1
|
Liang Q, Sun Y, Li M, Li R, Nie L, Lin L, Yu X. Association and function analysis of genetic variants and the risk of gestational diabetes mellitus in a southern Chinese population. Front Endocrinol (Lausanne) 2024; 15:1476222. [PMID: 39777224 PMCID: PMC11703716 DOI: 10.3389/fendo.2024.1476222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Background Gestational diabetes mellitus (GDM) is a complex metabolic disease that has short-term and long-term adverse effects on mothers and infants. However, the specific pathogenic mechanism has not been elucidated. Objective The aim of this study was to confirm the associations between candidate genetic variants (rs4134819, rs720918, rs2034410, rs11109509, and rs12524768) and GDM risk and prediction in a southern Chinese population. Methods Candidate variants were genotyped in 538 GDM cases and 626 healthy controls. The odds ratio (OR) and its corresponding 95% confidence interval (CI) were calculated to assess the associations between genotypes and GDM risk. Then, the false-positive report probability (FPRP) analysis was adopted to confirm the significant associations, and bioinformatics tools were used to explore the potential biological function of studied variants. Finally, risk factors of genetic variants and clinical indicators identified by logistics regression were used to construct a nomogram model for GDM prediction. Results It was shown that the XAB2 gene rs4134819 was significantly associated with GDM susceptibility (CT vs. CC: adjusted OR = 1.38, 95% CI: 1.01-1.87, p = 0.044; CT/TT vs. CC: crude OR = 1.42, 95% CI: 1.08-1.86, p = 0.013). Functional analysis suggested that rs4134819 can alter the specific transcription factors (CPE bind and GATE-1) binding to the promoter of the XAB2 gene, regulating the transcription of XAB2. The nomogram established with factors such as age, FPG, HbA1c, 1hPG, 2hPG, TG, and rs4134819 showed a good discriminated and calibrated ability with an area under the curve (AUC) = 0.931 and a Hosmer-Lemeshow test p-value > 0.05. Conclusion The variant rs4134819 can significantly alter the susceptibility of the Chinese population to GDM possibly by regulating the transcription of functional genes. The nomogram prediction model constructed with genetic variants and clinical factors can help distinguish high-risk GDM individuals.
Collapse
Affiliation(s)
- Qiulian Liang
- School of Public Health and Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, China
| | - Yan Sun
- School of Public Health and Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, China
| | - Ming Li
- Department of Histology and Embryology, School of Basic Medicine, Hunan University of Medicine, Huaihua, China
| | - Ruiqi Li
- School of Public Health and Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, China
| | - Lijie Nie
- School of Public Health and Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, China
| | - Lin Lin
- The Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Xiangyuan Yu
- School of Public Health and Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, China
| |
Collapse
|
2
|
Budzinski L, Sempert T, Lietz L, Maier R, Kang GU, von Stuckrad ASL, Goetzke CC, Roth M, Shah A, Abbas A, Lehman K, Necke K, Bartsch S, Hoffmann U, Mashreghi MF, Biesen R, Kallinich T, Chang HD. Age-stratification reveals age-specific intestinal microbiota signatures in juvenile idiopathic arthritis. Mol Cell Pediatr 2024; 11:12. [PMID: 39653980 PMCID: PMC11628465 DOI: 10.1186/s40348-024-00186-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/26/2024] [Indexed: 12/12/2024] Open
Abstract
OBJECTIVE Juvenile Idiopathic Arthritis (JIA) comprises diverse chronic inflammatory conditions driven by malfunction of the immune system. The intestinal microbiota is considered a crucial environmental factor correlating with chronic inflammatory diseases, and for JIA certain alterations in the microbiota have already been described. METHODS Here, we have characterized intestinal microbiota samples from 54 JIA patients and 38 pediatric healthy controls by conventional 16S rRNA sequencing and by single-cell analysis for phenotypic features by multi-parameter microbiota flow cytometry (mMFC), which complements the population-based taxonomic profiling with the characterization of individual bacterial cells. RESULTS We found age to be a crucial confounder in microbiota analyses of JIA patients. Age stratification revealed specific microbiota alterations neglected by the general comparison of JIA patients and pediatric controls. CONCLUSION Age groups presented distinct taxonomic profiles and microbiota phenotypic signatures which transitioned with age, highlighting changes in the microbiota-immune system interaction with age.
