1
|
Chbib C, Rashid MA, Shah SM, Kazi M, Uddin MN. Evaluating the Release of Different Commercial Orally Modified Niacin Formulations In Vitro. Polymers (Basel) 2023; 15:3046. [PMID: 37514436 PMCID: PMC10386545 DOI: 10.3390/polym15143046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/29/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
OBJECTIVES To evaluate the release profile of different modified-release oral formulations of niacin, such as immediate-release (IR) powder and tablets, timed-release (TR) caplets, extended-release (ER) capsules, and controlled-release (CR) tablets, to assure their defined release pattern and correlate this release with their matrix polymers. SIGNIFICANCE Niacin is used to manage hyperlipidemia by reducing cutaneous flushing and hepatotoxicity adverse events. The release profiles of different types of modified-release dosage forms depend on the types of coating materials (polymers) used in the matrix formation. Although different types of niacin formulations exist, none of the niacin dissolution profiles have been evaluated and compared in the literature. METHODS Four commercial orally modified-release niacin brands were collected from a local CVS pharmacy retail store, in Miami, FL, USA. The in vitro release study was conducted in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) conditions. RESULTS The results of the release patterns of four niacin-modified dosage forms (IR, ER, TR, and CR) were aligned with their release definitions. However, the CR dosage form did not follow an ideal release pattern. CONCLUSIONS The release rate of niacin in vitro was pH dependent, which was confirmed by the similarity factor (f2) results. All the f2 comparison values were below 50 in both the SIF and SGF media, while all the comparisons were below the f2 values for all brands in the SIF media.
Collapse
Affiliation(s)
- Christiane Chbib
- Department of Pharmaceutics, College of Pharmacy, Larkin University, 18301 N Miami, Miami, FL 33169, USA
| | - Md Abdur Rashid
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Al Faraa, Abha 62223, Saudi Arabia
| | - Sarthak M Shah
- Department of Pharmaceutics, College of Pharmacy, Mercer University, 3001 Mercer University Drive, Atlanta, GA 30341, USA
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammad N Uddin
- Department of Pharmaceutics, College of Pharmacy, Mercer University, 3001 Mercer University Drive, Atlanta, GA 30341, USA
| |
Collapse
|
2
|
Lennox RD, Cecchini-Sternquist M. Safety and tolerability of sauna detoxification for the protracted withdrawal symptoms of substance abuse. J Int Med Res 2018; 46:4480-4499. [PMID: 30209965 PMCID: PMC6259397 DOI: 10.1177/0300060518779314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Objective Protracted drug withdrawal symptoms can last months or years after drug cessation, often precipitating a return to substance misuse. We evaluated the safety and preliminary health benefits of a unique chemical exposure regimen based on exercise, sauna and therapeutic nutrients. Methods This was a prospective evaluation of 109 individuals sequentially enrolled into a sauna detoxification component of a multi-modal, long-term residential substance abuse treatment centre. Results Data from medical charts, client self-reports and Short Form Health Survey (SF-36) responses indicated that the Hubbard sauna detoxification method was well tolerated, with a 99% completion rate, including one human immunodeficiency virus and nine hepatitis C positive clients. There were no cases of dehydration, overhydration or heat illness. Statistically significant improvements were seen in both mental and physical SF-36 scores at regimen completion, as well as in Addiction Severity Index and Global Appraisal of Individual Needs Short Screener change scores at rehabilitation program discharge, compared with enrolment. Conclusions The regimen lacked serious adverse events, had a very low discontinuation rate and high client-reported satisfaction. The SF-36 data indicated improved physical and emotional symptoms. Therefore, broader investigation of this sauna-based treatment regimen is warranted.
