1
|
Masson BA, Kiridena P, Lu D, Kleeman EA, Reisinger SN, Qin W, Davies WJ, Muralitharan RR, Jama HA, Antonacci S, Marques FZ, Gubert C, Hannan AJ. Depletion of the paternal gut microbiome alters sperm small RNAs and impacts offspring physiology and behavior in mice. Brain Behav Immun 2025; 123:290-305. [PMID: 39293692 DOI: 10.1016/j.bbi.2024.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024] Open
Abstract
The paternal environment prior to conception has been demonstrated to influence offspring physiology and behavior, with the sperm epigenome (including noncoding RNAs) proposed as a potential facilitator of non-genetic inheritance. Whilst the maternal gut microbiome has been established as an important influence on offspring development, the impact of the paternal gut microbiome on offspring development, health and behavior is largely unknown. Gut microbiota have major influences on immunity, and thus we hypothesized that they may be relevant to paternal immune activation (PIA) modulating epigenetic inheritance in mice. Therefore, male C57BL/6J mice (F0) were orally administered non-absorbable antibiotics via drinking water in order to substantially deplete their gut microbiome. Four weeks after administration of the antibiotics (gut microbiome depletion), F0 male mice were then mated with naïve female mice. The F1 offspring of the microbiome-depleted males had reduced body weight as well as altered gut morphology (shortened colon length). F1 females showed significant alterations in affective behaviors, including measures of anxiety and depressive-like behaviors, indicating altered development. Analysis of small noncoding RNAs in the sperm of F0 mice revealed that gut microbiome depletion is associated with differential expression of 8 different PIWI-interacting RNAs (piRNAs), each of which has the potential to modulate the expression of multiple downstream gene targets, and thus influence epigenetic inheritance and offspring development. This study demonstrates that the gut-germline axis influences sperm small RNA profiles and offspring physiology, with specific impacts on offspring affective and/or coping behaviors. These findings may have broader implications for other animal species with comparable gut microbiota, intergenerational epigenetics and developmental biology, including humans.
Collapse
Affiliation(s)
- Bethany A Masson
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia; Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Pamudika Kiridena
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia; Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Da Lu
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia; Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Elizabeth A Kleeman
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia; Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Sonali N Reisinger
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Wendy Qin
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - William J Davies
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia; Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Rikeish R Muralitharan
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash, Clayton, Australia; Victorian Heart Institute, Monash University, Clayton, Australia
| | - Hamdi A Jama
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash, Clayton, Australia
| | - Simona Antonacci
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash, Clayton, Australia
| | - Francine Z Marques
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash, Clayton, Australia; Heart Failure Research Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia; Victorian Heart Institute, Monash University, Clayton, Australia
| | - Carolina Gubert
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia.
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia; Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia; Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
2
|
Ionescu MI, Zahiu CDM, Vlad A, Galos F, Gradisteanu Pircalabioru G, Zagrean AM, O'Mahony SM. Nurturing development: how a mother's nutrition shapes offspring's brain through the gut. Nutr Neurosci 2025; 28:50-72. [PMID: 38781488 DOI: 10.1080/1028415x.2024.2349336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Pregnancy is a transformative period marked by profound physical and emotional changes, with far-reaching consequences for both mother and child. Emerging research has illustrated the pivotal role of a mother's diet during pregnancy in influencing the prenatal gut microbiome and subsequently shaping the neurodevelopment of her offspring. The intricate interplay between maternal gut health, nutrition, and neurodevelopmental outcomes has emerged as a captivating field of investigation within developmental science. Acting as a dynamic bridge between mother and fetus, the maternal gut microbiome, directly and indirectly, impacts the offspring's neurodevelopment through diverse pathways. This comprehensive review delves into a spectrum of studies, clarifying putative mechanisms through which maternal nutrition, by modulating the gut microbiota, orchestrates the early stages of brain development. Drawing insights from animal models and human cohorts, this work underscores the profound implications of maternal gut health for neurodevelopmental trajectories and offers a glimpse into the formulation of targeted interventions able to optimize the health of both mother and offspring. The prospect of tailored dietary recommendations for expectant mothers emerges as a promising and accessible intervention to foster the growth of beneficial gut bacteria, potentially leading to enhanced cognitive outcomes and reduced risks of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Mara Ioana Ionescu
- Department of Functional Sciences, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Department of Pediatrics, Marie Curie Emergency Children's Hospital, Bucharest, Romania
| | - Carmen Denise Mihaela Zahiu
- Department of Functional Sciences, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Adelina Vlad
- Department of Functional Sciences, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Felicia Galos
- Department of Pediatrics, Marie Curie Emergency Children's Hospital, Bucharest, Romania
- Department of Pediatrics, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Gratiela Gradisteanu Pircalabioru
- Research Institute of the University of Bucharest, Section Earth, Environmental and Life Sciences, Section-ICUB, Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
| | - Ana-Maria Zagrean
- Department of Functional Sciences, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Siobhain M O'Mahony
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
3
|
Gustafson KL, Busi SB, McAdams ZL, McCorkle RE, Khodakivskyi P, Bivens NJ, Davis DJ, Raju M, Coghill LM, Goun EA, Amos-Landgraf J, Franklin CL, Wilmes P, Cortese R, Ericsson AC. Fetal programming by the parental microbiome of offspring behavior, and DNA methylation and gene expression within the hippocampus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.589237. [PMID: 39484583 PMCID: PMC11526851 DOI: 10.1101/2024.04.12.589237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Background The microorganisms colonizing the gastrointestinal tract of animals, collectively referred to as the gut microbiome, affect numerous host behaviors dependent on the central nervous system (CNS). Studies comparing germ-free mice to normally colonized mice have demonstrated influences of the microbiome on anxiety-related behaviors, voluntary activity, and gene expression in the CNS. Additionally, there is epidemiologic evidence supporting an intergenerational influence of the maternal microbiome on neurodevelopment of offspring and behavior later in life. There is limited experimental evidence however directly linking the maternal microbiome to long-term neurodevelopmental outcomes, or knowledge regarding mechanisms responsible for such effects. Results Here we show that that the maternal microbiome has a dominant influence on several offspring phenotypes including anxiety-related behavior, voluntary activity, and body weight. Adverse outcomes in offspring were associated with features of the maternal microbiome including bile salt hydrolase activity gene expression (bsh), abundance of certain bile acids, and hepatic expression of Slc10a1. In cross-foster experiments, offspring resembled their birth dam phenotypically, despite faithful colonization in the postnatal period with the surrogate dam microbiome. Genome-wide methylation analysis of hippocampal DNA identified microbiome-associated differences in methylation of 196 loci in total, 176 of which show conserved profiles between mother and offspring. Further, single-cell transcriptional analysis revealed accompanying differences in expression of several differentially methylated genes within certain hippocampal cell clusters, and vascular expression of genes associated with bile acid transport. Inferred cell-to-cell communication in the hippocampus based on coordinated ligand-receptor expression revealed differences in expression of neuropeptides associated with satiety. Conclusions Collectively, these data provide proof-of-principle that the maternal gut microbiome has a dominant influence on the neurodevelopment underlying certain offspring behaviors and activities, and selectively affects genome methylation and gene expression in the offspring CNS in conjunction with that neurodevelopment.
