1
|
Slamanig S, Lemus N, Lai TY, Singh G, Mishra M, Abdeljawad A, Boza M, Dolange V, Singh G, Lee B, González-Domínguez I, Schotsaert M, Krammer F, Palese P, Sun W. A single immunization with intranasal Newcastle disease virus (NDV)-based XBB.1.5 variant vaccine reduces disease and transmission in animals against matched-variant challenge. Vaccine 2025; 45:126586. [PMID: 39667115 DOI: 10.1016/j.vaccine.2024.126586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 12/14/2024]
Abstract
The rapid development of coronavirus disease 2019 (COVID-19) vaccines has helped mitigate the initial impact of the pandemic. However, in order to reduce transmission rates and protect more vulnerable and immunocompromised individuals unable to mount an effective immune response, development of a next-generation of mucosal vaccines is necessary. Here, we developed an intranasal Newcastle disease virus (NDV)-based vaccine expressing the spike of the XBB.1.5 variant stabilized in its pre-fusion conformation (NDV-HXP-S). We demonstrated that one or two intranasal immunizations with live NDV-HXP-S expressing the XBB.1.5 spike induces systemic and mucosal antibody responses in mice and protects them from a challenge with the XBB.1.5 variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Furthermore, one or two intranasal vaccinations with NDV-HXP-S XBB.1.5 protected hamsters from variant matched infection and reduced virus emission, thereby providing complete protection to naïve animals in a direct contact transmission study. The data shown in this study supports the notion that intranasal vaccination with variant-adapted NDV-HXP-S induces protective mucosal immunity and reduces transmission rates, highlighting the robust protective efficacy of a single mucosal vaccination in mice and hamsters.
Collapse
Affiliation(s)
- Stefan Slamanig
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Nicholas Lemus
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tsoi Ying Lai
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mitali Mishra
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adam Abdeljawad
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marta Boza
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Victoria Dolange
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Marc and Jennifer Lipschultz Institute for Precision Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Ignaz Semmelweis Institute, Interuniversity Institute for Infection Research, Medical University of Vienna, Vienna, Austria
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Weina Sun
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
2
|
Estrada M, Zhu C, Bzami A, White JA, Lal M. Development of a quantitative ELISA for SARS-CoV-2 vaccine candidate, NDV-HXP-S, with CpG 1018® adjuvant. Hum Vaccin Immunother 2024; 20:2315709. [PMID: 38372198 PMCID: PMC10877971 DOI: 10.1080/21645515.2024.2315709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/05/2024] [Indexed: 02/20/2024] Open
Abstract
NDV-HXP-S is a Newcastle disease virus (NDV) vectored vaccine candidate which expresses the S-antigen of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This vaccine candidate is under evaluation in human clinical studies with and without cytosine phosphate guanine (CpG) 1018® adjuvant. Existing potency methods for NDV-HXP-S do not allow for quantification of the S-antigen when the adjuvant is present. To support evaluation of NDV-HXP-S with CpG 1018® adjuvant, an inhibition enzyme-linked immunosorbent assay (ELISA) was developed to allow for quantification and stability assessments of the vaccine. A pilot 6-month stability study was conducted on NDV-HXP-S vaccine with and without CpG 1018® adjuvant under refrigerated conditions (2°C to 8°C) and accelerated stability testing conditions (40°C). The vaccine was mixed with and without CpG 1018® adjuvant in saline and maintained S-antigen content at 2°C to 8°C for the entire 6-month period. Additionally, a pilot controlled temperature chain (CTC) stability study was conducted at the completion of the 6-month study and demonstrated the possibility for this vaccine candidate to attain CTC stability labeling.
