1
|
Besaratinia A, Tommasi S. The Untapped Biomarker Potential of MicroRNAs for Health Risk-Benefit Analysis of Vaping vs. Smoking. Cells 2024; 13:1330. [PMID: 39195220 DOI: 10.3390/cells13161330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
Despite the popularity of electronic cigarettes (e-cigs) among adolescent never-smokers and adult smokers seeking a less pernicious substitute for tobacco cigarettes, the long-term health impact of vaping is largely unknown. Like cigarette smoke, e-cig vapor contains harmful and potentially harmful compounds, although in fewer numbers and at substantially lower concentrations. Many of the same constituents of e-cig vapor and cigarette smoke induce epigenetic changes that can lead to the dysregulation of disease-related genes. MicroRNAs (MiRNAs) are key regulators of gene expression in health and disease states. Extensive research has shown that miRNAs play a prominent role in the regulation of genes involved in the pathogenesis of smoking-related diseases. However, the use of miRNAs for investigating the disease-causing potential of vaping has not been fully explored. This review article provides an overview of e-cigs as a highly consequential electronic nicotine delivery system, describes trends in e-cig use among adolescents and adults, and discusses the ongoing debate on the public health impact of vaping. Highlighting the significance of miRNAs in cell biology and disease, it summarizes the published and ongoing research on miRNAs in relation to gene regulation and disease pathogenesis in e-cig users and in vitro experimental settings. It identifies gaps in knowledge and priorities for future research while underscoring the need for empirical evidence that can inform the regulation of tobacco products to protect youth and promote public health.
Collapse
Affiliation(s)
- Ahmad Besaratinia
- Department of Population & Public Health Sciences, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA
| | - Stella Tommasi
- Department of Population & Public Health Sciences, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA
| |
Collapse
|
2
|
Yang Y, Wang Y, Mao Y, Zhu F, Zhang M, Pan M, Yin T, Xu J, Chen R, Zheng W. Association of life's essential 8 with mortality among the individuals with cardiovascular disease. Sci Rep 2024; 14:18520. [PMID: 39122961 PMCID: PMC11315880 DOI: 10.1038/s41598-024-69603-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024] Open
Abstract
This study explores the association between LE8 scores and mortality risks among individuals diagnosed with cardiovascular disease (CVD). Utilizing data from the NHANES conducted between 2005 and 2018, survey-weighted multivariable Cox proportional hazards regression models were utilized. Life's Essential 8 (LE8) scores dose-response associations were assessed using restricted cubic spline regression. Sub-analyses were performed for different categories of CVD. The study consisted of 2164 participants diagnosed with CVD, ranging in age from 20 to 80 years (weighted mean [SE] age, 61.47 [0.34] years; The average total LE8 was 64.97 [0.54]. 499 participants experienced mortality, with 350 deaths attributed to CVD. After accounting for potential covariates, LE8 score was found to be associated with a decreased both all-cause mortality (OR 0.34, CI 0.22-0.51) and CVD mortality (OR 0.40, CI 0.23-0.68). A survey-weighted multivariable Cox model with restricted cubic splines identified the lowest all-cause mortality (P < 0.001) and CVD mortality (P < 0.001) risk when LE8 reach at 63.75 (P < 0.001). The results highlight the association between LE8 scores and reduced mortality in CVD patient population. The implementation of comprehensive initiatives that prioritize healthy dietary patterns, will play a crucial role in alleviating the impact of cardiovascular disease and improving cardiovascular health outcomes.