Collapse
Affiliation(s)
- Kevin L Gustafson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65201, USA
| | - Susheel Bhanu Busi
- UK Centre for Ecology and Hydrology, Wallingford, Oxfordshire, OX10 8BB, UK
| | - Zachary L McAdams
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65201, USA
| | - Rachael E McCorkle
- College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA
| | - Pavlo Khodakivskyi
- Department of Chemistry, College of Arts and Science, University of Missouri, Columbia, MO, 65211, USA
| | - Nathan J Bivens
- University of Missouri Genomics Technology Core, University of Missouri, Columbia, MO, 65211, USA
| | - Daniel J Davis
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65201, USA
| | - Murugesan Raju
- University of Missouri Bioinformatics and Analytics Core, University of Missouri, Columbia, MO, 65211, USA
| | - Lyndon M Coghill
- University of Missouri Bioinformatics and Analytics Core, University of Missouri, Columbia, MO, 65211, USA
| | - Elena A Goun
- Department of Chemistry, College of Arts and Science, University of Missouri, Columbia, MO, 65211, USA
| | - James Amos-Landgraf
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65201, USA
| | - Craig L Franklin
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65201, USA
| | - Paul Wilmes
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, L-4362 Esch-sur-Alzette, Luxembourg
| | - Rene Cortese
- Department of Child Health & Obstetrics, Gynecology, and Women's Health, School of Medicine, University of Missouri, Columbia, MO, 65212, USA
| | - Aaron C Ericsson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65201, USA
| |
Collapse
|
4
|
Prentice RE, Hunt RW, Spittle AJ, Ditchfield M, Chen J, Burns M, Flanagan EK, Wright E, Ross AL, Goldberg R, Bell SJ. Well controlled maternal inflammatory bowel disease does not increase the risk of abnormal neurocognitive outcome screening in offspring. Brain Behav Immun Health 2024; 40:100827. [PMID: 39149622 PMCID: PMC11326492 DOI: 10.1016/j.bbih.2024.100827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/26/2024] [Accepted: 07/20/2024] [Indexed: 08/17/2024] Open
Abstract
Background Exposure to maternal inflammation is associated with an increased risk of neurocognitive and developmental disorders in offspring. Early diagnosis and intervention improves childhood motor and cognitive functioning. Neonatal cerebral MRI and remote app-based generalised movement assessments (GMAs) are both predictive of adverse neurocognitive outcomes but have only been used in infants at significantly increased risk for these outcomes, rather than following in utero exposure to maternal inflammatory disorders. Methods Pregnant women with inflammatory bowel disease were assessed clinically and biochemically in each trimester of pregnancy in this single centre prospective study. Neonatal cerebral MRIs were performed at 6-12 weeks post-corrected term. Two GMA videos were filmed using the 'BabyMoves' app from 12 to 16 weeks of age. MRIs and GMAs were assessed by a blinded highly qualified practitioner using validated scoring systems. Results 40/53 of invited maternal-infant dyads were recruited. C-reactive protein was elevated antenatally in less than 13%. 5/37 neonatal MRIs had incidental or obstetric trauma related gross anatomical abnormalities, with none abnormal on validated gross abnormality scoring. 3/35 GMAs were abnormal, with one GMA abnormality being clinically significant. Of those with abnormal GMAs, 2/3 were in exposed to severely active IBD in-utero. Conclusion Neonatal cerebral MRI and GMA for neurocognitive screening is feasible in the setting of maternal inflammatory bowel disease, where the risk of cerebral palsy is poorly defined and thus burdensome screening interventions are less appealing to parents. Larger studies are required to stratify adverse neurocognitive outcome risk in infants born to women with maternal inflammatory disorders, but these data are reassuring for women with IBD in remission antenatally.
