1
|
Ning W, Yang J, Ni R, Yin Q, Zhang M, Zhang F, Yang Y, Zhang Y, Cao M, Jin L, Pan Y. Hypoxia induced cellular and exosomal RPPH1 promotes breast cancer angiogenesis and metastasis through stabilizing the IGF2BP2/FGFR2 axis. Oncogene 2024:10.1038/s41388-024-03213-y. [PMID: 39496940 DOI: 10.1038/s41388-024-03213-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/06/2024]
Abstract
Metastasis is the major cause of breast cancer mortality, with angiogenesis and tumor-released exosomes playing key roles. However, the communication between breast cancer cells and endothelial cells and its role in tumor metastasis remains unclear. Here, we characterize a long noncoding RNA, RPPH1, which is upregulated in breast cancer tissues and positively associated with poor prognosis. Hypoxia microenvironment upregulates the expression of RPPH1 in breast cancer cells, and promotes its packaging into exosomes through hnRNPA1, leading to the maintenance of stemness and aggressive traits in cancer cells and angiogenesis in endothelial cells. The function of cellular and exosomal RPPH1 was confirmed in the MMTV-PyMT mouse model, in which ASO-RPPH1 therapy effectively inhibited tumor progression and metastasis. Mechanistically, RPPH1 protects IGF2BP2 from ubiquitination-induced degradation, stabilizes N6-methyladenosine (m6A)-modified FGFR2 mRNA, and activates the PI3K/AKT pathway. Our research unveils the role of RPPH1 in breast cancer metastasis and highlights its potential as a therapeutic target.
Collapse
Affiliation(s)
- Wentao Ning
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jingyan Yang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Ruiqi Ni
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Qianqian Yin
- The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Manqi Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Fangfang Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yue Yang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yanfeng Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Meng Cao
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Liang Jin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.
| | - Yi Pan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
2
|
de Queiroz RM, Efe G, Guzman A, Hashimoto N, Kawashima Y, Tanaka T, Rustgi AK, Prives C. Mdm2 requires Sprouty4 to regulate focal adhesion formation and metastasis independent of p53. Nat Commun 2024; 15:7132. [PMID: 39164253 PMCID: PMC11336179 DOI: 10.1038/s41467-024-51488-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/07/2024] [Indexed: 08/22/2024] Open
Abstract
Although the E3 ligase Mdm2 and its homologue and binding partner MdmX are the major regulators of the p53 tumor suppressor protein, it is now evident that Mdm2 and MdmX have multiple functions that do not involve p53. As one example, it is known that Mdm2 can regulate cell migration, although mechanistic insight into this function is still lacking. Here we show in cells lacking p53 expression that knockdown of Mdm2 or MdmX, as well as pharmacological inhibition of the Mdm2/MdmX complex, not only reduces cell migration and invasion, but also impairs cell spreading and focal adhesion formation. In addition, Mdm2 knockdown decreases metastasis in vivo. Interestingly, Mdm2 downregulates the expression of Sprouty4, which is required for the Mdm2 mediated effects on cell migration, focal adhesion formation and metastasis. Further, our findings indicate that Mdm2 dampening of Sprouty4 is a prerequisite for maintaining RhoA levels in the cancer cells that we have studied. Taken together we describe a molecular mechanism whereby the Mdm2/MdmX complex through Sprouty4 regulates cellular processes leading to increase metastatic capability independently of p53.
Collapse
Affiliation(s)
| | - Gizem Efe
- Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Asja Guzman
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Naoko Hashimoto
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
- Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
| | - Yusuke Kawashima
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0818, Japan
| | - Tomoaki Tanaka
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
- Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
| | - Anil K Rustgi
- Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Carol Prives
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
3
|
Liu Y, Xie M, Zhou Y, Che L, Zhang B. Interleukin-17 receptor D is a favorable biomarker of glioblastoma. J Neurosurg Sci 2024; 68:320-326. [PMID: 35380198 DOI: 10.23736/s0390-5616.22.05552-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Glioblastoma (GBM) is the most frequent glioma in adults. The prognosis of GBM is very poor and new prognostic biomarkers are in urgent need to better select high-risk patients and guide the individual treatments. METHODS In our study, we compared the expression of interleukin-17 receptor D (IL17RD) between GBMs and normal tissues from TCGA database, and detected IL17RD mRNA in 17 fresh GBM pairs with qPCR. With immunohistochemistry, we investigated the expression of IL17RD in 156 GBM tissues and further evaluated its clinical significance. The associations between IL17RD and clinicopathological factors were assessed by Chi-square test. The prognostic significance of IL17RD was evaluated by univariate analysis with Kaplan-Meier method, and by multivariate analysis with Cox-regression Hazard model. RESULTS The TPMs and mRNAs of IL17RD in GBM were substantially lower than those in normal brain tissues. The rates of low or high expression of IL17RD accounted for 41.67% and 58.33% respectively. IL17RD was significantly associated with higher survival rates of GBM. The 3-year overall survival rates of patients with low and high IL17RD were 7.2% and 19.5% respectively. In the Cox-regression model, the IL17RD expression was defined as an independent prognostic biomarker of GBM. Patients with high IL17RD expression had a more favorable outcome than those with low IL17RD. CONCLUSIONS High IL17RD expression was an independent prognostic indicator of GBM, suggesting a more favorable prognosis. Our results suggested that IL17RD detection may help find the high-risk patients which may receive more severe surveillance and more individual treatments.
