another is chemiexcitation, birthing a reaction product in an electronically excited state rather than exciting from the ground state. Chemiexcited molecules, as in bioluminescence, can release more energy than ATP. Excited states also allow bond rearrangements forbidden in ground states. Molecules with low-lying unoccupied orbitals, abundant in biology, are particularly susceptible. In mammals, chemiexcitation was discovered to transfer energy from excited melanin, neurotransmitters, or hormones to DNA, creating the lethal and carcinogenic cyclobutane pyrimidine dimer. That process was initiated by nitric oxide and superoxide, radicals triggered by ultraviolet light or inflammation. Several poorly understood chronic diseases share two properties: inflammation generates those radicals across the tissue, and cells that die are those containing melanin or neuromelanin. Chemiexcitation may therefore be a pathogenic event in noise- and drug-induced deafness, Parkinson's disease, and Alzheimer's; it may prevent macular degeneration early in life but turn pathogenic later. Beneficial evolutionary selection for excitable biomolecules may thus have conferred an Achilles heel. This review of recent findings on chemiexcitation in mammalian cells also describes the underlying physics, biochemistry, and potential pathogenesis, with the goal of making this interdisciplinary phenomenon accessible to researchers within each field.
Collapse
Affiliation(s)
- Douglas E. Brash
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520-8040, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520-8028, USA
| | - Leticia C. P. Goncalves
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520-8040, USA
- Institut de Chimie de Nice CNRS UMR7272, Université Côte d’Azur, 28 Avenue Valrose 06108 Nice, France
| |
Collapse
|
15
|
Vienola KV, Zhang M, Snyder VC, Dansingani KK, Sahel JA, Rossi EA. Near infrared autofluorescence imaging of retinal pigmented epithelial cells using 663 nm excitation. Eye (Lond) 2022; 36:1878-1883. [PMID: 34462582 PMCID: PMC9499940 DOI: 10.1038/s41433-021-01754-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 08/03/2021] [Accepted: 08/18/2021] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Fundus autofluorescence (AF) using adaptive optics scanning laser ophthalmoscopy (AOSLO) enables morphometric analysis of individual retinal pigmented epithelial (RPE) cells. However, only a few excitation wavelengths in the visible and near-infrared have been evaluated. Visible light excitation (<600 nm) presents additional safety hazards and is uncomfortable for patients. Near-infrared excitation (>700 nm) overcomes those problems but introduces others, including decreased AF signal and cone signatures that obscure RPE structure. Here we investigated the use of an intermediate wavelength, 663 nm, for excitation and compared it to 795 nm. METHODS Subjects were imaged using AOSLO equipped with a detection channel to collect AF emission between 814 and 850 nm. Two light sources (663 and 795 nm) were used to excite the retinal fluorophores. We recorded 90 s videos and registered them with custom software to integrate AF images for analysis. RESULTS We imaged healthy eyes and an eye with pattern dystrophy. Similar AF microstructures were detected with each excitation source, despite ~4 times lower excitation power with 663 nm. The signal-to-noise values showed no meaningful difference between 663 nm and 795 nm excitation and a similar trend was observed for image contrast between the two excitation wavelengths. CONCLUSIONS Lower light levels can be used with shorter wavelength excitation to achieve comparable images of the microstructure of the RPE as have been obtained using higher light levels at longer wavelengths. Further experiments are needed to fully characterize AF across spectrum and determine the optimal excitation and emission bandwidths that balance efficiency, patient comfort, and efficacy.
Collapse
Affiliation(s)
- Kari V Vienola
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Ophthalmology and Vision Science, University of California Davis, Sacramento, CA, USA.
| | - Min Zhang
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Valerie C Snyder
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kunal K Dansingani
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - José-Alain Sahel
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ethan A Rossi
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
16
|
Conrady CD, Hu K, Shakoor A, Larochelle M, Sassalos T, Elner SG, Jayasundera T, Vitale AT. Reply. Ophthalmol Retina 2022; 6:437-438. [PMID: 35525579 DOI: 10.1016/j.oret.2021.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 10/18/2022]
Affiliation(s)
- Christopher D Conrady
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, Nebraska.
| | - Katherine Hu
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, Utah
| | - Akbar Shakoor
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, Utah
| | - Marissa Larochelle
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, Utah
| | - Therese Sassalos
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
| | - Susan G Elner
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
| | - Thiran Jayasundera
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
| | - Albert T Vitale
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, Utah
| |
Collapse
|
17
|
Fang Y, Taubitz T, Tschulakow AV, Heiduschka P, Szewczyk G, Burnet M, Peters T, Biesemeier A, Sarna T, Schraermeyer U, Julien-Schraermeyer S. Removal of RPE lipofuscin results in rescue from retinal degeneration in a mouse model of advanced Stargardt disease: Role of reactive oxygen species. Free Radic Biol Med 2022; 182:132-149. [PMID: 35219849 DOI: 10.1016/j.freeradbiomed.2022.02.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 11/30/2022]
Abstract
Accumulation of lipofuscin in the retinal pigment epithelium (RPE) is a hallmark of aging and is associated with retinal degeneration encountered in age-related macular degeneration (AMD) and Stargardt disease (SD). Currently, treatment for lipofuscin-induced retinal degeneration is unavailable. Here, we report that Remofuscin (INN: soraprazan, a tetrahydropyridoether small molecule) reverses lipofuscin accumulation in aged primary human RPE cells and is non-cytotoxic in aged SD mouse RPE cells in vitro. In addition, we show that the removal of lipofuscin after a single intravitreal injection of Remofuscin results in a rescue from retinal degeneration in a mouse model of advanced SD which is even accompanied by an amelioration of the retinal dysfunction. Finally, we demonstrate that the mechanism causing lipofuscinolysis may involve the reactive oxygen species generated via the presence of Remofuscin. These data suggest a possible therapeutic approach to untreatable lipofuscin-mediated diseases like AMD, SD and lipofuscinopathies in neurodegenerative diseases.