Collapse
Affiliation(s)
- Ralley E Prentice
- Department of Gastroenterology, Monash Health, Melbourne, VIC, Australia
- Department of Gastroenterology, St Vincent's Hospital Melbourne, Melbourne, VIC, Australia
- Department of Medicine, Monash University, Melbourne, VIC, Australia
| | - Rod W Hunt
- Department of Neonatal Medicine, Monash Health, Melbourne, VIC, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- Cerebral Palsy Alliance, Australia
| | - Alicia J Spittle
- Department of Physiotherapy, University of Melbourne, Melbourne, VIC, Australia
- Victorian Infant Brain Studies, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Michael Ditchfield
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- Department of Medical Imaging, Monash Children's Hospital, Melbourne, VIC, Australia
| | - Jeff Chen
- Department of Medical Imaging, Monash Children's Hospital, Melbourne, VIC, Australia
| | - Megan Burns
- Department of Gastroenterology, Monash Health, Melbourne, VIC, Australia
| | - Emma K Flanagan
- Department of Gastroenterology, St Vincent's Hospital Melbourne, Melbourne, VIC, Australia
- Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - Emily Wright
- Department of Gastroenterology, St Vincent's Hospital Melbourne, Melbourne, VIC, Australia
- Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - Alyson L Ross
- Department of Gastroenterology, St Vincent's Hospital Melbourne, Melbourne, VIC, Australia
| | - Rimma Goldberg
- Department of Gastroenterology, Monash Health, Melbourne, VIC, Australia
- Department of Medicine, Monash University, Melbourne, VIC, Australia
| | - Sally J Bell
- Department of Gastroenterology, Monash Health, Melbourne, VIC, Australia
- Department of Medicine, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
5
|
van Dijk MT, Talati A, Barrios PG, Crandall AJ, Lugo-Candelas C. Prenatal depression outcomes in the next generation: A critical review of recent DOHaD studies and recommendations for future research. Semin Perinatol 2024; 48:151948. [PMID: 39043475 DOI: 10.1016/j.semperi.2024.151948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Prenatal depression, a common pregnancy-related risk with a prevalence of 10-20 %, may affect in utero development and socioemotional and neurodevelopmental outcomes in the next generation. Although there is a growing body of work that suggests prenatal depression has an independent and long-lasting effect on offspring outcomes, important questions remain, and findings often do not converge. The present review examines work carried out in the last decade, with an emphasis on studies focusing on mechanisms and leveraging innovative technologies and study designs to fill in gaps in research. Overall, the past decade of research continues to suggest that prenatal depression increases risk for offspring socioemotional problems and may alter early brain development by affecting maternal-fetal physiology during pregnancy. However, important limitations remain; lack of diversity in study samples, inconsistent consideration of potential confounders (e.g., genetics, postnatal depression, parenting), and restriction of examination to narrow time windows and single exposures. On the other hand, exciting work has begun uncovering potential mechanisms underlying transmission, including alterations in mitochondria functioning, epigenetics, and the prenatal microbiome. We review the evidence to date, identify limitations, and suggest strategies for the next decade of research to detect mechanisms as well as sources of plasticity and resilience to ensure this work translates into meaningful, actionable science that improves the lives of families.
Collapse
Affiliation(s)
- M T van Dijk
- Columbia University Irving Medical Center, United States; New York State Psychiatric Institute, United States
| | - A Talati
- Columbia University Irving Medical Center, United States; New York State Psychiatric Institute, United States
| | | | - A J Crandall
- Columbia University Irving Medical Center, United States; New York State Psychiatric Institute, United States
| | - C Lugo-Candelas
- Columbia University Irving Medical Center, United States; New York State Psychiatric Institute, United States.
| |
Collapse
|
6
|
Ma Z, Zuo T, Frey N, Rangrez AY. A systematic framework for understanding the microbiome in human health and disease: from basic principles to clinical translation. Signal Transduct Target Ther 2024; 9:237. [PMID: 39307902 PMCID: PMC11418828 DOI: 10.1038/s41392-024-01946-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/03/2024] [Accepted: 08/01/2024] [Indexed: 09/26/2024] Open
Abstract
The human microbiome is a complex and dynamic system that plays important roles in human health and disease. However, there remain limitations and theoretical gaps in our current understanding of the intricate relationship between microbes and humans. In this narrative review, we integrate the knowledge and insights from various fields, including anatomy, physiology, immunology, histology, genetics, and evolution, to propose a systematic framework. It introduces key concepts such as the 'innate and adaptive genomes', which enhance genetic and evolutionary comprehension of the human genome. The 'germ-free syndrome' challenges the traditional 'microbes as pathogens' view, advocating for the necessity of microbes for health. The 'slave tissue' concept underscores the symbiotic intricacies between human tissues and their microbial counterparts, highlighting the dynamic health implications of microbial interactions. 'Acquired microbial immunity' positions the microbiome as an adjunct to human immune systems, providing a rationale for probiotic therapies and prudent antibiotic use. The 'homeostatic reprogramming hypothesis' integrates the microbiome into the internal environment theory, potentially explaining the change in homeostatic indicators post-industrialization. The 'cell-microbe co-ecology model' elucidates the symbiotic regulation affecting cellular balance, while the 'meta-host model' broadens the host definition to include symbiotic microbes. The 'health-illness conversion model' encapsulates the innate and adaptive genomes' interplay and dysbiosis patterns. The aim here is to provide a more focused and coherent understanding of microbiome and highlight future research avenues that could lead to a more effective and efficient healthcare system.
Collapse
Affiliation(s)
- Ziqi Ma
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| | - Tao Zuo
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Norbert Frey
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| | - Ashraf Yusuf Rangrez
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| |
Collapse
|
7
|
Lin S, Liang Y, Geng J, Yan Y, Ding R, He M. Gestational Interrelationships among Gut-Metabolism-Transcriptome in Regulating Early Embryo Implantation and Placental Development in Mice. Microorganisms 2024; 12:1902. [PMID: 39338576 PMCID: PMC11434064 DOI: 10.3390/microorganisms12091902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Decidualization of the uterine endometrium is a critical process for embryo implantation in mammals, primarily occurring on gestational day 8 in pregnant mice. However, the interplay between the maternal gut microbiome, metabolism, and the uterus at this specific time point remains poorly understood. This study employed a multi-omics approach to investigate the metabolic, gut microbiome, and transcriptomic changes associated with early pregnancy (gestational day 8 (E8)) in mice. Serum metabolomics revealed a distinct metabolic profile at E8 compared to controls, with the differential metabolites primarily enriched in amino acid metabolism pathways. The gut microbial composition showed that E8 mice exhibited higher alpha-diversity and a significant shift in beta-diversity. Specifically, the E8 group displayed a decrease in pathogenic Proteobacteria and an increase in beneficial Bacteroidetes and S24-7 taxa. Transcriptomics identified myriads of distinct genes between the E8 and control mice. The differentially expressed genes were enriched in pathways involved in alanine, aspartate, and glutamate metabolism, PI3K-Akt signaling, and the PPAR signaling pathway. Integrative analysis of the multi-omics data uncovered potential mechanistic relationships among the differential metabolites, gut microbiota, and uterine gene expression changes. Notably, the gene Asns showed strong correlations with specific gut S24-7 and metabolite L-Aspartatic acid, suggesting its potential role in mediating the crosstalk between the maternal environment and embryo development during early pregnancy. These findings provide valuable insights into the complex interplay between the maternal metabolome, the gut microbiome, and the uterine transcriptome in the context of early pregnancy, which may contribute to our understanding of the underlying mechanisms of embryo implantation and development.