Collapse
Affiliation(s)
- Yang Liu
- Department of Laboratory Medicine, Suizhou Hospital, HuBei University of Medicine of the People's Republic of China, Suizhou, China
| | - Mingshui Xie
- Department of Laboratory Medicine, Suizhou Hospital, HuBei University of Medicine of the People's Republic of China, Suizhou, China
| | - Ye Zhou
- Departments of Neurosurgery, Weifang Central Hospital, Weifang, China
| | - Lili Che
- Departments of Neurosurgery, Weifang Central Hospital, Weifang, China
| | - Bin Zhang
- Departments of Neurosurgery, Taian Municipal Hospital, Taian, China -
| |
Collapse
|
4
|
Pan H, Xu R, Zhang Y. Role of SPRY4 in health and disease. Front Oncol 2024; 14:1376873. [PMID: 38686189 PMCID: PMC11056578 DOI: 10.3389/fonc.2024.1376873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
SPRY4 is a protein encoding gene that belongs to the Spry family. It inhibits the mitogen-activated protein kinase (MAPK) signaling pathway and plays a role in various biological functions under normal and pathological conditions. The SPRY4 protein has a specific structure and interacts with other molecules to regulate cellular behavior. It serves as a negative feedback inhibitor of the receptor protein tyrosine kinases (RTK) signaling pathway and interferes with cell proliferation and migration. SPRY4 also influences inflammation, oxidative stress, and cell apoptosis. In different types of tumors, SPRY4 can act as a tumor suppressor or an oncogene. Its dysregulation is associated with the development and progression of various cancers, including colorectal cancer, glioblastoma, hepatocellular carcinoma, perihilar cholangiocarcinoma, gastric cancer, breast cancer, and lung cancer. SPRY4 is also involved in organ development and is associated with ischemic diseases. Further research is ongoing to understand the expression and function of SPRY4 in specific tumor microenvironments and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Hao Pan
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Renjie Xu
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Zhang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Stuckel AJ, Zeng S, Lyu Z, Zhang W, Zhang X, Dougherty U, Mustafi R, Khare T, Zhang Q, Joshi T, Bissonnette M, Khare S. Sprouty4 is epigenetically upregulated in human colorectal cancer. Epigenetics 2023; 18:2145068. [PMID: 36384366 PMCID: PMC9980603 DOI: 10.1080/15592294.2022.2145068] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Sprouty4 (SPRY4) has been frequently reported as a tumor suppressor and is therefore downregulated in various cancers. For the first time, we report that SPRY4 is epigenetically upregulated in colorectal cancer (CRC). In this study, we explored DNA methylation and hydroxymethylation levels of SPRY4 in CRC cells and patient samples and correlated these findings with mRNA and protein expression levels. Three loci within the promoter region of SPRY4 were evaluated for 5mC levels in CRC using the combined bisulfite restriction analysis. In addition, hydroxymethylation levels within SPRY4 were measured in CRC patients. Lastly, DNA methylation and mRNA expression data were extracted from CRC patients in multiple high-throughput data repositories like Gene Expression Omnibus and The Cancer Genome Atlas. Combined in vitro and in silico analysis of promoter methylation levels of SPRY4 clearly demonstrates that the distal promoter region undergoes hypomethylation in CRC patients and is associated with increased expression. Moreover, a decrease in gene body hydroxymethylation and an increase in gene body methylation within the coding region of SPRY4 were found in CRC patients and correlated with increased expression. SPRY4 is epigenetically upregulated in CRC by promoter hypomethylation and hypermethylation within the gene body that warrants future investigation of atypical roles of this established tumor suppressor.
Collapse
Affiliation(s)
- Alexei J. Stuckel
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, Missouri, 65212, USA
| | - Shuai Zeng
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, 65201, USA,Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, 65201, USA
| | - Zhen Lyu
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, 65201, USA,Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, 65201, USA
| | - Wei Zhang
- Department of Preventive Medicine and the Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, 60611, USA
| | - Xu Zhang
- Department of Medicine, University of Illinois, Chicago, Illinois, 60607, USA
| | - Urszula Dougherty
- Department of Medicine, Section of Gastroenterology, Hepatology and Nutrition; the University of Chicago, Chicago, Illinois, 60637, USA
| | - Reba Mustafi
- Department of Medicine, Section of Gastroenterology, Hepatology and Nutrition; the University of Chicago, Chicago, Illinois, 60637, USA
| | - Tripti Khare
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, Missouri, 65212, USA
| | - Qiong Zhang
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, Missouri, 65212, USA
| | - Trupti Joshi
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, 65201, USA,Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri, 65211, USA,Department of Health Management and Informatics; School of Medicine, University of Missouri, Columbia, Missouri, 65212, USA
| | - Marc Bissonnette
- Department of Medicine, Section of Gastroenterology, Hepatology and Nutrition; the University of Chicago, Chicago, Illinois, 60637, USA
| | - Sharad Khare
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, Missouri, 65212, USA,Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri, 65201, USA,CONTACT Sharad Khare Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, Missouri, 65212, USA
| |
Collapse
|
6
|
Liu N, Zhang J, Chen W, Ma W, Wu T. The RNA methyltransferase METTL16 enhances cholangiocarcinoma growth through PRDM15-mediated FGFR4 expression. J Exp Clin Cancer Res 2023; 42:263. [PMID: 37817227 PMCID: PMC10566113 DOI: 10.1186/s13046-023-02844-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/29/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND RNA N6-Methyladenosine (m6A) modification is implicated in the progression of human cancers including cholangiocarcinoma (CCA). METTL16 is recently identified as a new RNA methyltransferase responsible for m6A modification, although the role of METTL16 in CCA has not yet been examined. The current study aims to investigate the effect and mechanism of the RNA methyltransferase METTL16 in CCA. METHODS The expression of METTL16 in CCA was examined by analyzing publicly available datasets or by IHC staining on tumor samples. siRNA or CRISPR/Cas9-mediated loss of function studies were performed in vitro and in vivo to investigate the oncogenic role of METTL16 in CCA. MeRIP-Seq was carried out to identify the downstream target of METTL16. ChIP-qPCR, immunoprecipitation, and immunoblots were used to explore the regulation mechanisms for METTL16 expression in CCA. RESULTS We observed that the expression of METTL16 was noticeably increased in human CCA tissues. Depletion of METTL16 significantly inhibited CCA cell proliferation and decreased tumor progression. PRDM15 was identified as a key target of METTL16 in CCA cells. Mechanistically, our data showed that METTL16 regulated PRDM15 protein expression via YTHDF1-dependent translation. Accordingly, we observed that restoration of PRDM15 expression could rescue the deficiency of CCA cell proliferation/colony formation induced by METTL16 depletion. Our subsequent analyses revealed that METTL16-PRDM15 signaling regulated the expression of FGFR4 in CCA cells. Specifically, we observed that PRDM15 protein was associated with the FGFR4 promoter to regulate its expression. Furthermore, we showed that the histone acetyltransferase p300 cooperated with the transcription factor YY1 to regulate METTL16 gene expression via histone H3 lysine 27 (H3K27) acetylation in CCA cells. CONCLUSIONS This study describes a novel METTL16-PRDM15-FGFR4 signaling axis which is crucial for CCA growth and may have important therapeutic implications. We showed that depletion of METTL16 significantly inhibited CCA cell proliferation and decreased tumor progression.
Collapse
Affiliation(s)
- Nianli Liu
- Department of Pathology and Laboratory Medicine, Tulane University, 1430 Tulane Avenue, SL-79, New Orleans, LA, 70112, USA
| | - Jinqiang Zhang
- Department of Pathology and Laboratory Medicine, Tulane University, 1430 Tulane Avenue, SL-79, New Orleans, LA, 70112, USA
| | - Weina Chen
- Department of Pathology and Laboratory Medicine, Tulane University, 1430 Tulane Avenue, SL-79, New Orleans, LA, 70112, USA
| | - Wenbo Ma
- Department of Pathology and Laboratory Medicine, Tulane University, 1430 Tulane Avenue, SL-79, New Orleans, LA, 70112, USA
| | - Tong Wu
- Department of Pathology and Laboratory Medicine, Tulane University, 1430 Tulane Avenue, SL-79, New Orleans, LA, 70112, USA.