Collapse
Affiliation(s)
- Lisa Budzinski
- German Rheumatology Research Center Berlin - A Leibniz Institute, Charitéplatz 1, Berlin, 10117, Germany
- Department for Cytometry, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Toni Sempert
- German Rheumatology Research Center Berlin - A Leibniz Institute, Charitéplatz 1, Berlin, 10117, Germany
| | - Leonie Lietz
- German Rheumatology Research Center Berlin - A Leibniz Institute, Charitéplatz 1, Berlin, 10117, Germany
- Department for Cytometry, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - René Maier
- German Rheumatology Research Center Berlin - A Leibniz Institute, Charitéplatz 1, Berlin, 10117, Germany
| | - Gi-Ung Kang
- German Rheumatology Research Center Berlin - A Leibniz Institute, Charitéplatz 1, Berlin, 10117, Germany
| | - Anne Sae Lim von Stuckrad
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Campus Virchow, Charité Universitätsmedizin Berlin, Berlin, Germany
- German Center for Child and Adolescent Health (DZKJ), Partner Site Berlin, Berlin, Germany
| | - Carl Christoph Goetzke
- German Rheumatology Research Center Berlin - A Leibniz Institute, Charitéplatz 1, Berlin, 10117, Germany
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Campus Virchow, Charité Universitätsmedizin Berlin, Berlin, Germany
- German Center for Child and Adolescent Health (DZKJ), Partner Site Berlin, Berlin, Germany
| | - Maria Roth
- Department of Rheumatology and Clinical Immunology, Charité Campus Mitte, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Aayushi Shah
- German Rheumatology Research Center Berlin - A Leibniz Institute, Charitéplatz 1, Berlin, 10117, Germany
- Department for Cytometry, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Amro Abbas
- German Rheumatology Research Center Berlin - A Leibniz Institute, Charitéplatz 1, Berlin, 10117, Germany
| | - Katrin Lehman
- German Rheumatology Research Center Berlin - A Leibniz Institute, Charitéplatz 1, Berlin, 10117, Germany
| | - Kathleen Necke
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Campus Virchow, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Stefanie Bartsch
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Campus Virchow, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Ute Hoffmann
- German Rheumatology Research Center Berlin - A Leibniz Institute, Charitéplatz 1, Berlin, 10117, Germany
| | - Mir-Farzin Mashreghi
- German Rheumatology Research Center Berlin - A Leibniz Institute, Charitéplatz 1, Berlin, 10117, Germany
- German Center for Child and Adolescent Health (DZKJ), Partner Site Berlin, Berlin, Germany
| | - Robert Biesen
- Department of Rheumatology and Clinical Immunology, Charité Campus Mitte, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Tilmann Kallinich
- German Rheumatology Research Center Berlin - A Leibniz Institute, Charitéplatz 1, Berlin, 10117, Germany
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Campus Virchow, Charité Universitätsmedizin Berlin, Berlin, Germany
- German Center for Child and Adolescent Health (DZKJ), Partner Site Berlin, Berlin, Germany
| | - Hyun-Dong Chang
- German Rheumatology Research Center Berlin - A Leibniz Institute, Charitéplatz 1, Berlin, 10117, Germany.
- Department for Cytometry, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany.
| |
Collapse
|
3
|
Wang H, Cai Y, Wu W, Zhang M, Dai Y, Wang Q. Exploring the role of gut microbiome in autoimmune diseases: A comprehensive review. Autoimmun Rev 2024; 23:103654. [PMID: 39384149 DOI: 10.1016/j.autrev.2024.103654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/04/2024] [Accepted: 09/28/2024] [Indexed: 10/11/2024]
Abstract
As the industrialized society advances, there has been a gradual increase in the prevalence of autoimmune disorders. A probe into the fundamental causes has disclosed several factors in modern society that have an influence on the gut microbiome. These dramatic shifts in the gut microbiome are likely to be one of the reasons for the disarray in the immune system, and the relationship between the immune system and the gut microbiome emerging as a perennial hot topic of research. This review enumerates the findings from sequencing studies of gut microbiota on seven autoimmune diseases (ADs): Rheumatoid Arthritis (RA), Systemic Lupus Erythematosus (SLE), Ankylosing Spondylitis (AS), Systemic Sclerosis (SSc), Sjögren's Syndrome (SjS), Juvenile Idiopathic Arthritis (JIA), and Behçet's Disease (BD). It aims to identify commonalities in changes in the gut microbiome within the autoimmune disease cohort and characteristics specific to each disease. The dysregulation of the gut microbiome involves a disruption of the internal balance and the balance between the external environment and the host. This dysregulation impacts the host's immune system, potentially playing a role in the development of ADs. Damage to the gut epithelial barrier allows potential pathogens to translocate to the mucosal layer, contacting epithelial cells, disrupting tight junctions, and being recognized by antigen-presenting cells, which triggers an immune response. Primed T-cells assist B-cells in producing antibodies against pathogens; if antigen mimicry occurs, an immune response is generated in extraintestinal organs during immune cell circulation, clinically manifesting as ADs. However, current research is limited; advancements in sequencing technology, large-scale cohort studies, and fecal microbiota transplantation (FMT) research are expected to propel this field to new peaks.