Collapse
Affiliation(s)
- Shuai Lin
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Yuqi Liang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Jingqi Geng
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Yunfei Yan
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Ruipei Ding
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Maozhang He
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
8
|
Luecke SM, Aryee G, Holman DB, Schmidt KN, King LE, Crouse MS, Ward AK, Dahlen CR, Caton JS, Amat S. Effects of dietary restriction and one-carbon metabolite supplementation during the first 63 days of gestation on the maternal gut, vaginal, and blood microbiota in cattle. Anim Microbiome 2024; 6:48. [PMID: 39210404 PMCID: PMC11360793 DOI: 10.1186/s42523-024-00335-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Maternal diet quality and quantity have significant impacts on both maternal and fetal health and development. The composition and function of the maternal gut microbiome is also significantly influenced by diet; however, little is known about the impact of gestational nutrient restriction on the bovine maternal microbiome during early gestation, which is a critical stage for maternal microbiome-mediated fetal programming to take place. The objective of the present study was to evaluate the impacts of diet restriction and one-carbon metabolite (OCM) supplementation during early gestation on maternal ruminal, vaginal, and blood microbiota in cattle. Thirty-three beef heifers (approx. 14 months old) were used in a 2 × 2 factorial experiment with main factors of target gain (control [CON]; targeted 0.45 kg/d gain vs restricted [RES]; targeted - 0.23 kg/d gain), and OCM supplementation (+ OCM vs - OCM; n = 8/treatment; except n = 9 for RES-OCM). Heifers were individually fed, starting treatment at breeding (d 0) and concluding at d 63 of gestation. Ruminal fluid and vaginal swabs were collected on d - 2, d 35, and d 63 (at necropsy) and whole blood was collected on d 63 (necropsy). Bacterial microbiota was assessed using 16S rRNA gene (V3-V4) sequencing. RESULTS Overall ruminal microbiota structure was affected by gain, OCM, time, and their interactions. The RES heifers had greater microbial richness (observed ASVs) but neither Shannon nor Inverse Simpson diversity was significantly influenced by gain or OCM supplementation; however, on d 63, 34 bacterial genera showed differential abundance in the ruminal fluid, with 25 genera enriched in RES heifers as compared to CON heifers. In addition, the overall interaction network structure of the ruminal microbiota changed due to diet restriction. The vaginal microbiota community structure was influenced by gain and time. Overall microbial richness and diversity of the vaginal microbiota steadily increased as pregnancy progressed. The vaginal ecological network structure was distinctive between RES and CON heifers with genera-genera interactions being intensified in RES heifers. A relatively diverse bacterial community was detected in blood samples, and the composition of the blood microbiota differed from that of ruminal and vaginal microbiota. CONCLUSION Restricted dietary intake during early gestation induced significant alterations in the ruminal microbiota which also extended to the vaginal microbiota. The composition of these two microbial communities was largely unaffected by OCM supplementation. Blood associated microbiota was largely distinctive from the ruminal and vaginal microbiota.
Collapse
Affiliation(s)
- Sarah M Luecke
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, USA
| | - Godson Aryee
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, USA
| | - Devin B Holman
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB, Canada
| | - Kaycie N Schmidt
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, USA
| | - Layla E King
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Matthew S Crouse
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, USA
| | - Alison K Ward
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Carl R Dahlen
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Joel S Caton
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Samat Amat
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, USA.
| |
Collapse
|
9
|
Hummel G, Aagaard K. Arthropods to Eutherians: A Historical and Contemporary Comparison of Sparse Prenatal Microbial Communities Among Animalia Species. Am J Reprod Immunol 2024; 92:e13897. [PMID: 39140417 DOI: 10.1111/aji.13897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 04/08/2024] [Accepted: 06/14/2024] [Indexed: 08/15/2024] Open
Abstract
Since the advent of next-generation sequencing, investigators worldwide have sought to discern whether a functional and biologically or clinically relevant prenatal microbiome exists. One line of research has led to the hypothesis that microbial DNA detected in utero/in ovo or prior to birth/hatching is a result of contamination and does not belong to viable and functional microbes. Many of these preliminary evaluations have been conducted in humans, mice, and nonhuman primates due to sample and specimen availability. However, a comprehensive review of the literature across animal species suggests organisms that maintain an obligate relationship with microbes may act as better models for interrogating the selective pressures placed on vertical microbial transfer over traditional laboratory species. To date, studies in humans and viviparous laboratory species have failed to illustrate the clear presence and transfer of functional microbes in utero. Until a ground truth regarding the status and relevance of prenatal microbes can be ascertained, it is salient to conduct parallel investigations into the prevalence of a functional prenatal microbiome across the developmental lifespan of multiple organisms in the kingdom Animalia. This comprehensive understanding is necessary not only to determine the role of vertically transmitted microbes and their products in early human health but also to understand their full One Health impact. This review is among the first to compile such comprehensive primary conclusions from the original investigator's conclusions, and hence collectively illustrates that prenatal microbial transfer is supported by experimental evidence arising from over a long and rigorous scientific history encompassing a breadth of species from kingdom Animalia.