Collapse
Affiliation(s)
- Ying Yang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ye Wang
- Department of Psychiatry, Zhejiang Cancer Hospital, Hangzhou, China
| | - Yanping Mao
- Department of Psychiatry, Zhejiang Cancer Hospital, Hangzhou, China
| | - Feiyun Zhu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Man Zhang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Mengshan Pan
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Tongle Yin
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiamin Xu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Rucheng Chen
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Weijun Zheng
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
3
|
Besaratinia A, Blumenfeld H, Tommasi S. Exploring the Utility of Long Non-Coding RNAs for Assessing the Health Consequences of Vaping. Int J Mol Sci 2024; 25:8554. [PMID: 39126120 PMCID: PMC11313266 DOI: 10.3390/ijms25158554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
Electronic cigarette (e-cig) use, otherwise known as "vaping", is widespread among adolescent never-smokers and adult smokers seeking a less-harmful alternative to combustible tobacco products. To date, however, the long-term health consequences of vaping are largely unknown. Many toxicants and carcinogens present in e-cig vapor and tobacco smoke exert their biological effects through epigenetic changes that can cause dysregulation of disease-related genes. Long non-coding RNAs (lncRNAs) have emerged as prime regulators of gene expression in health and disease states. A large body of research has shown that lncRNAs regulate genes involved in the pathogenesis of smoking-associated diseases; however, the utility of lncRNAs for assessing the disease-causing potential of vaping remains to be fully determined. A limited but growing number of studies has shown that lncRNAs mediate dysregulation of disease-related genes in cells and tissues of vapers as well as cells treated in vitro with e-cig aerosol extract. This review article provides an overview of the evolution of e-cig technology, trends in use, and controversies on the safety, efficacy, and health risks or potential benefits of vaping relative to smoking. While highlighting the importance of lncRNAs in cell biology and disease, it summarizes the current and ongoing research on the modulatory effects of lncRNAs on gene regulation and disease pathogenesis in e-cig users and in vitro experimental settings. The gaps in knowledge are identified, priorities for future research are highlighted, and the importance of empirical data for tobacco products regulation and public health is underscored.
Collapse
Affiliation(s)
- Ahmad Besaratinia
- Department of Population & Public Health Sciences, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA; (H.B.); (S.T.)
| | | | | |
Collapse
|
4
|
Toraman E. Biochemical and molecular evaluation of oxidative stress and mitochondrial damage in fruit fly exposed to carmoisine. Mol Biol Rep 2024; 51:685. [PMID: 38796672 DOI: 10.1007/s11033-024-09616-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/06/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND In today's world, appearance is an important factor in almost all areas of our lives. Therefore, it has become common to use dyes to color foods to make them look appetizing and visually appealing. However, food additives have negative effects on biochemical processes in cells at both high and low doses. METHODS AND RESULTS This study investigated the effect of carmoisine, a commonly used food coloring, on oxidative stress and damage parameters in Drosophila melanogaster in terms of both enzymatic and gene expression. The change in mitochondrial DNA copy number (mtDNA-CN), a marker of oxidative stress, was also examined. When the data obtained were analyzed, it was observed that carmoisine caused a significant decrease in GSH levels depending on the increase in dose. SOD, CAT, GPx, and AChE enzyme activities and gene expression levels were also found to be significantly decreased. All groups also showed a significant decrease in mtDNA-CN. The effect of carmoisine on Drosophila melanogaster morphology was also investigated in our study. However, no significant change was observed in terms of morphological development in any group. CONCLUSIONS When all the findings were evaluated together, it was observed that carmoisin triggered oxidative stress and these effects became more risky at high doses. Therefore, we believe that the consumer should be made more aware of the side effects of azo dyes in food and that the type and concentration of each substance added to food should be specified.
Collapse
Affiliation(s)
- Emine Toraman
- Science Faculty, Department of Molecular Biology and Genetics, Atatürk University, Erzurum, Türkiye, 25240, Turkey.
| |
Collapse
|
5
|
Fukihara J, Sakamoto K, Ikeyama Y, Furukawa T, Teramachi R, Kataoka K, Kondoh Y, Hashimoto N, Ishii M. Mitochondrial DNA in bronchoalveolar lavage fluid is associated with the prognosis of idiopathic pulmonary fibrosis: a single cohort study. Respir Res 2024; 25:202. [PMID: 38730452 PMCID: PMC11083749 DOI: 10.1186/s12931-024-02828-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Extracellular mitochondrial DNA (mtDNA) is released from damaged cells and increases in the serum and bronchoalveolar lavage fluid (BALF) of idiopathic pulmonary fibrosis (IPF) patients. While increased levels of serum mtDNA have been reported to be linked to disease progression and the future development of acute exacerbation (AE) of IPF (AE-IPF), the clinical significance of mtDNA in BALF (BALF-mtDNA) remains unclear. We investigated the relationships between BALF-mtDNA levels and other clinical variables and prognosis in IPF. METHODS Extracellular mtDNA levels in BALF samples collected from IPF patients were determined using droplet-digital PCR. Levels of extracellular nucleolar DNA in BALF (BALF-nucDNA) were also determined as a marker for simple cell collapse. Patient characteristics and survival information were retrospectively reviewed. RESULTS mtDNA levels in serum and BALF did not correlate with each other. In 27 patients with paired BALF samples obtained in a stable state and at the time of AE diagnosis, BALF-mtDNA levels were significantly increased at the time of AE. Elevated BALF-mtDNA levels were associated with inflammation or disordered pulmonary function in a stable state (n = 90), while being associated with age and BALF-neutrophils at the time of AE (n = 38). BALF-mtDNA ≥ 4234.3 copies/µL in a stable state (median survival time (MST): 42.4 vs. 79.6 months, p < 0.001) and ≥ 11,194.3 copies/µL at the time of AE (MST: 2.6 vs. 20.0 months, p = 0.03) were associated with shorter survival after BALF collection, even after adjusting for other known prognostic factors. On the other hand, BALF-nucDNA showed different trends in correlation with other clinical variables and did not show any significant association with survival time. CONCLUSIONS Elevated BALF-mtDNA was associated with a poor prognosis in both IPF and AE-IPF. Of note, at the time of AE, it sharply distinguished survivors from non-survivors. Given the trends shown by analyses for BALF-nucDNA, the elevation of BALF-mtDNA might not simply reflect the impact of cell collapse. Further studies are required to explore the underlying mechanisms and clinical applications of BALF-mtDNA in IPF.