Collapse
Affiliation(s)
- Hongli Wang
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China; The Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen, China
| | - Yueshu Cai
- Department of Urology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Wenqi Wu
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China; The Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen, China
| | - Miaomiao Zhang
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China; The Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen, China
| | - Yong Dai
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China; The Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen, China
| | - Qingwen Wang
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China; The Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen, China.
| |
Collapse
|
4
|
Liang J, Liu S, Zhang R, Chang J, Lv L, Nabi M, Zhang G, Zhang P. Yeast culture enhances long-term fermentation of corn straw by ruminal microbes for volatile fatty acid production: Performance and mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122736. [PMID: 39362162 DOI: 10.1016/j.jenvman.2024.122736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/05/2024]
Abstract
Ruminal microbes can efficiently ferment biomass waste to produce volatile fatty acids (VFAs). However, keeping long-term efficient VFA production efficiency has become a bottleneck. In this study, yeast culture (YC) was used to enhance the VFA production in long-term fermentation. Results showed that YC group improved the volatile solid removal and VFA concentration to 47.8% and 7.82 g/L, respectively, 18.6% and 16.1% higher than the control, mainly enhancing the acetic, propionic, and butyric acid production. YC addition reduced the bacterial diversity, changed the bacterial composition, and improved interactions among bacteria. The regulation mechanism of YC was to increase the abundance and activity of hydrolytic and acidogenic bacteria such as Prevotella and Treponema, improve bacterial interactions, and further promote expression of functional genes. Ultimately, a long-term efficient ruminal fermentation of corn straw into VFAs was achieved.
Collapse
Affiliation(s)
- Jinsong Liang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Shiqi Liu
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Ru Zhang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Jianning Chang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Longyi Lv
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Mohammad Nabi
- Environmental Science and Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou, 515063, China
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, 300130, China.
| | - Panyue Zhang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
5
|
Hong JB, Chen YX, Su ZY, Chen XY, Lai YN, Yang JH. Causal association of juvenile idiopathic arthritis or JIA-associated uveitis and gut microbiota: a bidirectional two-sample Mendelian randomisation study. Front Immunol 2024; 15:1356414. [PMID: 39114654 PMCID: PMC11303189 DOI: 10.3389/fimmu.2024.1356414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/04/2024] [Indexed: 08/10/2024] Open
Abstract
Background The gut microbiota significantly influences the onset and progression of juvenile idiopathic arthritis (JIA) and associated uveitis (JIAU); however, the causality remains unclear. This study aims to establish a causal link between gut microbiota and JIA or JIAU. Methods Using publicly available genome-wide association studies (GAWS) summary data, we conducted a two-sample Mendelian randomisation (MR) analysis employing various methods, namely inverse variance weighted (IVW), simple mode, weighted mode, weighted median and MR-Egger regression methods, to assess the causal association between JIA or JIAU and gut microbiota. Sensitivity analyses, including Cochrane's Q test, MR-Egger intercept test, leave-one-out analysis and MR-PRESSO, were performed to evaluate the robustness of the MR results. Subsequently, reverse MR analysis was conducted to determine causality between gene-predicted gut microbiota abundance and JIA or JIAU. Results The MR analysis revealed a causal association between gut microbiota abundance variations and JIA or JIAU risk. Specifically, the increased abundance of genus Ruminococcaceae UCG013 (OR: 0.055, 95%CI: 0.006-0.103, p = 0.026) and genus Ruminococcaceae UCG003 (β: 0.06, 95%CI: 0.003-0.117, p = 0.041) correlated with an increased risk of JIA, while genus Lachnospiraceae UCG001 (OR: 0.833, 95%CI: 0.699~0.993, p = 0.042) was associated with a reduced risk of JIA, among others. Sensitivity analysis confirmed MR analysis robustness. Conclusions This study provides substantial evidence supporting a causal association between genetically predicted gut microbiota and JIA or JIAU. It highlights the significant role of intestinal flora in JIA or JIAU development, suggesting their potential as novel biomarkers for diagnosis and prevention. These findings offer valuable insights to mitigate the impact of JIA or JIAU.
