1
|
Blommel JH, Roforth MM, Jerde CR, Karsten CA, Bridgeman AR, Voss JS, Boccuto L, Ivankovic DS, Sarasua SM, Kipp BR, Murphy SJ. Evaluating User Experience and DNA Yield from Self-Collection Devices. J Appl Lab Med 2024; 9:704-715. [PMID: 38767175 DOI: 10.1093/jalm/jfae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/01/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND The COVID-19 pandemic emphasized an urgent need for devices used in the self-collection of biospecimens in an evolving patient care system. The mailing of biospecimen self-collection kits to patients, with samples returned via mail, provides a more convenient testing regimen, but could also impart patient sampling variabilities. User compliance with device directions is central to downstream testing of collected biospecimens and clear instructions are central to this goal. METHODS Here, we performed an evaluation of 10 oral DNA collection devices involving either swab or saliva self-collection and analyzed ease of use and comfort level with a device, as well as DNA recovery quantity/quality and sample stability. RESULTS We show that while these DNA quality/quantity metrics are comparable between devices, users prefer direct saliva collection over swab-based devices. CONCLUSIONS This information is useful in guiding future experiments including their use in human RNA, microbial, or viral sample collection/recovery and their use in clinical testing.
Collapse
Affiliation(s)
- Joseph H Blommel
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
- Healthcare Genetics Program, School of Nursing, Clemson University, Clemson, SC, United States
| | - Matthew M Roforth
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Calvin R Jerde
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Carley A Karsten
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Amber R Bridgeman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Jesse S Voss
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Luigi Boccuto
- Healthcare Genetics Program, School of Nursing, Clemson University, Clemson, SC, United States
| | - Diana S Ivankovic
- Healthcare Genetics Program, School of Nursing, Clemson University, Clemson, SC, United States
| | - Sara M Sarasua
- Healthcare Genetics Program, School of Nursing, Clemson University, Clemson, SC, United States
| | - Benjamin R Kipp
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Stephen J Murphy
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
2
|
Manten K, Katzenschlager S, Brümmer LE, Schmitz S, Gaeddert M, Erdmann C, Grilli M, Pollock NR, Macé A, Erkosar B, Carmona S, Ongarello S, Johnson CC, Sacks JA, Faehling V, Bornemann L, Weigand MA, Denkinger CM, Yerlikaya S. Clinical accuracy of instrument-based SARS-CoV-2 antigen diagnostic tests: a systematic review and meta-analysis. Virol J 2024; 21:99. [PMID: 38685117 PMCID: PMC11059670 DOI: 10.1186/s12985-024-02371-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND During the COVID-19 pandemic, antigen diagnostic tests were frequently used for screening, triage, and diagnosis. Novel instrument-based antigen tests (iAg tests) hold the promise of outperforming their instrument-free, visually-read counterparts. Here, we provide a systematic review and meta-analysis of the SARS-CoV-2 iAg tests' clinical accuracy. METHODS We systematically searched MEDLINE (via PubMed), Web of Science, medRxiv, and bioRxiv for articles published before November 7th, 2022, evaluating the accuracy of iAg tests for SARS-CoV-2 detection. We performed a random effects meta-analysis to estimate sensitivity and specificity and used the QUADAS-2 tool to assess study quality and risk of bias. Sub-group analysis was conducted based on Ct value range, IFU-conformity, age, symptom presence and duration, and the variant of concern. RESULTS We screened the titles and abstracts of 20,431 articles and included 114 publications that fulfilled the inclusion criteria. Additionally, we incorporated three articles sourced from the FIND website, totaling 117 studies encompassing 95,181 individuals, which evaluated the clinical accuracy of 24 commercial COVID-19 iAg tests. The studies varied in risk of bias but showed high applicability. Of 24 iAg tests from 99 studies assessed in the meta-analysis, the pooled sensitivity and specificity compared to molecular testing of a paired NP swab sample were 76.7% (95% CI 73.5 to 79.7) and 98.4% (95% CI 98.0 to 98.7), respectively. Higher sensitivity was noted in individuals with high viral load (99.6% [95% CI 96.8 to 100] at Ct-level ≤ 20) and within the first week of symptom onset (84.6% [95% CI 78.2 to 89.3]), but did not differ between tests conducted as per manufacturer's instructions and those conducted differently, or between point-of-care and lab-based testing. CONCLUSION Overall, iAg tests have a high pooled specificity but a moderate pooled sensitivity, according to our analysis. The pooled sensitivity increases with lower Ct-values (a proxy for viral load), or within the first week of symptom onset, enabling reliable identification of most COVID-19 cases and highlighting the importance of context in test selection. The study underscores the need for careful evaluation considering performance variations and operational features of iAg tests.
Collapse
Affiliation(s)
- Katharina Manten
- Department of Infectious Disease and Tropical Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stephan Katzenschlager
- Department of Infectious Disease and Tropical Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Lukas E Brümmer
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stephani Schmitz
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Developmental Biology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Mary Gaeddert
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Maurizio Grilli
- Library, University Medical Center Mannheim, Mannheim, Germany
| | - Nira R Pollock
- Department of Laboratory Medicine, Boston Children's Hospital, Boston, MA, USA
| | | | | | | | | | - Cheryl C Johnson
- Global HIV, Hepatitis and STIs Programmes, World Health Organization, Geneva, Switzerland
| | - Jilian A Sacks
- Department of Epidemic and Pandemic Preparedness and Prevention, World Health Organization, Geneva, Switzerland
| | - Verena Faehling
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Linus Bornemann
- Institute of Virology, Faculty of Medicine, University Medical Centre, University of Freiburg, Freiburg, Germany
| | - Markus A Weigand
- Department of Infectious Disease and Tropical Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Claudia M Denkinger
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
- German Center for Infection Research (DZIF), partner site Heidelberg University Hospital, Heidelberg, Germany
| | - Seda Yerlikaya
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany.
- German Center for Infection Research (DZIF), partner site Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
3
|
Baldeh M, Bawa FK, Bawah FU, Chamai M, Dzabeng F, Jebreel WMA, Kabuya JBB, Molemodile Dele-Olowu SK, Odoyo E, Rakotomalala Robinson D, Cunnington AJ. Lessons from the pandemic: new best practices in selecting molecular diagnostics for point-of-care testing of infectious diseases in sub-Saharan Africa. Expert Rev Mol Diagn 2024; 24:153-159. [PMID: 37908160 DOI: 10.1080/14737159.2023.2277368] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/26/2023] [Indexed: 11/02/2023]
Abstract
INTRODUCTION Point-of-care molecular diagnostics offer solutions to the limited diagnostic availability and accessibility in resource-limited settings. During the COVID-19 pandemic, molecular diagnostics became essential tools for accurate detection and monitoring of SARS-CoV-2. The unprecedented demand for molecular diagnostics presented challenges and catalyzed innovations which may provide lessons for the future selection of point-of-care molecular diagnostics. AREAS COVERED We searched PubMed from January 2020 to August 2023 to identify lessons learned from the COVID-19 pandemic which may impact the selection of point-of-care molecular diagnostics for future use in sub-Saharan Africa. We evaluated this in the context of REASSURED criteria (Real-time connectivity; Ease of specimen collection; Affordable; Sensitive; Specific; User-friendly; Rapid and robust; Equipment free; and Deliverable to users at the point of need) for point-of-care diagnostics for resource-limited settings. EXPERT OPINION The diagnostic challenges and successes during the COVID-19 pandemic affirmed the importance of the REASSURED criteria but demonstrated that these are not sufficient to ensure new diagnostics will be appropriate for public health emergencies. Capacity for rapid scale-up of diagnostic testing and transferability of assays, data, and technology are also important, resulting in updated REST-ASSURED criteria. Few diagnostics will meet all criteria, and trade-offs between criteria will need to be context-specific.
Collapse
Affiliation(s)
- Mamadu Baldeh
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Flavia K Bawa
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Faiza U Bawah
- Department of Computer Science, University of Ghana, Accra, Ghana
- Department of Computer Science and Informatics, University of Energy and Natural Resources, Sunyani, Ghana
| | - Martin Chamai
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Francis Dzabeng
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
- Department of Computer Science, University of Ghana, Accra, Ghana
| | | | | | | | - Erick Odoyo
- Masinde Muliro University of Science & Technology, Kakamega, Kenya
| | | | - Aubrey J Cunnington
- Section of Paediatric Infectious Disease and Centre for Paediatrics and Child Health, Imperial College, London, UK
| |
Collapse
|
4
|
Wettengel JM, Strehle K, von Lucke C, Roggendorf H, Jeske SD, Christa C, Zelger O, Haller B, Protzer U, Knolle PA. Improved detection of infection with SARS-CoV-2 Omicron variants of concern in healthcare workers by a second-generation rapid antigen test. Microbiol Spectr 2023; 11:e0176823. [PMID: 37831440 PMCID: PMC10714798 DOI: 10.1128/spectrum.01768-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/11/2023] [Indexed: 10/14/2023] Open
Abstract
IMPORTANCE The results from this study demonstrate the usefulness of a second-generation rapid antigen test for early detection of infection with the SARS-CoV-2 Omicron variant of concern (VoC) and reveal a higher sensitivity to detect immune escape Omicron VoCs compared to a first-generation rapid antigen test (89.4% vs 83.7%) in the high-risk group of healthcare workers.
Collapse
Affiliation(s)
- Jochen M. Wettengel
- Institute of Virology, School of Medicine and Health, Technical University of Munich (TUM), München, Germany
- German Center for Infection Research (DZIF), Munich Partner Site, München, Germany
| | - Katharina Strehle
- Institute of Molecular Immunology, School of Medicine and Health, TUM, München, Germany
- Coronavirus Diagnostic Center of the University Hospital München Rechts der Isar, School of Medicine, TUM, München, Germany
| | - Catharina von Lucke
- Coronavirus Diagnostic Center of the University Hospital München Rechts der Isar, School of Medicine, TUM, München, Germany
| | - Hedwig Roggendorf
- Institute of Molecular Immunology, School of Medicine and Health, TUM, München, Germany
- Coronavirus Diagnostic Center of the University Hospital München Rechts der Isar, School of Medicine, TUM, München, Germany
| | - Samuel D. Jeske
- Institute of Virology, School of Medicine and Health, Technical University of Munich (TUM), München, Germany
| | - Catharina Christa
- Institute of Virology, School of Medicine and Health, Technical University of Munich (TUM), München, Germany
| | - Otto Zelger
- Coronavirus Diagnostic Center of the University Hospital München Rechts der Isar, School of Medicine, TUM, München, Germany
| | - Bernhard Haller
- Institute for AI and Informatics in Medicine Statistics, School of Medicine and Health, TUM, München, Germany
| | - Ulrike Protzer
- Institute of Virology, School of Medicine and Health, Technical University of Munich (TUM), München, Germany
- German Center for Infection Research (DZIF), Munich Partner Site, München, Germany
- Institute of Virology, Helmholtz Munich, München, Germany
| | - Percy A. Knolle
- German Center for Infection Research (DZIF), Munich Partner Site, München, Germany
- Institute of Molecular Immunology, School of Medicine and Health, TUM, München, Germany
| |
Collapse
|
5
|
Gupta R, Gupta P, Wang S, Melnykov A, Jiang Q, Seth A, Wang Z, Morrissey JJ, George I, Gandra S, Sinha P, Storch GA, Parikh BA, Genin GM, Singamaneni S. Ultrasensitive lateral-flow assays via plasmonically active antibody-conjugated fluorescent nanoparticles. Nat Biomed Eng 2023; 7:1556-1570. [PMID: 36732621 DOI: 10.1038/s41551-022-01001-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 12/20/2022] [Indexed: 02/04/2023]
Abstract
Lateral-flow assays (LFAs) are rapid and inexpensive, yet they are nearly 1,000-fold less sensitive than laboratory-based tests. Here we show that plasmonically active antibody-conjugated fluorescent gold nanorods can make conventional LFAs ultrasensitive. With sample-to-answer times within 20 min, plasmonically enhanced LFAs read out via a standard benchtop fluorescence scanner attained about 30-fold improvements in dynamic range and in detection limits over 4-h-long gold-standard enzyme-linked immunosorbent assays, and achieved 95% clinical sensitivity and 100% specificity for antibodies in plasma and for antigens in nasopharyngeal swabs from individuals with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Comparable improvements in the assay's performance can also be achieved via an inexpensive portable scanner, as we show for the detection of interleukin-6 in human serum samples and of the nucleocapsid protein of SARS-CoV-2 in nasopharyngeal samples. Plasmonically enhanced LFAs outperform standard laboratory tests in sensitivity, speed, dynamic range, ease of use and cost, and may provide advantages in point-of-care diagnostics.