| |
Collapse
|
7
|
Yan X, Wang D, Ning Z, Meng ZQ. Lenvatinib inhibits intrahepatic cholangiocarcinoma via Gadd45a-mediated cell cycle arrest. Discov Oncol 2023; 14:26. [PMID: 36821012 PMCID: PMC9950313 DOI: 10.1007/s12672-023-00631-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
PURPOSE To evaluate the anticancer activities of lenvatinib in ICC and its possible molecular mechanisms. METHODS Patients-derived xenograft (PDX) model and cell line-derived xenograft (CDX) model were both used for the in vivo study. For in vivo work, ICC cell lines were applied to analyze the effect of Lenvatinib on cell proliferation, cell cycle progression, apoptosis, and the molecular mechanism. RESULTS In the present study, we found that lenvatinib dramatically hindered in vivo tumor growth in ICC patient-derived xenograft models. In addition, by using in vitro experiments in ICC cell lines, we found that lenvatinib dose- and time-dependently inhibited the proliferation of ICC cells and induced cell cycle arrest in the G0/G1 phase. Transcriptional profiling analysis further applied indicated that lenvatinib might inhibit cell proliferation through the induction of cell-cycle arrestment via activating of Gadd45a, it was evidenced by that the knockout of Gadd45a significantly attenuated the cycle arrest induced by lenvatinib, as well as the inhibitory effect of lenvatinib on ICC. CONCLUSION Our work first found that lenvatinib exerted an excellent antitumor effect on ICC, mainly via inducing Gadd45a-mediated cell cycle arrest. Our work provides evidence and a rationale for the future use of lenvatinib in the treatment of ICC.
Collapse
Affiliation(s)
- Xia Yan
- Department of Oncology, Shanghai Cancer Center, Fudan University, 270 Dong An Road, Shanghai, 200032, China
- Department of Cancer Center, Shanxi Bethune Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Dan Wang
- Department of Oncology, Shanghai Cancer Center, Fudan University, 270 Dong An Road, Shanghai, 200032, China
| | - Zhouyu Ning
- Department of Oncology, Shanghai Cancer Center, Fudan University, 270 Dong An Road, Shanghai, 200032, China.
| | - Zhi-Qiang Meng
- Department of Oncology, Shanghai Cancer Center, Fudan University, 270 Dong An Road, Shanghai, 200032, China.
| |
Collapse
|
8
|
Zhao B, Sun J, DU K, Liang N, Sun J. Sprouty 4 suppresses glioblastoma invasion by inhibiting ERK phosphorylation and ETS-1-induced matrix metalloproteinase-9. J Neurosurg Sci 2023; 67:121-128. [PMID: 32618153 DOI: 10.23736/s0390-5616.20.04969-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is the most malignant glioma with highly aggressive behavior and the worst prognosis. Many efforts have been made to develop new drugs and improve the patient's survival, but the effects are not satisfactory. Here we aimed to evaluate the clinical significance and tumor-repressive function of Sprouty4 (SPRY4) in GBM. METHODS In our study, we detected the expression of SPRY4 in 109 GBM patients and 12 pairs of GBM tissues and the corresponding adjacent tissues. χ2 test was applied to analyze the association between SPRY4 expression and the clinicopathological factors. The prognostic significances were evaluated with univariate and multivariate analyses, which were carried out by the Kaplan-Meier method and the Cox-regression proportional hazards model, respectively. With in-vitro experiments, we investigated the tumor-suppressing function of SPRY4 in GBM invasion and investigated the underlying mechanism. RESULTS SPRY4 mRNAs in GBMs were significantly lower than those in adjacent brain tissues. We demonstrated that SPRY4 expression could predict the favorable prognosis of GBM, and SPRY4 was an independent favorable prognostic factor of GBM. SPRY4 repressed GBM invasion via inhibiting ERK phosphorylation; therefore, suppressing ETS-1-induced MMP9 expression. CONCLUSIONS SPRY4 was an independent favorable prognostic factor of GBM, and it could suppress GBM invasion by ERK-ETS-MMP9 axis. Our results indicated that SPRY4 may be a promising drug target of GBM and SPRY4 detection could stratify patients with low SPRY4 expression who may benefit from anti-FGFR therapy.
Collapse
Affiliation(s)
- Baomin Zhao
- Department of Neurology, Yidu Central Hospital of Weifang, Weifang, China
| | - Jing Sun
- Department of Neurology, Yidu Central Hospital of Weifang, Weifang, China
| | - Kai DU
- Department of Neurosurgery, Yidu Central Hospital of Weifang, Weifang, China
| | - Nan Liang
- Department of Neurosurgery, Second Hospital of Shandong First Medical University, Taian, China
| | - Jian Sun
- Department of Health Management Center, Second Affiliated Hospital of Dalian Medical University, Dalian, China -
| |
Collapse
|
9
|
Li YC, Li KS, Liu ZL, Tang YC, Hu XQ, Li XY, Shi AD, Zhao LM, Shu LZ, Lian S, Yan ZD, Huang SH, Sheng GL, Song Y, Liu YJ, Huan F, Zhang MH, Zhang ZL. Research progress of bile biomarkers and their immunoregulatory role in biliary tract cancers. Front Immunol 2022; 13:1049812. [PMID: 36389727 PMCID: PMC9649822 DOI: 10.3389/fimmu.2022.1049812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/12/2022] [Indexed: 11/30/2022] Open
Abstract
Biliary tract cancers (BTCs), including cholangiocarcinoma and gallbladder carcinoma, originate from the biliary epithelium and have a poor prognosis. Surgery is the only choice for cure in the early stage of disease. However, most patients are diagnosed in the advanced stage and lose the chance for surgery. Early diagnosis could significantly improve the prognosis of patients. Bile has complex components and is in direct contact with biliary tract tumors. Bile components are closely related to the occurrence and development of biliary tract tumors and may be applied as biomarkers for BTCs. Meanwhile, arising evidence has confirmed the immunoregulatory role of bile components. In this review, we aim to summarize and discuss the relationship between bile components and biliary tract cancers and their ability as biomarkers for BTCs, highlighting the role of bile components in regulating immune response, and their promising application prospects.
Collapse
|
10
|
Li Z, Liang N, Wang N, Jia Y, Tian C. WDR5 is a prognostic biomarker of brain metastasis from non-small cell lung cancer. Front Oncol 2022; 12:1023776. [PMID: 36249032 PMCID: PMC9557102 DOI: 10.3389/fonc.2022.1023776] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/13/2022] [Indexed: 12/09/2022] Open
Abstract
Background Lung cancer (LC) is the most frequent caner type and causes the most cancer-related death. Brain metastases (BM) are the deadliest complications of lung cancer, and the prognostic biomarkers of BM are urgently needed. Materials and methods In our study, we established an inception cohort including 122 patients with asynchronous BM from NSCLC, and further selected 70 patients who received surgical resection, which compromised the validation cohort. With immunohistochemistry, we investigated the expression of WDR5 in the cohort. By chi-square method, the correlations between WDR5 and clinicopathological factors were analyzed. The prognostic indicators were analyzed with the univariate analysis, and independent prognostic factors were identified by multivariate analysis with Cox-regression model. Results WDR5 is frequently expressed in the cytoplasm of BM from NSCLC. Patients with low or high expression of WDR5 account for 60% and 40% respectively. High expression of WDR5 indicates poor prognosis of BM from NSCLC (P=0.001). In addition to WDR5, KPS is also a prognostic factor of BM, and high KPS predicts favorable prognosis (P=0.006). WDR5 is an independent prognostic biomarker for poor prognosis of BM from NSCLC, with the cancer-related odds as 2.48. Conclusions High expression of WDR5 can predict the poor prognosis of BM, and WDR5 is an independent prognostic biomarker of BM from NSCLC. Patients with WDR5 overexpression are more high-risk to suffer BM-related death and should receive more intense post-operational supervision.