Collapse
Affiliation(s)
- Jun Fukihara
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, Seto, Aichi, Japan
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, Japan
| | - Koji Sakamoto
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, Japan.
| | - Yoshiki Ikeyama
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, Japan
| | - Taiki Furukawa
- Medical IT Center, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Ryo Teramachi
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, Japan
| | - Kensuke Kataoka
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, Seto, Aichi, Japan
| | - Yasuhiro Kondoh
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, Seto, Aichi, Japan
| | - Naozumi Hashimoto
- Department of Respiratory Medicine, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Makoto Ishii
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, Japan
| |
Collapse
|
6
|
Cheng Q, Liu QQ, Lu CA. A state-of-the-science review of using mitochondrial DNA copy number as a biomarker for environmental exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123642. [PMID: 38402934 DOI: 10.1016/j.envpol.2024.123642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/06/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Mitochondria are bioenergetic, biosynthetic, and signaling organelles in eukaryotes, and contain their own genomes, mitochondrial DNA (mtDNA), to supply energy to cells by generating ATP via oxidative phosphorylation. Therefore, the threat to mitochondria' integrity and health resulting from environmental exposure could induce adverse health effects in organisms. In this review, we summarized the association between mtDNA copy number (mtDNAcn), and environmental exposures as reported in the literature. We conducted a literature search in the Web of Science using [Mitochondrial DNA copy number] and [Exposure] as two keywords and employed three selection criteria for the final inclusion of 97 papers for review. The consensus of data was that mtDNAcn could be used as a plausible biomarker for cumulative exposures to environmental chemical and physical agents. In order to furtherly expand the application of mtDNAcn in ecological and environmental health research, we suggested a series of algorithms aiming to standardize the calculation of mtDNAcn based on the PCR results in this review. We also discussed the pitfalls of using whole blood/plasma samples for mtDNAcn measurements and regard buccal cells a plausible and practical alternative. Finally, we recognized the importance of better understanding the mechanistic analysis and regulatory mechanism of mtDNAcn, in particular the signals release and regulation pathways. We believe that the development of using mtDNAcn as an exposure biomarker will revolutionize the evaluation of chronic sub-lethal toxicity of chemicals to organisms in ecological and environmental health research that has not yet been implemented.
Collapse
Affiliation(s)
- Qing Cheng
- College of Resources and Environment, Southwest University, Chongqing, 400715, People's Republic of China
| | - Qing Qing Liu
- College of Resources and Environment, Southwest University, Chongqing, 400715, People's Republic of China
| | - Chensheng Alex Lu
- College of Resources and Environment, Southwest University, Chongqing, 400715, People's Republic of China; School of Public Health, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
7
|
Win PW, Nyugen J, Morin AL, Newcomb CE, Singh SM, Gomaa N, Castellani CA. Simultaneous assessment of mitochondrial DNA copy number and nuclear epigenetic age towards predictive models of development and aging. BMC Res Notes 2024; 17:21. [PMID: 38212867 PMCID: PMC10785513 DOI: 10.1186/s13104-023-06673-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/15/2023] [Indexed: 01/13/2024] Open
Abstract
OBJECTIVE Mitochondrial dysfunction and nuclear epigenetic alterations, two hallmarks of aging, are associated with aberrant development and complex disease risk. Here, we report a method for the simultaneous assessment of mitochondrial DNA copy number (mtDNA-CN) and DNA methylation age (DNAm age) from the same DNA extraction using quantitative polymerase chain reaction (qPCR) and array data, respectively. RESULT We present methods for the concurrent estimation of mtDNA-CN and DNAm age from the same DNA samples. This includes qPCR to estimate mtDNA-CN, representing the number of circular mitochondrial genomes in a cell, and DNA methylation microarray data to estimate the epigenetic age of an individual. Further, we provide a method for the combination of these metrics into a shared metric termed 'mtEpiAge'. This approach provides a valuable tool for exploring the interplay between mitochondrial dysfunction and nuclear epigenetic alterations, and their associations with disease and aging.