Collapse
Affiliation(s)
- Richard D Lennox
- Chestnut Global Partners, Chestnut Health Systems, Martin Luther King Drive, Bloomington, Illinois, USA
| | - Marie Cecchini-Sternquist
- Chestnut Global Partners, Chestnut Health Systems, Martin Luther King Drive, Bloomington, Illinois, USA
| |
Collapse
|
3
|
Kumar JS, Subramanian VS, Kapadia R, Kashyap ML, Said HM. Mammalian colonocytes possess a carrier-mediated mechanism for uptake of vitamin B3 (niacin): studies utilizing human and mouse colonic preparations. Am J Physiol Gastrointest Liver Physiol 2013; 305:G207-13. [PMID: 23744738 PMCID: PMC3742858 DOI: 10.1152/ajpgi.00148.2013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Niacin (vitamin B3; nicotinic acid) plays an important role in maintaining redox state of cells and is obtained from endogenous and exogenous sources. The latter source has generally been assumed to be the dietary niacin, but another exogenous source that has been ignored is the niacin that is produced by the normal microflora of the large intestine. For this source of niacin to be bioavailable, it needs to be absorbed, but little is known about the ability of the large intestine to absorb niacin and the mechanism involved. Here we addressed these issues using the nontransformed human colonic epithelial NCM460 cells, native human colonic apical membrane vesicles (AMV) isolated from organ donors, and mouse colonic loops in vivo as models. Uptake of ³H-nicotinic acid by NCM460 cells was: 1) acidic pH (but not Na⁺) dependent; 2) saturable (apparent Km = 2.5 ± 0.8 μM); 3) inhibited by unlabeled nicotinic acid, nicotinamide, and probenecid; 4) neither affected by other bacterially produced monocarboxylates, monocarboxylate transport inhibitor, or by substrates of the human organic anion transporter-10; 5) affected by modulators of the intracellular protein tyrosine kinase- and Ca²⁺-calmodulin-regulatory pathways; and 6) adaptively regulated by extracellular nicotinate level. Uptake of nicotinic acid by human colonic AMV in vitro and by mouse colonic loops in vivo was also carrier mediated. These findings report, for the first time, that mammalian colonocytes possess a high-affinity carrier-mediated mechanism for nicotinate uptake and show that the process is affected by intracellular and extracellular factors.
Collapse
Affiliation(s)
- Jeyan S. Kumar
- 1Departments of Medicine, Physiology and Biophysics, University of California, Irvine; ,2Department of Medical Research, Veterans Affairs Medical Center, Long Beach, California
| | - Veedamali S. Subramanian
- 1Departments of Medicine, Physiology and Biophysics, University of California, Irvine; ,2Department of Medical Research, Veterans Affairs Medical Center, Long Beach, California
| | - Rubina Kapadia
- 1Departments of Medicine, Physiology and Biophysics, University of California, Irvine; ,2Department of Medical Research, Veterans Affairs Medical Center, Long Beach, California
| | - Moti L. Kashyap
- 2Department of Medical Research, Veterans Affairs Medical Center, Long Beach, California
| | - Hamid M. Said
- 1Departments of Medicine, Physiology and Biophysics, University of California, Irvine; ,2Department of Medical Research, Veterans Affairs Medical Center, Long Beach, California
| |
Collapse
|
4
|
Krentz AJ. Prevention of cardiovascular complications of the metabolic syndrome: focus on pharmacotherapy. Metab Syndr Relat Disord 2012; 4:328-41. [PMID: 18370750 DOI: 10.1089/met.2006.4.328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The metabolic syndrome increases the risk of atherothrombotic cardiovascular disease (CVD) and diabetes. In turn, diabetes promotes the development of atheroma and is regarded as a coronary heart disease risk equivalent. A multifactorial therapeutic strategy is advocated for patients with the metabolic syndrome to improve cardiovascular risk factor profiles and to reduce the chances of developing type 2 diabetes. Individual components of the syndrome must be addressed using safe, efficacious, and cost-effective measures. There is general agreement that lifestyle modifications, including control of body weight, avoidance of central adiposity, adoption of an antiatherogenic diet, and regular physical activity, are crucial. However, as the magnitude of the individual components of the metabolic syndrome increases with time, lifestyle measures are often insufficient. An individual with metabolic syndrome will often require drug treatment for hyperglycemia, atherogenic dyslipidemia, and high blood pressure, together with antiplatelet therapy. Reducing the need for polypharmacy is an increasingly important consideration for clinicians and the pharmaceutical industry; to date, no single therapy has emerged that targets the root cause(s) of the syndrome. HMG-CoA reductase inhibitors are important agents that reduce CVD morbidity and mortality, in people with impaired fasting glucose or metabolic syndrome. Selective cannabinoid receptor antagonists appear promising because they improve or attenuate several key defects of the syndrome. Thiazolidinediones and metformin are presently licensed for treatment of type 2 diabetes but may prove to have a broader role in future. Novel insulin-sensitizing drugs are under investigation. Drugs that act to prevent or reverse endothelial dysfunction may be of particular utility in preventing cardiovascular disease, especially if initiated before tissue damage has become irreversible. Insulin therapy, which has antiinflammatory and endothelial protective properties, has been shown to reduce morbidity and mortality in high-risk nondiabetic patients during critical illness. Potential synergy between different classes of drugs with metabolic and/or cardiovascular protective properties merits further investigation.