Collapse
Affiliation(s)
- Zheng Li
- Department of Neurosurgery, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, China
| | - Nan Liang
- Department of Neurosurgery, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, China
| | - Na Wang
- Department of Anesthesiology, The First People’s Hospital of Tai’an, Tai’an, China
| | - Yan Jia
- Department of Intensive Care Unit, Shandong Provincial Tai’shan Hospital, Tai’an, China
| | - Cui Tian
- Department of Intensive Care Unit, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, China
- *Correspondence: Cui Tian,
| |
Collapse
|
11
|
Liu P, Wang Y, Duan L. ZFAND5 Is an Independent Prognostic Biomarker of Perihilar Cholangiocarcinoma. Front Oncol 2022; 12:955670. [PMID: 35912230 PMCID: PMC9326020 DOI: 10.3389/fonc.2022.955670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundCholangiocarcinoma (CCA) is a highly aggressive malignancy with extremely poor prognosis. Perihilar CCA (pCCA) is the most common subtype of CCA, but its biomarker study is much more lagged behind other subtypes. ZFAND5 protein can interact with ubiquitinated proteins and promote protein degradation. However, the function of ZFAND5 in cancer progression is rarely investigated, and the role of ZFAND5 in pCCA is never yielded.Materials and MethodsIn this study, we established a pCCA cohort consisting of 72 patients. The expression of ZFAND5 in pCCAs, and the paired liver tissues, intrahepatic bile duct tissues and common bile ducts (CBD) tissues were detected with IHC. ZFAND5 mRNA in pCCAs and CBDs was detected with qRT-PCR. The pCCA cohort was divided into ZFAND5low and ZFAND5high subsets according to the IHC score. The correlations between ZFAND5 expression and clinicopathological parameters were assessed bychi-square test. The prognostic significance of ZFAND5 expression and clinicopathological parameters was estimated by univariate analysis with Kaplan-Meier method, and by multivariate analysis with Cox-regression model.ResultsExpression of ZFAND5 in pCCAs was substantially higher than that in interlobular bile ducts and common bile ducts, but lower than that in liver tissues. The ZFAND5low and ZFAND5high subsets accounted for 44.4% and 55.6% of all pCCAs respectively. ZFAND5 high patients had much lower survival rates than the ZFAND5low patients, with the average survival time as 31.2 months and 19.5 months respectively. ZFAND5 was identified as an independent unfavorable prognostic biomarker of pCCA with multivariate analysis.ConclusionZFAND5 expression was up-regulated in pCCAs compared with the CBDs. We identified ZFAND5 as an independent biomarker of pCCA, which could provide more evidence for the molecular classification of pCCA, and help stratify the high-risk patients based on the molecular features.
Collapse
Affiliation(s)
- Pei Liu
- Department of Plastic Surgery, Qilu Hospital Affiliated to Shandong University, Jinan, China
| | - Yijia Wang
- Department of Plastic Surgery, Qilu Hospital Affiliated to Shandong University, Jinan, China
| | - Lingling Duan
- Department of Health Care, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Lingling Duan, ;
| |
Collapse
|
12
|
Liu Z, Liu J, Chen T, Wang Y, Shi A, Li K, Li X, Qiu B, Zheng L, Zhao L, Shu L, Lian S, Huang S, Zhang Z, Xu Y. Wnt-TCF7-SOX9 axis promotes cholangiocarcinoma proliferation and pemigatinib resistance in a FGF7-FGFR2 autocrine pathway. Oncogene 2022; 41:2885-2896. [DOI: 10.1038/s41388-022-02313-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 12/27/2022]
|
13
|
Liu J, Ren G, Li K, Liu Z, Wang Y, Chen T, Mu W, Yang X, Li X, Shi A, Zhao W, Xu B, Chang J, Guo S, Pan C, Zhou T, Zhang Z, Xu Y. The Smad4-MYO18A-PP1A complex regulates β-catenin phosphorylation and pemigatinib resistance by inhibiting PAK1 in cholangiocarcinoma. Cell Death Differ 2022; 29:818-831. [PMID: 34799729 PMCID: PMC8990017 DOI: 10.1038/s41418-021-00897-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/28/2021] [Accepted: 11/08/2021] [Indexed: 01/04/2023] Open
Abstract
Cholangiocarcinoma (CCA), consisting of three subtypes-intrahepatic (iCCA), perihilar (pCCA), and distal (dCCA), is a highly aggressive cancer arising from the bile duct and has an extremely poor prognosis. Pemigatinib is the only FDA-approved targeted drug for CCA, and the CCA treatment options are substantially insufficient considering its poor prognosis and increasing morbidity. Here, we performed next-generation sequencing (NGS) of 15 pCCAs and 16 dCCAs and detected the expression of SMAD4, a frequently mutated gene, in 261 CCAs. By univariate and multivariate analyses, we identified Smad4 as a favorable prognostic biomarker in iCCA and pCCA. With in vitro and in vivo experiments, we demonstrated that Smad4 suppressed CCA proliferation, migration and invasion by inhibiting β-catenin-S675 phosphorylation and intranuclear translocation. We applied LC-MS/MS and multiple biochemical techniques and identified PP1A as the phosphatase in Smad4-mediated dephosphorylation of PAK1-T423, which is responsible for β-catenin-S675 phosphorylation. Moreover, we demonstrated that MYO18A is the PP1-interacting protein of PP1A for substrate recognition in CCA. MYO18A interacts with PP1A via its RVFFR motif and interacts with Smad4 via CC domain. Patients with coexpression of MYO18A and Smad4 have a more favorable prognosis than other patients. Smad4 enhances Pemigatinib efficiency, and Smad4 knockdown results in Pemigatinib resistance. In conclusion, coexpression of Smad4 and MYO18A is a favorable prognostic indicator for iCCA and pCCA. The Smad4-MYO18A-PP1A complex dephosphorylates PAK1-T423 and thus inhibits β-catenin-S675 phosphorylation and its intranuclear localization. Smad4 suppresses CCA proliferation, migration, invasion, and sensitivity to Pemigatinib by governing the phosphorylation and intracellular localization of β-catenin.