Collapse
Affiliation(s)
- Gwendolynn Hummel
- Departments of Obstetrics and Gynecology (Division of Maternal-Fetal Medicine) and Molecular and Human Genetics, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| | - Kjersti Aagaard
- Departments of Obstetrics and Gynecology (Division of Maternal-Fetal Medicine) and Molecular and Human Genetics, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
10
|
Aziz-Zadeh L, Mayer E, Labus J, Ringold S, Jayashankar A, Kilroy E, Butera C, Jacobs J, Tanartkit S, Joshi S, Dapretto M. Relationships between tryptophan-related gut metabolites, brain activity, and autism symptomatology. RESEARCH SQUARE 2024:rs.3.rs-4559624. [PMID: 39108481 PMCID: PMC11302680 DOI: 10.21203/rs.3.rs-4559624/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
Gut microbial metabolites have been theorized to play a causative role in the pathophysiology of autism spectrum disorder (ASD). This hypothesis is based on results from mechanistic preclinical studies and several correlational studies showing differences in gut microbial composition between ASD subjects and neurotypical (NT) controls. However, alterations in how the human brain interacts with the gut microbiome in ASD have not been examined. In this cross-sectional, case-control observational study, fecal metabolomics, task-based functional magnetic resonance imaging (fMRI), and behavioral assessments were obtained from 43 ASD and 41 NT children aged 8-17. The fMRI tasks were based on socio-emotional and sensory paradigms that commonly show strong evoked brain differences in ASD participants. General linear models and mediational modeling were applied to examine the links between tryptophan metabolism and evoked brain activity and behavior. Results indicated that fecal levels of specific tryptophan-related metabolites were associated with: 1) brain activity atypicalities in regions previously implicated in ASD (i.e., insula and cingulate); and 2) ASD severity and symptomatology (i.e., ADOS scores, disgust propensity, and sensory sensitivities). Importantly, activity in the mid-insula and mid-cingulate significantly mediated relationships between the microbial tryptophan metabolites, indolelactate and tryptophan betaine, and ASD severity and disgust sensitivity. To our knowledge, this is the first study to elucidate how interactions between gut metabolites and brain activity may impact autism symptomatology, particularly in functional brain pathways associated with vagal and interoceptive/emotion processing.
Collapse
Affiliation(s)
| | - Emeran Mayer
- G. Oppenheimer Center for Neurobiology of Stress and Resilience at UCLA; Institute for Genomics and Bioinformatics, University of California, Irvine
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Wang S, Liu Y, Tam WH, Ching JYL, Xu W, Yan S, Qin B, Lin L, Peng Y, Zhu J, Cheung CP, Ip KL, Wong YM, Cheong PK, Yeung YL, Kan WHB, Leung TF, Leung TY, Chang EB, Rubin DT, Claud EC, Wu WKK, Tun HM, Chan FKL, Ng SC, Zhang L. Maternal gestational diabetes mellitus associates with altered gut microbiome composition and head circumference abnormalities in male offspring. Cell Host Microbe 2024; 32:1192-1206.e5. [PMID: 38955186 DOI: 10.1016/j.chom.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 05/02/2024] [Accepted: 06/05/2024] [Indexed: 07/04/2024]
Abstract
The impact of gestational diabetes mellitus (GDM) on maternal or infant microbiome trajectory remains poorly understood. Utilizing large-scale longitudinal fecal samples from 264 mother-baby dyads, we present the gut microbiome trajectory of the mothers throughout pregnancy and infants during the first year of life. GDM mothers had a distinct microbiome diversity and composition during the gestation period. GDM leaves fingerprints on the infant's gut microbiome, which are confounded by delivery mode. Further, Clostridium species positively correlate with a larger head circumference at month 12 in male offspring but not females. The gut microbiome of GDM mothers with male fetuses displays depleted gut-brain modules, including acetate synthesis I and degradation and glutamate synthesis II. The gut microbiome of female infants of GDM mothers has higher histamine degradation and dopamine degradation. Together, our integrative analysis indicates that GDM affects maternal and infant gut composition, which is associated with sexually dimorphic infant head growth.
Collapse
Affiliation(s)
- Shilan Wang
- Microbiota I-Center (MagIC), Hong Kong SAR, China; Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yingzhi Liu
- Microbiota I-Center (MagIC), Hong Kong SAR, China
| | - Wing Hung Tam
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jessica Y L Ching
- Microbiota I-Center (MagIC), Hong Kong SAR, China; Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wenye Xu
- Microbiota I-Center (MagIC), Hong Kong SAR, China; Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shuai Yan
- Microbiota I-Center (MagIC), Hong Kong SAR, China
| | - Biyan Qin
- Microbiota I-Center (MagIC), Hong Kong SAR, China
| | - Ling Lin
- Microbiota I-Center (MagIC), Hong Kong SAR, China
| | - Ye Peng
- Microbiota I-Center (MagIC), Hong Kong SAR, China; JC School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jie Zhu
- Microbiota I-Center (MagIC), Hong Kong SAR, China
| | - Chun Pan Cheung
- Microbiota I-Center (MagIC), Hong Kong SAR, China; Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ka Long Ip
- Microbiota I-Center (MagIC), Hong Kong SAR, China; Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuen Man Wong
- Microbiota I-Center (MagIC), Hong Kong SAR, China; Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Pui Kuan Cheong
- Microbiota I-Center (MagIC), Hong Kong SAR, China; Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuk Ling Yeung
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wing Him Betty Kan
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ting Fan Leung
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tak Yeung Leung
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Eugene B Chang
- Department of Medicine, Section of Gastroenterology, Hepatology, and Nutrition, University of Chicago, Chicago, IL 60637, USA
| | - David T Rubin
- Department of Medicine, Section of Gastroenterology, Hepatology, and Nutrition, University of Chicago, Chicago, IL 60637, USA
| | - Erika C Claud
- Departments of Pediatrics and Medicine, Pritzker School of Medicine/Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA
| | - William K K Wu
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hein M Tun
- Microbiota I-Center (MagIC), Hong Kong SAR, China; JC School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Francis K L Chan
- Microbiota I-Center (MagIC), Hong Kong SAR, China; Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Siew C Ng
- Microbiota I-Center (MagIC), Hong Kong SAR, China; Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Digestive Disease Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Lin Zhang