Collapse
Affiliation(s)
- Andrew J Krentz
- Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
5
|
Beaulieu J, Millette E, Trottier E, Précourt LP, Dupont C, Lemieux P. Regulatory function of a malleable protein matrix as a novel fermented whey product on features defining the metabolic syndrome. J Med Food 2010; 13:509-19. [PMID: 20406141 DOI: 10.1089/jmf.2009.0083] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Previously, we reported that a malleable protein matrix (MPM), composed of whey fermented by a proprietary Lactobacillus kefiranofaciens strain, has immunomodulatory and anti-inflammatory properties. MPM consumption leads to a considerable reduction in the cytokine and chemokine production (tumor necrosis factor-alpha, interleukin-1beta, and interleukin-6), thus lowering chronic inflammation or metaflammation. Inhibition of metaflammation should provide positive impact, particularly in the context of dyslipidemia, insulin resistance, and hypertension. In this study, we investigated whether short-term MPM supplementation ameliorates those features of metabolic syndrome (MetS). The ability of MPM to potentially regulate triglyceride level, cholesterol level, blood glucose level, and hypertension was evaluated in different animal models. MPM lowers triglyceride level by 37% (P < .05) in a poloxamer 407 dyslipidemia-induced rat model. It also reduces total cholesterol by 18% (P < .05) and low-density lipoprotein-cholesterol level by 32% (P < .05) and raises high-density lipoprotein-cholesterol level by 17% (P < .01) in Syrian Golden hamsters fed a high fat/high cholesterol diet for 2 weeks. MPM reestablishes the fasting glucose insulin ratio index to normal levels (P = .07) in this latter model and lowers the plasma glucose level area under the curve (-10%, P = .09) in fructose-fed rats after 2 weeks of treatment. In spontaneously hypertensive rats, MPM-treated animals showed a reduction of SBP by at least 13% (P < .05) for 4 weeks. Results from this study suggest that MPM is a functional ingredient with beneficial effects on lipid metabolism, blood glucose control, and hypertension that might contribute to the management of MetS and thus reducing the risk of cardiovascular diseases.