Collapse
Affiliation(s)
- Marcus Estrada
- Medical Devices and Health Technologies, PATH, Seattle, WA, USA
| | - Changcheng Zhu
- Medical Devices and Health Technologies, PATH, Seattle, WA, USA
| | - Anan Bzami
- Medical Devices and Health Technologies, PATH, Seattle, WA, USA
| | | | - Manjari Lal
- Medical Devices and Health Technologies, PATH, Seattle, WA, USA
| |
Collapse
|
3
|
Nosaka T, Ohtsuka J, Ohtsuka T, Fukumura M. Next Generation RNA/Protein-Carrying Vector With Pleiotropic Activity. Rev Med Virol 2024; 34:e70008. [PMID: 39488720 DOI: 10.1002/rmv.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 09/27/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024]
Abstract
Human parainfluenza virus type 2 (hPIV2), one of the causative agents of infantile common cold, is a non-segmented negative-sense RNA virus with a robust gene expression system. It infects recurrently throughout human life without causing severe disease. Because hPIV2 has a viral envelope that can carry ectopic proteins, we developed a non-propagative RNA/protein-carrying vector BC-PIV by deleting the F gene from hPIV2. BC-PIV can be vigorously proliferated in the stable packaging cell line Vero/BC-F cells expressing the hPIV2 F gene but not in other cells. BC-PIV can deliver exogenous gene(s) on a multigenic RNA genome as an inserted gene fragment(s) and simultaneously deliver exogenous protein(s) on its envelope in a membrane-anchored form. For example, influenza virus M2e protein, Ebola virus GP protein, and severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) spike protein were shown to be highly expressed in packaging cells and incorporated into the virion. The Ebola virus GP protein and SARS-CoV-2 spike protein, each delivered via BC-PIV, efficiently induced neutralising antibodies against each virus, even after prior treatment with recombinant BC-PIV in mice and hamsters, respectively. In this review, we describe the properties of BC-PIV as a promising vaccine vector, and also demonstrate its application as an anti-tumour virus.
Collapse
Grants
- JP233fa827011 Japan Agency for Medical Research and Development
- 17K19652 Ministry of Education, Culture, Sports, Science and Technology
- 20K21614 Ministry of Education, Culture, Sports, Science and Technology
- 20H03529 Ministry of Education, Culture, Sports, Science and Technology
- 24K02323 Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Tetsuya Nosaka
- Department of Microbiology and Molecular Genetics, Mie University Graduate School of Medicine, Tsu, Japan
- Research Centre for Development of Recombinant VLP Vaccines, Research Institutes of Excellence, Mie University, Tsu, Japan
| | - Junpei Ohtsuka
- Department of Microbiology and Molecular Genetics, Mie University Graduate School of Medicine, Tsu, Japan
- Research Centre for Development of Recombinant VLP Vaccines, Research Institutes of Excellence, Mie University, Tsu, Japan
- BioComo Inc., Komono, Japan
| | - Tomomi Ohtsuka
- Department of Microbiology and Molecular Genetics, Mie University Graduate School of Medicine, Tsu, Japan
- Research Centre for Development of Recombinant VLP Vaccines, Research Institutes of Excellence, Mie University, Tsu, Japan
- BioComo Inc., Komono, Japan
| | - Masayuki Fukumura
- Department of Microbiology and Molecular Genetics, Mie University Graduate School of Medicine, Tsu, Japan
- Research Centre for Development of Recombinant VLP Vaccines, Research Institutes of Excellence, Mie University, Tsu, Japan
- BioComo Inc., Komono, Japan
| |
Collapse
|
4
|
Bzami A, Zhu C, Estrada M, White JA, Lal M. Development of multidose thermotolerant formulations of a vector-based Covid-19 vaccine candidate, NDV-HXP-S in different product formats: Stability and preservative efficacy study. Vaccine X 2024; 20:100535. [PMID: 39189025 PMCID: PMC11345403 DOI: 10.1016/j.jvacx.2024.100535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/21/2024] [Accepted: 07/25/2024] [Indexed: 08/28/2024] Open
Abstract