- Microbiota I-Center (MagIC), Hong Kong SAR, China; Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
12
|
Dhillon SK, Lear CA, Davidson JO, Magawa S, Gunn AJ, Bennet L. The neural and cardiovascular effects of exposure of gram-positive bacterial inflammation in preterm fetal sheep. J Cereb Blood Flow Metab 2024; 44:955-969. [PMID: 37824725 PMCID: PMC11318397 DOI: 10.1177/0271678x231197380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/17/2023] [Accepted: 05/27/2023] [Indexed: 10/14/2023]
Abstract
Perinatal infection or inflammation are associated with adverse neurodevelopmental effects and cardiovascular impairments in preterm infants. Most preclinical studies have examined the effects of gram-negative bacterial inflammation on the developing brain, although gram-positive bacterial infections are a major contributor to adverse outcomes. Killed Su-strain group 3 A streptococcus pyogenes (Picibanil, OK-432) is being used for pleurodesis in fetal hydrothorax/chylothorax. We therefore examined the neural and cardiovascular effects of clinically relevant intra-plural infusions of Picibanil. Chronically instrumented preterm (0.7 gestation) fetal sheep received an intra-pleural injection of low-dose (0.1 mg, n = 8) or high-dose (1 mg, n = 8) Picibanil or saline-vehicle (n = 8). Fetal brains were collected for histology one-week after injection. Picibanil exposure was associated with sustained diffuse white matter inflammation and loss of immature and mature oligodendrocytes and subcortical neurons, and associated loss of EEG power. These neural effects were not dose-dependent. Picibanil was also associated with acute changes in heart rate and attenuation of the maturational increase in mean arterial pressure. Even a single exposure to a low-dose gram-positive bacterial-mediated inflammation during the antenatal period is associated with prolonged changes in vascular and neural function.
Collapse
Affiliation(s)
| | - Christopher A Lear
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Joanne O Davidson
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Shoichi Magawa
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
13
|
Tzitiridou-Chatzopoulou M, Kountouras J, Zournatzidou G. The Potential Impact of the Gut Microbiota on Neonatal Brain Development and Adverse Health Outcomes. CHILDREN (BASEL, SWITZERLAND) 2024; 11:552. [PMID: 38790548 PMCID: PMC11119242 DOI: 10.3390/children11050552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/26/2024]
Abstract
Over the past decade, microbiome research has significantly expanded in both scope and volume, leading to the development of new models and treatments targeting the gut-brain axis to mitigate the effects of various disorders. Related research suggests that interventions during the critical period from birth to three years old may yield the greatest benefits. Investigating the substantial link between the gut and brain during this crucial developmental phase raises fundamental issues about the role of microorganisms in human health and brain development. This underscores the importance of focusing on the prevention rather than the treatment of neurodevelopmental and neuropsychiatric disorders. The present review examines the gut microbiota from birth to age 3, with a particular focus on its potential relationship with neurodevelopment. This review emphasizes the immunological mechanisms underlying this relationship. Additionally, the study investigates the impact of the microbiome on cognitive development and neurobehavioral issues such as anxiety and autism. Importantly, it highlights the need to integrate mechanistic studies of animal models with epidemiological research across diverse cultures to better understand the role of a healthy microbiome in early life and the implications of dysbiosis. Furthermore, this review summarizes factors contributing to the transmission of gut microbiome-targeted therapies and their effects on neurodevelopment. Recent studies on environmental toxins known to impact neurodevelopment are also reviewed, exploring whether the microbiota may mitigate or modulate these effects.
Collapse
Affiliation(s)
| | - Jannis Kountouras
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, 54 642 Thessaloniki, Greece;
| | - Georgia Zournatzidou
- Department of Business Administration, University of Western Macedonia, 50 100 Kozani, Greece
- Department of Accounting and Finance, Hellenic Mediterranean University, 71 410 Heraklion, Greece
| |
Collapse
|
14
|
Solberg BS, Kvalvik LG, Instanes JT, Hartman CA, Klungsøyr K, Li L, Larsson H, Magnus P, Njølstad PR, Johansson S, Andreassen OA, Bakken NR, Bekkhus M, Austerberry C, Smajlagic D, Havdahl A, Corfield EC, Haavik J, Gjestad R, Zayats T. Maternal Fiber Intake During Pregnancy and Development of Attention-Deficit/Hyperactivity Disorder Symptoms Across Childhood: The Norwegian Mother, Father, and Child Cohort Study. Biol Psychiatry 2024; 95:839-848. [PMID: 38142720 DOI: 10.1016/j.biopsych.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/26/2023]
Abstract
BACKGROUND Epidemiological studies suggest that maternal diet quality during pregnancy may influence the risk of neurodevelopmental disorders in offspring. Here, we investigated associations between maternal intake of dietary fiber and attention-deficit/hyperactivity disorder (ADHD) symptoms in early childhood. METHODS We used longitudinal data of up to 21,852 mother-father-child trios (49.2% female offspring) from MoBa (the Norwegian Mother, Father, and Child Cohort Study). The relationships between maternal fiber intake during pregnancy and offspring ADHD symptoms at ages 3, 5, and 8 years were examined using 1) multivariate regression (overall levels of ADHD symptoms), 2) latent class analysis (subclasses of ADHD symptoms by sex at each age), and 3) latent growth curves (longitudinal change in offspring ADHD symptoms). Covariates were ADHD polygenic scores in child and parents, total energy intake and energy-adjusted sugar intake, parental ages at birth of the child, and sociodemographic factors. RESULTS Higher maternal prenatal fiber intake was associated with lower offspring ADHD symptom scores at all ages (Bage3 = -0.14 [95% CI, -0.18 to -0.10]; Bage5 = -0.14 [95% CI, -0.19 to -0.09]; Bage8 = -0.14 [95% CI, -0.20 to -0.09]). Of the derived low/middle/high subclasses of ADHD symptoms, fiber was associated with lower risk of belonging to the middle subclass for boys and girls and to the high subclass for girls only (middle: odds ratioboys 0.91 [95% CI, 0.86 to 0.97]/odds ratiogirls 0.86 [95% CI, 0.81 to 0.91]; high: odds ratiogirls 0.82 [95% CI, 0.72 to 0.94]). Maternal fiber intake and rate of change in child ADHD symptoms across ages were not associated. CONCLUSIONS Low prenatal maternal fiber intake may increase symptom levels of ADHD in offspring during childhood, independently of genetic predisposition to ADHD, unhealthy dietary exposures, and sociodemographic factors.