Collapse
Affiliation(s)
- Phyo W Win
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Canada
- Department of Biology, Western University, London, Canada
| | - Julia Nyugen
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Amanda L Morin
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Charles E Newcomb
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Shiva M Singh
- Department of Biology, Western University, London, Canada
- Children's Health Research Institute, Lawson Research Institute, London, Canada
| | - Noha Gomaa
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Canada
- Oral Medicine, Schulich School of Medicine and Dentistry, Western University, London, Canada
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, Canada
- Children's Health Research Institute, Lawson Research Institute, London, Canada
| | - Christina A Castellani
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Canada.
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, USA.
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, Canada.
- Children's Health Research Institute, Lawson Research Institute, London, Canada.
| |
Collapse
|
8
|
Miller RL, Rivera J, Lichtiger L, Govindarajulu US, Jung KH, Lovinsky-Desir S, Perera F, Balcer Whaley S, Newman M, Grant TL, McCormack M, Perzanowski M, Matsui EC. Associations between mitochondrial biomarkers, urban residential exposures and childhood asthma outcomes over 6 months. ENVIRONMENTAL RESEARCH 2023; 239:117342. [PMID: 37813137 PMCID: PMC10843300 DOI: 10.1016/j.envres.2023.117342] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/26/2023] [Accepted: 10/07/2023] [Indexed: 10/11/2023]
Abstract
Determining biomarkers of responses to environmental exposures and evaluating whether they predict respiratory outcomes may help optimize environmental and medical approaches to childhood asthma. Relative mitochondrial (mt) DNA abundance and other potential mitochondrial indicators of oxidative stress may provide a sensitive metric of the child's shifting molecular responses to its changing environment. We leveraged two urban childhood cohorts (Environmental Control as Add-on Therapy in Childhood Asthma (ECATCh); Columbia Center for Children's Environmental Health (CCCEH)) to ascertain whether biomarkers in buccal mtDNA associate with airway inflammation and altered lung function over 6 months of time and capture biologic responses to multiple external stressors such as indoor allergens and fine particulate matter (PM2.5). Relative mtDNA content was amplified by qPCR and methylation of transfer RNA phenylalanine/rRNA 12S (TF/RNR1), cytochrome c oxidase (CO1), and carboxypeptidase O (CPO) was measured by pyrosequencing. Data on residential exposures and respiratory outcomes were harmonized between the two cohorts. Repeated measures and multiple regression models were utilized to assess relationships between mitochondrial biomarkers, respiratory outcomes, and residential exposures (PM2.5, allergens), adjusted for potential confounders and time-varying asthma. We found across the 6 month visits, a 0.64 fold higher level of TF/RNR1 methylation was detected among those with asthma in comparison to those without asthma ((parameter estimate (PE) 0.64, standard error 0.28, p = 0.03). In prospective analyses, CPO methylation was associated with subsequent reduced forced vital capacity (FVC; PE -0.03, standard error 0.01, p = 0.02). Bedroom dust mouse allergen, but not indoor PM2.5, was associated with higher methylation of TF/RNR1 (PE 0.015, standard error 0.006, p = 0.01). Select mtDNA measures in buccal cells may indicate children's responses to toxic environmental exposures and associate selectively with asthma and lung function.