Current lead coronavirus vaccines require continuous cold or ultra-cold storage from the manufacturing site to the field to maintain protective efficacy. Since cold chain capacity is limited and complex, logistics planning is crucial to limit vaccine wastage.[1] The restrictive storage concerns also make it difficult to share vaccines between public health departments and neighboring states, leading to increased vaccine wastage.[2] A Newcastle Disease Virus (NDV) vector-based severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) vaccine candidate, NDV-HXP-S, offers a cost-effective alternative which aims to improve global access to SARS CoV-2 vaccines.[3] The NDV-HXP-S vaccine candidate can be mass-produced in chicken eggs and has demonstrated efficacy in preclinical studies, as well as acceptable safety and potent immunogenicity in clinical studies.[3,4-10] To further advance the NDV-HXP-S vaccine candidate, this manuscript describes work focused on the development of multidose thermotolerant vaccine formulations (i.e., those which would not require continuous extended refrigeration), making it convenient to use and store, and simplifying transport and distribution logistics, especially in outbreak settings. Liquid and lyophilized formulations for parenteral administration were rigorously screened for the vaccine formulation's ability to maintain S-antigen stability after exposure to temperature stress at 40 °C, 25 °C, and 2 °C to 8 °C storage for six months. Preservative efficacy was evaluated to enable a multidose liquid vaccine format as well as endotoxin testing in lyophilized formulations. Lead liquid vaccine formations were identified that were able to maintain S-antigen content at 2 °C to 8 °C and 25 °C storage for the entire six-month study. Lead lyophilized vaccine formulations were identified which were able to maintain S-antigen content for six months at 2 °C to 8 °C, 25 °C, and 40 °C. Both the liquid and lyophilized formulations identified are improved thermotolerant SARS-CoV-2 vaccine formulations.
Collapse
Affiliation(s)
- Anan Bzami
- PATH, 2201 Westlake Avenue, Suite 200, Seattle, WA 98121 USA
| | - Changcheng Zhu
- PATH, 2201 Westlake Avenue, Suite 200, Seattle, WA 98121 USA
| | - Marcus Estrada
- PATH, 2201 Westlake Avenue, Suite 200, Seattle, WA 98121 USA
| | | | - Manjari Lal
- PATH, 2201 Westlake Avenue, Suite 200, Seattle, WA 98121 USA
| |
Collapse
|
5
|
Holmes EC, Krammer F, Goodrum FD. Virology-The next fifty years. Cell 2024; 187:5128-5145. [PMID: 39303682 PMCID: PMC11467463 DOI: 10.1016/j.cell.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 09/22/2024]
Abstract
Virology has made enormous advances in the last 50 years but has never faced such scrutiny as it does today. Herein, we outline some of the major advances made in virology during this period, particularly in light of the COVID-19 pandemic, and suggest some areas that may be of research importance in the next 50 years. We focus on several linked themes: cataloging the genomic and phenotypic diversity of the virosphere; understanding disease emergence; future directions in viral disease therapies, vaccines, and interventions; host-virus interactions; the role of viruses in chronic diseases; and viruses as tools for cell biology. We highlight the challenges that virology will face moving forward-not just the scientific and technical but also the social and political. Although there are inherent limitations in trying to outline the virology of the future, we hope this article will help inspire the next generation of virologists.
Collapse
Affiliation(s)
- Edward C. Holmes
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Laboratory of Data Discovery for Health Limited, Hong Kong SAR, China
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Felicia D. Goodrum
- Department of Immunobiology, BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
6
|
Slamanig S, González-Domínguez I, Chang LA, Lemus N, Lai TY, Martínez JL, Singh G, Dolange V, Abdeljawad A, Kowdle S, Noureddine M, Warang P, Singh G, Lee B, García-Sastre A, Krammer F, Schotsaert M, Palese P, Sun W. Intranasal SARS-CoV-2 Omicron variant vaccines elicit humoral and cellular mucosal immunity in female mice. EBioMedicine 2024; 105:105185. [PMID: 38848648 PMCID: PMC11200293 DOI: 10.1016/j.ebiom.2024.105185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND In order to prevent the emergence and spread of future variants of concern of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), developing vaccines capable of stopping transmission is crucial. The SARS-CoV-2 vaccine NDV-HXP-S can be administered live intranasally (IN) and thus induce protective immunity in the upper respiratory tract. The vaccine is based on Newcastle disease virus (NDV) expressing a stabilised SARS-CoV-2 spike protein. NDV-HXP-S can be produced as influenza virus vaccine at low cost in embryonated chicken eggs. METHODS The NDV-HXP-S vaccine was genetically engineered to match the Omicron variants of concern (VOC) BA.1 and BA.5 and tested as an IN two or three dose vaccination regimen in female mice. Furthermore, female mice