Collapse
Affiliation(s)
- Yuan Fang
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
| | - Tatjana Taubitz
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
| | - Alexander V Tschulakow
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany; STZ Ocutox, Preclinical Drug Assessment, Hechingen, Germany
| | - Peter Heiduschka
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
| | - Grzegorz Szewczyk
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | | | - Tobias Peters
- Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Antje Biesemeier
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
| | - Tadeusz Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Ulrich Schraermeyer
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany; STZ Ocutox, Preclinical Drug Assessment, Hechingen, Germany
| | - Sylvie Julien-Schraermeyer
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany; STZ Ocutox, Preclinical Drug Assessment, Hechingen, Germany.
| |
Collapse
|
18
|
Bermond K, von der Emde L, Tarau IS, Bourauel L, Heintzmann R, Holz FG, Curcio CA, Sloan KR, Ach T. Autofluorescent Organelles Within the Retinal Pigment Epithelium in Human Donor Eyes With and Without Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2022; 63:23. [PMID: 35050307 PMCID: PMC8787573 DOI: 10.1167/iovs.63.1.23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose Human retinal pigment epithelium (RPE) cells contain lipofuscin, melanolipofuscin, and melanosome organelles that impact clinical autofluorescence (AF) imaging. Here, we quantified the effect of age-related macular degeneration (AMD) on granule count and histologic AF of RPE cell bodies. Methods Seven AMD-affected human RPE-Bruch's membrane flatmounts (early and intermediate = 3, late dry = 1, and neovascular = 3) were imaged at fovea, perifovea, and near periphery using structured illumination and confocal AF microscopy (excitation 488 nm) and compared to RPE-flatmounts with unremarkable macula (n = 7, >80 years). Subsequently, granules were marked with computer assistance, and classified by their AF properties. The AF/cell was calculated from confocal images. The total number of granules and AF/cell was analyzed implementing a mixed effect analysis of covariance (ANCOVA). Results A total of 152 AMD-affected RPE cells were analyzed (fovea = 22, perifovea = 60, and near-periphery = 70). AMD-affected RPE cells showed increased variability in size and a significantly increased granule load independent of the retinal location (fovea: P = 0.02, perifovea: P = 0.04, and near periphery: P < 0.01). The lipofuscin fraction of total organelles decreased and the melanolipofuscin fraction increased in AMD, at all locations (especially the fovea). AF was significantly lower in AMD-affected cells (fovea: <0.01, perifovea: <0.01, and near periphery: 0.02). Conclusions In AMD RPE, lipofuscin was proportionately lowest in the fovea, a location also known to be affected by accumulation of soft drusen and preservation of cone-mediated visual acuity. Enlarged RPE cell bodies displayed increased net granule count but diminished total AF. Future studies should also assess the impact on AF imaging of RPE apical processes containing melanosomes.
Collapse
Affiliation(s)
- Katharina Bermond
- Department of Ophthalmology, Ludwigshafen Hospital, Ludwigshafen, Germany
| | - Leon von der Emde
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany
| | - Ioana-Sandra Tarau
- Department of Ophthalmology, University Hospital Würzburg, Würzburg, Germany
| | - Leonie Bourauel
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany
| | - Rainer Heintzmann
- Leibniz Institute of Photonic Technology, Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Jena, Germany
| | - Frank G Holz
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany
| | - Christine A Curcio
- Department of Ophthalmology, University of Alabama at Birmingham, Alabama, AL, United States
| | - Kenneth R Sloan
- Department of Ophthalmology, University of Alabama at Birmingham, Alabama, AL, United States
| | - Thomas Ach
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
19
|
Chen L, Cao D, Messinger JD, Ach T, Ferrara D, Freund KB, Curcio CA. Histology and clinical imaging lifecycle of black pigment in fibrosis secondary to neovascular age-related macular degeneration. Exp Eye Res 2022; 214:108882. [PMID: 34890604 PMCID: PMC8809488 DOI: 10.1016/j.exer.2021.108882] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 01/03/2023]
Abstract
PURPOSE Melanotic cells with large spherical melanosomes, thought to originate from retinal pigment epithelium (RPE), are found in eyes with neovascular age-related macular degeneration (nvAMD). To generate hypotheses about RPE participation in fibrosis, we correlate histology to clinical imaging in an eye with prominent black pigment in fibrotic scar secondary to nvAMD. METHODS Macular findings in a white woman with untreated inactive subretinal fibrosis due to nvAMD in her right eye were documented over 9 years with color fundus photography (CFP), fundus autofluorescence (FAF) imaging, and optical coherence tomography (OCT). After death (age 90 years), this index eye was prepared for light and electron microscopy to analyze 7 discrete zones of pigmentation in the fibrotic scar. In additional donor eyes with nvAMD, we determined the frequency of black pigment (n = 36 eyes) and immuno-labeled for retinoid, immunologic, and microglial markers (RPE65, CD68, Iba1, TMEM119; n = 3 eyes). RESULTS During follow-up of the index eye, black pigment appeared and expanded within a hypoautofluorescent fibrotic scar. The blackest areas correlated to melanotic cells (containing large spherical melanosomes), some in multiple layers. Pale areas had sparse pigmented cells. Gray areas correlated to cells with RPE organelles entombed in the scar and multinucleate cells containing sparse large spherical melanosomes. In 94% of nvAMD donor eyes, hyperpigmentation was visible. Certain melanotic cells expressed some RPE65 and mostly CD68. Iba1 and TMEM119 immunoreactivity, found both in retina and scar, did not co-localize with melanotic cells. CONCLUSION Hyperpigmentation in CFP results from both organelle content and optical superimposition effects. Black fundus pigment in nvAMD is common and corresponds to cells containing numerous large spherical melanosomes and superimposition of cells containing sparse large melanosomes, respectively. Melanotic cells are molecularly distinct from RPE, consistent with a process of transdifferentiation. The subcellular source of spherical melanosomes remains to be determined. Detailed histology of nvAMD eyes will inform future studies using technologies for spatially resolved molecular discovery to generate new therapies for fibrosis. The potential of black pigment as a biomarker for fibrosis can be investigated in clinical multimodal imaging datasets.
Collapse
Affiliation(s)
- Ling Chen
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, PR China,Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Dongfeng Cao
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Jeffrey D. Messinger
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Thomas Ach
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany
| | | | - K. Bailey Freund
- Vitreous Retina Macula Consultants of New York, New York, NY, USA,Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY, USA
| | - Christine A. Curcio
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA,Corresponding author. Department of Ophthalmology and Visual Sciences; EyeSight Foundation of Alabama Vision Research Laboratories, 1670 University Boulevard Room 360; University of Alabama School of Medicine, Birmingham, AL, 35294-0099, USA. (C.A. Curcio)
| |
Collapse
|
20
|
Kim JH, Kim MM. The relationship between melanin production and lipofuscin formation in Tyrosinase gene knockout melanocytes using CRISPR/Cas9 system. Life Sci 2021; 284:119915. [PMID: 34453947 DOI: 10.1016/j.lfs.2021.119915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/02/2021] [Accepted: 08/14/2021] [Indexed: 10/20/2022]
Abstract
Age spots are a significant phenotypic marker of aging formed by lipofuscin. Melanin is another skin pigment molecule responsible for skin aging. The present study aims to investigate the relationship between melanin production and lipofuscin synthesis in normal mouse melanoma cell line B16F1 cells and Tyrosinase (TYR) gene knockout cells. TYR gene KO cells were successfully developed using CRISPR/Cas9 system and confirmed by Sanger DNA sequencing analysis. Furthermore, the melanin production and lipofuscin formation were validated through RT-PCR and Western blot analysis. The expression levels of gene microphthalmia-associated transcription factor (MITF), Tyrosinase, tyrosine-related protein-1 (TRP-1), tyrosine-related protein-2 (TRP-2), and antioxidant proteins such as methionine sulfoxide reductase A (MSRA), Catalase and Glutathione reductase (GR) related to melanogenesis was found to be decreased in TYR gene KO cells compared with normal cells. Moreover, lipofuscin formation was increased in TYR gene KO cells compared to normal cells. Therefore, the above findings suggest that melanin production and lipofuscin formation could be linked by the TYR gene in melanocytes.