Collapse
Affiliation(s)
- Jun-bin Hong
- Department of Pediatrics, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yue-xuan Chen
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen, China
| | - Zhi-ying Su
- Department of Pediatrics, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xin-ying Chen
- Department of Pediatrics, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yan-ni Lai
- School of Medicine and Health, Shunde Polytechnic, Foshan, China
| | - Jing-hua Yang
- Department of Pediatrics, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
- Xiaorong Luo’s National Renowned Expert Inheritance Studio, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
6
|
Koester ST, Chow A, Pepper-Tunick E, Lee P, Eckert M, Brenchley L, Gardner P, Song HJ, Li N, Schiffenbauer A, Volochayev R, Bayat N, McLean JS, Rider LG, Shenoi S, Stevens AM, Dey N. Familial clustering of dysbiotic oral and fecal microbiomes in juvenile dermatomyositis. Sci Rep 2024; 14:16158. [PMID: 38997299 PMCID: PMC11245510 DOI: 10.1038/s41598-024-60225-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/19/2024] [Indexed: 07/14/2024] Open
Abstract
Juvenile dermatomyositis (JDM) is a rare immune-mediated disease of childhood with putative links to microbial exposures. In this multi-center, prospective, observational cohort study, we evaluated whether JDM is associated with discrete oral and gut microbiome signatures. We generated 16S rRNA sequencing data from fecal, saliva, supragingival, and subgingival plaque samples from JDM probands (n = 28). To control for genetic and environmental determinants of microbiome community structure, we also profiled microbiomes of unaffected family members (n = 27 siblings, n = 26 mothers, and n = 17 fathers). Sample type (oral-vs-fecal) and nuclear family unit were the predominant variables explaining variance in microbiome diversity, more so than having a diagnosis of JDM. The oral and gut microbiomes of JDM probands were more similar to their own unaffected siblings than they were to the microbiomes of other JDM probands. In a sibling-paired within-family analysis, several potentially immunomodulatory bacterial taxa were differentially abundant in the microbiomes of JDM probands compared to their unaffected siblings, including Faecalibacterium (gut) and Streptococcus (oral cavity). While microbiome features of JDM are often shared by unaffected family members, the loss or gain of specific fecal and oral bacteria may play a role in disease pathogenesis or be secondary to immune dysfunction in susceptible individuals.
Collapse
Affiliation(s)
- Sean T Koester
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- University of Kansas School of Medicine, Kansas City, USA
| | - Albert Chow
- Department of Pediatrics, Division of Rheumatology, University of Washington, Seattle, WA, USA
- Loma Linda University, Loma Linda, USA
| | - Evan Pepper-Tunick
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, USA
| | - Peggy Lee
- School of Dentistry, University of Washington, Seattle, WA, USA
| | - Mary Eckert
- Center for Clinical and Translational Research, Seattle Children's Research Institute, Seattle, WA, USA
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Laurie Brenchley
- Office of the Clinical Director, NIDCR, National Institutes of Health, Bethesda, MD, USA
| | - Pamela Gardner
- Office of the Clinical Director, NIDCR, National Institutes of Health, Bethesda, MD, USA
- Oral Oncology at BC Cancer, Vancouver, BC, Canada
| | - Hyun Jung Song
- School of Dentistry, University of Washington, Seattle, WA, USA
| | - Naisi Li
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Adam Schiffenbauer
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Rita Volochayev
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Nastaran Bayat
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Bethesda, MD, USA
- Social and Scientific Systems, Inc., A DLH Holdings Corp. Company, Silver Spring, MD, USA
| | - Jeffrey S McLean
- Department of Periodontics, University of Washington, Seattle, WA, USA
| | - Lisa G Rider
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Susan Shenoi
- Department of Pediatrics, Division of Rheumatology, University of Washington, Seattle, WA, USA
- Center for Clinical and Translational Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Anne M Stevens
- Department of Pediatrics, Division of Rheumatology, University of Washington, Seattle, WA, USA
- Center for Clinical and Translational Research, Seattle Children's Research Institute, Seattle, WA, USA
- Janssen, a Wholly Owned Subsidiary of Johnson & Johnson, Raritan, USA
| | - Neelendu Dey
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Department of Medicine, Division of Gastroenterology, University of Washington, Seattle, WA, USA.