Collapse
Affiliation(s)
- Rohit Gupta
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Prashant Gupta
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Sean Wang
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | | | | | - Anushree Seth
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Zheyu Wang
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Jeremiah J Morrissey
- Department of Anesthesiology, Division of Clinical and Translational Research, Washington University in St. Louis, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Ige George
- Department of Internal Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Sumanth Gandra
- Department of Internal Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Pratik Sinha
- Department of Anesthesiology, Division of Clinical and Translational Research, Washington University in St. Louis, St. Louis, MO, USA
| | - Gregory A Storch
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Bijal A Parikh
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Guy M Genin
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
- NSF Science and Technology Center for Engineering MechanoBiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Srikanth Singamaneni
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA.
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
6
|
Bottino P, Pizzo V, Castaldo S, Scomparin E, Bara C, Cerrato M, Sisinni S, Penpa S, Roveta A, Gerbino M, Maconi A, Rocchetti A. Clinical Evaluation and Comparison of Two Microfluidic Antigenic Assays for Detection of SARS-CoV-2 Virus. Microorganisms 2023; 11:2709. [PMID: 38004721 PMCID: PMC10673207 DOI: 10.3390/microorganisms11112709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Given the ongoing pandemic, there is a need to identify SARS-CoV-2 and differentiate it from other respiratory viral infections in various critical settings. Since its introduction, rapid antigen testing is spreading worldwide, but diagnostic accuracy is extremely variable and often in disagreement with the manufacturer's specifications. Our study compared the clinical performances of two microfluidic rapid antigen tests towards a molecular assay, starting from positive samples. A total of 151 swabs collected at the Microbiology and Virology Laboratory of A.O. "SS Antonio e Biagio e C. Arrigo" (Alessandria, Italy) for the diagnosis of SARS-CoV-2 were simultaneously tested to evaluate accuracy, specificity, and agreement with the RT-qPCR results. Both assays showed an overall agreement of 100% for negative specimens, while positive accuracy comprised between 45.10% and 54.90%. According to the manufacturer's instructions, the greatest correlation between the antigenic and molecular assays was observed for the subset with high viral load (18/19, 94.74%), while it dramatically decreased for other subsets. Moreover, the ability to differentiate between SARS-CoV-2 and Flu provides an added value and could be addressed in an epidemic context. However, an in-house validation should be performed due to differences observed in performance declared by manufacturers and those actually obtained.
Collapse
Affiliation(s)
- Paolo Bottino
- Microbiology and Virology Laboratory, A.O. “SS Antonio e Biagio e C. Arrigo”, Via Venezia 16, 15121 Alessandria, Italy; (V.P.); (S.C.); (E.S.); (C.B.); (M.C.); (A.R.)
| | - Valentina Pizzo
- Microbiology and Virology Laboratory, A.O. “SS Antonio e Biagio e C. Arrigo”, Via Venezia 16, 15121 Alessandria, Italy; (V.P.); (S.C.); (E.S.); (C.B.); (M.C.); (A.R.)
| | - Salvatore Castaldo
- Microbiology and Virology Laboratory, A.O. “SS Antonio e Biagio e C. Arrigo”, Via Venezia 16, 15121 Alessandria, Italy; (V.P.); (S.C.); (E.S.); (C.B.); (M.C.); (A.R.)
| | - Elisabetta Scomparin
- Microbiology and Virology Laboratory, A.O. “SS Antonio e Biagio e C. Arrigo”, Via Venezia 16, 15121 Alessandria, Italy; (V.P.); (S.C.); (E.S.); (C.B.); (M.C.); (A.R.)
| | - Cristina Bara
- Microbiology and Virology Laboratory, A.O. “SS Antonio e Biagio e C. Arrigo”, Via Venezia 16, 15121 Alessandria, Italy; (V.P.); (S.C.); (E.S.); (C.B.); (M.C.); (A.R.)
| | - Marcella Cerrato
- Microbiology and Virology Laboratory, A.O. “SS Antonio e Biagio e C. Arrigo”, Via Venezia 16, 15121 Alessandria, Italy; (V.P.); (S.C.); (E.S.); (C.B.); (M.C.); (A.R.)
| | - Sabrina Sisinni
- Research and Innovation Department (DAIRI), A.O. “SS. Antonio e Biagio e C. Arrigo”, Via Venezia 16, 15121 Alessandria, Italy; (S.S.); (S.P.); (A.R.); (A.M.)
| | - Serena Penpa
- Research and Innovation Department (DAIRI), A.O. “SS. Antonio e Biagio e C. Arrigo”, Via Venezia 16, 15121 Alessandria, Italy; (S.S.); (S.P.); (A.R.); (A.M.)
| | - Annalisa Roveta
- Research and Innovation Department (DAIRI), A.O. “SS. Antonio e Biagio e C. Arrigo”, Via Venezia 16, 15121 Alessandria, Italy; (S.S.); (S.P.); (A.R.); (A.M.)
| | - Maria Gerbino
- Department of Science and Technological Innovation (DISIT), University of Eastern Piedmont, Viale Teresa Michel 11, 15121 Alessandria, Italy;
| | - Antonio Maconi
- Research and Innovation Department (DAIRI), A.O. “SS. Antonio e Biagio e C. Arrigo”, Via Venezia 16, 15121 Alessandria, Italy; (S.S.); (S.P.); (A.R.); (A.M.)
| | - Andrea Rocchetti
- Microbiology and Virology Laboratory, A.O. “SS Antonio e Biagio e C. Arrigo”, Via Venezia 16, 15121 Alessandria, Italy; (V.P.); (S.C.); (E.S.); (C.B.); (M.C.); (A.R.)
| |
Collapse
|
7
|
Kinne V, Ehrenberg S, Baier M, Lang S, Lewejohann JC, Kipp F. [Diagnostic performance of two antigen-tests compared to one PCR-Test to detect SARS-CoV-2 in an emergency department and emergency service]. DIE ANAESTHESIOLOGIE 2023; 72:791-798. [PMID: 37792046 PMCID: PMC10615947 DOI: 10.1007/s00101-023-01343-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/04/2023] [Accepted: 08/27/2023] [Indexed: 10/05/2023]
Abstract
BACKGROUND In the German hospital landscape and emergency care the COVID-19 pandemic was a stress test. Emergency medical health care in Germany is ensured by the supply chain between prehospital emergency rescue and clinical emergency care in the emergency rooms. In hospitals and emergency care settings a rapid, simple, accurate, and cost-effective test is needed to identify SARS-CoV‑2. In the central emergency department it is important to strictly separate patients with suspected COVID-19 from non-infected emergency persons. METHODS Given the background mentioned above, the performance of antigen tests in the ambulance service of the city Jena and the central emergency department of the university hospital Jena was analysed and in addition verified by using the RT-PCR gold standard. Several multiple testing procedures were performed by using antigen tests in the ambulance service and the central emergency department, and by using one or both of these antigen tests followed by the RT-PCR test. A total of 980 patients were included in the study over a two-month period (October/November 2022). RESULTS The average age of all patients was 65 years. More than half of the actively treated patients came from the city of Jena. The sensitivity and specificity of the antigen tests were 66.7% and 99.2% in the clinical setting (the central emergency department) and 68.8% and 96.7% in the prehospital setting (in the ambulance service) compared to RT-PCR. In the prehospital setting the sensitivity of the antigen testing was slightly higher (2%) than the clinical antigen testing. Regarding the parallel testing, 6% of antigen tests had a false negative SARS-CoV‑2 antigen test result in the ambulance service and 4.6% of antigen tests had a false negative SARS-CoV‑2 antigen test result in the central emergency department. The false-negative antigen tests, and thus the potentially unrecognized individuals, were further reviewed by considering the Ct-value. CONCLUSION The use of antigen testing in the ambulance service and the emergency department can lead to a quick classification of COVID and non-COVID areas of an emergency department. The measurement accuracy of antigen testing in the ambulance service and central emergency department is not equivalent to the RT-PCR. Nevertheless, antigen testing is a useful initial screening tool for early detection of SARS-CoV‑2 in prehospital and clinical settings. Dual antigen testing may be useful for more accurate diagnosis of the SARS-CoV‑2 pathogen.
Collapse
Affiliation(s)
- Veit Kinne
- Institut für Infektionsmedizin und Krankenhaushygiene, Universitätsklinikum Jena, Jena, Deutschland.
| | - Sandra Ehrenberg
- Institut für Infektionsmedizin und Krankenhaushygiene, Universitätsklinikum Jena, Jena, Deutschland
| | - Michael Baier
- Institut für Medizinische Mikrobiologie, Universitätsklinikum Jena, Jena, Deutschland
| | - Sebastian Lang
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Jena, Jena, Deutschland
| | | | - Frank Kipp
- Institut für Infektionsmedizin und Krankenhaushygiene, Universitätsklinikum Jena, Jena, Deutschland
| |
Collapse
|
8
|
Chen CC, Lee MH, Chen SY, Lu SC, Bai CH, Ko YL, Wang CY, Wang YH. Assessment of the detection accuracy of SARS-CoV-2 rapid antigen test in children and adolescents: An updated meta-analysis. J Chin Med Assoc 2023; 86:966-974. [PMID: 37683135 DOI: 10.1097/jcma.0000000000000987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Real-time and appropriate antigen tests play a pivotal role in preventing severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. However, a previous meta-analysis reported that the antigen test had lower sensitivity for the detection of SARS-CoV-2 in children. To provide a comprehensive evaluation of diagnostic efficiency, we performed an updated meta-analysis to assess the detection accuracy of SARS-CoV-2 antigen tests stratified by days after symptom onset and specimen type in children and adolescents. METHODS We comprehensively searched for appropriate studies in the PubMed, Embase, and Cochrane Library databases. Studies on the diagnostic accuracy of antigen tests for SARS-CoV-2 in children and adolescents were included. The relevant data of the included studies were extracted to construct a 2 × 2 table on a per-patient basis. The overall sensitivity and specificity of the SARS-CoV-2 antigen tests were estimated using a bivariate random-effects model. RESULTS Seventeen studies enrolling 10 912 patients were included in the present meta-analysis. For the detection accuracy of SARS-CoV-2 antigen tests, the meta-analysis generated a pooled sensitivity of 77.9% (95% confidence interval [CI]: 67.3%-85.8%) and a pooled specificity of 99.6% (95% CI: 98.9%-99.8%). The subgroup analysis of studies that examined antigen tests in symptomatic participants ≦7 days after symptom onset generated a pooled sensitivity of 79.4% (95% CI: 47.6%-94.2%) and a pooled specificity of 99.4% (95% CI: 98.2%-99.8%). Another subgroup analysis of studies that evaluated nasal swab specimens demonstrated a pooled sensitivity of 80.1% (95% CI: 65.0%-89.7%) and a pooled specificity of 98.5% (95% CI: 97.3%-9.2%). CONCLUSION Our findings demonstrated that the antigen test performed using nasal swab specimens exhibited high sensitivity for the detection of SARS-CoV-2 within 7 days after symptom onset. Therefore, antigen testing using nasal swabs may be effective in blocking SARS-CoV-2 transmission in children.