Collapse
Affiliation(s)
- Rachel L Miller
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA; Columbia Center for Childrens Environmental Health, Columbia University Mailman School of Public Health, 722 West 168th Street, New York, NY, 10032, USA.
| | - Janelle Rivera
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Lydia Lichtiger
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Usha S Govindarajulu
- Center for Biostatistics, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Kyung Hwa Jung
- Division of Pediatric Pulmonary, Columbia University Irving Medical Center, 630 W. 168th St, New York, NY, 10032, USA
| | - Stephanie Lovinsky-Desir
- Division of Pediatric Pulmonary, Columbia University Irving Medical Center, 630 W. 168th St, New York, NY, 10032, USA
| | - Frederica Perera
- Columbia Center for Childrens Environmental Health, Columbia University Mailman School of Public Health, 722 West 168th Street, New York, NY, 10032, USA
| | - Susan Balcer Whaley
- Department of Population Health, Dell Medical School University of Texas at Austin, 1601 Trinity St., Bldg. B, Stop Z0500, Austin, TX, 78712, USA
| | - Michelle Newman
- Department of Epidemiology and Public Health, University of Maryland, 10 S. Pine St, MSTF 3-34, Baltimore, MD, 21201, USA
| | - Torie L Grant
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Meredith McCormack
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Matthew Perzanowski
- Columbia Center for Childrens Environmental Health, Columbia University Mailman School of Public Health, 722 West 168th Street, New York, NY, 10032, USA
| | - Elizabeth C Matsui
- Department of Population Health, Dell Medical School University of Texas at Austin, 1601 Trinity St., Bldg. B, Stop Z0500, Austin, TX, 78712, USA
| |
Collapse
|
9
|
Song MA, Wold LE, Aslaner DM, Archer KJ, Patel D, Jeon H, Chung D, Shields PG, Christman JW, Chung S. Long-Term Impact of Daily E-cigarette Exposure on the Lungs of Asthmatic Mice. Nicotine Tob Res 2023; 25:1904-1908. [PMID: 37349133 PMCID: PMC10664080 DOI: 10.1093/ntr/ntad100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 05/26/2023] [Accepted: 06/20/2023] [Indexed: 06/24/2023]
Abstract
INTRODUCTION Although the greater popularity of electronic cigarettes (EC) among asthmatics is alarming, there is limited knowledge of the long-term consequences of EC exposure in asthmatics. AIMS AND METHODS Mild asthmatic C57/BL6J adult male and female mice were established by intranasal insufflation with three combined allergens. The asthmatic and age and sex-matched' naïve mice were exposed to air, nicotine-free (propylene glycol [PG]/vegetable glycerin [VG]-only), or PG/VG+Nicotine, 4 hours daily for 3 months. The effects of EC exposure were accessed by measuring cytokines in bronchoalveolar lavage, periodic acid-schiff (PAS) staining, mitochondrial DNA copy numbers (mtCN), and the transcriptome in the lung. Significance was false discovery rate <0.2 for transcriptome and 0.05 for the others. RESULTS In asthmatic mice, PG/VG+Nicotine increased PAS-positive cells and IL-13 compared to mice exposed to air and PG/VG-only. In naïve mice exposed to PG/VG+Nicotine and PG/VG-only, higher INF-γ was observed compared to mice exposed only to air. PG/VG-only and PG/VG+Nicotine had significantly higher mtCN compared to air exposure in asthmatic mice, while the opposite pattern was observed in non-asthmatic naïve mice. Different gene expression patterns were profoundly found for asthmatic mice exposed to PG/VG+Nicotine compared to PG/VG-only, including genes involved in mitochondrial dysfunction, oxidative phosphorylation, and p21-activated kinase (PAK) signaling. CONCLUSIONS This study provides experimental evidence of the potential impact of nicotine enhancement on the long-term effects of EC in asthmatics compared to non-asthmatics. IMPLICATIONS The findings from this study indicate the potential impact of EC in asthmatics by addressing multiple biological markers. The long-term health outcomes of EC in the susceptible group can be instrumental in supporting policymaking and educational campaigns and informing the public, healthcare providers, and EC users about the underlying risks of EC use.