Collapse
Affiliation(s)
- Jialiang Liu
- grid.27255.370000 0004 1761 1174Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guangli Ren
- grid.27255.370000 0004 1761 1174Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China ,grid.27255.370000 0004 1761 1174Department of Hepatobiliary Surgery, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Kangshuai Li
- grid.27255.370000 0004 1761 1174Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zengli Liu
- grid.27255.370000 0004 1761 1174Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yue Wang
- grid.27255.370000 0004 1761 1174Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tianli Chen
- grid.27255.370000 0004 1761 1174Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wentao Mu
- grid.27255.370000 0004 1761 1174Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaoqing Yang
- grid.452422.70000 0004 0604 7301Department of Pathology, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, China ,Shandong Medicine and Health Key Laboratory of Clinical Pathology, Jinan, China ,Shandong Lung Cancer Institute, Shandong Institute of Nephrology, Jinan, China
| | - Xingyong Li
- grid.27255.370000 0004 1761 1174Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China ,grid.27255.370000 0004 1761 1174Department of Hepatobiliary Surgery, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Anda Shi
- grid.27255.370000 0004 1761 1174Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wei Zhao
- grid.27255.370000 0004 1761 1174Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bowen Xu
- grid.27255.370000 0004 1761 1174Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jianhua Chang
- grid.27255.370000 0004 1761 1174Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Sen Guo
- grid.27255.370000 0004 1761 1174Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chang Pan
- grid.27255.370000 0004 1761 1174Department of Emergency, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tao Zhou
- grid.27255.370000 0004 1761 1174Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zongli Zhang
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Yunfei Xu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
14
|
Wang Y, Li K, Zhao W, Liu Z, Liu J, Shi A, Chen T, Mu W, Xu Y, Pan C, Zhang Z. Aldehyde dehydrogenase 3B2 promotes the proliferation and invasion of cholangiocarcinoma by increasing Integrin Beta 1 expression. Cell Death Dis 2021; 12:1158. [PMID: 34907179 PMCID: PMC8671409 DOI: 10.1038/s41419-021-04451-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/22/2021] [Accepted: 12/02/2021] [Indexed: 12/13/2022]
Abstract
Aldehyde dehydrogenases (ALDHs) play an essential role in regulating malignant tumor progression; however, their role in cholangiocarcinoma (CCA) has not been elucidated. We analyzed the expression of ALDHs in 8 paired tumor and peritumor perihilar cholangiocarcinoma (pCCA) tissues and found that ALDH3B1 and ALDH3B2 were upregulated in tumor tissues. Further survival analysis in intrahepatic cholangiocarcinoma (iCCA, n = 27), pCCA (n = 87) and distal cholangiocarcinoma (dCCA, n = 80) cohorts have revealed that ALDH3B2 was a prognostic factor of CCA and was an independent prognostic factor of iCCA and pCCA. ALDH3B2 expression was associated with serum CEA in iCCA and dCCA, associated with tumor T stage, M stage, neural invasion and serum CA19-9 in pCCA. In two cholangiocarcinoma cell lines, overexpression of ALDH3B2 promoted cell proliferation and clone formation by promoting the G1/S phase transition. Knockdown of ALDH3B2 inhibited cell migration, invasion, and EMT in vitro, and restrained tumor metastasis in vivo. Patients with high expression of ALDH3B2 also have high expression of ITGB1 in iCCA, pCCA, and dCCA at both mRNA and protein levels. Knockdown of ALDH3B2 downregulated the expression of ITGB1 and inhibited the phosphorylation level of c-Jun, p38, and ERK. Meanwhile, knockdown of ITGB1 inhibited the promoting effect of ALDH3B2 overexpression on cell proliferation, migration, and invasion. ITGB1 is also a prognostic factor of iCCA, pCCA, and dCCA and double-positive expression of ITGB1 and ALDH3B2 exhibits better performance in predicting patient prognosis. In conclusion, ALDH3B2 promotes tumor proliferation and metastasis in CCA by regulating the expression of ITGB1 and upregulating its downstream signaling pathway. The double-positive expression of ITGB1 and ALDH3B2 serves as a better prognostic biomarker of CCA.
Collapse
Affiliation(s)
- Yue Wang
- grid.27255.370000 0004 1761 1174Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, 250012 Jinan, China
| | - Kangshuai Li
- grid.27255.370000 0004 1761 1174Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, 250012 Jinan, China
| | - Wei Zhao
- grid.27255.370000 0004 1761 1174Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, 250012 Jinan, China
| | - Zengli Liu
- grid.27255.370000 0004 1761 1174Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, 250012 Jinan, China
| | - Jialiang Liu
- grid.27255.370000 0004 1761 1174Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, 250012 Jinan, China
| | - Anda Shi
- grid.27255.370000 0004 1761 1174Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, 250012 Jinan, China
| | - Tianli Chen
- grid.27255.370000 0004 1761 1174Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, 250012 Jinan, China
| | - Wentao Mu
- grid.27255.370000 0004 1761 1174Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, 250012 Jinan, China
| | - Yunfei Xu
- grid.27255.370000 0004 1761 1174Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, 250012 Jinan, China
| | - Chang Pan
- Department of Emergency Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, 250012, Jinan, China. .,Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, 250012, Jinan, China. .,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, 250012, Jinan, China.
| | - Zongli Zhang
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, 250012, Jinan, China.
| |
Collapse
|
15
|
Wang Y, Chen T, Li K, Mu W, Liu Z, Shi A, Liu J, Zhao W, Lian S, Huang S, Pan C, Zhang Z. Recent Advances in the Mechanism Research and Clinical Treatment of Anti-Angiogenesis in Biliary Tract Cancer. Front Oncol 2021; 11:777617. [PMID: 34778094 PMCID: PMC8581488 DOI: 10.3389/fonc.2021.777617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/11/2021] [Indexed: 12/25/2022] Open
Abstract
Biliary tract cancers (BTCs), including cholangiocarcinoma (CCA) and gallbladder cancer (GC), are malignancies originating from the biliary tract with poor prognosis. In the early stage of BTCs, surgery is the only choice for cure. Unfortunately, most patients with BTC are diagnosed at an advanced stage and lose the opportunity for surgery. For many advanced solid tumors, antiangiogenic therapy has achieved encouraging results. While most clinical studies on antiangiogenic therapy in advanced BTCs have shown an excellent disease control rate (DCR), the improvement in overall survival (OS) is controversial. Understanding how the relevant signaling molecules influence the angiogenic response and the functional interaction is necessary for the formulation of new treatment regimens and the selection of enrolled patients. In this review, we aim to summarize and discuss the latest advances in antiangeogenesis for BTCs, mainly focusing on the molecular mechanism of angiogenesis in BTCs and the therapeutic effects from clinical trials. Furthermore, the horizon of antiangiogenesis for BTCs is highlighted.