Collapse
Affiliation(s)
- Cheng-Chieh Chen
- Department of Pathology and Laboratory Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan, ROC
| | - Mei-Hui Lee
- Division of Infectious Diseases, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan, ROC
| | - Shih-Yen Chen
- Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan, ROC
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
| | - Shou-Cheng Lu
- Department of Laboratory Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan, ROC
| | - Chyi-Huey Bai
- Department of Public Health, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
| | - Yu-Ling Ko
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Chien-Ying Wang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Division of Trauma, Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yuan-Hung Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
- Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan, ROC
| |
Collapse
|
9
|
Yari P, Liang S, Chugh VK, Rezaei B, Mostufa S, Krishna VD, Saha R, Cheeran MCJ, Wang JP, Gómez-Pastora J, Wu K. Nanomaterial-Based Biosensors for SARS-CoV-2 and Future Epidemics. Anal Chem 2023; 95:15419-15449. [PMID: 37826859 DOI: 10.1021/acs.analchem.3c01522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Affiliation(s)
- Parsa Yari
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Shuang Liang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Vinit Kumar Chugh
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Bahareh Rezaei
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Shahriar Mostufa
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Venkatramana Divana Krishna
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota 55108, United States
| | - Renata Saha
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Maxim C-J Cheeran
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota 55108, United States
| | - Jian-Ping Wang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jenifer Gómez-Pastora
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Kai Wu
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
10
|
Sharma A, Chourasia E, Goswami S. Point of Care Tests: Changing Paradigms in the Diagnosis of SARS-CoV-2. Heart Views 2023; 24:194-200. [PMID: 38188704 PMCID: PMC10766159 DOI: 10.4103/heartviews.heartviews_31_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 08/27/2023] [Indexed: 01/09/2024] Open
Abstract
Background Point of care tests provide rapid information about the patient's condition, with a turnaround time of 15 min. During the COVID-19 pandemic, many such point of care tests were developed, to aid in the rapid diagnosis of SARS-Cov-2 infection. Aim To describe and synthesize the available literature on point of care tests for diagnosis of SARS-CoV-2. Methodology This narrative review was done through online literature search, using Google Scholar and PubMed. Result There were 51 point of care tests for diagnosis of SARS-CoV-2 which were validated using different samples, such as such as nasopharyngeal swabs(42), oropharyngeal and naso-pharyngealswabs(2), oropharyngeal swab in VTM(1) nasal swabs(5) and throat swab(1). Conclusion There was global developement of point of care tests on a war footing. The Indian states of Delhi, Maharashtra, Gujarat, Uttar Pradesh, Tamil Nadu, Karnataka, Haryana, Rajasthan, Kerala, Himachal Pradesh, Goa and Uttarakhand, were in the forefront of these developments, as also the USA, Belgium, Taiwan, Korea and South Korea.
Collapse
Affiliation(s)
- Anuradha Sharma
- Department of Microbiology, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, India
| | - Ekta Chourasia
- Department of Microbiology, B. Y. L. Nair Charitable Hospital, Mumbai, Maharashtra, India
| | - Shubham Goswami
- Department of Microbiology, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
11
|
Yoon S, Lim YK, Kweon OJ, Kim TH, Lee MK. Clinical performance of SARS-CoV-2 antigen-detection rapid diagnostic test using SERS-based lateral flow immunoassay. Heliyon 2023; 9:e19492. [PMID: 37809408 PMCID: PMC10558587 DOI: 10.1016/j.heliyon.2023.e19492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/16/2023] [Accepted: 08/24/2023] [Indexed: 10/10/2023] Open
Abstract
Background 'ACROSIS COVID-19 Ag (NPS)' kit (SG Medical, Seoul, Korea) is a newly developed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigen-detection rapid diagnostic test (Ag-RDT) using surface-enhanced Raman scattering (SERS)-based lateral flow immunoassay (LFIA). We evaluated its clinical performance compared with STANDARD Q COVID-19 Ag (SD Biosensor, Suwon, Korea), a previously approved Ag-RDT. Methods A total of 286 nasopharyngeal swab specimens were collected: 104 positive and 182 negative specimens in SARS-CoV-2 real-time reverse-transcription polymerase-chain-reaction (rRT-PCR). SARS-CoV-2-positive specimens were divided according to the cycle threshold (Ct) value in rRT-PCR. The clinical performance of ACROSIS was compared with that of STANDARD Q. Results ACROSIS showed significantly higher sensitivity than STANDARD Q (92.3% vs. 85.6%, P = 0.02), especially in specimens with 25 ≤ Ct < 30 (78.6% vs. 42.9%). The Ct values of RdRp/S genes for 95% detection rates by ACROSIS and STANDARD Q were 25.8 and 23.0, respectively. Conclusions This is the first study that evaluated the performance of ACROSIS compared with STANDARD Q. The overall clinical performance of ACROSIS was superior to that of STANDARD Q, especially in specimens with 25 ≤ Ct < 30. ACROSIS could be useful for SARS-CoV-2 Ag detection even in relatively low viral load specimens.
Collapse
Affiliation(s)
- Sumi Yoon
- Department of Laboratory Medicine, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Yong Kwan Lim
- Department of Laboratory Medicine, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Oh Joo Kweon
- Department of Laboratory Medicine, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Tae-Hyoung Kim
- Department of Urology, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Mi-Kyung Lee
- Department of Laboratory Medicine, Chung-Ang University College of Medicine, Seoul, South Korea
| |
Collapse
|
12
|
Thompson CR, Torres PM, Kontogianni K, Byrne RL, Noguera SV, Luna-Muschi A, Marchi AP, Andrade PS, dos Santos Barboza A, Nishikawara M, Body R, de Vos M, Escadafal C, Adams E, Figueiredo Costa S, Cubas-Atienzar AI. Multicenter Diagnostic Evaluation of OnSite COVID-19 Rapid Test (CTK Biotech) among Symptomatic Individuals in Brazil and the United Kingdom. Microbiol Spectr 2023; 11:e0504422. [PMID: 37212699 PMCID: PMC10269675 DOI: 10.1128/spectrum.05044-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/17/2023] [Indexed: 05/23/2023] Open
Abstract
The COVID-19 pandemic has given rise to numerous commercially available antigen rapid diagnostic tests (Ag-RDTs). To generate and to share accurate and independent data with the global community requires multisite prospective diagnostic evaluations of Ag-RDTs. This report describes the clinical evaluation of the OnSite COVID-19 rapid test (CTK Biotech, CA, USA) in Brazil and the United Kingdom. A total of 496 paired nasopharyngeal (NP) swabs were collected from symptomatic health care workers at Hospital das Clínicas in São Paulo, Brazil, and 211 NP swabs were collected from symptomatic participants at a COVID-19 drive-through testing site in Liverpool, United Kingdom. Swabs were analyzed by Ag-RDT, and results were compared to quantitative reverse transcriptase PCR (RT-qPCR). The clinical sensitivity of the OnSite COVID-19 rapid test in Brazil was 90.3% (95% confidence interval [CI], 75.1 to 96.7%) and in the United Kingdom was 75.3% (95% CI, 64.6 to 83.6%). The clinical specificity in Brazil was 99.4% (95% CI, 98.1 to 99.8%) and in the United Kingdom was 95.5% (95% CI, 90.6 to 97.9%). Concurrently, analytical evaluation of the Ag-RDT was assessed using direct culture supernatant of SARS-CoV-2 strains from wild-type (WT), Alpha, Delta, Gamma, and Omicron lineages. This study provides comparative performance of an Ag-RDT across two different settings, geographical areas, and populations. Overall, the OnSite Ag-RDT demonstrated a lower clinical sensitivity than claimed by the manufacturer. The sensitivity and specificity from the Brazil study fulfilled the performance criteria determined by the World Health Organization, but the performance obtained from the UK study failed to do. Further evaluation of Ag-RDTs should include harmonized protocols between laboratories to facilitate comparison between settings. IMPORTANCE Evaluating rapid diagnostic tests in diverse populations is essential to improving diagnostic responses as it gives an indication of the accuracy in real-world scenarios. In the case of rapid diagnostic testing within this pandemic, lateral flow tests that meet the minimum requirements for sensitivity and specificity can play a key role in increasing testing capacity, allowing timely clinical management of those infected, and protecting health care systems. This is particularly valuable in settings where access to the test gold standard is often restricted.
Collapse
Affiliation(s)
- Caitlin R. Thompson
- Liverpool School of Tropical Medicine, Centre for Drugs and Diagnostics, Liverpool, United Kingdom
| | - Pablo Muñoz Torres
- LIM-49, Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Konstantina Kontogianni
- Liverpool School of Tropical Medicine, Centre for Drugs and Diagnostics, Liverpool, United Kingdom
| | - Rachel L. Byrne
- Liverpool School of Tropical Medicine, Centre for Drugs and Diagnostics, Liverpool, United Kingdom
| | - LSTM Diagnostic group
- Liverpool School of Tropical Medicine, Centre for Drugs and Diagnostics, Liverpool, United Kingdom
- LIM-49, Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Department of Epidemiology, School of Public Health of University of São Paulo, São Paulo, Brazil
- Centro de atendimento ao colaborador, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Divisão de Laboratório Central, Hospital das Clinicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- FIND, Geneva, Switzerland
- Manchester University NHS Foundation Trust, Manchester, United Kingdom
- Global Access Diagnostics, Thurleigh, Bedfordshire, United Kingdom
| | - Saidy Vásconez Noguera
- LIM-49, Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Alessandra Luna-Muschi
- LIM-49, Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Ana Paula Marchi
- LIM-49, Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Pâmela S. Andrade
- Department of Epidemiology, School of Public Health of University of São Paulo, São Paulo, Brazil
| | - Antonio dos Santos Barboza
- Centro de atendimento ao colaborador, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Marli Nishikawara
- Centro de atendimento ao colaborador, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - CONDOR steering group
- Liverpool School of Tropical Medicine, Centre for Drugs and Diagnostics, Liverpool, United Kingdom
- LIM-49, Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Department of Epidemiology, School of Public Health of University of São Paulo, São Paulo, Brazil
- Centro de atendimento ao colaborador, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Divisão de Laboratório Central, Hospital das Clinicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- FIND, Geneva, Switzerland
- Manchester University NHS Foundation Trust, Manchester, United Kingdom
- Global Access Diagnostics, Thurleigh, Bedfordshire, United Kingdom
| | - Richard Body
- Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | | | - Camille Escadafal
- Divisão de Laboratório Central, Hospital das Clinicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Emily Adams
- Liverpool School of Tropical Medicine, Centre for Drugs and Diagnostics, Liverpool, United Kingdom
- Global Access Diagnostics, Thurleigh, Bedfordshire, United Kingdom
| | - Silvia Figueiredo Costa
- LIM-49, Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Ana I. Cubas-Atienzar
- Liverpool School of Tropical Medicine, Centre for Drugs and Diagnostics, Liverpool, United Kingdom
| |
Collapse
|
13
|
de Vos L, Daniels J, Gebengu A, Mazzola L, Gleeson B, Piton J, Mdingi M, Gigi R, Ferreyra C, Klausner JD, Peters RPH. Usability of a novel lateral flow assay for the point-of-care detection of Neisseria gonorrhoeae: A qualitative time-series assessment among healthcare workers in South Africa. PLoS One 2023; 18:e0286666. [PMID: 37267319 DOI: 10.1371/journal.pone.0286666] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/22/2023] [Indexed: 06/04/2023] Open
Abstract
Accurate and user-friendly rapid point-of-care diagnostic tests (POCT) are needed to optimize treatment of Neisseria gonorrhoeae, especially in low-resource settings where syndromic management is the standard of care for sexually transmitted infections. This study aimed to assess the acceptability and usability of a novel lateral flow assay and portable reader for the point-of-care detection of N. gonorrhoeae infection (NG-LFA). This mixed-methods study was conducted as part of a diagnostic performance and usability evaluation of a prototype NG-LFA for detection of N. gonorrhoeae in symptomatic men and women at primary healthcare facilities in the Buffalo City Metro, South Africa. The Standardized System Usability Scale (SUS) was administered, and in-depth interviews were conducted among healthcare professionals (HCPs) and fieldworkers (FWs) at pre-implementation, initial use and 3- and 6-month study implementation to assess user expectations, practical experience, and future implementation considerations for the NG-LFA. Data collection and analysis was guided by the Health Technology Adoption Framework, including new health technology attributes, learnability, satisfaction, and suitability. The framework was adapted to include perceived durability. A total of 21 HCPs and FWs were trained on the NG-LFA use. SUS scores showed good to excellent acceptability ranging from 78.8-90.6 mean scores between HCPs and FWs across study time points. All transcripts were coded using Dedoose and qualitative findings were organized by learnability, satisfaction, suitability, and durability domains. Usability themes are described for each time point. Initial insecurity dissipated and specimen processing dexterity with novel POCT technology was perfected over time especially amongst FWs through practical learning and easy-to-use instructions (learnability). Participants experienced both positive and negative test results, yielding perceived accuracy and minimal testing challenges overall (satisfaction). By 3- and 6-month use, both HCPs and FWs found the NG-LFA convenient to use in primary health care facilities often faced with space constraints and outlined perceived benefits for patients (suitability and durability). Findings show that the NG-LFA device is acceptable and usable even amongst paraprofessionals. High SUS scores and qualitative findings demonstrate high learnability, ease-of-use and suitability that provide valuable information for first-step scale-up requirements at primary healthcare level. Minor prototype adjustments would enhance robustness and durability aspects.