Collapse
Affiliation(s)
- J Beaulieu
- Technologie Biolactis Inc., Laval, Québec, Canada
| | | | | | | | | | | |
Collapse
|
6
|
Le Bloc'h J, Leray V, Chetiveaux M, Freuchet B, Magot T, Krempf M, Nguyen P, Ouguerram K. Nicotinic Acid Decreases Apolipoprotein B100-Containing Lipoprotein Levels by Reducing Hepatic Very Low Density Lipoprotein Secretion through a Possible Diacylglycerol Acyltransferase 2 Inhibition in Obese Dogs. J Pharmacol Exp Ther 2010; 334:583-9. [DOI: 10.1124/jpet.110.167478] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
7
|
Pires JAA, Grummer RR. The use of nicotinic acid to induce sustained low plasma nonesterified fatty acids in feed-restricted Holstein cows. J Dairy Sci 2007; 90:3725-32. [PMID: 17638983 DOI: 10.3168/jds.2006-904] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The objectives were to determine the effects of nicotinic acid (NA) on blood metabolites (experiment 1) and whether successive doses of NA could induce sustained reductions of plasma nonesterified fatty acids (NEFA; experiment 2) in feed-restricted, nonlactating Holstein cows. Experiment 1 was a single 4 x 4 Latin square with 1-wk periods. Each period consisted of 2.5 d of feed restriction to increase plasma NEFA and 4.5 d of ad libitum feeding. Treatments were abomasal administration of 0, 6, 30, or 60 mg of NA/kg of body weight (BW), given as a single bolus 48 h after initiation of feed restriction. Plasma NEFA concentration decreased from 546 microEq/L to 208 +/- 141 microEq/L at 1 h after the infusion of 6 mg of NA/kg of BW, and to less than 100 +/- 148 microEq/L at 3 h after the abomasal infusion of the 2 highest doses of NA. A rebound occurred after the initial decrease of plasma NEFA concentration. The rebound lasted up to 9 h for the 30-mg dose of NA, and up to 6 h for the 6-mg dose. Experiment 2 was a randomized complete block design with 3 treatments and 6 cows. Starting at 48 h of feed restriction, cows received 9 hourly abomasal infusions of 0, 6, or 10 mg of NA/kg of BW. Plasma NEFA concentrations decreased from 553 microEq/L +/- 24 immediately before the initiation of treatments to <100 microEq/L during hourly infusions of 6 or 10 mg of NA/kg. Data suggest that the maximal antilipolytic response was achieved with the lowest dose of NA. A rebound of NEFA started 2 to 3 h after NA infusions were terminated. In both experiments, the NEFA rebound period coincided with increases in insulin and no change or increased glucose concentrations, suggesting a state of insulin resistance induced by elevated NEFA. This model for reducing plasma NEFA concentration by abomasal infusions of NA can be used to study the metabolic ramifications of elevated vs. reduced NEFA concentrations. The data demonstrate potential benefits and pitfalls of using NA to regulate plasma NEFA and prevent lipid-related metabolic disorders.
Collapse
Affiliation(s)
- J A A Pires
- Department of Dairy Science, University of Wisconsin, Madison 53706, USA
| | | |
Collapse
|
8
|
Said HM, Nabokina SM, Balamurugan K, Mohammed ZM, Urbina C, Kashyap ML. Mechanism of nicotinic acid transport in human liver cells: experiments with HepG2 cells and primary hepatocytes. Am J Physiol Cell Physiol 2007; 293:C1773-8. [PMID: 17928533 DOI: 10.1152/ajpcell.00409.2007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study reports on the functional expression of a specific, high-affinity carrier-mediated mechanism for the transport of niacin (nicotinic acid) in human liver cells. Both human-derived liver HepG2 cells and human primary hepatocytes were used as models in these investigations. The initial rate of transport of nicotinic acid into HepG2 cells was found to be acidic pH, temperature, and energy dependent; it was, however, Na(+) independent in nature. Evidence for the existence of a carrier-mediated system that is specific for [(3)H]nicotinic acid transport was found and included the following: 1) saturability as a function of concentration with an apparent K(m) of 0.73 +/- 0.16 microM and V(max) of 25.02 +/- 1.45 pmol.mg protein(-1).3 min(-1), 2) cis-inhibition by unlabeled nicotinic acid and nicotinamide but not by unrelated organic anions (lactate, acetate, butyrate, succinate, citrate, and valproate), and 3) trans-stimulation of [(3)H]nicotinic acid efflux by unlabeled nicotinic acid. Transport of the vitamin into human primary hepatocytes occurs similarly via an acidic pH-dependent and specific carrier-mediated process. Inhibitors of the Ca(2+)-calmodulin-mediated pathway (but not modulators of the PKC-, PKA-, and protein tyrosine kinase-mediated pathways) inhibited nicotinic acid transport into both HepG2 cells and human primary hepatocytes. Maintenance of HepG2 cells (for 48 h) in growth medium oversupplemented with nicotinic acid (or nicotinamide) did not affect the subsequent transport of [(3)H]nicotinic acid into HepG2 cells. These results show, for the first time, the existence of a specific and regulated membrane carrier-mediated system for nicotinic acid transport in human liver cells.