Collapse
Affiliation(s)
- Min-Ae Song
- Division of Environmental Health Sciences, College of Public Health, Ohio State University, Columbus, OH, USA
- Center for Tobacco Research, Ohio State University and James Cancer Hospital, Columbus, OH, USA
| | - Loren E Wold
- College of Nursing and Department of Physiology and Cell Biology, College of Medicine, Ohio State University, Columbus, OH, USA
| | - David M Aslaner
- College of Nursing and Department of Physiology and Cell Biology, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Kellie J Archer
- Division of Biostatistics, College of Public Health, Ohio State University, Columbus, OH, USA
| | - Devki Patel
- Division of Environmental Health Sciences, College of Public Health, Ohio State University, Columbus, OH, USA
| | - Hyeongseon Jeon
- Department of Biomedical Informatics, Ohio State University and James Cancer Hospital, Columbus, OH, USA
- Comprehensive Cancer Center, Ohio State University and James Cancer Hospital, Columbus, OH, USA
| | - Dongjun Chung
- Department of Biomedical Informatics, Ohio State University and James Cancer Hospital, Columbus, OH, USA
- Comprehensive Cancer Center, Ohio State University and James Cancer Hospital, Columbus, OH, USA
| | - Peter G Shields
- Comprehensive Cancer Center, Ohio State University and James Cancer Hospital, Columbus, OH, USA
| | - John W Christman
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Sangwoon Chung
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
10
|
Song MA, Kim JY, Gorr MW, Miller RA, Karpurapu M, Nguyen J, Patel D, Archer KJ, Pabla N, Shields PG, Wold LE, Christman JW, Chung S. Sex-specific lung inflammation and mitochondrial damage in a model of electronic cigarette exposure in asthma. Am J Physiol Lung Cell Mol Physiol 2023; 325:L568-L579. [PMID: 37697923 PMCID: PMC11068405 DOI: 10.1152/ajplung.00033.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 07/14/2023] [Accepted: 08/30/2023] [Indexed: 09/13/2023] Open
Abstract
The prevalence of electronic cigarette (EC) use among adult with asthma has continued to increase over time, in part due to the belief of being less harmful than smoking. However, the extent of their toxicity and the involved mechanisms contributing to the deleterious impact of EC exposure on patients with preexisting asthma have not been delineated. In the present project, we tested the hypothesis that EC use contributes to respiratory damage and worsening inflammation in the lungs of patients with asthma. To define the consequences of EC exposure in established asthma, we used a mouse model with/without preexisting asthma for short-term exposure to EC aerosols. C57/BL6J mice were sensitized and challenged with a DRA (dust mite, ragweed, Aspergillus fumigates, 200 µg/mL) mixture and exposed daily to EC with nicotine (2% nicotine in 30:70 propylene glycol: vegetable glycerin) or filtered air for 2 wk. The mice were evaluated at 24 h after the final EC exposure. After EC exposure in asthmatic mice, lung inflammatory cell infiltration and goblet cell hyperplasia were increased, whereas EC alone did not cause airway inflammation. Our data also show that mitochondrial DNA (mtDNA) content and a key mtDNA regulator, mitochondrial transcription factor A (TFAM), are reduced in asthmatic EC-exposed mice in a sex-dependent manner. Together, these results indicate that TFAM loss in lung epithelium following EC contributes to male-predominant sex pathological differences, including mitochondrial damage, inflammation, and remodeling in asthmatic airways.NEW & NOTEWORTHY Respiratory immunity is dysregulated in preexisting asthma, and further perturbations by EC use could exacerbate asthma severity. However, the extent of their toxicity and the involved mechanisms contributing to the deleterious impact of EC exposure on patients with preexisting asthma have not been delineated. We found that EC has unique biological impacts in lungs and potential sex differences with loss of TFAM, a key mtDNA regulator, in lung epithelial region from our animal EC study.
Collapse
Affiliation(s)
- Min-Ae Song
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, Ohio, United States
| | - Ji Young Kim
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States
| | - Matthew W Gorr
- Division of Cardiac Surgery, Department of Surgery, College of Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Roy A Miller
- Division of Cardiac Surgery, Department of Surgery, College of Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Manjula Karpurapu
- Division of Pulmonary, Critical Care and Sleep Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Jackie Nguyen
- Division of Pulmonary, Critical Care and Sleep Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Devki Patel
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, Ohio, United States
| | - Kellie J Archer
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, Ohio, United States
| | - Navjot Pabla
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States
| | - Peter G Shields
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, Ohio, United States
| | - Loren E Wold
- Division of Cardiac Surgery, Department of Surgery, College of Medicine, The Ohio State University, Columbus, Ohio, United States
| | - John W Christman
- Division of Pulmonary, Critical Care and Sleep Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Sangwoon Chung
- Division of Pulmonary, Critical Care and Sleep Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| |