Collapse
Affiliation(s)
- Yue Wang
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tianli Chen
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Kangshuai Li
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wentao Mu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zengli Liu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Anda Shi
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jialiang Liu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wei Zhao
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shuo Lian
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shaohui Huang
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chang Pan
- Department of Emergency, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zongli Zhang
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
16
|
Xu L, Wang P, Zhang W, Li W, Liu T, Che X. Dual-Specificity Phosphatase 11 Is a Prognostic Biomarker of Intrahepatic Cholangiocarcinoma. Front Oncol 2021; 11:757498. [PMID: 34660327 PMCID: PMC8513537 DOI: 10.3389/fonc.2021.757498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 08/31/2021] [Indexed: 11/23/2022] Open
Abstract
Background Cholangiocarcinoma (CCA), including intrahepatic (iCCA), perihilar (pCCA), and distal (dCCA) CCA, is a highly aggressive malignancy originating from bile duct. The prognosis of CCA is very poor, and the biomarker study is unsatisfactory compared with other common cancers. Materials and methods In our study, we investigated the expression of dual-specificity phosphatase 11(DUSP11) in eight pairs of iCCAs, pCCAs, and dCCAs, and their corresponding tumor-adjacent tissues, as well as their tumor-adjacent tissues with qPCR. Moreover, we investigated the expression of DUSP11 in 174 cases of CCAs with immunohistochemistry, including 74 iCCAs, 64 pCCAs, and 36 dCCAs. We classified these patients into subsets with low and high expressions of DUSP11, and evaluated the correlations between the DUSP11 subsets and clinicopathological factors. With univariate and multivariate analyses, we assessed the correlation between DUSP11 and the overall survival (OS) rates in these CCA patients. Results In all the CCA subtypes, DUSP11 was elevated in CCAs compared with their paired adjacent tissues. In iCCA, pCCA, and dCCA, the percentages of DUSP11 high expression were 44.59%, 53.85%, and 55.56%, respectively. In iCCA, high DUSP11 expression was significantly associated with an advanced T stage and a poor prognosis. However, the prognostic value of DUSP11 in pCCA and dCCA was not significant. To decrease the statistical error caused by the small sample size of the dCCA cohort, we merged pCCA and dCCA into extracellular CCA (eCCA). In the 101 cases of eCCA, DUSP11 expression was also not significantly associated with the prognosis. Conclusions DUSP11 expression was associated with tumor infiltration and the OS rate in iCCA, but not in pCCA and dCCA. DUSP11 was an independent biomarker of iCCA indicating a poor prognosis. Our results suggested that a high expression of DUSP11 was a post-operational risk factor, and detecting DUSP11 could guide the individual treatment for patients with CCA.
Collapse
Affiliation(s)
- Lin Xu
- Department of Hepatobiliary and Pancreatic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Peng Wang
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Zhang
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weiran Li
- Department of Oncology Rehabilitation, Shenzhen Luohu People's Hospital, Shenzhen, China
| | - Tao Liu
- Department of Oncology Rehabilitation, Shenzhen Luohu People's Hospital, Shenzhen, China
| | - Xu Che
- Department of Hepatobiliary and Pancreatic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China.,Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
17
|
Li H, Zhao J, Shi X. GPBAR1 Promotes Proliferation of Serous Ovarian Cancer by Inducing Smad4 Ubiquitination. Appl Immunohistochem Mol Morphol 2021; 29:519-526. [PMID: 33605573 DOI: 10.1097/pai.0000000000000917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 01/11/2021] [Indexed: 01/25/2023]
Abstract
BACKGROUND Ovarian cancer (OC) is the most lethal malignancy of all female cancers and lacks an effective prognostic biomarker. Serous ovarian cancer (SOC) is the most common OC histologic type. The expression and function of bile acid receptor, G-protein-coupled bile acid receptor-1 (GPBAR1), in tumor progression remains controversial, and its clinical significance in SOC is unclear. MATERIALS AND METHODS In our study, we detected the expression of GPBAR1 in SOCs and normal ovarian tissues with quantitative real-time polymerase chain reaction and immunohistochemistry to detect its expression pattern. Moreover, the prognostic significance of GPBAR1 was investigated with univariate and multivariate analyses. The function of GPBAR1 in regulating SOC proliferation was studied and the underlying mechanism was investigated with experiments in vitro. RESULTS GPBAR1 was overexpressed in SOCs compared with the normal ovarian tissues. In the 166 SOCs, subsets with low and high GPBAR1 accounted for 57.23% and 42.77%, respectively. Moreover, our results suggested that GPBAR1 expression was significantly associated with poor prognosis and can be considered as an independent prognostic biomarker. With experiments in vitro, we suggested that GPBAR1 promoted SOC proliferation by increasing Smad4 ubiquitination, which required the involvement of GPBAR1-induced ERK phosphorylation. CONCLUSIONS GPBAR1 was overexpressed in SOC and predicted the poor prognosis of SOC. We showed that GPBAR1 promoted SOC proliferation by activating ERK and ubiquitining Smad4. Our results suggested that GPBAR1 was a supplement to better classify SOC on the basis of the molecular profile and that GPBAR1 may be a potential drug target of SOC.
Collapse
Affiliation(s)
- Haixia Li
- Department of Gynecology, Women & Children's Health Care Hospital of Linyi
| | - Juanhong Zhao
- Department of Gynecology, Affiliated Hospital of Shandong Medical College, Linyi, Shandong
| | - Xiaoyan Shi
- Department of Gynecology, Yan'an University Affiliated Hospital, Yan'an, Shanxi, China
| |
Collapse
|
18
|
Chen T, Liu H, Liu Z, Li K, Qin R, Wang Y, Liu J, Li Z, Gao Q, Pan C, Yang F, Zhao W, Zhang Z, Xu Y. FGF19 and FGFR4 promotes the progression of gallbladder carcinoma in an autocrine pathway dependent on GPBAR1-cAMP-EGR1 axis. Oncogene 2021; 40:4941-4953. [PMID: 34163030 DOI: 10.1038/s41388-021-01850-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 05/04/2021] [Accepted: 05/20/2021] [Indexed: 12/26/2022]
Abstract
Treatment options for gallbladder carcinoma (GBC) are limited and GBC prognosis remains poor. There is no well-accepted targeted therapy to date, so effective biomarkers of GBC are urgently needed. Here we investigated the expression and correlations of fibroblast growth factor receptors (FGFR1-4) and 18 fibroblast growth factors (FGFs) in two independent patient cohorts and evaluated their prognostic significance. Consequently, we demonstrated that both FGF19 and FGFR4 were unfavorable prognostic biomarkers, and their co-expression was a more sensitive predictor. By analyzing the correlations between all 18 FGFs and FGFR4, we showed that FGF19 expression was significantly associated with FGFR4 and promoted GBC progression via stimulating FGFR4. With experiments using GBC cells, GPBAR1-/- mice models, and human subjects, we demonstrated that elevated bile acids (BAs) could increase the transcription and expression of FGF19 and FGFR4 by activating GPBAR1-cAMP-EGR1 pathway. FGF19 secreted from GBC cells promoted GBC progression by stimulating FGFR4 and downstream ERK in an autocrine manner with bile as a potential carrier. Patients with GBC had significantly higher FGF19 in serum and bile, compared to patients with cholelithiasis. BLU9931 inhibited FGFR4 and attenuated its oncogenic effects in GBC cell line. In conclusion, upregulation of BAs elevated co-expression of FGF19 and FGFR4 by activating GPBAR1-cAMP-EGR1 pathway. Co-expression of FGF19 and FGFR4 was a sensitive and unfavorable prognostic marker. GBC cells secreted FGF19 and facilitated progression by activating FGFR4 with bile as a potential carrier in an autocrine pathway.