Collapse
Affiliation(s)
- Hamid M Said
- Veterans Affairs Medical Center, Long Beach, CA 90822, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
Influenza viruses belong to the family Orthomyxoviridae. Genus Influenza A viruses are true zoonotic agents with many animal reservoirs, whereas genus Influenza B viruses are generally considered to be a virus of humans. The genome of influenza A viruses consists of eight unique segments of single-stranded RNA of negative polarity; they are typed according to their surface proteins, hemagglutinin (HA) and neuraminidase (NA). HA and NA, the major antigenic determinants of influenza A viruses, are present in 16 and nine serologic subtypes, respectively. Annual epidemics and occasional pandemics of influenza in humans depend on the continued evolution of influenza viruses. Although they have numerous potential host populations, most of our genetic and biologic data are obtained from studies of domestic populations of species such as chickens, turkeys, swine, and horses. Concerning wildlife populations, including wild populations of these domesticated species, much less is known. The purpose of this review is to establish what role wildlife populations play in the continued evolution of influenza viruses. Future work needs to determine what chain of events makes it possible for an influenza virus to be successfully transmitted to, and more importantly within, an alternative host population. Even questions as fundamental as which hosts can transmit viruses to humans remain unanswered so far.
Collapse
Affiliation(s)
- R J Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 332 N. Lauderdale, Memphis, TN 38105-2794, USA.
| | | | | |
Collapse
|
10
|
Pastromas S, Terzi AB, Tousoulis D, Koulouris S. Postprandial lipemia: an under-recognized atherogenic factor in patients with diabetes mellitus. Int J Cardiol 2007; 126:3-12. [PMID: 17689745 DOI: 10.1016/j.ijcard.2007.04.172] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Accepted: 04/12/2007] [Indexed: 12/13/2022]
Abstract
Atherosclerotic disease is the leading cause of both morbidity and mortality in patients with type 2 diabetes. In these patients, postprandial dyslipidemia include not only quantitative but also qualitative abnormalities of lipoproteins which are potentially atherogenic and seems to be a significant risk factor for cardiovascular disease since there is evidence that it results in endothelial dysfunction and enhanced oxidative stress. The most common pattern of postprandial dyslipidemia in diabetes consists of high concentrations of triglycerides, higher VLDLs production by the liver and a decrease in their clearance, a predominance of small dense LDL particles, and reduced levels of HDL. The cause of this postprandial dyslipidemia in diabetes is complex and involves a variety of factors including hyperinsulinemia, insulin resistance, hyperglycemia and disturbed fatty acid metabolism. Numerous clinical studies have shown that postprandial dyslipidemia is associated with endothelial dysfunction in type 2 diabetes and with alterations in other surrogate markers in the cascade of atherosclerosis. Current published guidelines indicate that in diabetics the primary lipid target is LDL<100 mg/dL (70 mg/dL in very high-risk patients) and the most appropriate class of drugs are statins although the issue of postprandial dyslipidemia has not been specifically addressed so far. Moreover, several other classes of medications (fibrates, niacin and antidiabetic drugs) as well as non-pharmacological interventions (i.e. diet, smoking cessation and exercise) can be used to treat lipid and lipoprotein abnormalities associated with insulin resistance and type 2 diabetes. These type of interventions may be more appropriate to ameliorate postprandial dyslipidemia. However, this remains to be confirmed on clinical grounds.
Collapse
Affiliation(s)
- Socrates Pastromas
- First Department of Cardiology, Evagelismos General Hospital of Athens, Greece.
| | | | | | | |
Collapse
|
11
|
Childs JE, Mackenzie JS, Richt JA. Overviews of pathogen emergence: which pathogens emerge, when and why? Curr Top Microbiol Immunol 2007; 315:85-111. [PMID: 17848062 PMCID: PMC7122528 DOI: 10.1007/978-3-540-70962-6_5] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An emerging pathogen has been defined as the causative agent of an infectious disease whose incidence is increasing following its appearance in a new host population or whose incidence is increasing in an existing population as a result of long-term changes in its underlying epidemiology (Woolhouse and Dye 2001). Although we appear to be in a period where novel diseases are appearing and old diseases are spreading at an unprecedented rate, disease emergence per se is not a new phenomenon. It is almost certain that disease emergence is a routine event in the evolutionary ecology of pathogens, and part of a ubiquitous response of pathogen populations to shifting arrays of host species. While our knowledge of emerging diseases is, for the most part, limited to the time span of the human lineage, this history provides us with a modern reflection of these deeper evolutionary processes, and it is clear from this record that at many times throughout human history, demographic and behavioural changes in society have provided opportunities for pathogens to emerge.