Collapse
Affiliation(s)
- Jae Ho Kim
- Department of Applied Chemistry, Dong-Eui University, Busan 614-714, Republic of Korea
| | - Moon-Moo Kim
- Department of Applied Chemistry, Dong-Eui University, Busan 614-714, Republic of Korea.
| |
Collapse
|
21
|
Sheng W, Lv D, Cui ZK, Wang YN, Lin B, Tang SB, Chen JS. Tissue-Specific Gamma-Flicker Light Noninvasively Ameliorates Retinal Aging. Cell Mol Neurobiol 2021; 42:2893-2907. [PMID: 34698960 DOI: 10.1007/s10571-021-01160-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/20/2021] [Indexed: 11/26/2022]
Abstract
Aging is a risk factor for multiple retinal degeneration diseases. Entraining brain gamma oscillations with gamma-flicker light (γFL) has been confirmed to coordinate pathological changes in several Alzheimer's disease mouse models and aged mice. However, the direct effect of γFL on retinal aging remains unknown. We assessed retinal senescence-associated beta-galactosidase (β-gal) and autofluorescence in 20-month-old mice and found reduced β-gal-positive cells in the inner retina and diminished lipofuscin accumulation around retinal vessels after 6 days of γFL. In immunofluorescence, γFL was further demonstrated to ameliorate aging-related retinal changes, including a decline in microtubule-associated protein 1 light chain 3 beta expression, an increase in complement C3 activity, and an imbalance between the anti-oxidant factor catalase and pro-oxidant factor carboxymethyl lysine. Moreover, we found that γFL can increase the expression of activating transcription factor 4 (ATF4) in the inner retina, while revealing a decrease of ATF4 expression in the inner retina and positive expression in the outer segment of photoreceptor and RPE layer for aged mice. Western blotting was then used to confirm the immunofluorescence results. After mRNA sequencing (NCBI Sequence Read Archive database: PRJNA748184), we found several main mechanistic clues, including mitochondrial function and chaperone-mediated protein folding. Furthermore, we extended γFL to aged Apoe-/- mice and showed that 1-m γFL treatment even improved the structures of retinal-pigment-epithelium basal infolding and Bruch's membrane. Overall, γFL can orchestrate various pathological characteristics of retinal aging in mice and might be a noninvasive, convenient, and tissue-specific therapeutic strategy for retinal aging.
Collapse
Affiliation(s)
- Wang Sheng
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China
- Aier Eye Institute, Changsha, Hunan, China
| | - Da Lv
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China
- Aier Eye Institute, Changsha, Hunan, China
| | - Ze-Kai Cui
- Aier Eye Institute, Changsha, Hunan, China
| | - Yi-Ni Wang
- Aier Eye Institute, Changsha, Hunan, China
| | - Bin Lin
- School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Shi-Bo Tang
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China.
- Aier Eye Institute, Changsha, Hunan, China.
| | - Jian-Su Chen
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China.
- Aier Eye Institute, Changsha, Hunan, China.
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, Guangdong, China.
| |
Collapse
|
22
|
Ramachandra Rao S, Fliesler SJ. Monitoring basal autophagy in the retina utilizing CAG-mRFP-EGFP-MAP1LC3B reporter mouse: technical and biological considerations. Autophagy 2021; 18:1187-1201. [PMID: 34674604 PMCID: PMC9196719 DOI: 10.1080/15548627.2021.1969634] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We describe the utility of a tandem-tagged autophagy reporter mouse model (CAG-RFP-EGFP-MAP1LC3B) in investigating basal macroautophagic/autophagic flux in the neural retina. Western blot, in situ hybridization, immunohistochemistry, and confocal microscopy showed that CAG promoter-driven expression of RFP-EGFP-MAP1LC3B increased “cytosolic” RFP-EGFP-LC3B-I levels, whereas RFP-EGFP-LC3B-II decorates true phagosomes. We verified that the electroretinographic (ERG) responses of tandem-tagged LC3B mice were comparable to those of age-matched controls. Optimized microscope settings detected lipofuscin autofluorescence in retinas of abca4−/- mice. The majority of retinal phagosomes in the reporter mice exhibited only RFP (not EGFP) fluorescence, suggesting rapid maturation of phagosomes. Only ~1.5% of the total phagosome population was EGFP-labeled; RFP-labeled (mature) phagosomes colocalized with lysosomal markers LAMP2 and CTSD. In the outer retina, phagosome sizes were as follows (in µm2, ave ± SEM): RPE, 0.309 ± 0.015; photoreceptor inner segment-myoid, 0.544 ± 0.031; and outer nuclear layer, 0.429 ± 0.011. Detection of RPE phagosomes by fluorescence microscopy is challenging, due to the presence of melanin. Increased lipofuscin autofluorescence, such as observed in the abca4−/- mouse model of Stargardt disease, is a strong confounding factor when attempting to study autophagy in the RPE. In addition to RPE and photoreceptor cells, phagosomes were detected in inner retinal cell types, microglia, astrocytes, and endothelial cells. We conclude that the tandem-tagged LC3B mouse model serves as a useful system for studying autophagy in the retina. This utility, however, is dependent upon several technical and biological factors, including microscope settings, transgene expression, choice of fluorophores, and lipofuscin autofluorescence. Abbreviations: ACTB: actin, beta; AIF1: allograft inflammatory factor 1; ATG: autophagy related; CTSD: cathepsin D; DAPI: (4’,6-diamido-2-phenylindole); DIC: differential interference contrast; EGFP: enhanced green fluorescent protein; ELM: external limiting membrane; ERG: electroretinography; GCL: ganglion cell layer; GLUL: glutamine-ammonia ligase (glutamine synthetase); INL: inner nuclear layer; IS-E/M: inner segment – ellipsoid/myoid; ISH: in situ hybridization; LAMP2: lysosomal-associated membrane protein 2; L.I.: laser Intensity; MAP1LC3B: microtubule-associated protein 1 light chain 3 beta; MTOR: mechanistic target of rapamycin kinase; O.C.T.: optimal cutting temperature; OS: outer segment; ONL: outer nuclear layer; PE: phosphatidylethanolamine; RFP: red fluorescent protein; R.O.I.: region of interest; RPE: retinal pigment epithelium
Collapse
Affiliation(s)
- Sriganesh Ramachandra Rao
- Departments of Ophthalmology and Biochemistry and Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York- University at Buffalo, Buffalo, NY, USA.,Research Service, VA Western Ny Healthcare System, Buffalo, NY, USA
| | - Steven J Fliesler
- Departments of Ophthalmology and Biochemistry and Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York- University at Buffalo, Buffalo, NY, USA.,Research Service, VA Western Ny Healthcare System, Buffalo, NY, USA
| |
Collapse
|
23
|
Meleppat RK, Ronning KE, Karlen SJ, Burns ME, Pugh EN, Zawadzki RJ. In vivo multimodal retinal imaging of disease-related pigmentary changes in retinal pigment epithelium. Sci Rep 2021; 11:16252. [PMID: 34376700 PMCID: PMC8355111 DOI: 10.1038/s41598-021-95320-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/20/2021] [Indexed: 02/08/2023] Open
Abstract