Collapse
|
11
|
Song MA, Mori KM, McElroy JP, Freudenheim JL, Weng DY, Reisinger SA, Brasky TM, Wewers MD, Shields PG. Accelerated epigenetic age, inflammation, and gene expression in lung: comparisons of smokers and vapers with non-smokers. Clin Epigenetics 2023; 15:160. [PMID: 37821974 PMCID: PMC10568901 DOI: 10.1186/s13148-023-01577-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 10/01/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Cigarette smoking and aging are the main risk factors for pulmonary diseases, including cancer. Epigenetic aging may explain the relationship between smoking, electronic cigarette vaping, and pulmonary health. No study has examined smoking and vaping-related epigenetic aging in relation to lung biomarkers. METHODS Lung epigenetic aging measured by DNA methylation (mAge) and its acceleration (mAA) was assessed in young (age 21-30) electronic cigarette vapers (EC, n = 14, including 3 never-smoking EC), smokers (SM, n = 16), and non-EC/non-SM (NS, n = 39). We investigated relationships of mAge estimates with chronological age (Horvath-mAge), lifespan/mortality (Grim-mAge), telomere length (TL-mAge), smoking/EC history, urinary biomarkers, lung cytokines, and transcriptome. RESULTS Compared to NS, EC and SM had significantly older Grim-mAge, shorter TL-mAge, significantly accelerated Grim-mAge and decelerated TL-mAge. Among SM, Grim-mAA was associated with nicotine intake and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL). For EC, Horvath-mAA was significantly correlated with puffs per day. Overall, cytokines (IL-1β, IL-6, and IL-8) and 759 transcripts (651 unique genes) were significantly associated with Grim-mAA. Grim-mAA-associated genes were highly enriched in immune-related pathways and genes that play a role in the morphology and structures of cells/tissues. CONCLUSIONS Faster lung mAge for SM is consistent with prior studies of blood. Faster lung mAge for EC compared to NS indicates possible adverse pulmonary effects of EC on biological aging. Our findings support further research, particularly on epigenetic markers, on effects of smoking and vaping on pulmonary health. Given that most EC are former smokers, further study is needed to understand unique effects of electronic cigarettes on biological aging.
Collapse
Affiliation(s)
- Min-Ae Song
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, 404 Cunz Hall, 1841 Neil Ave., Columbus, OH, 43210, USA.
| | - Kellie M Mori
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, 404 Cunz Hall, 1841 Neil Ave., Columbus, OH, 43210, USA
| | - Joseph P McElroy
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Jo L Freudenheim
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA
| | - Daniel Y Weng
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH, USA
| | - Sarah A Reisinger
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH, USA
| | - Theodore M Brasky
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH, USA
| | - Mark D Wewers
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH, USA
| | - Peter G Shields
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH, USA
| |
Collapse
|
12
|
Mohamed AAR, Moustafa GG, El Bohy KM, Saber TM, Metwally MMM, El Desoukey Mohammed H, El-Far AH, Alotaibi BS, Alosaimi M, Abuzahrah SS, Alqahtani LS. Exploring cardiac impact of oral nicotine exposure in a transplantable Neoplasm Mice Model: Insights from biochemical analysis, morphometry, and molecular docking: Chlorella vulgaris green algae support. Toxicology 2023; 497-498:153629. [PMID: 37704175 DOI: 10.1016/j.tox.2023.153629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
Nicotine-induced cardiac tissue damage is a concern for cancer patients, but the exact pathogenesis from nicotine oral exposure is unclear. This study was designed to investigate the impact of nicotine and Chlorella vulgaris (Ch. V) on cardiac glutathione homeostasis, inflammatory response, cardiac damage markers, apoptotic proteins and histopathological findings in an experimentally transplantable neoplasm mouse model (Ehrlich ascites carcinoma; EAC). In the in-vivo experiment, the female Swiss mice were divided into four groups: control, Ch.V (100 mg/kg), Nicotine (100 µg/ml/kg), and a combination group ( Nocotine+ Ch.V) for 40 days. Furthermore, in this study,the effects of C. vulgaris components on caspase-3, TNF-α, and IL-1β activity were explored using Molecular Operating Environment (MOE) docking software to ensure its ability to counteract the toxic effects of nicotine. The results indicated that nicotine has induced significant (P < 0.001) cardiopathic alterations in EAC-bearing mice with changes in cardiac tissue enzymes. C. Vulgaris attenuated the nicotine-induced cardiac glutathione inhibition, suppressed the inflammatory response, exerted antiapoptotic effects, mitigated myocardial injury biomarkers, and repaired cellular and tissue damage. Moreover, the molecular docking results revealed the ability of C. vulgaris to bind with interleukin-1 receptor type 1 (IL1R1) and tumor necrosis factor receptor superfamily member 1 A (TNFRSF1A) in the mice tissues, ameliorating apoptosis and inflammatory processes associated with nicotine-induced cardiotoxicity. This study provides a model for understanding nicotine-induced myocardial injury during experimentally transplantable neoplasm. It highlights C. vulgaris as a beneficial food supplement for cancer patients exposed to nicotine orally.