Collapse
Affiliation(s)
- Lindsey de Vos
- Research Unit, Foundation for Professional Development, East London, South Africa
| | - Joseph Daniels
- Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, Arizona, United States of America
| | - Avuyonke Gebengu
- Research Unit, Foundation for Professional Development, East London, South Africa
| | - Laura Mazzola
- Foundation for Innovative New Diagnostics, Geneva, Switzerland
| | | | - Jérémie Piton
- Foundation for Innovative New Diagnostics, Geneva, Switzerland
| | - Mandisa Mdingi
- Research Unit, Foundation for Professional Development, East London, South Africa
| | - Ranjana Gigi
- Research Unit, Foundation for Professional Development, East London, South Africa
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | | | - Jeffrey D Klausner
- Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Remco P H Peters
- Research Unit, Foundation for Professional Development, East London, South Africa
- Department of Medical Microbiology, University of Pretoria, Pretoria, South Africa
- Division of Medical Microbiology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
14
|
Anand U, Pal T, Zanoletti A, Sundaramurthy S, Varjani S, Rajapaksha AU, Barceló D, Bontempi E. The spread of the omicron variant: Identification of knowledge gaps, virus diffusion modelling, and future research needs. ENVIRONMENTAL RESEARCH 2023; 225:115612. [PMID: 36871942 PMCID: PMC9985523 DOI: 10.1016/j.envres.2023.115612] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 06/11/2023]
Abstract
The World Health Organization (WHO) recognised variant B.1.1.529 of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) as a variant of concern, termed "Omicron", on November 26, 2021. Its diffusion was attributed to its several mutations, which allow promoting its ability to diffuse worldwide and its capability in immune evasion. As a consequence, some additional serious threats to public health posed the risk to undermine the global efforts made in the last two years to control the pandemic. In the past, several works were devoted to discussing a possible contribution of air pollution to the SARS-CoV-2 spread. However, to the best of the authors' knowledge, there are still no works dealing with the Omicron variant diffusion mechanisms. This work represents a snapshot of what we know right now, in the frame of an analysis of the Omicron variant spread. The paper proposes the use of a single indicator, commercial trade data, to model the virus spread. It is proposed as a surrogate of the interactions occurring between humans (the virus transmission mechanism due to human-to-human contacts) and could be considered for other diseases. It allows also to explain the unexpected increase in infection cases in China, detected at beginning of 2023. The air quality data are also analyzed to evaluate for the first time the role of air particulate matter (PM) as a carrier of the Omicron variant diffusion. Due to emerging concerns associated with other viruses (such as smallpox-like virus diffusion in Europe and America), the proposed approach seems to be promising to model the virus spreading.
Collapse
Affiliation(s)
- Uttpal Anand
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel
| | - Tarun Pal
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel
| | - Alessandra Zanoletti
- INSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123, Brescia, Italy
| | - Suresh Sundaramurthy
- Department of Chemical Engineering, Maulana Azad National Institute of Technology, Bhopal, 462003, Madhya Pradesh, India
| | - Sunita Varjani
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, 248007, Uttarakhand, India
| | - Anushka Upamali Rajapaksha
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, CO, 10250, Sri Lanka; Instrument Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA-CERCA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, Girona, 17003, Spain; Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), JordiGirona, 1826, Barcelona, 08034, Spain
| | - Elza Bontempi
- INSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123, Brescia, Italy.
| |
Collapse
|
15
|
Romagnoli A, D'Agostino M, Pavoni E, Ardiccioni C, Motta S, Crippa P, Biagetti G, Notarstefano V, Rexha J, Perta N, Barocci S, Costabile BK, Colasurdo G, Caucci S, Mencarelli D, Turchetti C, Farina M, Pierantoni L, La Teana A, Al Hadi R, Cicconardi F, Chinappi M, Trucchi E, Mancia F, Menzo S, Morozzo Della Rocca B, D'Annessa I, Di Marino D. SARS-CoV-2 multi-variant rapid detector based on graphene transistor functionalized with an engineered dimeric ACE2 receptor. NANO TODAY 2023; 48:101729. [PMID: 36536857 PMCID: PMC9750890 DOI: 10.1016/j.nantod.2022.101729] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/14/2022] [Accepted: 12/11/2022] [Indexed: 05/14/2023]
Abstract
Reliable point-of-care (POC) rapid tests are crucial to detect infection and contain the spread of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The emergence of several variants of concern (VOC) can reduce binding affinity to diagnostic antibodies, limiting the efficacy of the currently adopted tests, while showing unaltered or increased affinity for the host receptor, angiotensin converting enzyme 2 (ACE2). We present a graphene field-effect transistor (gFET) biosensor design, which exploits the Spike-ACE2 interaction, the crucial step for SARS-CoV-2 infection. Extensive computational analyses show that a chimeric ACE2-Fragment crystallizable (ACE2-Fc) construct mimics the native receptor dimeric conformation. ACE2-Fc functionalized gFET allows in vitro detection of the trimeric Spike protein, outperforming functionalization with a diagnostic antibody or with the soluble ACE2 portion, resulting in a sensitivity of 20 pg/mL. Our miniaturized POC biosensor successfully detects B.1.610 (pre-VOC), Alpha, Beta, Gamma, Delta, Omicron (i.e., BA.1, BA.2, BA.4, BA.5, BA.2.75 and BQ.1) variants in isolated viruses and patient's clinical nasopharyngeal swabs. The biosensor reached a Limit Of Detection (LOD) of 65 cps/mL in swab specimens of Omicron BA.5. Our approach paves the way for a new and reusable class of highly sensitive, rapid and variant-robust SARS-CoV-2 detection systems.
Collapse
Affiliation(s)
- Alice Romagnoli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
- New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Mattia D'Agostino
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Eleonora Pavoni
- Department of Information Engineering, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Chiara Ardiccioni
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
- New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Stefano Motta
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Paolo Crippa
- Department of Information Engineering, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Giorgio Biagetti
- Department of Information Engineering, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Valentina Notarstefano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Jesmina Rexha
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Nunzio Perta
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Simone Barocci
- Department of Clinical Pathology, ASUR Marche AV1, Urbino, PU, Italy
| | - Brianna K Costabile
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | | | - Sara Caucci
- Virology Unit, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Torrette, 60126 Ancona, Italy
| | - Davide Mencarelli
- Department of Information Engineering, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Claudio Turchetti
- Department of Information Engineering, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Marco Farina
- Department of Information Engineering, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Luca Pierantoni
- Department of Information Engineering, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Anna La Teana
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
- New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Richard Al Hadi
- Alcatera Inc., 1401 Westwood Blvd Suite 280, Los Angeles, CA 90024, USA
| | - Francesco Cicconardi
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Ave, Bristol BS8 1TQ, UK
| | - Mauro Chinappi
- Department of Industrial Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| | - Emiliano Trucchi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Stefano Menzo
- Virology Unit, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Torrette, 60126 Ancona, Italy
| | - Blasco Morozzo Della Rocca
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Ilda D'Annessa
- Institute of Chemical Science and Technologies, SCITEC-CNR, Via Mario Bianco 9, 20131 Milan, Italy
| | - Daniele Di Marino
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
- New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
16
|
Osterman A, Badell I, Dächert C, Schneider N, Kaufmann AY, Öztan GN, Huber M, Späth PM, Stern M, Autenrieth H, Muenchhoff M, Graf A, Krebs S, Blum H, Czibere L, Durner J, Kaderali L, Baldauf HM, Keppler OT. Variable detection of Omicron-BA.1 and -BA.2 by SARS-CoV-2 rapid antigen tests. Med Microbiol Immunol 2023; 212:13-23. [PMID: 36370197 PMCID: PMC9660148 DOI: 10.1007/s00430-022-00752-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 10/22/2022] [Indexed: 11/15/2022]
Abstract
During 2022, the COVID-19 pandemic has been dominated by the variant of concern (VoC) Omicron (B.1.1.529) and its rapidly emerging subvariants, including Omicron-BA.1 and -BA.2. Rapid antigen tests (RATs) are part of national testing strategies to identify SARS-CoV-2 infections on site in a community setting or to support layman's diagnostics at home. We and others have recently demonstrated an impaired RAT detection of infections caused by Omicron-BA.1 compared to Delta. Here, we evaluated the performance of five SARS-CoV-2 RATs in a single-centre laboratory study examining a total of 140 SARS-CoV-2 PCR-positive respiratory swab samples, 70 Omicron-BA.1 and 70 Omicron-BA.2, as well as 52 SARS-CoV-2 PCR-negative swabs collected from March 8th until April 10th, 2022. One test did not meet minimal criteria for specificity. In an assessment of the analytical sensitivity in clinical specimen, the 50% limit of detection (LoD50) ranged from 4.2 × 104 to 9.2 × 105 RNA copies subjected to the RAT for Omicron-BA.1 compared to 1.3 × 105 to 1.5 × 106 for Omicron-BA.2. Overall, intra-assay differences for the detection of Omicron-BA.1-containing and Omicron-BA.2-containing samples were non-significant, while a marked overall heterogeneity among the five RATs was observed. To score positive in these point-of-care tests, up to 22-fold (LoD50) or 68-fold (LoD95) higher viral loads were required for the worst performing compared to the best performing RAT. The rates of true-positive test results for these Omicron subvariant-containing samples in the highest viral load category (Ct values < 25) ranged between 44.7 and 91.1%, while they dropped to 8.7 to 22.7% for samples with intermediate Ct values (25-30). In light of recent reports on the emergence of two novel Omicron-BA.2 subvariants, Omicron-BA.2.75 and BJ.1, awareness must be increased for the overall reduced detection rate and marked differences in RAT performance for these Omicron subvariants.