Melanosomes, lipofuscin, and melanolipofuscin are the three principal types of pigmented granules found in retinal pigment epithelium (RPE) cells. Changes in the density of melanosomes and lipofuscin in RPE cells are considered hallmarks of various retinal diseases, including Stargardt disease and age-related macular degeneration (AMD). Herein, we report the potential of an in vivo multimodal imaging technique based on directional back-scattering and short-wavelength fundus autofluorescence (SW-FAF) to study disease-related changes in the density of melanosomes and lipofuscin granules in RPE cells. Changes in the concentration of these granules in Abca4-/- mice (a model of Stargardt disease) relative to age-matched wild-type (WT) controls were investigated. Directional optical coherence tomography (dOCT) was used to assess melanosome density in vivo, whereas the autofluorescence (AF) images and emission spectra acquired with a spectrometer-integrated scanning laser ophthalmoscope (SLO) were used to characterize lipofuscin and melanolipofuscin granules in the same RPE region. Subcellular-resolution ex vivo imaging using confocal fluorescence microscopy and electron microscopy was performed on the same tissue region to visualize and quantify melanosomes, lipofuscin, and melanolipofuscin granules. Comparisons between in vivo and ex vivo results confirmed an increased concentration of lipofuscin granules and decreased concentration of melanosomes in the RPE of Abca4-/- mice, and provided an explanation for the differences in fluorescence and directionality of RPE scattering observed in vivo between the two mouse strains.
Collapse
Affiliation(s)
- Ratheesh K Meleppat
- UC Davis Eyepod Imaging Laboratory, University of California Davis, Davis, CA, 95616, USA
- Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA, 95616, USA
- Department of Ophthalmology and Vision Science, University of California Davis, Sacramento, CA, USA
| | - Kaitryn E Ronning
- Center for Neuroscience, University of California Davis, Davis, CA, 95618, USA
| | - Sarah J Karlen
- Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA, 95616, USA
| | - Marie E Burns
- Center for Neuroscience, University of California Davis, Davis, CA, 95618, USA
- Department of Ophthalmology and Vision Science, University of California Davis, Sacramento, CA, USA
| | - Edward N Pugh
- UC Davis Eyepod Imaging Laboratory, University of California Davis, Davis, CA, 95616, USA
- Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA, 95616, USA
| | - Robert J Zawadzki
- UC Davis Eyepod Imaging Laboratory, University of California Davis, Davis, CA, 95616, USA.
- Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA, 95616, USA.
- Department of Ophthalmology and Vision Science, University of California Davis, Sacramento, CA, USA.
| |
Collapse
|
24
|
Cideciyan AV, Krishnan AK, Roman AJ, Sumaroka A, Swider M, Jacobson SG. Measures of Function and Structure to Determine Phenotypic Features, Natural History, and Treatment Outcomes in Inherited Retinal Diseases. Annu Rev Vis Sci 2021; 7:747-772. [PMID: 34255540 DOI: 10.1146/annurev-vision-032321-091738] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Inherited retinal diseases (IRDs) are at the forefront of innovative gene-specific treatments because of the causation by single genes, the availability of microsurgical access for treatment delivery, and the relative ease of quantitative imaging and vision measurement. However, it is not always easy to choose a priori, from scores of potential measures, an appropriate subset to evaluate efficacy outcomes considering the wide range of disease stages with different phenotypic features. This article reviews measurements of visual function and retinal structure that our group has used over the past three decades to understand the natural history of IRDs. We include measures of light sensitivity, retinal structure, mapping of natural fluorophores, evaluation of pupillary light reflex, and oculomotor control. We provide historical context and examples of applicability. We also review treatment trial outcomes using these measures of function and structure. Expected final online publication date for the Annual Review of Vision Science, Volume 7 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Artur V Cideciyan
- Department of Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| | - Arun K Krishnan
- Department of Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| | - Alejandro J Roman
- Department of Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| | - Alexander Sumaroka
- Department of Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| | - Malgorzata Swider
- Department of Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| | - Samuel G Jacobson
- Department of Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| |
Collapse
|
25
|
Birtel J, von Landenberg C, Gliem M, Gliem C, Reimann J, Kunz WS, Herrmann P, Betz C, Caswell R, Nesbitt V, Kornblum C, Issa PC. Mitochondrial Retinopathy. Ophthalmol Retina 2021; 6:65-79. [PMID: 34257060 DOI: 10.1016/j.oret.2021.02.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 01/01/2023]
Abstract
PURPOSE To report the retinal phenotype and the associated genetic and systemic findings in patients with mitochondrial disease. DESIGN Retrospective case series. PARTICIPANTS Twenty-three patients with retinopathy and mitochondrial disease, including chronic progressive external ophthalmoplegia (CPEO), maternally inherited diabetes and deafness (MIDD), mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS), Kearns-Sayre syndrome, neuropathy, ataxia, and retinitis pigmentosa (NARP) syndrome, and other systemic manifestations. METHODS Review of case notes, retinal imaging, electrophysiologic assessment, molecular genetic testing including protein modeling, and histologic analysis of muscle biopsy. MAIN OUTCOME MEASURES Phenotypic characteristics of mitochondrial retinopathy. RESULTS Genetic testing identified sporadic large-scale mitochondrial DNA deletions and variants in MT-TL1, MT-ATP6, MT-TK, MT-RNR1, or RRM2B. Based on retinal imaging, 3 phenotypes could be differentiated: type 1 with mild, focal pigmentary abnormalities; type 2 characterized by multifocal white-yellowish subretinal deposits and pigment changes limited to the posterior pole; and type 3 with widespread granular pigment alterations. Advanced type 2 and 3 retinopathy presented with chorioretinal atrophy that typically started in the peripapillary and paracentral areas with foveal sparing. Two patients exhibited a different phenotype: 1 revealed an occult retinopathy, and the patient with RRM2B-associated retinopathy showed no foveal sparing, no severe peripapillary involvement, and substantial photoreceptor atrophy before loss of the retinal pigment epithelium. Two patients with type 1 disease showed additional characteristics of mild macular telangiectasia type 2. Patients with type 1 and mild type 2 or 3 disease demonstrated good visual acuity and no symptoms associated with the retinopathy. In contrast, patients with advanced type 2 or 3 disease often reported vision problems in dim light conditions, reduced visual acuity, or both. Short-wavelength autofluorescence usually revealed a distinct pattern, and near-infrared autofluorescence may be severely reduced in type 3 disease. The retinal phenotype was key to suspecting mitochondrial disease in 11 patients, whereas 12 patients were diagnosed before retinal examination. CONCLUSIONS Different types of mitochondrial retinopathy show characteristic features. Even in absence of visual symptoms, their recognition may facilitate the often challenging and delayed diagnosis of mitochondrial disease, in particular in patients with mild or nebulous multisystem disease.