Collapse
Affiliation(s)
- Berit Skretting Solberg
- Department of Biomedicine, University of Bergen, Norway; Child and Adolescent Psychiatric Outpatient Unit, Hospital Betanien, Bergen, Norway.
| | | | | | - Catharina A Hartman
- Interdisciplinary Center Psychiatry and Emotion Regulation, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Kari Klungsøyr
- Department of Global Public Health and Primary Care, University of Bergen, Norway; Division of Mental and Physical Health, Norwegian Institute of Public Health, Bergen, Norway
| | - Lin Li
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Henrik Larsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Per Magnus
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Pål Rasmus Njølstad
- Department of Clinical Science, Mohn Center for Diabetes Precision Medicine, University of Bergen, Bergen, Norway; Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway; Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Stefan Johansson
- Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Ole A Andreassen
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiciton, Oslo University Hospital, Oslo, Norway
| | - Nora Refsum Bakken
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Mona Bekkhus
- Promenta Research Centre, Department of Psychology, University of Oslo, Oslo, Norway
| | - Chloe Austerberry
- Centre for Family Research, University of Cambridge, Cambridge, United Kingdom; Research Department of Clinical, Educational and Health Psychology, University College London, London, United Kingdom
| | - Dinka Smajlagic
- Promenta Research Centre, Department of Psychology, University of Oslo, Oslo, Norway
| | - Alexandra Havdahl
- Promenta Research Centre, Department of Psychology, University of Oslo, Oslo, Norway; Centre for Genetic Epidemiology and Mental Health, Norwegian Institute of Public Health, Oslo, Norway; Nic Waals Institute, Lovisenberg Diakonale Hospital, Oslo, Norway
| | - Elizabeth C Corfield
- Centre for Genetic Epidemiology and Mental Health, Norwegian Institute of Public Health, Oslo, Norway; Nic Waals Institute, Lovisenberg Diakonale Hospital, Oslo, Norway
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, Norway; Bergen Center for Brain Plasticity, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway; Department of Psychiatry, Research Department, Haukeland University Hospital, Bergen, Norway
| | - Rolf Gjestad
- Department of Psychiatry, Research Department, Haukeland University Hospital, Bergen, Norway; Center for Crisis Psychology, Faculty of Psychology, University of Bergen, Bergen, Norway; Centre for Research and Education in Forensic Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Tetyana Zayats
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| |
Collapse
|
15
|
Frerichs NM, de Meij TG, Niemarkt HJ. Microbiome and its impact on fetal and neonatal brain development: current opinion in pediatrics. Curr Opin Clin Nutr Metab Care 2024; 27:297-303. [PMID: 38488112 PMCID: PMC10990016 DOI: 10.1097/mco.0000000000001028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
PURPOSE OF REVIEW Emerging evidence suggests that the gut microbiota and its metabolites regulate neurodevelopment and cognitive functioning via a bi-directional communication system known as the microbiota-gut-brain axis (MGBA). RECENT FINDINGS The MGBA influences brain development and function via the hypothalamic-pituitary axis, the vagal nerve, immune signaling, bacterial production of neurotransmitters, and microbial metabolites like short-chain fatty acids, tryptophan derivatives, and bile acids. Animal studies show fetal neurodevelopment is mediated by maternal microbiota derivatives, immune activation, and diet. Furthermore, manipulation of the microbiota during critical windows of development, like antibiotic exposure and fecal microbiota transplantation, can affect cognitive functioning and behavior in mice. Evidence from human studies, particularly in preterm infants, also suggests that a disrupted gut microbiota colonization may negatively affect neurodevelopment. Early microbial signatures were linked to favorable and adverse neurodevelopmental outcomes. SUMMARY The link between the gut microbiota and the brain is evident. Future studies, including experimental studies, larger participant cohort studies with longitudinal analyses of microbes, their metabolites, and neurotransmitters, and randomized controlled trials are warranted to further elucidate the mechanisms of the MGBA. Identification of early, predictive microbial markers could pave the way for the development of novel early microbiota-based intervention strategies, such as targeted probiotics, and vaginal or fecal microbiota transplantation, aimed at improving infant neurodevelopment.
Collapse
Affiliation(s)
- Nina M. Frerichs
- Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism Research Institute, Department of Pediatric Gastroenterology, Emma Children's Hospital Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Amsterdam Reproduction and Development Research Institute, Amsterdam The Netherlands
| | - Tim G.J. de Meij
- Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism Research Institute, Department of Pediatric Gastroenterology, Emma Children's Hospital Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Amsterdam Reproduction and Development Research Institute, Amsterdam The Netherlands
| | - Hendrik J. Niemarkt
- Neonatal Intensive Care Unit, Máxima Medical Centre, Veldhoven
- Eindhoven University of Technology, Faculty of Electrical Engineering, Eindhoven, The Netherlands
| |
Collapse
|
16
|
Lu X, Shi Z, Jiang L, Zhang S. Maternal gut microbiota in the health of mothers and offspring: from the perspective of immunology. Front Immunol 2024; 15:1362784. [PMID: 38545107 PMCID: PMC10965710 DOI: 10.3389/fimmu.2024.1362784] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/28/2024] [Indexed: 04/17/2024] Open
Abstract
Due to the physiological alteration during pregnancy, maternal gut microbiota changes following the metabolic processes. Recent studies have revealed that maternal gut microbiota is closely associated with the immune microenvironment in utero during pregnancy and plays a vital role in specific pregnancy complications, including preeclampsia, gestational diabetes, preterm birth and recurrent miscarriages. Some other evidence has also shown that aberrant maternal gut microbiota increases the risk of various diseases in the offspring, such as allergic and neurodevelopmental disorders, through the immune alignment between mother and fetus and the possible intrauterine microbiota. Probiotics and the high-fiber diet are effective inventions to prevent mothers and fetuses from diseases. In this review, we summarize the role of maternal gut microbiota in the development of pregnancy complications and the health condition of future generations from the perspective of immunology, which may provide new therapeutic strategies for the health management of mothers and offspring.