intramuscularly (IM) vaccinated with mRNA-lipid nanoparticles (LNPs) were IN boosted with NDV-HXP-S. Systemic humoral immunity, memory T cell responses in the lungs and spleens as well as immunoglobulin A (IgA) responses in distinct mucosal tissues were characterised. FINDINGS NDV-HXP-S Omicron variant vaccines elicited high mucosal IgA and serum IgG titers against respective SARS-CoV-2 VOC in female mice following IN administration and protected against challenge from matched variants. Additionally, antigen-specific memory B cells and local T cell responses in the lungs were induced. Host immunity against the NDV vector did not interfere with boosting. Intramuscular vaccination with mRNA-LNPs was enhanced by IN NDV-HXP-S boosting resulting in improvement of serum neutralization titers and induction of mucosal immunity. INTERPRETATION We demonstrate that NDV-HXP-S Omicron variant vaccines utilised for primary immunizations or boosting efficiently elicit humoral and cellular immunity. The described induction of systemic and mucosal immunity has the potential to reduce infection and transmission. FUNDING This work was partially funded by the NIAIDCenters of Excellence for Influenza Research and Response (CEIRR) and by the NIAID Collaborative Vaccine Innovation Centers and by institutional funding from the Icahn School of Medicine at Mount Sinai. See under Acknowledgements for details.
Collapse
Affiliation(s)
- Stefan Slamanig
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | | | - Lauren A Chang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nicholas Lemus
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tsoi Ying Lai
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jose Luis Martínez
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Victoria Dolange
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adam Abdeljawad
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shreyas Kowdle
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Moataz Noureddine
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Prajakta Warang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Weina Sun
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
7
|
Warner BM, Yates JGE, Vendramelli R, Truong T, Meilleur C, Chan L, Leacy A, Pham PH, Pei Y, Susta L, Wootton SK, Kobasa D. Intranasal vaccination with an NDV-vectored SARS-CoV-2 vaccine protects against Delta and Omicron challenges. NPJ Vaccines 2024; 9:90. [PMID: 38782986 PMCID: PMC11116387 DOI: 10.1038/s41541-024-00870-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 03/29/2024] [Indexed: 05/25/2024] Open
Abstract
The rapid development and deployment of vaccines following the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been estimated to have saved millions of lives. Despite their immense success, there remains a need for next-generation vaccination approaches for SARS-CoV-2 and future emerging coronaviruses and other respiratory viruses. Here we utilized a Newcastle Disease virus (NDV) vectored vaccine expressing the ancestral SARS-CoV-2 spike protein in a pre-fusion stabilized chimeric conformation (NDV-PFS). When delivered intranasally, NDV-PFS protected both Syrian hamsters and K18 mice against Delta and Omicron SARS-CoV-2 variants of concern. Additionally, intranasal vaccination induced robust, durable protection that was extended to 6 months post-vaccination. Overall, our data provide evidence that NDV-vectored vaccines represent a viable next-generation mucosal vaccination approach.
Collapse
Affiliation(s)
- Bryce M Warner
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Jacob G E Yates
- Department of Pathobiology, University of Guelph, Guelph, N1G 2W1, Canada
| | - Robert Vendramelli
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Thang Truong
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Courtney Meilleur
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Lily Chan
- Department of Pathobiology, University of Guelph, Guelph, N1G 2W1, Canada
| | - Alexander Leacy
- Department of Pathobiology, University of Guelph, Guelph, N1G 2W1, Canada
| | - Phuc H Pham
- Department of Pathobiology, University of Guelph, Guelph, N1G 2W1, Canada
| | - Yanlong Pei
- Department of Pathobiology, University of Guelph, Guelph, N1G 2W1, Canada
| | - Leonardo Susta
- Department of Pathobiology, University of Guelph, Guelph, N1G 2W1, Canada.
| | - Sarah K Wootton
- Department of Pathobiology, University of Guelph, Guelph, N1G 2W1, Canada.
| | - Darwyn Kobasa
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada.