Collapse
Affiliation(s)
- Johannes Birtel
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Ophthalmology, University Hospital Bonn, Bonn, Germany; Center for Rare Diseases Bonn (ZSEB), University Hospital Bonn, Bonn, Germany
| | - Christina von Landenberg
- Center for Rare Diseases Bonn (ZSEB), University Hospital Bonn, Bonn, Germany; Department of Neurology, Section of Neuromuscular Diseases, University Hospital Bonn, Bonn, Germany
| | - Martin Gliem
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Carla Gliem
- Department of Neurology, Section of Neuromuscular Diseases, University Hospital Bonn, Bonn, Germany
| | - Jens Reimann
- Department of Neurology, Section of Neuromuscular Diseases, University Hospital Bonn, Bonn, Germany
| | - Wolfram S Kunz
- Department of Epileptology, Life & Brain Center, University Hospital Bonn, Bonn, Germany
| | - Philipp Herrmann
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany; Center for Rare Diseases Bonn (ZSEB), University Hospital Bonn, Bonn, Germany
| | - Christian Betz
- Bioscientia Center for Human Genetics, Ingelheim, Germany
| | - Richard Caswell
- Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom; Institute of Biomedical and Clinical Science, University of Exeter School of Medicine, Exeter, United Kingdom
| | - Victoria Nesbitt
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Nuffield Department of Women's & Reproductive Health, The Churchill Hospital, Oxford, United Kingdom
| | - Cornelia Kornblum
- Center for Rare Diseases Bonn (ZSEB), University Hospital Bonn, Bonn, Germany; Department of Neurology, Section of Neuromuscular Diseases, University Hospital Bonn, Bonn, Germany
| | - Peter Charbel Issa
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
26
|
Meleppat RK, Ronning KE, Karlen SJ, Kothandath KK, Burns ME, Pugh EN, Zawadzki RJ. In Situ Morphologic and Spectral Characterization of Retinal Pigment Epithelium Organelles in Mice Using Multicolor Confocal Fluorescence Imaging. Invest Ophthalmol Vis Sci 2021; 61:1. [PMID: 33137194 PMCID: PMC7645167 DOI: 10.1167/iovs.61.13.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Purpose To investigate the major organelles of the retinal pigment epithelium (RPE) in wild-type (WT, control) mice and their changes in pigmented Abca4 knockout (Abca4−/−) mice with in situ morphologic, spatial, and spectral characterization of live ex vivo flat-mounted RPE using multicolor confocal fluorescence microscopy (MCFM). Methods In situ imaging of RPE flat-mounts of agouti Abca4−/− (129S4), agouti WT (129S1/SvlmJ) controls, and B6 albino mice (C57BL/6J-Tyrc-Brd) was performed with a Nikon A1 confocal microscope. High-resolution confocal image z-stacks of the RPE cell mosaic were acquired with four different excitation wavelengths (405 nm, 488 nm, 561 nm, and 640 nm). The autofluorescence images of RPE, including voxel-by-voxel emission spectra, were acquired and processed with Nikon NIS-AR Elements software. Results The 3-dimensional multicolor confocal images provided a detailed visualization of the RPE cell mosaic, including its melanosomes and lipofuscin granules, and their varying characteristics in the different mice strains. The autofluorescence spectra, spatial distribution, and morphologic features of melanosomes and lipofuscin granules were measured. Increased numbers of lipofuscin and reduced numbers of melanosomes were observed in the RPE of Abca4−/− mice relative to controls. Conclusions A detailed assessment of the RPE autofluorescent granules and their changes ex vivo was possible with MCFM. For all excitation wavelengths, autofluorescence from the RPE cells was predominantly contributed by lipofuscin granules, while melanosomes were found to be essentially nonfluorescent. The red shift of the emission peak confirmed the presence of multiple chromophores within lipofuscin granules. The elevated autofluorescence levels in Abca4−/− mice correlated well with the increased number of lipofuscin granules.
Collapse
Affiliation(s)
- Ratheesh K Meleppat
- UC Davis Eyepod Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California Davis, Davis, California, United States.,Department of Ophthalmology & Vision Science, University of California Davis, Davis, California, United States
| | - Kaitryn E Ronning
- Center for Neuroscience, University of California Davis, Davis, California, United States
| | - Sarah J Karlen
- Department of Cell Biology and Human Anatomy, University of California Davis, Davis, California, United States
| | - Karuna K Kothandath
- UC Davis Eyepod Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California Davis, Davis, California, United States.,Department of Ophthalmology & Vision Science, University of California Davis, Davis, California, United States
| | - Marie E Burns
- Department of Ophthalmology & Vision Science, University of California Davis, Davis, California, United States.,Center for Neuroscience, University of California Davis, Davis, California, United States.,Department of Cell Biology and Human Anatomy, University of California Davis, Davis, California, United States
| | - Edward N Pugh
- UC Davis Eyepod Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California Davis, Davis, California, United States.,Department of Cell Biology and Human Anatomy, University of California Davis, Davis, California, United States
| | - Robert J Zawadzki
- UC Davis Eyepod Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California Davis, Davis, California, United States.,Department of Ophthalmology & Vision Science, University of California Davis, Davis, California, United States
| |
Collapse
|
27
|
Galeb HA, Wilkinson EL, Stowell AF, Lin H, Murphy ST, Martin‐Hirsch PL, Mort RL, Taylor AM, Hardy JG. Melanins as Sustainable Resources for Advanced Biotechnological Applications. GLOBAL CHALLENGES (HOBOKEN, NJ) 2021; 5:2000102. [PMID: 33552556 PMCID: PMC7857133 DOI: 10.1002/gch2.202000102] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/04/2020] [Indexed: 05/17/2023]
Abstract
Melanins are a class of biopolymers that are widespread in nature and have diverse origins, chemical compositions, and functions. Their chemical, electrical, optical, and paramagnetic properties offer opportunities for applications in materials science, particularly for medical and technical uses. This review focuses on the application of analytical techniques to study melanins in multidisciplinary contexts with a view to their use as sustainable resources for advanced biotechnological applications, and how these may facilitate the achievement of the United Nations Sustainable Development Goals.