Collapse
Affiliation(s)
- James E. Childs
- Department of Epidemiology and Public Health and Center for Eco-Epidemiolog, Yale University School of Medicine, 60 College St, 208034, 06520-8034 New Haven, CT USA
| | - John S. Mackenzie
- Centre for Emerging Infectious Diseases, Australian Biosecurity Cooperative Research Centre, Curtin University of Technology, U1987, 6845 Perth, WA Australia
| | - Jürgen A. Richt
- Virus and Prion Diseases of Livestock Research Unit, National Animal Disease Center USDA, 2300 Dayton Ave Ames, 50010 IA USA
| |
Collapse
|
12
|
Linkner E(L. Insulin Resistance and the Metabolic Syndrome. Integr Med (Encinitas) 2007. [DOI: 10.1016/b978-1-4160-2954-0.50039-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
13
|
Ganji SH, Zhang LH, Kamanna VS, Kashyap ML. Effect of niacin on lipoproteins and atherosclerosis. ACTA ACUST UNITED AC 2006. [DOI: 10.2217/17460875.1.5.549] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Abstract
Type 2 diabetes mellitus is associated with a markedly increased risk of cardiovascular disease. A complex dyslipidemia, which is an integral part of the underlying insulin resistance in this group, is a key to this increased risk. Increased secretion of VLDL from the liver is a central feature of dyslipidemia and is linked significantly to the low HDL and abnormal LDL that are also present. A number of physiologic and pharmacologic approaches are available and should be used aggressively to treat diabetic dyslipidemia.
Collapse
MESH Headings
- Cardiovascular Diseases/prevention & control
- Chylomicrons/metabolism
- Diabetes Complications
- Diabetes Mellitus, Type 1/blood
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/complications
- Humans
- Hyperlipidemias/complications
- Lipoproteins/metabolism
- Lipoproteins, HDL/metabolism
- Lipoproteins, HDL/physiology
- Lipoproteins, LDL/blood
- Lipoproteins, LDL/metabolism
- Lipoproteins, VLDL/biosynthesis
- Lipoproteins, VLDL/metabolism
- Liver/metabolism
- Particle Size
- Risk Factors
Collapse
Affiliation(s)
- Tina J Chahil
- Department of Medicine, College of Physicians and Surgeons of Columbia University, PH 10-305, 630 West 168th Street, New York, NY 10032, USA
| | | |
Collapse
|
15
|
Ginsberg HN, Zhang YL, Hernandez-Ono A. Regulation of plasma triglycerides in insulin resistance and diabetes. Arch Med Res 2005; 36:232-40. [PMID: 15925013 DOI: 10.1016/j.arcmed.2005.01.005] [Citation(s) in RCA: 324] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2004] [Accepted: 11/27/2004] [Indexed: 10/25/2022]
Abstract
Increased plasma levels of triglycerides (TG) in very low density lipoproteins (VLDL) are not only common characteristics of the dyslipidemia associated with insulin resistance and type 2 diabetes mellitus (T2DM) but are the central pathophysiologic feature of the abnormal lipid profile. Overproduction of VLDL leads to increased plasma levels of TG which, via an exchange process mediated by cholesterol ester transfer protein (CETP), results in low levels of high density lipoprotein (HDL) cholesterol and apolipoprotein A-I, and the generation of small, dense, cholesterol ester depleted low density lipoproteins (LDL). Increased assembly and secretion of VLDL by the liver results from the complex, post-transcriptional regulation of apolipoprotein B (apoB) metabolism in the liver. In the presence of low levels of hepatic TG and cholesterol, much of the constitutively synthesized apoB is degraded by both proteasomal and non-proteasomal pathways. When excess TG, and to a lesser extent, cholesterol, are present, and in the presence of active microsomal triglycerides transfer protein, apoB is targeted for secretion. The major sources of TG in the liver: uptake of fatty acids (FA) released by lipolysis of adipose tissue TG, uptake of TGFA in VLDL and chylomicrons remnants, and hepatic de novo lipogenesis (the synthesis of FA from glucose) are all abnormally increased in insulin resistance. Treatment of the dyslipidemia in insulin resistant individuals and patients with T2DM has been successful in reducing cardiovascular disease; LDL cholesterol, TG, and HDL cholesterol are all appropriate targets for therapy when diet, exercise, and weight loss do not achieve goals.