- Microbiome Research Initiative, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| |
Collapse
|
7
|
Baggett KH, Brandon TG, Xiao R, Weiss PF. Association of Infant Breastfeeding and Juvenile Spondyloarthritis: A Case-Control Study. J Rheumatol 2024; 51:708-714. [PMID: 38561193 PMCID: PMC11216860 DOI: 10.3899/jrheum.2023-1203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2024] [Indexed: 04/04/2024]
Abstract
OBJECTIVE Given the multifactorial pathogenesis of juvenile spondyloarthritis (JSpA) and evidence of a protective effect in phenotypically similar diseases, we aimed to test whether breastfeeding is associated with the development and disease activity of JSpA. METHODS This single-center retrospective case-control study included children with JSpA and age- and sex-matched controls with a 1:1 ratio. Univariable and multivariable conditional logistic regression modeling for matched pairs was used to test the association of infant factors with the development of JSpA, including infant nutrition and form of delivery. Linear regression was used to assess the association of JSpA disease activity (JSpA Disease Activity Index with 6 elements [JSpADA6]) at presentation with breastfeeding exposure, form of delivery, and antibiotic exposure. RESULTS For the 195 case-control matched pairs, the mean age was 13.0 years and 47.7% were female. For breastfeeding, 88.7% of controls and 69.2% of JSpA cases were exposed to breastfeeding of any duration, respectively (P < 0.001). In the multivariable model, exclusive breastfeeding > 6 months was independently and significantly associated with a lower chance of JSpA development (odds ratio 0.47, 95% CI 0.30-0.72; P < 0.001). The median JSpADA6 was not significantly associated with breastfeeding for > 6 months. However, vaginal delivery was significantly associated with a lower JSpADA6 (B = -0.65, 95% CI -1.13 to -0.17; P = 0.008). CONCLUSION This study suggests that infant factors that affect the microbiome may be associated with the occurrence and disease activity of JSpA at presentation.
Collapse
Affiliation(s)
- Katelyn H Baggett
- K.H. Baggett, BSc, T.G. Brandon, MPH, Department of Pediatrics, Division of Rheumatology and Clinical Futures at the Children's Hospital of Philadelphia
| | - Timothy G Brandon
- K.H. Baggett, BSc, T.G. Brandon, MPH, Department of Pediatrics, Division of Rheumatology and Clinical Futures at the Children's Hospital of Philadelphia
| | - Rui Xiao
- R. Xiao, PhD, Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania
| | - Pamela F Weiss
- P.F. Weiss, MD, MSCE, Department of Pediatrics, Division of Rheumatology, and Clinical Futures at the Children's Hospital of Philadelphia, and Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
8
|
Karthikeyan BS, Hyötyläinen T, Ghaffarzadegan T, Triplett E, Orešič M, Ludvigsson J. Prenatal exposure to environmental contaminants and cord serum metabolite profiles in future immune-mediated diseases. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:647-658. [PMID: 38678133 PMCID: PMC11303251 DOI: 10.1038/s41370-024-00680-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Prenatal exposure to environmental contaminants is a significant health concern because it has the potential to interfere with host metabolism, leading to adverse health effects in early childhood and later in life. Growing evidence suggests that genetic and environmental factors, as well as their interactions, play a significant role in the development of autoimmune diseases. OBJECTIVE In this study, we hypothesized that prenatal exposure to environmental contaminants impacts cord serum metabolome and contributes to the development of autoimmune diseases. METHODS We selected cord serum samples from All Babies in Southeast Sweden (ABIS) general population cohort, from infants who later developed one or more autoimmune-mediated and inflammatory diseases: celiac disease (CD), Crohn's disease (IBD), hypothyroidism (HT), juvenile idiopathic arthritis (JIA), and type 1 diabetes (T1D) (all cases, N = 62), along with matched controls (N = 268). Using integrated exposomics and metabolomics mass spectrometry (MS) based platforms, we determined the levels of environmental contaminants and metabolites. RESULTS Differences in exposure levels were found between the controls and those who later developed various diseases. High contaminant exposure levels were associated with changes in metabolome, including amino acids and free fatty acids. Specifically, we identified marked associations between metabolite profiles and exposure levels of deoxynivalenol (DON), bisphenol S (BPS), and specific per- and polyfluorinated substances (PFAS). IMPACT STATEMENT Abnormal metabolism is a common feature preceding several autoimmune and inflammatory diseases. However, few studies compared common and specific metabolic patterns preceding these diseases. Here we hypothesized that exposure to environmental contaminants impacts cord serum metabolome, which may contribute to the development of autoimmune diseases. We found differences in exposure levels between the controls and those who later developed various diseases, and importantly, on the metabolic changes associated with the exposures. High contaminant exposure levels were associated with specific changes in metabolome. Our study suggests that prenatal exposure to specific environmental contaminants alters the cord serum metabolomes, which, in turn, might increase the risk of various immune-mediated diseases.
Collapse
Affiliation(s)
- Bagavathy Shanmugam Karthikeyan
- School of Science and Technology, Örebro University, SE-702 81, Örebro, Sweden
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, SE-702 81, Örebro, Sweden
| | - Tuulia Hyötyläinen
- School of Science and Technology, Örebro University, SE-702 81, Örebro, Sweden
| | | | - Eric Triplett
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences University of Florida, Gainesville, 32611-0700, FL, USA
| | - Matej Orešič
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, SE-702 81, Örebro, Sweden.
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, FI-20520, Finland.
| | - Johnny Ludvigsson
- Crown Princess Victoria's Children's Hospital and Division of Pediatrics, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, SE-581 85, Sweden
| |
Collapse
|
9
|
Das D, Thimjo J, Lebena A, Guo A, Enerbäck C, Ludvigsson J. Breastfeeding decreases the risk of developing psoriasis through to early adulthood. Br J Dermatol 2024; 191:65-74. [PMID: 38305572 DOI: 10.1093/bjd/ljae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND Psoriasis is a genetically determined systemic skin disease, although environmental trigger factors are required for disease manifestation. Some of these triggers, such as stress, infections and drug exposure, have been identified. OBJECTIVES To explore the role of early nutrition as a risk factor for the development of psoriasis. METHODS Parents in the All Babies in Southeast Sweden (ABIS) prospective birth cohort (n = 16 415) answered questionnaires at birth and when their children were aged 1 and 3 years. A diagnosis of psoriasis was determined from the Swedish National Patient Register and National Drug Prescription Register. Statistical analyses were conducted using custom-written R scripts. RESULTS Individuals breastfed for < 4 months and who received infant formula before 4 months of age had a higher risk of psoriasis [odds ratio (OR) 1.84 (P = 0.02) and OR 1.88 (P = 0.02), respectively]. At the 3-year follow-up, the increased consumption of fish, especially from the Baltic Sea, increased the risk of psoriasis (OR 9.61; P = 0.003). In addition, the risk of psoriasis increased following the consumption of a large volume of milk (OR 2.53; P = 0.04). CONCLUSIONS Our study underscores, for the first time, the impact of very early nutrition on the manifestation of psoriasis through early adulthood. Exclusive breastfeeding for 4 months appears to be protective.