Collapse
Affiliation(s)
- Hanaa A. Galeb
- Department of ChemistryLancaster UniversityLancasterLA1 4YBUK
- Department of ChemistryScience and Arts CollegeRabigh CampusKing Abdulaziz UniversityJeddah21577Saudi Arabia
| | - Emma L. Wilkinson
- Department of Biomedical and Life SciencesLancaster UniversityLancasterLA1 4YGUK
| | - Alison F. Stowell
- Department of Organisation, Work and TechnologyLancaster University Management SchoolLancaster UniversityLancasterLA1 4YXUK
| | - Hungyen Lin
- Department of EngineeringLancaster UniversityLancasterLA1 4YWUK
| | - Samuel T. Murphy
- Department of EngineeringLancaster UniversityLancasterLA1 4YWUK
- Materials Science InstituteLancaster UniversityLancasterLA1 4YBUK
| | - Pierre L. Martin‐Hirsch
- Lancashire Teaching Hospitals NHS TrustRoyal Preston HospitalSharoe Green LanePrestonPR2 9HTUK
| | - Richard L. Mort
- Department of Biomedical and Life SciencesLancaster UniversityLancasterLA1 4YGUK
| | - Adam M. Taylor
- Lancaster Medical SchoolLancaster UniversityLancasterLA1 4YWUK
| | - John G. Hardy
- Department of ChemistryLancaster UniversityLancasterLA1 4YBUK
- Materials Science InstituteLancaster UniversityLancasterLA1 4YBUK
| |
Collapse
|
28
|
Bonilha VL, Bell BA, Hu J, Milliner C, Pauer GJ, Hagstrom SA, Radu RA, Hollyfield JG. Geographic Atrophy: Confocal Scanning Laser Ophthalmoscopy, Histology, and Inflammation in the Region of Expanding Lesions. Invest Ophthalmol Vis Sci 2021; 61:15. [PMID: 32658960 PMCID: PMC7425718 DOI: 10.1167/iovs.61.8.15] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Purpose To describe the pathology of AMD in eyes with geographic atrophy (GA) using confocal scanning laser ophthalmoscopy (SLO) blue light autofluorescence (BAF), and near-infrared (IR) AF and to correlate it with the histology and immunohistochemistry analysis at the margins of the GA lesion. Methods Enucleated, fixed eyes from seventeen donors with GA were imaged and analyzed by BAF-SLO, IRAF-SLO, and by fundus macroscopy (FM). Tissue from the margins of the GA lesions was cut and processed for resin embedding and histology or cryosectioning and fluorescence in the green and far-red channels, and immunohistochemistry to assess markers of inflammation. Isolated DNA from donors was genotyped for single nucleotide polymorphisms (SNPs) previously shown to be risk factors for the development and progression of AMD. Results Around the leading edge of the GA lesions we observed hypertrophic RPE cells with cytoplasm filled with granules fluorescent both in the far-red and green-red channels; abundant microglia and macrophage; deposition of complement factor H (CFH) in Bruch's membrane (BM) and increased membrane attack complex (MAC) on RPE cells. Conclusions Fluorescence imaging of cryosections of RPE cells around the leading edge of the GA lesions suggest that IRAF-SLO visualizes mostly melanin-related compounds. In addition, medium-size GA atrophy displayed the most significant changes in inflammation markers.
Collapse
|
29
|
Zhang J, Zhang M, Ouyang W, Wang F, Li S. Characteristics of punctate inner choroidopathy complicated by choroidal neovascularisation on Multispectral Imaging in comparison with other imaging modalities. Ocul Immunol Inflamm 2020; 30:402-408. [PMID: 33215937 DOI: 10.1080/09273948.2020.1800751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE To describe the characteristics seen on multispectral imaging (MSI) in patients with punctate inner choroidopathy (PIC) and choroidal neovascularisation (CNV) and compare the findings with current standard multimodal imaging techniques. METHODS This is a retrospective observational case series of 10 patients with PIC complicated by CNV that underwent multimodal retinal imaging examinations. RESULTS Twelve eyes of 10 patients were included. CNV was identified in 11 of the 12 eyes (91.7%) by MSI with nodular or trunk-like hyperreflectance on retinal oxy/deoxyhemoglobin map. MSI revealed choroidal vasculature around CNV in 91.7% eyes and pathological changes including retinal pigment epithelial atrophy and melanin disruption of punctate lesions in all eyes. CONCLUSION MSI helps in noninvasively detecting CNV in PIC patients and observing associated changes in choroidal vasculature. This imaging technique is also a promising tool for better tracking pathological changes of PIC lesions complementary to current standard multimodal imaging modalities.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Ophthalmology, American-Sino Women's & Children's Hospital, Shanghai, China
| | - Minfang Zhang
- Department of Ophthalmology, Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Wangbin Ouyang
- Department of Ophthalmology, Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Fang Wang
- Department of Ophthalmology, Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Shiying Li
- Department of Ophthalmology, Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| |
Collapse
|
30
|
The Effect of Antioxidants on Photoreactivity and Phototoxic Potential of RPE Melanolipofuscin Granules from Human Donors of Different Age. Antioxidants (Basel) 2020; 9:antiox9111044. [PMID: 33114498 PMCID: PMC7693403 DOI: 10.3390/antiox9111044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 11/17/2022] Open
Abstract
One of the most prominent age-related changes of retinal pigment epithelium (RPE) is the accumulation of melanolipofuscin granules, which could contribute to oxidative stress in the retina. The purpose of this study was to determine the ability of melanolipofuscin granules from younger and older donors to photogenerate reactive oxygen species, and to examine if natural antioxidants could modify the phototoxic potential of this age pigment. Electron paramagnetic resonance (EPR) oximetry, EPR-spin trapping, and time-resolved detection of near-infrared phosphorescence were employed for measuring photogeneration of superoxide anion and singlet oxygen by melanolipofuscin isolated from younger and older human donors. Phototoxicity mediated by internalized melanolipofuscin granules with and without supplementation with zeaxanthin and α-tocopherol was analyzed in ARPE-19 cells by determining cell survival, oxidation of cellular proteins, organization of the cell cytoskeleton, and the cell specific phagocytic activity. Supplementation with antioxidants reduced aerobic photoreactivity and phototoxicity of melanolipofuscin granules. The effect was particularly noticeable for melanolipofuscin mediated inhibition of the cell phagocytic activity. Antioxidants decreased the extent of melanolipofuscin-dependent oxidation of cellular proteins and disruption of the cell cytoskeleton. Although melanolipofuscin might be involved in chronic phototoxicity of the aging RPE, natural antioxidants could partially ameliorate these harmful effects.