Collapse
Affiliation(s)
- Tianli Chen
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Hongda Liu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zengli Liu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Kangshuai Li
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Ruixi Qin
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, China
| | - Yue Wang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Jialiang Liu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Zhipeng Li
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
- Department of General Surgery, Shandong Provincial ENT Hospital, Shandong Provincial ENT Hospital affiliated to Shandong University, Jinan, China
| | - Qinglun Gao
- Department of Hepatobiliary Surgery, Shandong Provincial Third Hospital, Jinan, China
| | - Chang Pan
- Department of Emergency, Qilu Hospital of Shandong University, Jinan, China
| | - Fan Yang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China
| | - Wei Zhao
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Zongli Zhang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China.
| | - Yunfei Xu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
19
|
Qin H, Hu X, Zhang J, Dai H, He Y, Zhao Z, Yang J, Xu Z, Hu X, Chen Z. Machine-learning radiomics to predict early recurrence in perihilar cholangiocarcinoma after curative resection. Liver Int 2021; 41:837-850. [PMID: 33306240 DOI: 10.1111/liv.14763] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/11/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Up to 40%-65% of patients with perihilar cholangiocarcinoma (PHC) rapidly progress to early recurrence (ER) even after curative resection. Quantification of ER risk is difficult and a reliable prognostic prediction tool is absent. We developed and validated a multilevel model, integrating clinicopathology, molecular pathology and radiology, especially radiomics coupled with machine-learning algorithms, to predict the ER of patients after curative resection in PHC. METHODS In total, 274 patients who underwent contrast-enhanced CT (CECT) and curative resection at 2 institutions were retrospectively identified and randomly divided into training (n = 167), internal validation (n = 70) and external validation (n = 37) sets. A machine-learning analysis of 18,120 radiomic features based on multiphase CECT and 48 clinico-radiologic characteristics was performed for the multilevel model. RESULTS Comprehensively, 7 independent factors (tumour differentiation, lymph node metastasis, pre-operative CA19-9 level, enhancement pattern, A-Shrink score, V-Shrink score and P-Shrink score) were built to the multilevel model and quantified the risk of ER. We benchmarked the gain in discrimination with the area under the curve (AUC) of 0.883, superior to the rival clinical and radiomic models (AUCs 0.792-0.805). The accuracy (ACC) of the multilevel model was 0.826, which was significantly higher than those of the conventional staging systems (AJCC 8th (0.641), MSKCC (0.617) and Gazzaniga (0.581)). CONCLUSION The radiomics-based multilevel model demonstrated superior performance to rival models and conventional staging systems, and could serve as a visual prognostic tool to plan surveillance of ER and guide post-operative individualized management in PHC.
Collapse
Affiliation(s)
- Huan Qin
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xianling Hu
- Communication NCO Academy, Army Engineering University of PLA, Chongqing, China
| | - Junfeng Zhang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Haisu Dai
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yonggang He
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhiping Zhao
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiali Yang
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhengrong Xu
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaofei Hu
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhiyu Chen
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
20
|
Li Z, Liu J, Chen T, Sun R, Liu Z, Qiu B, Xu Y, Zhang Z. HMGA1-TRIP13 axis promotes stemness and epithelial mesenchymal transition of perihilar cholangiocarcinoma in a positive feedback loop dependent on c-Myc. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:86. [PMID: 33648560 PMCID: PMC7923631 DOI: 10.1186/s13046-021-01890-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/21/2021] [Indexed: 01/04/2023]
Abstract
Background Cholangiocarcinoma is a highly malignant cancer with very dismal prognosis. Perihilar cholangiocarcinoma(pCCA) accounts for more than 50% of all cholangiocarcinoma and is well-characterized for its low rate of radical resection. Effects of radiotherapy and chemotherapy of pCCA are very limited. Methods Here we screened potential biomarkers of pCCA with transcriptome sequencing and evaluated the prognostic significance of HMGA1 in a large cohort pCCA consisting of 106 patients. With bioinformatics and in vitro/vivo experiments, we showed that HMGA1 induced tumor cell stemness and epithelial-mesenchymal-transition (EMT), and thus facilitated proliferation, migration and invasion by promoting TRIP13 transcription. Moreover, TRIP13 was also an unfavorable prognostic biomarker of pCCA, and double high expression of HMGA1/TRIP13 could predict prognosis more sensitively. TRIP13 promoted pCCA progression by suppressing FBXW7 transcription and stabilizing c-Myc. c-Myc in turn induced the transcription and expression of both HMGA1 and TRIP13, indicating that HMGA-TRIP13 axis facilitated pCCA stemness and EMT in a positive feedback pathway. Conclusions HMGA1 and TRIP13 were unfavorable prognostic biomarkers of pCCA. HMGA1 enhanced pCCA proliferation, migration, invasion, stemness and EMT, by inducing TRIP13 expression, suppressing FBXW7 expression and stabilizing c-Myc. Moreover, c-Myc can induce the transcription of HMGA1 and TRIP13, suggesting that HMGA-TRIP13 axis promoted EMT and stemness in a positive feedback pathway dependent on c-Myc. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01890-1.
Collapse
Affiliation(s)
- Zhipeng Li
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, China.,Department of General Surgery, Shandong Second Provincial General Hospital, Shandong Provincial ENT Hospital, Jinan, China
| | - Jialiang Liu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, China
| | - Tianli Chen
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, China
| | - Rongqi Sun
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, China
| | - Zengli Liu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, China
| | - Bo Qiu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, China
| | - Yunfei Xu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, China.
| | - Zongli Zhang
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, China.