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
8
|
Baum HE, Thirard R, Halliday A, Baos S, Thomas AC, Harris RA, Oliver E, Culliford L, Hitchings B, Todd R, Gupta K, Goenka A, Finn A, Rogers CA, Lazarus R. Detection of SARS-CoV-2-specific mucosal antibodies in saliva following concomitant COVID-19 and influenza vaccination in the ComFluCOV trial. Vaccine 2024; 42:2945-2950. [PMID: 38580516 DOI: 10.1016/j.vaccine.2024.03.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/07/2024]
Abstract
The ComFluCOV trial randomized 679 participants to receive an age-appropriate influenza vaccine, or placebo, alongside their second COVID-19 vaccine. Concomitant administration was shown to be safe, and to preserve systemic immune responses to both vaccines. Here we report on a secondary outcome of the trial investigating SARS-CoV-2-specific mucosal antibody responses. Anti-spike IgG and IgA levels in saliva were measured with in-house ELISAs. Concomitant administration of an influenza vaccine did not affect salivary anti-spike IgG positivity rates to Pfizer/BioNTech BNT162b2 (99.1 cf. 95.6%), or AstraZeneca ChAdOx1 (67.8% cf. 64.9%), at 3-weeks post-vaccination relative to placebo. Furthermore, saliva IgG positively correlated with serum titres highlighting the potential utility of saliva for assessing differences in immunogenicity in future vaccine studies. Mucosal IgA was not detected in response to either COVID-19 vaccine, reinforcing the need for novel vaccines capable of inducing sterilising immunity or otherwise reducing transmission. The trial is registered as ISRCTN 14391248.
Collapse
Affiliation(s)
- Holly E Baum
- School of Cellular and Molecular Medicine, Faculty of Health and Life Sciences, University of Bristol, UK; Bristol Vaccine Centre, University of Bristol, UK
| | | | - Alice Halliday
- School of Cellular and Molecular Medicine, Faculty of Health and Life Sciences, University of Bristol, UK; Bristol Vaccine Centre, University of Bristol, UK
| | - Sarah Baos
- Bristol Trials Centre, University of Bristol, Bristol, UK
| | - Amy C Thomas
- Bristol Vaccine Centre, University of Bristol, UK; Population Health Sciences, Bristol Medical School, University of Bristol, UK
| | - Rosie A Harris
- Bristol Trials Centre, University of Bristol, Bristol, UK
| | - Elizabeth Oliver
- School of Cellular and Molecular Medicine, Faculty of Health and Life Sciences, University of Bristol, UK; Bristol Vaccine Centre, University of Bristol, UK
| | - Lucy Culliford
- Bristol Trials Centre, University of Bristol, Bristol, UK
| | - Benjamin Hitchings
- School of Cellular and Molecular Medicine, Faculty of Health and Life Sciences, University of Bristol, UK; Bristol Vaccine Centre, University of Bristol, UK
| | - Rachel Todd
- Bristol Trials Centre, University of Bristol, Bristol, UK
| | - Kapil Gupta
- School of Biochemistry, Faculty of Health and Life Sciences, University of Bristol, UK
| | - Anu Goenka
- School of Cellular and Molecular Medicine, Faculty of Health and Life Sciences, University of Bristol, UK; Bristol Vaccine Centre, University of Bristol, UK; University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Adam Finn
- School of Cellular and Molecular Medicine, Faculty of Health and Life Sciences, University of Bristol, UK; Bristol Vaccine Centre, University of Bristol, UK; University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Chris A Rogers
- Bristol Trials Centre, University of Bristol, Bristol, UK
| | - Rajeka Lazarus
- Bristol Vaccine Centre, University of Bristol, UK; University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK.