Collapse
|
31
|
Bermond K, Wobbe C, Tarau IS, Heintzmann R, Hillenkamp J, Curcio CA, Sloan KR, Ach T. Autofluorescent Granules of the Human Retinal Pigment Epithelium: Phenotypes, Intracellular Distribution, and Age-Related Topography. Invest Ophthalmol Vis Sci 2020; 61:35. [PMID: 32433758 PMCID: PMC7405767 DOI: 10.1167/iovs.61.5.35] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The human retinal pigment epithelium (RPE) accumulates granules significant for autofluorescence imaging. Knowledge of intracellular accumulation and distribution is limited. Using high-resolution microscopy techniques, we determined the total number of granules per cell, intracellular distribution, and changes related to retinal topography and age. Methods RPE cells from the fovea, perifovea, and near-periphery of 15 human RPE flat mounts were imaged using structured illumination microscopy (SIM) and confocal fluorescence microscopy in young (≤51 years, n = 8) and older (>80 years, n = 7) donors. Using custom FIJI plugins, granules were marked with computer assistance, classified based on morphological and autofluorescence properties, and analyzed with regard to intracellular distribution, total number per cell, and granule density. Results A total of 193,096 granules in 450 RPE cell bodies were analyzed. Based on autofluorescence properties, size, and composition, the RPE granules exhibited nine different phenotypes (lipofuscin, two; melanolipofuscin, five; melanosomes, two), distinguishable by SIM. Overall, lipofuscin (low at the fovea but increases with eccentricity and age) and melanolipofuscin (equally distributed at all three locations with no age-related changes) were the major granule types. Melanosomes were under-represented due to suboptimal visualization of apical processes in flat mounts. Conclusions Low lipofuscin and high melanolipofuscin content within foveal RPE cell bodies and abundant lipofuscin at the perifovea suggest a different genesis, plausibly related to the population of overlying photoreceptors (fovea, cones only; perifovea, highest rod density). This systematic analysis provides further insight into RPE cell and granule physiology and links granule load to cell autofluorescence, providing a subcellular basis for the interpretation of clinical fundus autofluorescence.
Collapse
|
32
|
Vienola KV, Zhang M, Snyder VC, Sahel JA, Dansingani KK, Rossi EA. Microstructure of the retinal pigment epithelium near-infrared autofluorescence in healthy young eyes and in patients with AMD. Sci Rep 2020; 10:9561. [PMID: 32533046 PMCID: PMC7293312 DOI: 10.1038/s41598-020-66581-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 05/21/2020] [Indexed: 01/18/2023] Open
Abstract
Retinal pigmented epithelial (RPE) cells are essential for maintaining normal visual function, especially in their role in the visual cycle, and are thought to be one of the first cell classes affected by age-related macular degeneration (AMD). Clinical imaging systems routinely evaluate the structure of the RPE at the tissue level, but cellular level information may provide valuable RPE biomarkers of health, aging and disease. In this exploratory study, participants were imaged with 795 nm excitation in adaptive optics scanning laser ophthalmoscopy (AOSLO) to observe the microstructure of the near-infrared autofluorescence (AO-IRAF) from the RPE layer in healthy retinas and patients with AMD. The expected hexagonal mosaic of RPE cells was only sometimes seen in normal eyes, while AMD patients exhibited highly variable patterns of altered AO-IRAF. In some participants, AO-IRAF structure corresponding to cones was observed, as we have demonstrated previously. In some AMD patients, marked alterations in the pattern of AO-IRAF could be seen even in areas where the RPE appeared relatively normal in clinical imaging modalities, such as spectral domain optical coherence tomography (SD-OCT). AO-IRAF imaging using AOSLO offers promise for better detection and understanding of early RPE changes in the course of AMD, potentially before clinical signs appear.
Collapse
Affiliation(s)
- Kari V Vienola
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
| | - Min Zhang
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Valerie C Snyder
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - José-Alain Sahel
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Kunal K Dansingani
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Ethan A Rossi
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, 15213, USA
| |
Collapse
|
33
|
Semenov AN, Yakimov BP, Rubekina AA, Gorin DA, Drachev VP, Zarubin MP, Velikanov AN, Lademann J, Fadeev VV, Priezzhev AV, Darvin ME, Shirshin EA. The Oxidation-Induced Autofluorescence Hypothesis: Red Edge Excitation and Implications for Metabolic Imaging. Molecules 2020; 25:E1863. [PMID: 32316642 PMCID: PMC7221974 DOI: 10.3390/molecules25081863] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/08/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
Endogenous autofluorescence of biological tissues is an important source of information for biomedical diagnostics. Despite the molecular complexity of biological tissues, the list of commonly known fluorophores is strictly limited. Still, the question of molecular sources of the red and near-infrared excited autofluorescence remains open. In this work we demonstrated that the oxidation products of organic components (lipids, proteins, amino acids, etc.) can serve as the molecular source of such red and near-infrared excited autofluorescence. Using model solutions and cell systems (human keratinocytes) under oxidative stress induced by UV irradiation we demonstrated that oxidation products can contribute significantly to the autofluorescence signal of biological systems in the entire visible range of the spectrum, even at the emission and excitation wavelengths higher than 650 nm. The obtained results suggest the principal possibility to explain the red fluorescence excitation in a large class of biosystems-aggregates of proteins and peptides, cells and tissues-by the impact of oxidation products, since oxidation products are inevitably presented in the tissue. The observed fluorescence signal with broad excitation originated from oxidation products may also lead to the alteration of metabolic imaging results and has to be taken into account.