| |
Collapse
|
21
|
Liu H, Gong Z, Li K, Zhang Q, Xu Z, Xu Y. SRPK1/2 and PP1α exert opposite functions by modulating SRSF1-guided MKNK2 alternative splicing in colon adenocarcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:75. [PMID: 33602301 PMCID: PMC7893936 DOI: 10.1186/s13046-021-01877-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/11/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND The Mnk2 kinase, encoded by MKNK2 gene, plays critical roles in MAPK signaling and was involved in oncogenesis. Human MKNK2 pre-mRNA can be alternatively spliced into two splicing isoforms, the MKNK2a and MKNK2b, thus yielding Mnk2a and Mnk2b proteins with different domains. The involvement of Mnk2 alternative splicing in colon cancer has been implicated based on RNA-sequencing data from TCGA database. This study aimed at investigating the upstream modulators and clinical relevance of Mnk2 alternative splicing in colon adenocarcinoma (CAC). METHODS PCR, western blotting and immunohistochemistry (IHC) were performed to assess the expression of Mnk2 and upstream proteins in CAC. The function of Mnk2 and its regulators were demonstrated in different CAC cell lines as well as in xenograft models. Two independent cohorts of CAC patients were used to reveal the clinical significance of MKNK2 alternative splicing. RESULTS Comparing with adjacent nontumorous tissue, CAC specimen showed a decreased MKNK2a level and an increased MKNK2b level, which were correlated with KRAS mutation and tumor size. The SRSF1 (serine/arginine-rich splicing factor 1) was further confirmed to be the major splicing factor targeting MKNK2 in CAC cells. Higher expression of SRPK1/2 or decreased activity of PP1α were responsible for enhancing SRSF1 phosphorylation and nucleus translocation, subsequently resulted in a switch of MKNK2 alternative splicing. CONCLUSIONS Our data showed that phosphorylation and subcellular localization of SRSF1 were balanced by SRPK1/2 and PP1α in CAC cells. High nucleus SRSF1 promoted MKNK2 splicing into MKNK2b instead of MNK2a, consequently enhanced tumor proliferation.
Collapse
Affiliation(s)
- Hongda Liu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Zheng Gong
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA
| | - Kangshuai Li
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Qun Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| | - Yunfei Xu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, 250012, China.
| |
Collapse
|
22
|
Chen T, Li K, Liu Z, Liu J, Wang Y, Sun R, Li Z, Qiu B, Zhang X, Ren G, Xu Y, Zhang Z. WDR5 facilitates EMT and metastasis of CCA by increasing HIF-1α accumulation in Myc-dependent and independent pathways. Mol Ther 2021; 29:2134-2150. [PMID: 33601056 DOI: 10.1016/j.ymthe.2021.02.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/15/2020] [Accepted: 02/11/2021] [Indexed: 12/30/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a highly aggressive malignancy with extremely poor prognoses. The oncogenic role and prognostic value of c-Myc in CCA is not well elucidated. WD repeat domain 5 (WDR5) is a critical regulatory factor directly interacting with c-Myc to regulate c-Myc recruitment at chromosomal locations, but the interaction of WDR5 and c-Myc in CCA was uncovered. In our study, we detected WDR5 and c-Myc expression in all CCA types, including intrahepatic (iCCA), perihilar (pCCA), and distal (dCCA) CCA, and evaluated their prognostic significance. Consequently, we demonstrated that WDR5 was significantly correlated with poor prognosis of CCA and that WDR5 and c-Myc co-expression was a more sensitive prognostic factor. With in vitro and in vivo experiments and bioinformatics, we showed that WDR5 interacted with the Myc box IIIb (MBIIIb) motif of c-Myc and facilitated Myc-induced HIF1A transcription, thereby promoting the epithelial-mesenchymal transition (EMT), invasion, and metastasis of CCA. Moreover, WDR5 enhanced hypoxia-inducible factor 1 subunit α (HIF-1α) accumulation by binding with histone deacetylase 2 (HDAC2) and increasing histone 3 lysine 4 acetylation (H3K4ac) deacetylation of the prolyl hydroxylase domain protein 2 (PHD2) promoter, resulting in the attenuation of chromatin opening and PHD2 expression, and eventually leading to HIF-1α stabilization and accumulation. In conclusion, WDR5 facilitated EMT and metastasis of CCA by increasing HIF-1α accumulation in a Myc-dependent pathway to promote HIF-1α transcription and a Myc-independent pathway to stabilize HIF-1α.
Collapse
Affiliation(s)
- Tianli Chen
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Kangshuai Li
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Zengli Liu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jialiang Liu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yue Wang
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Rongqi Sun
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Zhipeng Li
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of General Surgery, Shandong Second Provincial General Hospital, Shandong Provincial ENT Hospital, Jinan, China
| | - Bo Qiu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiaoming Zhang
- Department of General Surgery, Linyi People's Hospital, Linyi, China
| | - Guangli Ren
- Department of General Surgery, Shandong Provincial Third Hospital, Shandong University, Jinan, China
| | - Yunfei Xu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Zongli Zhang
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
23
|
Fang X, Zhang D, Zhao W, Gao L, Wang L. Dishevelled Associated Activator Of Morphogenesis (DAAM) Facilitates Invasion of Hepatocellular Carcinoma by Upregulating Hypoxia-Inducible Factor 1α (HIF-1α) Expression. Med Sci Monit 2020; 26:e924670. [PMID: 32772041 PMCID: PMC7437242 DOI: 10.12659/msm.924670] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Background The dishevelled associated activator of morphogenesis (DAAM) family, consisting of DAAM1 and DAAM2, is an important component of the Wnt signal pathway. Previous studies have suggested that DAAM2 reduces Von Hippel-Lindau (VHL) expression by promoting its ubiquitination, but the correlation between DAAM and HIF-1α in hepatocellular carcinoma (HCC) has not been studied. Material/Methods In our study, expression of DAAM1 and DAAM2 in HCCs and tumor-adjacent liver tissues was assessed with qRT-PCR and immunohistochemistry. Correlations between DAAM1/2 and the clinicopathologic variables were evaluated with the Chi-square test. With univariate and multivariate analysis, we further evaluated the prognostic significance of DAAM1 and DAAM2. Using in vitro experiments, we assessed the functions of DAAM1 and DAAM2 in invasion and proliferation in different HCC cell lines and investigated their underlying mechanisms. Results DAAM1 and 2 overexpression were 18.8% and 48.7%, respectively, of the whole cohort. mRNAs of DAAM2 in HCCs were substantially higher than mRNAs in liver tissues, while DAAM1 mRNA had no marked difference. High DAAM2 expression was notably associated with advanced T stage (P=0.032), TNM stage (P=0.032), and overall survival (OS) rate (P=0.004). DAAM 2 knockdown promoted VHL accumulation and subsequent HIF-1α down-regulation in HCC cells. In HCC specimens, DAAM2 expression was also negatively correlated with VHL and positively associated with HIF-1α. Moreover, HIF-1α was required in DAAM2-induced invasion of HCC cells. Conclusions DAAM2, rather than DAAM1, was able to predict prognosis of HCC. DAAM2 decreased VHL expression and consequently upregulated HIF-1α, eventually facilitating invasion of HCC.
Collapse
Affiliation(s)
- Xiaoxu Fang
- Gastrointestinal Department, YIDU Central Hospital, Weifang, Shandong, China (mainland)
| | - Dandan Zhang
- Urinary Surgery Department, YIDU Central Hospital, Weifang, Shandong, China (mainland)
| | - Wei Zhao
- Department of Ultrasonography, YIDU Central Hospital, Weifang, Shandong, China (mainland)
| | - Longfei Gao
- Dezhou Prison Hospital of Shandong Province, Dezhou, Shandong, China (mainland)
| | - Lanping Wang
- Department of Surgery, 2nd Hospital Sffiliated to Shandong 1st Medical University, Taian, Shandong, China (mainland)
| |
Collapse
|