Collapse
Affiliation(s)
- Xiaowen Lu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Management of Zhejiang Province, Hangzhou, China
| | - Zhan Shi
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
| | - Lingling Jiang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Management of Zhejiang Province, Hangzhou, China
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Management of Zhejiang Province, Hangzhou, China
| |
Collapse
|
17
|
Kimmel MC, Verosky B, Chen HJ, Davis O, Gur TL. The Maternal Microbiome as a Map to Understanding the Impact of Prenatal Stress on Offspring Psychiatric Health. Biol Psychiatry 2024; 95:300-309. [PMID: 38042328 PMCID: PMC10884954 DOI: 10.1016/j.biopsych.2023.11.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 12/04/2023]
Abstract
Stress and psychiatric disorders have been independently associated with disruption of the maternal and offspring microbiome and with increased risk of the offspring developing psychiatric disorders, both in clinical studies and in preclinical studies. However, the role of the microbiome in mediating the effect of prenatal stress on offspring behavior is unclear. While preclinical studies have identified several key mechanisms, clinical studies focusing on mechanisms are limited. In this review, we discuss 3 specific mechanisms by which the microbiome could mediate the effects of prenatal stress: 1) altered production of short-chain fatty acids; 2) disruptions in TH17 (T helper 17) cell differentiation, leading to maternal and fetal immune activation; and 3) perturbation of intestinal and microbial tryptophan metabolism and serotonergic signaling. Finally, we review the existing clinical literature focusing on these mechanisms and highlight the need for additional mechanistic clinical research to better understand the role of the microbiome in the context of prenatal stress.
Collapse
Affiliation(s)
- Mary C Kimmel
- University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| | - Branden Verosky
- Ohio State University College of Medicine, Ohio State University, Columbus, Ohio
| | - Helen J Chen
- Ohio State University College of Medicine, Ohio State University, Columbus, Ohio
| | - Olivia Davis
- University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Tamar L Gur
- Ohio State University College of Medicine, Ohio State University, Columbus, Ohio
| |
Collapse
|
18
|
Gundacker A, Cuenca Rico L, Stoehrmann P, Tillmann KE, Weber-Stadlbauer U, Pollak DD. Interaction of the pre- and postnatal environment in the maternal immune activation model. DISCOVER MENTAL HEALTH 2023; 3:15. [PMID: 37622027 PMCID: PMC10444676 DOI: 10.1007/s44192-023-00042-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023]
Abstract
Adverse influences during pregnancy are associated with a range of unfavorable outcomes for the developing offspring. Maternal psychosocial stress, exposure to infections and nutritional imbalances are known risk factors for neurodevelopmental derangements and according psychiatric and neurological manifestations later in offspring life. In this context, the maternal immune activation (MIA) model has been extensively used in preclinical research to study how stimulation of the maternal immune system during gestation derails the tightly coordinated sequence of fetal neurodevelopment. The ensuing consequence of MIA for offspring brain structure and function are majorly manifested in behavioral and cognitive abnormalities, phenotypically presenting during the periods of adolescence and adulthood. These observations have been interpreted within the framework of the "double-hit-hypothesis" suggesting that an elevated risk for neurodevelopmental disorders results from an individual being subjected to two adverse environmental influences at distinct periods of life, jointly leading to the emergence of pathology. The early postnatal period, during which the caregiving parent is the major determinant of the newborn´s environment, constitutes a window of vulnerability to external stimuli. Considering that MIA not only affects the developing fetus, but also impinges on the mother´s brain, which is in a state of heightened malleability during pregnancy, the impact of MIA on maternal brain function and behavior postpartum may importantly contribute to the detrimental consequences for her progeny. Here we review current information on the interaction between the prenatal and postnatal maternal environments in the modulation of offspring development and their relevance for the pathophysiology of the MIA model.
Collapse
Affiliation(s)
- Anna Gundacker
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse, 17, 1090 Vienna, Austria
| | - Laura Cuenca Rico
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse, 17, 1090 Vienna, Austria
| | - Peter Stoehrmann
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse, 17, 1090 Vienna, Austria
| | - Katharina E. Tillmann
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse, 17, 1090 Vienna, Austria
| | - Ulrike Weber-Stadlbauer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Daniela D. Pollak
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse, 17, 1090 Vienna, Austria
| |
Collapse
|
19
|
Chen X, Shi Y. Determinants of microbial colonization in the premature gut. Mol Med 2023; 29:90. [PMID: 37407941 DOI: 10.1186/s10020-023-00689-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 06/20/2023] [Indexed: 07/07/2023] Open
Abstract
Abnormal microbial colonization in the gut at an early stage of life affects growth, development, and health, resulting in short- and long-term adverse effects. Microbial colonization patterns of preterm infants differ from those of full-term infants in that preterm babies and their mothers have more complicated prenatal and postnatal medical conditions. Maternal complications, antibiotic exposure, delivery mode, feeding type, and the use of probiotics may significantly shape the gut microbiota of preterm infants at an early stage of life; however, these influences subside with age. Although some factors and processes are difficult to intervene in or avoid, understanding the potential factors and determinants will help in developing timely strategies for a healthy gut microbiota in preterm infants. This review discusses potential determinants of gut microbial colonization in preterm infants and their underlying mechanisms.
Collapse
Affiliation(s)
- Xiaoyu Chen
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110000, China
| | - Yongyan Shi
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110000, China.
| |
Collapse
|