Collapse
Affiliation(s)
- Amany Abdel-Rahman Mohamed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Gihan G Moustafa
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Khlood M El Bohy
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Taghred M Saber
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed M M Metwally
- Department of pathology and clinical pathology, faculty of veterinary medicine, King Salman international University, Ras sudr، Egypt; Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Heba El Desoukey Mohammed
- Specialist of Forensic Medicine and Toxicology, Veterinary Services, El Senbellawein, Dakahlia Governorate, Egypt
| | - Ali H El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Badriyah S Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Manal Alosaimi
- Department of Basic Health Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O Box 84428, Riyadh 11671, Saudi Arabia
| | - Samah S Abuzahrah
- Department of Biological Sciences, College of Science, University of Jeddah, 21959, Saudi Arabia
| | - Leena S Alqahtani
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 23445, Saudi Arabia
| |
Collapse
|
13
|
Liu C, Chen YJ, Sun B, Chen HG, Mustieles V, Messerlian C, Sun Y, Meng TQ, Lu WQ, Pan XF, Xiong CL, Hou J, Wang YX. Blood trihalomethane concentrations in relation to sperm mitochondrial DNA copy number and telomere length among 958 healthy men. ENVIRONMENTAL RESEARCH 2023; 216:114737. [PMID: 36372149 DOI: 10.1016/j.envres.2022.114737] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/19/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND In animal and human studies, exposure to trihalomethanes (THMs) has been associated with reduced semen quality. However, the underlying mechanisms remain poorly understood. OBJECTIVE To investigate the associations of blood THM concentrations with sperm mitochondrial DNA copy number (mtDNAcn) and telomere length (TL) among healthy men. METHODS We recruited 958 men who volunteered as potential sperm donors. A single blood sample was collected from each participant at recruitment and measured for chloroform (TCM), bromodichloromethane (BDCM), dibromochloromethane (DBCM), and bromoform (TBM) concentrations. Within a 90-day follow-up, the last semen sample provided by each participant was quantified for sperm mtDNAcn and TL. We used multivariable linear regression models to assess the associations between blood THM concentrations and sperm mtDNAcn and TL. We also performed stratified analyses according to the time intervals between baseline blood THM determinations and semen collection (i.e., 0-9, 10-14, 15-69, or >69 days) to explore potential windows of susceptibility. RESULTS After adjusting for potential confounders, we found inverse associations between quartiles (or categories) of blood TBM, brominated THM (Br-THM, the sum of BDCM, DBCM, and TBM), and total THM (TTHM, the sum of all four THMs) concentrations and sperm mtDNAcn (all P for trend≤0.03). Besides, we found inverse associations between quartiles of blood TCM, Br-THM, chlorinated THM (Cl-THM, the sum of TCM, BDCM, and DBCM), and TTHM concentrations and sperm TL (all P for trend<0.10). Stratified analyses showed stronger associations between Br-THM concentrations and sperm mtDNAcn determined 15-69 days since baseline exposure determinations, and between blood TCM and TTHM concentrations and sperm TL determined >69 days since baseline exposure determinations. CONCLUSION Exposure to THMs may be associated with sperm mitochondrial and telomeric dysfunction.
Collapse
Affiliation(s)
- Chong Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Ying-Jun Chen
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, PR China
| | - Bin Sun
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Heng-Gui Chen
- Clinical Research and Translation Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, PR China
| | - Vicente Mustieles
- University of Granada, Center for Biomedical Research (CIBM); Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Madrid, Spain
| | - Carmen Messerlian
- Department of Epidemiology and Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yang Sun
- Department of Epidemiology and Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Tian-Qing Meng
- Hubei Province Human Sperm Bank, Center of Reproductive Medicine, Wuhan Tongji Reproductive Medicine Hospital, Wuhan, PR China
| | - Wen-Qing Lu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Xiong-Fei Pan
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, PR China
| | - Chen-Liang Xiong
- Hubei Province Human Sperm Bank, Center of Reproductive Medicine, Wuhan Tongji Reproductive Medicine Hospital, Wuhan, PR China.
| | - Jian Hou
- Department of Epidemiology and Biostatistics, School of Public Health, Zhengzhou University, Zhengzhou, PR China.
| | - Yi-Xin Wang
- Department of Epidemiology and Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|