| |
Collapse
|
9
|
Warner BM, Chan M, Tailor N, Vendramelli R, Audet J, Meilleur C, Truong T, Garnett L, Willman M, Soule G, Tierney K, Albietz A, Moffat E, Higgins R, Santry LA, Leacy A, Pham PH, Yates JGE, Pei Y, Safronetz D, Strong JE, Susta L, Embury-Hyatt C, Wootton SK, Kobasa D. Mucosal Vaccination with a Newcastle Disease Virus-Vectored Vaccine Reduces Viral Loads in SARS-CoV-2-Infected Cynomolgus Macaques. Vaccines (Basel) 2024; 12:404. [PMID: 38675786 PMCID: PMC11054841 DOI: 10.3390/vaccines12040404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged following an outbreak of unexplained viral illness in China in late 2019. Since then, it has spread globally causing a pandemic that has resulted in millions of deaths and has had enormous economic and social consequences. The emergence of SARS-CoV-2 saw the rapid and widespread development of a number of vaccine candidates worldwide, and this never-before-seen pace of vaccine development led to several candidates progressing immediately through clinical trials. Many countries have now approved vaccines for emergency use, with large-scale vaccination programs ongoing. Despite these successes, there remains a need for ongoing pre-clinical and clinical development of vaccine candidates against SARS-CoV-2, as well as vaccines that can elicit strong mucosal immune responses. Here, we report on the efficacy of a Newcastle disease virus-vectored vaccine candidate expressing SARS-CoV-2 spike protein (NDV-FLS) administered to cynomolgus macaques. Macaques given two doses of the vaccine via respiratory immunization developed robust immune responses and had reduced viral RNA levels in nasal swabs and in the lower airway. Our data indicate that NDV-FLS administered mucosally provides significant protection against SARS-CoV-2 infection, resulting in reduced viral burden and disease manifestation, and should be considered as a viable candidate for clinical development.
Collapse
Affiliation(s)
- Bryce M. Warner
- Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (M.C.); (N.T.); (R.V.); (J.A.); (C.M.); (T.T.); (L.G.); (M.W.); (G.S.); (K.T.); (A.A.); (D.S.); (J.E.S.); (D.K.)
| | - Mable Chan
- Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (M.C.); (N.T.); (R.V.); (J.A.); (C.M.); (T.T.); (L.G.); (M.W.); (G.S.); (K.T.); (A.A.); (D.S.); (J.E.S.); (D.K.)
| | - Nikesh Tailor
- Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (M.C.); (N.T.); (R.V.); (J.A.); (C.M.); (T.T.); (L.G.); (M.W.); (G.S.); (K.T.); (A.A.); (D.S.); (J.E.S.); (D.K.)
| | - Robert Vendramelli
- Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (M.C.); (N.T.); (R.V.); (J.A.); (C.M.); (T.T.); (L.G.); (M.W.); (G.S.); (K.T.); (A.A.); (D.S.); (J.E.S.); (D.K.)
| | - Jonathan Audet
- Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (M.C.); (N.T.); (R.V.); (J.A.); (C.M.); (T.T.); (L.G.); (M.W.); (G.S.); (K.T.); (A.A.); (D.S.); (J.E.S.); (D.K.)
| | - Courtney Meilleur
- Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (M.C.); (N.T.); (R.V.); (J.A.); (C.M.); (T.T.); (L.G.); (M.W.); (G.S.); (K.T.); (A.A.); (D.S.); (J.E.S.); (D.K.)
| | - Thang Truong
- Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (M.C.); (N.T.); (R.V.); (J.A.); (C.M.); (T.T.); (L.G.); (M.W.); (G.S.); (K.T.); (A.A.); (D.S.); (J.E.S.); (D.K.)
| | - Lauren Garnett
- Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (M.C.); (N.T.); (R.V.); (J.A.); (C.M.); (T.T.); (L.G.); (M.W.); (G.S.); (K.T.); (A.A.); (D.S.); (J.E.S.); (D.K.)
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Marnie Willman
- Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (M.C.); (N.T.); (R.V.); (J.A.); (C.M.); (T.T.); (L.G.); (M.W.); (G.S.); (K.T.); (A.A.); (D.S.); (J.E.S.); (D.K.)