Collapse
Affiliation(s)
- Andreas Osterman
- Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany
| | - Irina Badell
- Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany
| | - Christopher Dächert
- Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany
| | - Nikolas Schneider
- Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany
| | - Anna-Yasemin Kaufmann
- Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany
| | - Gamze Naz Öztan
- Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany
| | - Melanie Huber
- Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany
| | - Patricia M Späth
- Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany
| | - Marcel Stern
- Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany
| | - Hanna Autenrieth
- Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany
| | - Maximilian Muenchhoff
- Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, LMU München, Munich, Germany
| | - Alexander Graf
- Laboratory for Functional Genome Analysis, Gene Center, LMU München, Munich, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis, Gene Center, LMU München, Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis, Gene Center, LMU München, Munich, Germany
| | | | - Jürgen Durner
- Labor Becker MVZ GbR, Munich, Germany
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU München, Munich, Germany
| | - Lars Kaderali
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | - Hanna-Mari Baldauf
- Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany.
| | - Oliver T Keppler
- Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany.
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany.
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, LMU München, Munich, Germany.
| |
Collapse
|
17
|
Heydecke A, Gullsby K. Evaluation of the performance of a rapid antigen test (Roche) for COVID-19 diagnosis in an emergency setting in Sweden. J Med Virol 2023; 95:e28537. [PMID: 36714993 PMCID: PMC10108204 DOI: 10.1002/jmv.28537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023]
Abstract
During the ongoing COVID-19 pandemic, rapid and reliable detection of SARS-CoV-2 is important to enable proper care of patients and to prevent further transmission. The aim of this study was to evaluate the performance of the Roche SARS-CoV-2 Rapid Antigen Test (Ag-RDT) in an emergency care setting during a high pandemic period. The analytical performance of the Ag-RDT was compared to real-time reverse transcriptase polymerase chain reaction (rRT-PCR). A total of 132 patient samples, previously analyzed with rRT-PCR, were reanalyzed with the Ag-RDT. Tenfold serial dilutions of five different patient strains containing the pangolin variants BA.1, BA.2, B.1.1.7, B.1.160, and B.1.177 were analyzed in parallel with the Ag-RDT and rRT-PCR. A clinical evaluation was performed in which 1911 consecutive patients admitted to the emergency wards in Region Gävleborg, Sweden, were included. Paired samples were collected and analyzed with the Ag-RDT on-site and with rRT-PCR at the microbiology laboratory. The overall sensitivity and specificity of the Ag-RDT in the clinical evaluation were 71.3% and 99.7%, respectively. When samples with cycle threshold (Ct) values above 30 were excluded, the sensitivity was 86.5%. Eleven of the admitted patients who were positive for both the Ag-RDT and rRT-PCR (Ct-range 16.9-30.4) showed no symptoms of COVID-19. Using the Ag-RDT shortened the detection time by an average of 11 h. The Ag-RDT is a useful tool for preliminary screening of SARS-CoV-2 because it enables rapid detection in infectious individuals and therefore, can counteract unnecessary spread of infection at an early stage.
Collapse
Affiliation(s)
- Anna Heydecke
- Centre for Research and Development, Uppsala University/Region Gävleborg, Gävle, Sweden.,Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Karolina Gullsby
- Centre for Research and Development, Uppsala University/Region Gävleborg, Gävle, Sweden
| |
Collapse
|
18
|
Lippi G, Henry BM, Plebani M. An overview of the most important preanalytical factors influencing the clinical performance of SARS-CoV-2 antigen rapid diagnostic tests (Ag-RDTs). Clin Chem Lab Med 2023; 61:196-204. [PMID: 36343376 DOI: 10.1515/cclm-2022-1058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022]
Abstract
Due to the many technical limitations of molecular biology, the possibility to sustain enormous volumes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) diagnostic testing relies strongly on the use of antigen rapid diagnostic tests (Ag-RDTs). Besides a limited analytical sensitivity, the manually intensive test procedures needed for performing these tests, very often performed by unskilled personnel or by the patients themselves, may contribute to considerably impair their diagnostic accuracy. We provide here an updated overview on the leading preanalytical drawbacks that may impair SARS-CoV-2 Ag-RDT accuracy, and which encompass lower diagnostic sensitivity in certain age groups, in asymptomatic subjects and those with a longer time from symptoms onset, in vaccine recipients, in individuals not appropriately trained to their usage, in those recently using oral or nasal virucidal agents, in oropharyngeal swabs and saliva, as well as in circumstances when instructions provided by the manufacturers are unclear, incomplete or scarcely readable and intelligible. Acknowledging these important preanalytical limitations will lead the way to a better, more clinically efficient and even safer use of this important technology, which represents an extremely valuable resource for management of the ongoing pandemic.
Collapse
Affiliation(s)
- Giuseppe Lippi
- IFCC Task Force on COVID-19, Milan, Italy
- IFCC Working Group on SARS-COV-2 Variants, Milan, Italy
- Section of Clinical Biochemistry and School of Medicine, University of Verona, Verona, Italy
| | - Brandon M Henry
- IFCC Task Force on COVID-19, Milan, Italy
- IFCC Working Group on SARS-COV-2 Variants, Milan, Italy
- Clinical Laboratory, Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Mario Plebani
- IFCC Working Group on SARS-COV-2 Variants, Milan, Italy
- University of Padova, Padova, Italy
| |
Collapse
|
19
|
Chen Y, Ma Y, Han Y, Diao Z, Chang L, Li J, Zhang R. Evaluation of Four Strategies for SARS-CoV-2 Detection: Characteristics and Prospects. Microbiol Spectr 2022; 10:e0214322. [PMID: 36287010 PMCID: PMC9769534 DOI: 10.1128/spectrum.02143-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/27/2022] [Indexed: 01/06/2023] Open
Abstract
The pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed an enormous burden on the global public health system and has had disastrous socioeconomic consequences. Currently, single sampling tests, 20-in-1 pooling tests, nucleic acid point-of-care tests (POCTs), and rapid antigen tests are implemented in different scenarios to detect SARS-CoV-2, but a comprehensive evaluation of them is scarce and remains to be explored. In this study, 3 SARS-CoV-2 inactivated cell culture supernatants were used to evaluate the analytical performance of these strategies. Additionally, 5 recombinant SARS-CoV-2 nucleocapsid (N) proteins were also used for rapid antigen tests. For the wild-type (WT), Delta, and Omicron strains, the lowest inactivated virus concentrations to achieve 100% detection rates of single sampling tests ranged between 1.28 × 102 to 1.02 × 103, 1.28 × 102 to 4.10 × 103, and 1.28 × 102 to 2.05 × 103 copies/mL. The 20-in-1 pooling tests ranged between 1.30 × 102 to 1.04 × 103, 5.19 × 102 to 2.07 × 103, and 2.59 × 102 to 1.04 × 103 copies/mL. The nucleic acid POCTs were all 1.42 × 103 copies/mL. The rapid antigen tests ranged between 2.84 × 105 to 7.14 × 106, 8.68 × 104 to 7.14 × 106, and 1.12 × 105 to 3.57 × 106 copies/mL. For the WT, Delta AY.2, Delta AY.1/AY.3, Omicron BA.1, and Omicron BA.2 recombinant N proteins, the lowest concentrations to achieve 100% detection rates of rapid antigen tests ranged between 3.47 to 142.86, 1.74 to 142.86, 3.47 to 142.86, 3.47 to 142.86, and 5.68-142.86 ng/mL, respectively. This study provided helpful insights into the scientific deployment of tests and recommended the full-scale consideration of the testing purpose, resource availability, cost performance, result rapidity, and accuracy to facilitate a profound pathway toward the long-term surveillance of coronavirus disease 2019 (COVID-19). IMPORTANCE In the study, we reported an evaluation of 4 detection strategies implemented in different scenarios for SARS-CoV-2 detection: single sampling tests, 20-in-1 pooling tests, nucleic acid point-of-care tests, and rapid antigen tests. 3 SARS-CoV-2-inactivated SARS-CoV-2 cell culture supernatants and 5 recombinant SARS-CoV-2 nucleocapsid proteins were used for evaluation. In this analysis, we found that for the WT, Delta, and Omicron supernatants, the lowest concentrations to achieve 100% detection rates of single sampling tests ranged between 1.28 × 102 to 1.02 × 103, 1.28 × 102 to 4.10 × 103, and 1.28 × 102 to 2.05 × 103 copies/mL. The 20-in-1 pooling tests ranged between 1.30 × 102 to 1.04 × 103, 5.19 × 102 to 2.07 × 103, and 2.59 × 102 to 1.04 × 103 copies/mL. The nucleic acid POCTs were all 1.42 × 103 copies/mL. The rapid antigen tests ranged between 2.84 × 105 to 7.14 × 106, 8.68 × 104 to 7.14 × 106, and 1.12 × 105 to 3.57 × 106 copies/mL. For the WT, Delta AY.2, Delta AY.1/AY.3, Omicron BA.1, and Omicron BA.2 recombinant N proteins, the lowest concentrations to achieve 100% detection rates of rapid antigen tests ranged between 3.47 to 142.86, 1.74 to 142.86, 3.47 to 142.86, 3.47 to 142.86, and 5.68 to 142.86 ng/mL, respectively.
Collapse
Affiliation(s)
- Yuqing Chen
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People’s Republic of China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, People’s Republic of China
| | - Yu Ma
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People’s Republic of China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, People’s Republic of China
| | - Yanxi Han
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People’s Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, People’s Republic of China
| | - Zhenli Diao
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People’s Republic of China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, People’s Republic of China
| | - Lu Chang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People’s Republic of China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, People’s Republic of China
| | - Jinming Li
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People’s Republic of China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, People’s Republic of China
| | - Rui Zhang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People’s Republic of China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, People’s Republic of China
| |
Collapse
|
20
|
Chen CC, Hsiao KY, Bai CH, Wang YH. Investigation of the diagnostic performance of the SARS-CoV-2 saliva antigen test: A meta-analysis. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2022; 55:1084-1093. [PMID: 35922266 PMCID: PMC9287583 DOI: 10.1016/j.jmii.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/26/2022] [Accepted: 07/07/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND The COVID-19 pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Rapid identification and isolation of patients with COVID-19 are critical strategies to contain COVID-19. The saliva antigen test has the advantages of noninvasiveness and decreased transmission risk to health-care professionals. This meta-analysis investigated the diagnostic accuracy of the saliva antigen test for SARS-CoV-2. METHODS We searched for relevant studies in PubMed, Embase, Cochrane Library, and Biomed Central. Studies evaluating the diagnostic accuracy of saliva antigen tests for SARS-CoV-2 were included. The data of the included studies were used to construct a 2 × 2 table on a per patient basis. The overall sensitivity and specificity of saliva antigen tests were determined using a bivariate random-effects model. RESULTS Nine studies enrolling 9842 patients were included. The meta-analysis generated a pooled sensitivity of 65.3% and a pooled specificity of 99.7%. A subgroup analysis of the studies performing the chemiluminescent enzyme immunoassay (CLEIA) for participants from airports and public health centers revealed a pooled sensitivity of 93.6%. CONCLUSION Our findings demonstrated that the saliva antigen test performed using CLEIA exhibited higher sensitivity for the detection of SARS-CoV-2. Therefore, the saliva antigen test performed using CLEIA might be an effective and noninvasive screening tool for SARS-CoV-2.