Collapse
Affiliation(s)
| | | | | | - Annie Guo
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Johnny Ludvigsson
- Crown Princess Victoria Children's Hospital and Division of Pediatrics, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
10
|
Ahrens AP, Hyötyläinen T, Petrone JR, Igelström K, George CD, Garrett TJ, Orešič M, Triplett EW, Ludvigsson J. Infant microbes and metabolites point to childhood neurodevelopmental disorders. Cell 2024; 187:1853-1873.e15. [PMID: 38574728 DOI: 10.1016/j.cell.2024.02.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 11/22/2023] [Accepted: 02/28/2024] [Indexed: 04/06/2024]
Abstract
This study has followed a birth cohort for over 20 years to find factors associated with neurodevelopmental disorder (ND) diagnosis. Detailed, early-life longitudinal questionnaires captured infection and antibiotic events, stress, prenatal factors, family history, and more. Biomarkers including cord serum metabolome and lipidome, human leukocyte antigen (HLA) genotype, infant microbiota, and stool metabolome were assessed. Among the 16,440 Swedish children followed across time, 1,197 developed an ND. Significant associations emerged for future ND diagnosis in general and for specific ND subtypes, spanning intellectual disability, speech disorder, attention-deficit/hyperactivity disorder, and autism. This investigation revealed microbiome connections to future diagnosis as well as early emerging mood and gastrointestinal problems. The findings suggest links to immunodysregulation and metabolism, compounded by stress, early-life infection, and antibiotics. The convergence of infant biomarkers and risk factors in this prospective, longitudinal study on a large-scale population establishes a foundation for early-life prediction and intervention in neurodevelopment.
Collapse
Affiliation(s)
- Angelica P Ahrens
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32603, USA
| | - Tuulia Hyötyläinen
- School of Science and Technology, Örebro University, Örebro 702 81, Sweden
| | - Joseph R Petrone
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32603, USA
| | - Kajsa Igelström
- Department of Biomedical and Clinical Sciences, Division of Neurobiology, Linköping University, Linköping 58185, Sweden
| | - Christian D George
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32603, USA
| | - Timothy J Garrett
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Matej Orešič
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro 702 81, Sweden; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland; Department of Life Technologies, University of Turku, Turku 20014, Finland
| | - Eric W Triplett
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32603, USA.
| | - Johnny Ludvigsson
- Crown Princess Victoria Children's Hospital and Division of Pediatrics, Department of Biomedical and Clinical Sciences, Linköping University, Linköping 58185, Sweden
| |
Collapse
|
11
|
Courel-Ibáñez J, Vetrovsky T, Růžičková N, Marañón C, Durkalec-Michalski K, Tomcik M, Filková M. Integrative non-pharmacological care for individuals at risk of rheumatoid arthritis. Rheumatol Int 2024; 44:413-423. [PMID: 38180500 DOI: 10.1007/s00296-023-05507-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/08/2023] [Indexed: 01/06/2024]
Abstract
There is increasing knowledge in the recognition of individuals at risk for progression to rheumatoid arthritis (RA) before the clinical manifestation of the disease. This prodromal phase preceding the manifestation of RA may represent a "window of opportunity" for preventive interventions that may transform the clinical approach to this disease. However, limited evidence exists in support of effective interventions to delay the onset or even halt the manifestation of RA. Given the multifactorial nature of RA development and disease progression, the latest guidelines for established RA stress the use of integrative interventions and multidisciplinary care strategies, combining pharmacologic treatment with non-pharmacological approaches. Accordingly, individuals at risk of RA could be offered an integrative, multifactorial intervention approach. Current data point toward pharmacological intervention reverting the subclinical inflammation and delay in the disease onset. In addition, targeting life style modifiable factors (smoking cessation, dental health, physical activity, and diet) may presumably improve RA prognosis in individuals at risk, mainly by changes in epigenetics, autoantibodies, cytokines profiles, and microbiome. Nonetheless, the benefits of multidisciplinary interventions to halt the manifestation of RA in at-risk individuals remain unknown. As there is a growing knowledge of possible pharmacological intervention in the preclinical phase, this narrative review aims to provide a comprehensive overview of non-pharmacological treatments in individuals at risk of RA. Considering the mechanisms preceding the clinical manifestation of RA we explored all aspects that would be worth modifying and that would represent an integrative non-pharmacological care for individuals at risk of RA.
Collapse
Affiliation(s)
- Javier Courel-Ibáñez
- Department of Physical Education and Sport, University of Granada, C/Camino de Alfacar, 21, 18071, Granada, Spain.