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Geoff Soule
- Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (M.C.); (N.T.); (R.V.); (J.A.); (C.M.); (T.T.); (L.G.); (M.W.); (G.S.); (K.T.); (A.A.); (D.S.); (J.E.S.); (D.K.)
| | - Kevin Tierney
- Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (M.C.); (N.T.); (R.V.); (J.A.); (C.M.); (T.T.); (L.G.); (M.W.); (G.S.); (K.T.); (A.A.); (D.S.); (J.E.S.); (D.K.)
| | - Alixandra Albietz
- Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (M.C.); (N.T.); (R.V.); (J.A.); (C.M.); (T.T.); (L.G.); (M.W.); (G.S.); (K.T.); (A.A.); (D.S.); (J.E.S.); (D.K.)
| | - Estella Moffat
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3R2, Canada; (E.M.); (C.E.-H.)
| | - Rick Higgins
- Department of Radiology, Health Sciences Center, Winnipeg, MB R3A 1S1, Canada;
| | - Lisa A. Santry
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.A.S.); (A.L.); (P.H.P.); (J.G.E.Y.); (Y.P.); (L.S.)
| | - Alexander Leacy
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.A.S.); (A.L.); (P.H.P.); (J.G.E.Y.); (Y.P.); (L.S.)
| | - Phuc H. Pham
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.A.S.); (A.L.); (P.H.P.); (J.G.E.Y.); (Y.P.); (L.S.)
| | - Jacob G. E. Yates
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.A.S.); (A.L.); (P.H.P.); (J.G.E.Y.); (Y.P.); (L.S.)
| | - Yanlong Pei
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.A.S.); (A.L.); (P.H.P.); (J.G.E.Y.); (Y.P.); (L.S.)
| | - David Safronetz
- Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (M.C.); (N.T.); (R.V.); (J.A.); (C.M.); (T.T.); (L.G.); (M.W.); (G.S.); (K.T.); (A.A.); (D.S.); (J.E.S.); (D.K.)
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - James E. Strong
- Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (M.C.); (N.T.); (R.V.); (J.A.); (C.M.); (T.T.); (L.G.); (M.W.); (G.S.); (K.T.); (A.A.); (D.S.); (J.E.S.); (D.K.)
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Leonardo Susta
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.A.S.); (A.L.); (P.H.P.); (J.G.E.Y.); (Y.P.); (L.S.)
| | - Carissa Embury-Hyatt
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3R2, Canada; (E.M.); (C.E.-H.)
| | - Sarah K. Wootton
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.A.S.); (A.L.); (P.H.P.); (J.G.E.Y.); (Y.P.); (L.S.)
| | - Darwyn Kobasa
- Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (M.C.); (N.T.); (R.V.); (J.A.); (C.M.); (T.T.); (L.G.); (M.W.); (G.S.); (K.T.); (A.A.); (D.S.); (J.E.S.); (D.K.)
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
10
|
Hromić-Jahjefendić A, Lundstrom K, Adilović M, Aljabali AAA, Tambuwala MM, Serrano-Aroca Á, Uversky VN. Autoimmune response after SARS-CoV-2 infection and SARS-CoV-2 vaccines. Autoimmun Rev 2024; 23:103508. [PMID: 38160960 DOI: 10.1016/j.autrev.2023.103508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
The complicated relationships between autoimmunity, COVID-19, and COVID-19 vaccinations are described, giving insight into their intricacies. Antinuclear antibodies (ANA), anti-Ro/SSA, rheumatoid factor, lupus anticoagulant, and antibodies against interferon (IFN)-I have all been consistently found in COVID-19 patients, indicating a high prevalence of autoimmune reactions following viral exposure. Furthermore, the discovery of human proteins with structural similarities to SARS-CoV-2 peptides as possible autoantigens highlights the complex interplay between the virus and the immune system in initiating autoimmunity. An updated summary of the current status of COVID-19 vaccines is presented. We present probable pathways underpinning the genesis of COVID-19 autoimmunity, such as bystander activation caused by hyperinflammatory conditions, viral persistence, and the creation of neutrophil extracellular traps. These pathways provide important insights into the development of autoimmune-related symptoms ranging from organ-specific to systemic autoimmune and inflammatory illnesses, demonstrating the wide influence of COVID-19 on the immune system.