Collapse
Affiliation(s)
- Cheng-Chieh Chen
- Department of Pathology and Laboratory Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Ke-Yu Hsiao
- Department of Pathology and Laboratory Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan.
| | - Chyi-Huey Bai
- Department of Public Health, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Yuan-Hung Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
| |
Collapse
|
21
|
Moy N, Dulleck U, Shah A, Messmann H, Thrift AP, Talley NJ, Holtmann GJ. Risk-based decision-making related to preprocedural coronavirus disease 2019 testing in the setting of GI endoscopy: management of risks, evidence, and behavioral health economics. Gastrointest Endosc 2022; 96:735-742.e3. [PMID: 35690149 PMCID: PMC9174097 DOI: 10.1016/j.gie.2022.05.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/06/2022] [Accepted: 05/28/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Controversies exist regarding the benefits and most appropriate approach for preprocedural coronavirus disease 2019 (COVID-19) testing (eg, rapid antigen test, polymerase chain reaction, or real-time polymerase chain reaction) for outpatients undergoing diagnostic and therapeutic procedures, such as GI endoscopy, to prevent COVID-19 infections among staff. Guidelines for protecting healthcare workers (HCWs) from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection from outpatient procedures varies across medical professional organizations. This study provides an evidence-based decision support tool for key decision-makers (eg, clinicians) to respond to COVID-19 transmission risks and reduce the effect of personal biases. METHODS A scoping review was used to identify relevant factors influencing COVID-19 transmission risk relevant for GI endoscopy. From 12 relevant publications, 8 factors were applicable: test sensitivity, prevalence of SARS-CoV-2 in the population, age-adjusted SARS-CoV-2 prevalence in the patient cohort, proportion of asymptomatic patients, risk of transmission from asymptomatic carriers, risk reduction by personal protective equipment (PPE), vaccination rates of HCWs, and risk reduction of SAE by vaccination. The probability of a serious adverse event (SAE), such as workplace-acquired infection resulting in HCW death, under various scenarios with preprocedural testing was determined to inform decision-makers of expected costs of reductions in SAEs. RESULTS In a setting of high community transmission, without testing and PPE, 117.5 SAEs per million procedures were estimated to occur, and this was reduced to between .079 and 2.35 SAEs per million procedures with the use of PPE and preprocedural testing. When these variables are used and a range of scenarios are tested, the probability of an SAE was low even without testing but was reduced by preprocedural testing. CONCLUSIONS Under all scenarios tested, preprocedural testing reduced the SAE risk for HCWs regardless of the SARS-CoV-2 variant. Benefits of preprocedural testing are marginal when community transmission is low (eg, below 10 infections a day per 100,000 population). The proposed decision support tool can assist in developing rational preprocedural testing policies.
Collapse
Affiliation(s)
- Naomi Moy
- School of Economics and Finance, Faculty of Business and Law, Queensland University of Technology, Brisbane, Queensland, Australia; Centre for Behavioural Economics, Society and Technology, Queensland University Australia; Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Uwe Dulleck
- School of Economics and Finance, Faculty of Business and Law, Queensland University of Technology, Brisbane, Queensland, Australia; Centre for Behavioural Economics, Society and Technology, Queensland University Australia; Crawford School of Public Policy, Australian National University, Canberra, Australian Capital Territory, Australia; CESifo, LMU Munich, Munich, Germany
| | - Ayesha Shah
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, Queensland, Australia; Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Helmut Messmann
- Department of Gastroenterology, University Hospital Augsburg, Augsburg, Germany
| | - Aaron P Thrift
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Nicholas J Talley
- College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
| | - Gerald J Holtmann
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, Queensland, Australia; Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia; University of Queensland Diamantina Institute, University of Queensland, Woolloongabba, Queensland, Australia; Australian Gastrointestinal Rearch Alliance, Newcastle, New South Wales, Australia; NHMRC Centre for Research Excellence in Digestive Health, Brisbane, Queensland, Australia
| |
Collapse
|
22
|
da-Costa-Rodrigues B, Cheohen C, Sciammarella F, Pierre-Bonetti-Pozzobon A, Ribeiro L, Nepomuceno-Silva JL, Medeiros M, Mury F, Monteiro-de-Barros C, Lazoski C, Leal-da-Silva M, Tanuri A, Nunes-da-Fonseca R. SARS-CoV-2 Spatiotemporal Genomic and Molecular Analysis of the First Wave of the COVID-19 Pandemic in Macaé, the Brazilian Capital of Oil. Int J Mol Sci 2022; 23:ijms231911497. [PMID: 36232806 PMCID: PMC9569756 DOI: 10.3390/ijms231911497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/23/2022] [Accepted: 09/25/2022] [Indexed: 11/25/2022] Open
Abstract
The SARS-CoV-2 virus infection led to millions of deaths during the COVID-19 pandemic. Hundreds of workers from several other Brazilian cities, as well as from other countries, arrive daily in Macaé to work in the oil supply chain, making this city a putative hotspot for the introduction of new viral lineages. In this study, we performed a genomic survey of SARS-CoV-2 samples from Macaé during the first outbreak of COVID-19, combined with clinical data and a molecular integrative analysis. First, phylogenomic analyses showed a high occurrence of viral introduction events and the establishment of local transmissions in Macaé, including the ingression and spread of the B.1.1.28 lineage in the municipality from June to August 2020. Second, SARS-CoV-2 mutations were identified in patients with distinct levels of COVID-19 severity. Third, molecular interactions of the mutated spike protein from three B.1.1.33 local samples and human ACE2 showed higher interactions than that of the wild-type spike protein from the ancestral virus. Altogether, these results elucidate the SARS-CoV-2 genomic profile in a strategic Brazilian city and further explore the functional aspects of SARS-CoV-2 with a characterization of emerging viral mutations associated with clinical data and the potential targets for drug development against SARS-CoV-2.
Collapse
Affiliation(s)
- Bruno da-Costa-Rodrigues
- Instituto de Biodiversidade e Sustentabilidade-NUPEM, Universidade Federal do Rio de Janeiro (UFRJ), Av. São José do Barreto 764, Macaé 27965-550, Brazil
- Programa de Ciências Morfológicas, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-170, Brazil
- Correspondence: (B.d.-C.-R.); (R.N.-d.-F.)
| | - Caio Cheohen
- Instituto de Biodiversidade e Sustentabilidade-NUPEM, Universidade Federal do Rio de Janeiro (UFRJ), Av. São José do Barreto 764, Macaé 27965-550, Brazil
| | - Felipe Sciammarella
- Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| | - Allan Pierre-Bonetti-Pozzobon
- Instituto de Biodiversidade e Sustentabilidade-NUPEM, Universidade Federal do Rio de Janeiro (UFRJ), Av. São José do Barreto 764, Macaé 27965-550, Brazil
| | - Lupis Ribeiro
- Instituto de Biodiversidade e Sustentabilidade-NUPEM, Universidade Federal do Rio de Janeiro (UFRJ), Av. São José do Barreto 764, Macaé 27965-550, Brazil
| | - José Luciano Nepomuceno-Silva
- Instituto de Biodiversidade e Sustentabilidade-NUPEM, Universidade Federal do Rio de Janeiro (UFRJ), Av. São José do Barreto 764, Macaé 27965-550, Brazil
| | - Marcio Medeiros
- Instituto de Biodiversidade e Sustentabilidade-NUPEM, Universidade Federal do Rio de Janeiro (UFRJ), Av. São José do Barreto 764, Macaé 27965-550, Brazil
| | - Flávia Mury
- Instituto de Biodiversidade e Sustentabilidade-NUPEM, Universidade Federal do Rio de Janeiro (UFRJ), Av. São José do Barreto 764, Macaé 27965-550, Brazil
| | - Cintia Monteiro-de-Barros
- Instituto de Biodiversidade e Sustentabilidade-NUPEM, Universidade Federal do Rio de Janeiro (UFRJ), Av. São José do Barreto 764, Macaé 27965-550, Brazil
| | - Cristiano Lazoski
- Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| | - Manuela Leal-da-Silva
- Instituto de Biodiversidade e Sustentabilidade-NUPEM, Universidade Federal do Rio de Janeiro (UFRJ), Av. São José do Barreto 764, Macaé 27965-550, Brazil
| | - Amilcar Tanuri
- Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| | - Rodrigo Nunes-da-Fonseca
- Instituto de Biodiversidade e Sustentabilidade-NUPEM, Universidade Federal do Rio de Janeiro (UFRJ), Av. São José do Barreto 764, Macaé 27965-550, Brazil
- Programa de Ciências Morfológicas, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-170, Brazil
- Correspondence: (B.d.-C.-R.); (R.N.-d.-F.)
| |
Collapse
|
23
|
Sitoe N, Sambo J, Mabunda N, Nguenha N, Chilaúle J, Rafael J, Macicame A, Chelene I, Mudenyanga C, Sacks J, Viegas S, Loquiha O, Jani I. Clinical Performance of Self-Collected Nasal Swabs and Antigen Rapid Tests for SARS-CoV-2 Detection in Resource-Poor Settings. Biomedicines 2022; 10:biomedicines10092327. [PMID: 36140429 PMCID: PMC9496276 DOI: 10.3390/biomedicines10092327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 12/05/2022] Open
Abstract
Background: In resource-poor countries, antigen-based rapid tests (Ag-RDTs) performed at primary healthcare and community settings improved access to SARS-CoV-2 diagnostics. However, the technical skills and biosafety requirements inherent to nasopharyngeal and oropharyngeal (OP) specimens limit the scale-up of SARS-CoV-2 testing. The collection of nasal-swabs is programmatically viable, but its performance has not been evaluated in resource-poor settings. Methods: We first evaluated the performance of SteriPack self-collected nasal swabs for the detection of SARS-CoV-2 by real-time PCR in 1498 consecutively enrolled patients with suspected infection. Next, we evaluated the clinical performance of three nasal swab-based Ag-RDTs against real-time PCR on OP specimens. Results: The sensitivity of nasal swabs was 80.6% [95% CI: 75.3−85.2%] compared to OP specimens. There was a good correlation (r = 0.58; p < 0.0001) between Ct values of 213 positive cases obtained using nasal and OP swabs. Our findings show sensitivities of 79.7% [95% CI: 73.3−85.1%] for Panbio COVID-19 Ag-RDT, 59.6% [95% CI: 55.2−63.8%] for COVIOS Ag-RDT, and 78.0% [95% CI: 73.5−82.0%] for the LumiraDx SARS-CoV-2 Ag-RDT. Conclusions: In our setting, the COVIOS Ag-RDT did not meet WHO requirements. Nasal swab-based Ag-RDTs for SARS-CoV-2 detection constitute a viable and accurate diagnostic option in resource-poor settings.