Collapse
Affiliation(s)
- Alexey N. Semenov
- Faculty of Physics, M.V. Lomonosov Moscow State University, 1-2 Leninskie Gory, Moscow 119991, Russia; (A.N.S.); (B.P.Y.); (A.A.R.); (V.V.F.); (A.V.P.)
| | - Boris P. Yakimov
- Faculty of Physics, M.V. Lomonosov Moscow State University, 1-2 Leninskie Gory, Moscow 119991, Russia; (A.N.S.); (B.P.Y.); (A.A.R.); (V.V.F.); (A.V.P.)
| | - Anna A. Rubekina
- Faculty of Physics, M.V. Lomonosov Moscow State University, 1-2 Leninskie Gory, Moscow 119991, Russia; (A.N.S.); (B.P.Y.); (A.A.R.); (V.V.F.); (A.V.P.)
| | - Dmitry A. Gorin
- Center for Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Nobel st., Building 3, Moscow 121205, Russia; (D.A.G.); (V.P.D.)
| | - Vladimir P. Drachev
- Center for Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Nobel st., Building 3, Moscow 121205, Russia; (D.A.G.); (V.P.D.)
- Department of Physics, University of North Texas, Denton, TX 76203, USA
| | - Mikhail P. Zarubin
- International Intergovernmental Organization Joint Institute for Nuclear Research 6 Joliot-Curie St., Dubna, Moscow 141980, Russia;
| | - Alexander N. Velikanov
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow 119234, Russia;
| | - Juergen Lademann
- Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité–Universitäts medizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (J.L.); (M.E.D.)
| | - Victor V. Fadeev
- Faculty of Physics, M.V. Lomonosov Moscow State University, 1-2 Leninskie Gory, Moscow 119991, Russia; (A.N.S.); (B.P.Y.); (A.A.R.); (V.V.F.); (A.V.P.)
| | - Alexander V. Priezzhev
- Faculty of Physics, M.V. Lomonosov Moscow State University, 1-2 Leninskie Gory, Moscow 119991, Russia; (A.N.S.); (B.P.Y.); (A.A.R.); (V.V.F.); (A.V.P.)
| | - Maxim E. Darvin
- Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité–Universitäts medizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (J.L.); (M.E.D.)
| | - Evgeny A. Shirshin
- Faculty of Physics, M.V. Lomonosov Moscow State University, 1-2 Leninskie Gory, Moscow 119991, Russia; (A.N.S.); (B.P.Y.); (A.A.R.); (V.V.F.); (A.V.P.)
- Institute of Spectroscopy of the Russian Academy of Sciences, Fizicheskaya Str., 5, Troitsk, Moscow 108840, Russia
| |
Collapse
|
34
|
A2E Distribution in RPE Granules in Human Eyes. Molecules 2020; 25:molecules25061413. [PMID: 32244898 PMCID: PMC7144568 DOI: 10.3390/molecules25061413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/11/2020] [Accepted: 03/17/2020] [Indexed: 12/30/2022] Open
Abstract
A2E (N-retinylidene-N-retinylethanolamine) is a major fluorophore in the RPE (retinal pigment epithelium). To identify and characterize A2E-rich RPE lipofuscin, we fractionated RPE granules from human donor eyes into five fractions (F1–F5 in ascending order of density) by discontinuous sucrose density gradient centrifugation. The dry weight of each fraction was measured and A2E was quantified by liquid chromatography/mass spectrometry (LC/MS) using a synthetic A2E homolog as a standard. Autofluorescence emission was characterized by a customer-built spectro-fluorometer system. A significant A2E level was detected in every fraction, and the highest level was found in F1, a low-density fraction that makes up half of the total weight of all RPE granules, contains 67% of all A2E, and emits 75% of projected autofluorescence by all RPE granules. This group of RPE granules, not described previously, is therefore the most abundant RPE lipofuscin granule population. A progressive decrease in autofluorescence was observed from F2 to F4, whereas no autofluorescence emission was detected from the heavily pigmented F5. The identification of a novel and major RPE lipofuscin population could have significant implications in our understanding of A2E and lipofuscin in human RPE.
Collapse
|
35
|
Fang Y, Tschulakow A, Taubitz T, Illing B, Biesemeier A, Julien-Schraermeyer S, Radu RA, Jiang Z, Schraermeyer U. Fundus autofluorescence, spectral-domain optical coherence tomography, and histology correlations in a Stargardt disease mouse model. FASEB J 2020; 34:3693-3714. [PMID: 31989709 DOI: 10.1096/fj.201901784rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 01/09/2023]
Abstract
Stargardt disease (STGD1), known as inherited retinal dystrophy, is caused by ABCA4 mutations. The pigmented Abca4-/- mouse strain only reflects the early stage of STGD1 since it is devoid of retinal degeneration. This blue light-illuminated pigmented Abca4-/- mouse model presented retinal pigment epithelium (RPE) and photoreceptor degeneration which was similar to the advanced STGD1 phenotype. In contrast, wild-type mice showed no RPE degeneration after blue light illumination. In Abca4-/- mice, the acute blue light diminished the mean autofluorescence (AF) intensity in both fundus short-wavelength autofluorescence (SW-AF) and near-infrared autofluorescence (NIR-AF) modalities correlating with reduced levels of bisretinoid-fluorophores. Blue light-induced RPE cellular damage preceded the photoreceptors loss. In late-stage STGD1-like patient and blue light-illuminated Abca4-/- mice, lipofuscin and melanolipofuscin granules were found to contribute to NIR-AF, indicated by the colocalization of lipofuscin-AF and NIR-AF under the fluorescence microscope. In this mouse model, the correlation between in vivo and ex vivo assessments revealed histological characteristics of fundus AF abnormalities. The flecks which are hyper AF in both SW-AF and NIR-AF corresponded to the subretinal macrophages fully packed with pigment granules (lipofuscin, melanin, and melanolipofuscin). This mouse model, which has the phenotype of advanced STGD1, is important to understand the histopathology of Stargardt disease.
Collapse
Affiliation(s)
- Yuan Fang
- Division of Experimental Vitreoretinal Surgery, Center for Ophthalmology, Institute of Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
| | - Alexander Tschulakow
- Division of Experimental Vitreoretinal Surgery, Center for Ophthalmology, Institute of Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
- Preclinical Drug Assessment, STZ Ocutox, Hechingen, Germany
| | - Tatjana Taubitz
- Division of Experimental Vitreoretinal Surgery, Center for Ophthalmology, Institute of Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
| | - Barbara Illing
- Division of Experimental Vitreoretinal Surgery, Center for Ophthalmology, Institute of Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
| | - Antje Biesemeier
- Division of Experimental Vitreoretinal Surgery, Center for Ophthalmology, Institute of Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
| | - Sylvie Julien-Schraermeyer
- Division of Experimental Vitreoretinal Surgery, Center for Ophthalmology, Institute of Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
- Preclinical Drug Assessment, STZ Ocutox, Hechingen, Germany
| | - Roxana A Radu
- UCLA Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Zhichun Jiang
- UCLA Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Ulrich Schraermeyer
- Division of Experimental Vitreoretinal Surgery, Center for Ophthalmology, Institute of Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
- Preclinical Drug Assessment, STZ Ocutox, Hechingen, Germany
| |
Collapse
|