| | - Tomas Vetrovsky
- Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Nora Růžičková
- Department of Rheumatology, 1st Faculty of Medicine, Institute of Rheumatology, Charles University, Prague, Czech Republic
| | - Concepción Marañón
- Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), Granada, Spain
| | - Krzysztof Durkalec-Michalski
- Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
- Department of Sports Dietetics, Poznan University of Physical Education, Poznan, Poland
| | - Michal Tomcik
- Department of Rheumatology, 1st Faculty of Medicine, Institute of Rheumatology, Charles University, Prague, Czech Republic
| | - Mária Filková
- Department of Rheumatology, 1st Faculty of Medicine, Institute of Rheumatology, Charles University, Prague, Czech Republic
| |
Collapse
|
12
|
Berryman MA, Ilonen J, Triplett EW, Ludvigsson J. Important denominator between autoimmune comorbidities: a review of class II HLA, autoimmune disease, and the gut. Front Immunol 2023; 14:1270488. [PMID: 37828987 PMCID: PMC10566625 DOI: 10.3389/fimmu.2023.1270488] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/11/2023] [Indexed: 10/14/2023] Open
Abstract
Human leukocyte antigen (HLA) genes are associated with more diseases than any other region of the genome. Highly polymorphic HLA genes produce variable haplotypes that are specifically correlated with pathogenically different autoimmunities. Despite differing etiologies, however, many autoimmune disorders share the same risk-associated HLA haplotypes often resulting in comorbidity. This shared risk remains an unanswered question in the field. Yet, several groups have revealed links between gut microbial community composition and autoimmune diseases. Autoimmunity is frequently associated with dysbiosis, resulting in loss of barrier function and permeability of tight junctions, which increases HLA class II expression levels and thus further influences the composition of the gut microbiome. However, autoimmune-risk-associated HLA haplotypes are connected to gut dysbiosis long before autoimmunity even begins. This review evaluates current research on the HLA-microbiome-autoimmunity triplex and proposes that pre-autoimmune bacterial dysbiosis in the gut is an important determinant between autoimmune comorbidities with systemic inflammation as a common denominator.
Collapse
Affiliation(s)
- Meghan A. Berryman
- Triplett Laboratory, Institute of Food and Agricultural Sciences, Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Eric W. Triplett
- Triplett Laboratory, Institute of Food and Agricultural Sciences, Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Johnny Ludvigsson
- Crown Princess Victoria’s Children’s Hospital and Division of Pediatrics, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
13
|
Hestetun S, Andersen S, Sanner H, Størdal K. Antibiotic exposure in prenatal and early life and risk of juvenile idiopathic arthritis: a nationwide register-based cohort study. RMD Open 2023; 9:e003333. [PMID: 37648397 PMCID: PMC10471866 DOI: 10.1136/rmdopen-2023-003333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/02/2023] [Indexed: 09/01/2023] Open
Abstract
OBJECTIVES Early antibiotic exposure influences the gut microbiota which is believed to be involved in the pathogenesis of juvenile idiopathic arthritis (JIA). We aimed to investigate the association between systemic antibiotics in prenatal and early life and risk of JIA. METHODS We conducted a register-based cohort study including all children born in Norway from 2004 through 2012. The children were followed until 31 December 2020. Main exposures were dispensed antibiotics to the mother during pregnancy and to the child during 0-24 months of age. The outcome was defined by diagnostic codes indicating JIA. Multivariate logistic regression analyses were performed to estimate the association between antibiotic exposure and JIA. RESULTS We included 535 294 children and their mothers in the analyses; 1011 cases were identified. We found an association between exposure to systemic antibiotics during 0-24 months and JIA (adjusted OR (aOR) 1.40, 95% CI 1.24 to 1.59), with a stronger association for >1 course (aOR 1.50, 95% CI 1.29 to 1.74) vs 1 course (aOR 1.31, 95% CI 1.13 to 1.53). Subanalyses showed significant associations in all age periods except 0-6 months, and stronger association with sulfonamides/trimethoprim and broad-spectrum antibiotics. There was no association between prenatal antibiotic exposure and JIA. CONCLUSIONS The novel observation of no association with prenatal antibiotic exposure and JIA suggests that the association between antibiotics in early life and JIA is unlikely to be confounded by shared family factors. This may indicate that exposure to antibiotics in early life is an independent risk factor for JIA.
Collapse
Affiliation(s)
- Sigrid Hestetun
- Department of Rheumatology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Svend Andersen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Paediatrics, Vestfold Hospital Trust, Tønsberg, Norway
| | - Helga Sanner
- Department of Rheumatology, Oslo University Hospital, Oslo, Norway
- Department of Health Sciences, Oslo New University College, Oslo, Norway
| | - Ketil Størdal
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
- Paediatric Research Institute, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|