Collapse
Affiliation(s)
- Nádia Sitoe
- Instituto Nacional de Saúde, Marracuene 3943, Mozambique
- Correspondence:
| | - Júlia Sambo
- Instituto Nacional de Saúde, Marracuene 3943, Mozambique
| | - Nédio Mabunda
- Instituto Nacional de Saúde, Marracuene 3943, Mozambique
| | - Neuza Nguenha
- Instituto Nacional de Saúde, Marracuene 3943, Mozambique
| | | | - Júlio Rafael
- Instituto Nacional de Saúde, Marracuene 3943, Mozambique
| | | | - Imelda Chelene
- Instituto Nacional de Saúde, Marracuene 3943, Mozambique
| | | | | | - Sofia Viegas
- Instituto Nacional de Saúde, Marracuene 3943, Mozambique
| | - Osvaldo Loquiha
- Clinton Health Access Initiative, Maputo City 592, Mozambique
| | - Ilesh Jani
- Instituto Nacional de Saúde, Marracuene 3943, Mozambique
| |
Collapse
|
24
|
Alkhatib M, Carioti L, D’Anna S, Ceccherini-Silberstein F, Svicher V, Salpini R. SARS-CoV-2 Mutations and Variants May Muddle the Sensitivity of COVID-19 Diagnostic Assays. Microorganisms 2022; 10:1559. [PMID: 36013977 PMCID: PMC9414863 DOI: 10.3390/microorganisms10081559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/28/2022] [Accepted: 07/31/2022] [Indexed: 11/17/2022] Open
Abstract
The performance of diagnostic polymerase chain reaction (PCR) assays can be impacted by SARS-CoV-2 variability as this is dependent on the full complementarity between PCR primers/probes and viral target templates. Here, we investigate the genetic variability of SARS-CoV-2 regions recognized by primers/probes utilized by PCR diagnostic assays based on nucleotide mismatching analysis. We evaluated the genetic variation in the binding regions of 73 primers/probes targeting the Nucleocapsid (N, N = 36), Spike (S, N = 22), and RNA-dependent RNA-polymerase/Helicase (RdRp/Hel, N = 15) of the publicly available PCR-based assays. Over 4.9 million high-quality SARS-CoV-2 genome sequences were retrieved from GISAID and were divided into group-A (all except Omicron, >4.2 million) and group-B (only Omicron, >558 thousand). In group-A sequences, a large range of variability in primers/probes binding regions in most PCR assays was observed. Particularly, 87.7% (64/73) of primers/probes displayed ≥1 mismatch with their viral targets, while 8.2% (6/73) contained ≥2 mismatches and 2.7% (2/73) contained ≥3 mismatches. In group-B sequences, 32.9% (24/73) of primers/probes were characterized by ≥1 mismatch, 13.7% (10/73) by ≥2 mismatches, and 5.5% (4/73) by ≥3 mismatches. The high rate of single and multiple mismatches- found in the target regions of molecular assays used worldwide for SARS-CoV-2 diagnosis reinforces the need to optimize and constantly update these assays according to SARS-CoV-2 genetic evolution and the future emergence of novel variants.
Collapse
Affiliation(s)
- Mohammad Alkhatib
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; mohammad-- (M.A.); (L.C.); (S.D.); (F.C.-S.); (V.S.)
| | - Luca Carioti
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; mohammad-- (M.A.); (L.C.); (S.D.); (F.C.-S.); (V.S.)
| | - Stefano D’Anna
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; mohammad-- (M.A.); (L.C.); (S.D.); (F.C.-S.); (V.S.)
| | - Francesca Ceccherini-Silberstein
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; mohammad-- (M.A.); (L.C.); (S.D.); (F.C.-S.); (V.S.)
| | - Valentina Svicher
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; mohammad-- (M.A.); (L.C.); (S.D.); (F.C.-S.); (V.S.)
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Romina Salpini
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; mohammad-- (M.A.); (L.C.); (S.D.); (F.C.-S.); (V.S.)
| |
Collapse
|
25
|
Zhang Y, Huang Z, Zhu J, Li C, Fang Z, Chen K, Zhang Y. An updated review of SARS-CoV-2 detection methods in the context of a novel coronavirus pandemic. Bioeng Transl Med 2022; 8:e10356. [PMID: 35942232 PMCID: PMC9349698 DOI: 10.1002/btm2.10356] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 01/21/2023] Open
Abstract
The World Health Organization has reported approximately 430 million confirmed cases of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), worldwide, including nearly 6 million deaths, since its initial appearance in China in 2019. While the number of diagnosed cases continues to increase, the need for technologies that can accurately and rapidly detect SARS-CoV-2 virus infection at early phases continues to grow, and the Federal Drug Administration (FDA) has licensed emergency use authorizations (EUAs) for virtually hundreds of diagnostic tests based on nucleic acid molecules and antigen-antibody serology assays. Among them, the quantitative real-time reverse transcription PCR (qRT-PCR) assay is considered the gold standard for early phase virus detection. Unfortunately, qRT-PCR still suffers from disadvantages such as the complex test process and the occurrence of false negatives; therefore, new nucleic acid detection devices and serological testing technologies are being developed. However, because of the emergence of strongly infectious mutants of the new coronavirus, such as Alpha (B.1.1.7), Delta (B.1.617.2), and Omicron (B.1.1.529), the need for the specific detection of mutant strains is also increasing. Therefore, this article reviews nucleic acid- and antigen-antibody-based serological assays, and compares the performance of some of the most recent FDA-approved and literature-reported assays and associated kits for the specific testing of new coronavirus variants.
Collapse
Affiliation(s)
- Yuxuan Zhang
- Shulan International Medical College, Zhejiang Shuren UniversityHangzhouChina
| | - Zhiwei Huang
- School of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhouChina
| | - Jiajie Zhu
- Shulan International Medical College, Zhejiang Shuren UniversityHangzhouChina
| | - Chaonan Li
- Shulan International Medical College, Zhejiang Shuren UniversityHangzhouChina
| | - Zhongbiao Fang
- Shulan International Medical College, Zhejiang Shuren UniversityHangzhouChina
| | - Keda Chen
- Shulan International Medical College, Zhejiang Shuren UniversityHangzhouChina
| | - Yanjun Zhang
- Zhejiang Provincial Center for Disease Control and PreventionHangzhouChina
| |
Collapse
|
26
|
Evaluation of pre-hospital COVID-19 rapid antigen tests by paramedics and their use in a direct admission pathway: Pre-Hospital COVID-19 rapid antigen tests. J Infect 2022; 85:e53-e55. [PMID: 35728641 PMCID: PMC9212732 DOI: 10.1016/j.jinf.2022.06.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 12/24/2022]
|
27
|
Freire ML, Alves LL, de Souza CS, Saliba JW, Faria V, Pedras MJ, Carvalho NDO, Andrade GQ, Rabello A, Avelar DM, Cota G. Performance differences among commercially available antigen rapid tests for COVID-19 in Brazil. PLoS One 2022; 17:e0269997. [PMID: 35709075 PMCID: PMC9202877 DOI: 10.1371/journal.pone.0269997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/01/2022] [Indexed: 11/29/2022] Open
Abstract
A rapid and accurate diagnosis is a crucial strategy for containing the coronavirus disease (COVID-19) pandemic. Considering the obstacles to upscaling the use of RT–qPCR, rapid tests based on antigen detection (Ag-RDT) have become an alternative to enhance mass testing, reducing the time for a prompt diagnosis and virus spreading. However, the performances of several commercially available Ag-RDTs have not yet been evaluated in several countries. Here, we evaluate the performance of eight Ag-RDTs available in Brazil to diagnose COVID-19. Patients admitted to tertiary hospitals with moderate or mild COVID-19 symptoms and presenting risk factors for severe disease were included. The tests were performed using a masked protocol, strictly following the manufacturer’s recommendations and were compared with RT–qPCR. The overall sensitivity of the tests ranged from 9.8 to 81.1%, and specificity greater than 83% was observed for all the evaluated tests. Overall, slight or fair agreement was observed between Ag-RDTs and RT–PCR, except for the Ag-RDT COVID-19 (Acro Biotech), in which moderate agreement was observed. Lower sensitivity of Ag-RDTs was observed for patients with cycle threshold > 25, indicating that the sensitivity was directly affected by viral load, whereas the effect of the disease duration was unclear. Despite the lower sensitivity of Ag-RDTs compared with RT–qPCR, its easy fulfillment and promptness still justify its use, even at hospital admission. However, the main advantage of Ag-RDTs seems to be the possibility of increasing access to the diagnosis of COVID-19 in patients with a high viral load, allowing immediate clinical management and reduction of infectivity and community transmission.
Collapse
Affiliation(s)
- Mariana Lourenço Freire
- Pesquisa Clínica e Políticas Públicas em Doenças Infecciosas e Parasitárias, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| | - Lindicy Leidicy Alves
- Pesquisa Clínica e Políticas Públicas em Doenças Infecciosas e Parasitárias, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | - Carolina Senra de Souza
- Pesquisa Clínica e Políticas Públicas em Doenças Infecciosas e Parasitárias, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
- Coordenação Estadual de Laboratórios e Pesquisa em Vigilância da Subsecretaria de Vigilância em Saúde da Secretaria do Estado da Saúde de Minas Gerais
| | - Juliana Wilke Saliba
- Pesquisa Clínica e Políticas Públicas em Doenças Infecciosas e Parasitárias, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
- Coordenação Estadual de Laboratórios e Pesquisa em Vigilância da Subsecretaria de Vigilância em Saúde da Secretaria do Estado da Saúde de Minas Gerais
| | - Verônica Faria
- Pesquisa Clínica e Políticas Públicas em Doenças Infecciosas e Parasitárias, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | - Mariana Junqueira Pedras
- Pesquisa Clínica e Políticas Públicas em Doenças Infecciosas e Parasitárias, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | - Nara de Oliveira Carvalho
- Núcleo de Ações e Pesquisa em apoio diagnóstico (NUPAD), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Gláucia Queiroz Andrade
- Núcleo de Ações e Pesquisa em apoio diagnóstico (NUPAD), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Ana Rabello
- Pesquisa Clínica e Políticas Públicas em Doenças Infecciosas e Parasitárias, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | - Daniel Moreira Avelar
- Pesquisa Clínica e Políticas Públicas em Doenças Infecciosas e Parasitárias, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | - Gláucia Cota
- Pesquisa Clínica e Políticas Públicas em Doenças Infecciosas e Parasitárias, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
28
|
Hörber S, Drees C, Ganzenmueller T, Schmauder K, Peter S, Biskup D, Peter A. Evaluation of a laboratory-based high-throughput SARS-CoV-2 antigen assay. Clin Chem Lab Med 2022; 60:1478-1485. [PMID: 35700973 DOI: 10.1515/cclm-2022-0360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/31/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Antigen tests are an essential part of SARS-CoV-2 testing strategies. Rapid antigen tests are easy to use but less sensitive compared to nucleic acid amplification tests (NAT) and less suitable for large-scale testing. In contrast, laboratory-based antigen tests are suitable for high-throughput immunoanalyzers. Here we evaluated the diagnostic performance of the laboratory-based Siemens Healthineers SARS-CoV-2 Antigen (CoV2Ag) assay. METHODS In a public test center, from 447 individuals anterior nasal swab specimens as well as nasopharyngeal swab specimens were collected. The nasal swab specimens were collected in sample inactivation medium and measured using the CoV2Ag assay. The nasopharyngeal swab specimens were measured by RT-PCR. Additionally, 9,046 swab specimens obtained for screening purposes in a tertiary care hospital were analyzed and positive CoV2Ag results confirmed by NAT. RESULTS In total, 234/447 (52.3%) participants of the public test center were positive for SARS-CoV-2-RNA. Viral lineage B1.1.529 was dominant during the study. Sensitivity and specificity of the CoV2Ag assay were 88.5% (95%CI: 83.7-91.9%) and 99.5% (97.4-99.9%), respectively. Sensitivity increased to 93.7% (97.4-99.9%) and 98.7% (97.4-99.9%) for swab specimens with cycle threshold values <30 and <25, respectively. Out of 9,046 CoV2Ag screening tests from hospitalized patients, 21 (0.2%) swab specimens were determined as false-positive by confirmatory NAT. CONCLUSIONS Using sample tubes containing inactivation medium the laboratory-based high-throughput CoV2Ag assay is a very specific and highly sensitive assay for detection of SARS-CoV-2 antigen in nasal swab specimens including the B1.1.529 variant. In low prevalence settings confirmation of positive CoV2Ag results by SARS-CoV-2-RNA testing is recommended.