Collapse
Affiliation(s)
- Henry N Ginsberg
- College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA.
| | | | | |
Collapse
|
16
|
|
17
|
Nabokina SM, Kashyap ML, Said HM. Mechanism and regulation of human intestinal niacin uptake. Am J Physiol Cell Physiol 2005; 289:C97-103. [PMID: 15728713 DOI: 10.1152/ajpcell.00009.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The mechanism of uptake of dietary niacin (nicotinic acid) by intestinal epithelial cells is not well understood, and nothing is known about regulation of the uptake process. In this investigation, we used human-derived intestinal epithelial Caco-2 cells and purified intestinal brush-border membrane vesicles (BBMVs) isolated from human organ donors to assess niacin uptake. Our findings show niacin uptake by Caco-2 cells to be 1) temperature and energy dependent; 2) Na+ independent, but highly dependent on extracellular acidic pH; 3) saturable as a function of concentration, with an apparent K(m) of 0.53 +/- 0.08 microM; 4) severely inhibited by the membrane-impermeable sulfhydryl group of reagents; and 5) highly specific for niacin but not affected by monocarboxylic acids. A marked trans stimulation in [3H]niacin efflux from preloaded Caco-2 cells by unlabeled niacin in the incubation buffer was also observed. These findings suggest the involvement of a specialized, pH-dependent, carrier-mediated mechanism for human intestinal niacin uptake. This suggestion was confirmed in studies with native human intestinal BBMVs. We also examined possible regulation of niacin uptake by Caco-2 cells via specific intracellular regulatory pathways. The results show that while the PKA-, PKC-, and Ca2+/calmodulin-mediated regulatory pathways play no role in regulating niacin uptake, a role for a protein tyrosine kinase (PTK)-mediated pathway is apparent. The results of these studies show for the first time the existence of a specialized, acidic pH-dependent, carrier-mediated system of niacin uptake by human intestinal epithelial cells that operates at the micromolar (physiological) range of niacin. The results also suggest the possible involvement of a PTK-mediated pathway in the regulation of niacin uptake.
Collapse
|
18
|
Al-Shaer MH, AbuSabha HS. Are the effects of nicotinic acid on insulin resistance precipitated by abnormal phosphorous metabolism? Lipids Health Dis 2004; 3:23. [PMID: 15511297 PMCID: PMC528844 DOI: 10.1186/1476-511x-3-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Accepted: 10/28/2004] [Indexed: 11/28/2022] Open
Abstract
Nicotinic acid is a unique cholesterol modifying agent that exerts favorable effects on all cholesterol parameters. It holds promise as one of the main pharmacological agents to treat mixed dyslipidemia in metabolic syndrome and diabetic patients. The use of nicotinic acid has always been haunted with concerns that it might worsen insulin resistance and complicate diabetes management. We will discuss the interaction between phosphorous metabolism and carbohydrate metabolism and the possibility that worsening of insulin resistance could be related to adrug induced alteration in phosphorous metabolism, and the implications of that in medical management of diabetes and metabolic syndrome patients with mixed dyslipidemia.
Collapse
Affiliation(s)
- Moutasim H Al-Shaer
- The Department of Internal Medicine and Human Cardiovascular Physiology Laboratory University of Iowa College of Medicine Iowa City, Iowa 52242-1009, USA
| | - Hatem S AbuSabha
- The Department of Internal Medicine and Human Cardiovascular Physiology Laboratory University of Iowa College of Medicine Iowa City, Iowa 52242-1009, USA
| |
Collapse
|