Collapse
Affiliation(s)
- Sebastian Hörber
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Christoph Drees
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Tina Ganzenmueller
- Institute of Medical Virology, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Kristina Schmauder
- Institute of Medical Microbiology and Hygiene, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Silke Peter
- Institute of Medical Microbiology and Hygiene, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen, Germany
| | | | - Andreas Peter
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
29
|
Osterman A, Badell I, Basara E, Stern M, Kriesel F, Eletreby M, Öztan GN, Huber M, Autenrieth H, Knabe R, Späth PM, Muenchhoff M, Graf A, Krebs S, Blum H, Durner J, Czibere L, Dächert C, Kaderali L, Baldauf HM, Keppler OT. Impaired detection of omicron by SARS-CoV-2 rapid antigen tests. Med Microbiol Immunol 2022; 211:105-117. [PMID: 35187580 PMCID: PMC8858605 DOI: 10.1007/s00430-022-00730-z] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 02/12/2022] [Indexed: 01/25/2023]
Abstract
Since autumn 2020, rapid antigen tests (RATs) have been implemented in several countries as an important pillar of the national testing strategy to rapidly screen for infections on site during the SARS-CoV-2 pandemic. The current surge in infection rates around the globe is driven by the variant of concern (VoC) omicron (B.1.1.529). Here, we evaluated the performance of nine SARS-CoV-2 RATs in a single-centre laboratory study. We examined a total of 115 SARS-CoV-2 PCR-negative and 166 SARS-CoV-2 PCR-positive respiratory swab samples (101 omicron, 65 delta (B.1.617.2)) collected from October 2021 until January 2022 as well as cell culture-expanded clinical isolates of both VoCs. In an assessment of the analytical sensitivity in clinical specimen, the 50% limit of detection (LoD50) ranged from 1.77 × 106 to 7.03 × 107 RNA copies subjected to the RAT for omicron compared to 1.32 × 105 to 2.05 × 106 for delta. To score positive in these point-of-care tests, up to 10-fold (LoD50) or 101-fold (LoD95) higher virus loads were required for omicron- compared to delta-containing samples. The rates of true positive test results for omicron samples in the highest virus load category (Ct values < 25) ranged between 31.4 and 77.8%, while they dropped to 0-8.3% for samples with intermediate Ct values (25-30). Of note, testing of expanded virus stocks suggested a comparable RAT sensitivity of both VoCs, questioning the predictive value of this type of in vitro-studies for clinical performance. Given their importance for national test strategies in the current omicron wave, awareness must be increased for the reduced detection rate of omicron infections by RATs and a short list of suitable RATs that fulfill the minimal requirements of performance should be rapidly disclosed.
Collapse
Affiliation(s)
- Andreas Osterman
- Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Feodor-Lynen-Str. 23, 81377, Munich, Germany
| | - Irina Badell
- Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Feodor-Lynen-Str. 23, 81377, Munich, Germany
| | - Elif Basara
- Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Feodor-Lynen-Str. 23, 81377, Munich, Germany
| | - Marcel Stern
- Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Feodor-Lynen-Str. 23, 81377, Munich, Germany
| | - Fabian Kriesel
- Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Feodor-Lynen-Str. 23, 81377, Munich, Germany
| | - Marwa Eletreby
- Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Feodor-Lynen-Str. 23, 81377, Munich, Germany
| | - Gamze Naz Öztan
- Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Feodor-Lynen-Str. 23, 81377, Munich, Germany
| | - Melanie Huber
- Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Feodor-Lynen-Str. 23, 81377, Munich, Germany
| | - Hanna Autenrieth
- Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Feodor-Lynen-Str. 23, 81377, Munich, Germany
| | - Ricarda Knabe
- Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Feodor-Lynen-Str. 23, 81377, Munich, Germany
| | - Patricia M Späth
- Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Feodor-Lynen-Str. 23, 81377, Munich, Germany
| | - Maximilian Muenchhoff
- Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Feodor-Lynen-Str. 23, 81377, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site, Munich, Germany
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, LMU Munich, Munich, Germany
| | - Alexander Graf
- Laboratory for Functional Genome Analysis, Gene Center, LMU München, Munich, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis, Gene Center, LMU München, Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis, Gene Center, LMU München, Munich, Germany
| | - Jürgen Durner
- Labor Becker MVZ GbR, Munich, Germany
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU München, Goethestr. 70, 80336, Munich, Germany
| | | | - Christopher Dächert
- Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Feodor-Lynen-Str. 23, 81377, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site, Munich, Germany
| | - Lars Kaderali
- Institute of Bioinformatics, University Medicine Greifswald, Felix-Hausdorff-Str. 8, 17475, Greifswald, Germany.
| | - Hanna-Mari Baldauf
- Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Feodor-Lynen-Str. 23, 81377, Munich, Germany.
| | - Oliver T Keppler
- Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Feodor-Lynen-Str. 23, 81377, Munich, Germany.
- German Center for Infection Research (DZIF), Partner Site, Munich, Germany.
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
30
|
Hussain R, Ongaro AE, Rodriguez de la Concepción ML, Wajs E, Riveira-Muñoz E, Ballana E, Blanco J, Toledo R, Chamorro A, Massanella M, Mateu L, Grau E, Clotet B, Carrillo J, Pruneri V. Small form factor flow virometer for SARS-CoV-2. BIOMEDICAL OPTICS EXPRESS 2022; 13:1609-1619. [PMID: 35415002 PMCID: PMC8973178 DOI: 10.1364/boe.450212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/19/2022] [Accepted: 01/22/2022] [Indexed: 05/20/2023]
Abstract
Current diagnostics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection heavily rely on reverse transcription-polymerase chain reaction (RT-PCR) or on rapid antigen detection tests. The former suffers from long time-to-result and high cost while the latter from poor sensitivity. Therefore, it is crucial to develop rapid, sensitive, robust, and inexpensive methods for SARS-CoV-2 testing. Herein, we report a novel optofluidic technology, a flow-virometry reader (FVR), for fast and reliable SARS-CoV-2 detection in saliva samples. A small microfluidic chip together with a laser-pumped optical head detects the presence of viruses tagged with fluorescent antibodies directly from saliva samples. The technology has been validated using clinical samples with high sensitivity (91.2%) and specificity (90%). Thanks also to its short time-to-result (<30 min) and small size (25 × 30 × 13 cm), which can be further reduced in the future, it is a strong alternative to existing tests, especially for point-of-care (POC) and low resource settings.
Collapse
Affiliation(s)
- Rubaiya Hussain
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels (Barcelona), Spain
- Contributed equally
| | - Alfredo E Ongaro
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels (Barcelona), Spain
- Contributed equally
| | - Maria L Rodriguez de la Concepción
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, UAB, 08916, Badalona, Catalonia, Spain
- Contributed equally
| | - Ewelina Wajs
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels (Barcelona), Spain
| | - Eva Riveira-Muñoz
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, UAB, 08916, Badalona, Catalonia, Spain
| | - Ester Ballana
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, UAB, 08916, Badalona, Catalonia, Spain
| | - Julià Blanco
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, UAB, 08916, Badalona, Catalonia, Spain
| | - Ruth Toledo
- Infectious Diseases Department, Fight against AIDS Foundation (FLS), Germans Trias i Pujol Hospital, 08916, Badalona, Catalonia, Spain
| | - Anna Chamorro
- Infectious Diseases Department, Fight against AIDS Foundation (FLS), Germans Trias i Pujol Hospital, 08916, Badalona, Catalonia, Spain
| | - Marta Massanella
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, UAB, 08916, Badalona, Catalonia, Spain
| | - Lourdes Mateu
- Infectious Diseases Department, Fight against AIDS Foundation (FLS), Germans Trias i Pujol Hospital, 08916, Badalona, Catalonia, Spain
| | - Eulalia Grau
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, UAB, 08916, Badalona, Catalonia, Spain
| | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, UAB, 08916, Badalona, Catalonia, Spain
- Infectious Diseases Department, Fight against AIDS Foundation (FLS), Germans Trias i Pujol Hospital, 08916, Badalona, Catalonia, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), 08500, Vic, Catalonia, Spain
| | - Jorge Carrillo
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, UAB, 08916, Badalona, Catalonia, Spain
| | - Valerio Pruneri
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels (Barcelona), Spain
- ICREA- Institució Catalana de Recerca i Estudis Avançats, 08010, Barcelona, Spain
| |
Collapse
|
31
|
Hurtado AV, Nguyen HT, Schenkel V, Wachinger J, Seybold J, Denkinger CM, De Allegri M. The economic cost of implementing antigen-based rapid diagnostic tests for COVID-19 screening in high-risk transmission settings: evidence from Germany. HEALTH ECONOMICS REVIEW 2022; 12:15. [PMID: 35157154 PMCID: PMC8845412 DOI: 10.1186/s13561-022-00361-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Antigen-based rapid diagnostic tests (Ag-RDT) have been implemented in hospitals and nursing homes to screen for infectious individuals without symptoms suggestive of SARS-CoV-2 infections and to prevent entry into these high-risk settings. Despite their benefits for screening, the cost of large-scale implementation is largely understudied. Our study presents evidence on their implementation costs in high-risk settings. This study aimed to estimate the economic costs of implementing Ag-RDT-based screening for SARS-CoV-2 in two tertiary care hospitals (University Hospital Heidelberg - UKHD, and Charité - Universitätsmedizin Berlin) and one nursing home in Germany. METHODS We adopted a health system perspective and followed the three sequential steps to costing: identification of resources, measurement of resource consumption, and valuation of costs. Data on resource consumption were collected between October 2020 and April 2021 through various techniques and data sources. The cost estimation considered all costs along the screening algorithm including PCR confirmation tests for positive cases. We estimated the costs for the two implementation modalities observed: staff dedicated exclusively to screening and staff not dedicated exclusively to screening. Furthermore, cost estimations were performed under both observed capacity use and hypothetical capacity use assumptions (60, 80 and 100%). RESULTS Our study indicates that the average cost per Ag-RDT is highly dependent on the capacity use and implementation mode. Staff time and test kits are the two main cost drivers of implementing the large-scale screening programs for SARS-CoV-2 using Ag-RDTs. For hospitals, the average cost per test in UKHD was €30.12 (capacity observed); €14.56 (non-dedicated mode); €19.47, €16.37, €14.53 at 60, 80, 100% capacity respectively (dedicated mode); and at Charité €13.10 (non-dedicated mode). For the nursing home the estimated average cost per test was €15.03 (non-dedicated mode). CONCLUSIONS The information on the estimated costs by mode of implementation and capacity use may support the planning of Ag-RDT-based covid-19 screening programs suitable for each institution. Further research is needed to cost this screening strategy for COVID-19 in other high-risk, high-income settings to reach generalizability.
Collapse
Affiliation(s)
- Alfonso Valenzuela Hurtado
- Heidelberg Institute of Global Health, Heidelberg University Hospital and Faculty of Medicine, Heidelberg University, Heidelberg, Germany.
| | - Hoa Thi Nguyen
- Heidelberg Institute of Global Health, Heidelberg University Hospital and Faculty of Medicine, Heidelberg University, Heidelberg, Germany
- Division of Clinical Tropical Medicine, Heidelberg University Hospital and Faculty of Medicine, Heidelberg University, Heidelberg, Germany
| | - Viktoria Schenkel
- Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Medical Directorate, Berlin, Germany
| | - Jonas Wachinger
- Heidelberg Institute of Global Health, Heidelberg University Hospital and Faculty of Medicine, Heidelberg University, Heidelberg, Germany
| | - Joachim Seybold
- Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Medical Directorate, Berlin, Germany
| | - Claudia M Denkinger
- Division of Clinical Tropical Medicine, Heidelberg University Hospital and Faculty of Medicine, Heidelberg University, Heidelberg, Germany
| | - Manuela De Allegri
- Heidelberg Institute of Global Health, Heidelberg University Hospital and Faculty of Medicine, Heidelberg University, Heidelberg, Germany
| |
Collapse
|