Collapse
Affiliation(s)
- Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka cesta 15, 71000 Sarajevo, Bosnia and Herzegovina.
| | | | - Muhamed Adilović
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka cesta 15, 71000 Sarajevo, Bosnia and Herzegovina.
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, P.O. Box 566, Irbid 21163, Jordan.
| | - Murtaza M Tambuwala
- Lincoln Medical School, Brayford Pool Campus, University of Lincoln, Lincoln LN6 7TS, UK.
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Laboratory, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001, Valencia, Spain.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| |
Collapse
|
11
|
Lundstrom K. COVID-19 Vaccines: Where Did We Stand at the End of 2023? Viruses 2024; 16:203. [PMID: 38399979 PMCID: PMC10893040 DOI: 10.3390/v16020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Vaccine development against SARS-CoV-2 has been highly successful in slowing down the COVID-19 pandemic. A wide spectrum of approaches including vaccines based on whole viruses, protein subunits and peptides, viral vectors, and nucleic acids has been developed in parallel. For all types of COVID-19 vaccines, good safety and efficacy have been obtained in both preclinical animal studies and in clinical trials in humans. Moreover, emergency use authorization has been granted for the major types of COVID-19 vaccines. Although high safety has been demonstrated, rare cases of severe adverse events have been detected after global mass vaccinations. Emerging SARS-CoV-2 variants possessing enhanced infectivity have affected vaccine protection efficacy requiring re-design and re-engineering of novel COVID-19 vaccine candidates. Furthermore, insight is given into preparedness against emerging SARS-CoV-2 variants.
Collapse
|
12
|
Luvira V, Pitisuttithum P. Effect of homologous or heterologous vaccine booster over two initial doses of inactivated COVID-19 vaccine. Expert Rev Vaccines 2024; 23:283-293. [PMID: 38369699 DOI: 10.1080/14760584.2024.2320861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
INTRODUCTION Inactivated vaccines were delivered to low- and middle-income countries during the early pandemics of COVID-19. Currently, more than 10 inactivated COVID-19 vaccines have been developed. Most inactivated vaccines contain an inactivated whole-cell index SARS-CoV-2 strain that is adjuvant. Whole virions inactivated with aluminum hydroxide vaccines were among the most commonly used. However, with the emerging of COVID-19 variants and waning of the immunity of two doses of after 3 months, WHO and many local governments have recommended the booster-dose program especially with heterologous platform vaccine. AREA COVERED This review was conducted through a literature search of the MEDLINE database to identify articles published from 2020 to 2023 covered the inactivated COVID-19 vaccines primary series with homologous and heterologous booster focusing on safety, immunogenicity, efficacy, and effectiveness. EXPERT OPINION The inactivated vaccines, especially whole virion inactivated in aluminum hydroxide appeared to be safe and had good priming effects. Immune responses generated after one dose of heterologous boost were high and able to preventing severity of disease and symptomatic infection. A new approach to inactivated vaccine has been developed using inactivating recombinant vector virus-NDV-HXP-S vaccine.
Collapse
Affiliation(s)
- Viravarn Luvira
- Vaccine Trial Centre, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Punnee Pitisuttithum
- Vaccine Trial Centre, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
13
|
Cheng MQ, Li R, Luo X, Chen JY, Bai ZP, Zhao P, Weng ZY, Song G. Immunogenicity and safety of adjuvant-associated COVID-19 vaccines: A systematic review and meta-analysis of randomized controlled trials. Heliyon 2023; 9:e22858. [PMID: 38125524 PMCID: PMC10731085 DOI: 10.1016/j.heliyon.2023.e22858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Background The benefits and risks of adjuvant-associated COVID-19 vaccines (ACVs) are unclear. The study aimed to assess the immunogenicity and safety of ACVs compared with controls (placebo or the same vaccine without adjuvants [NACVs]). Methods Randomized controlled trials sourced from PubMed, EMBASE, Web of Science, and Cochrane Library were systematically reviewed. Evaluators extracted information independently. The evidence quality was assessed using random-effects models. The risk of bias was assessed using the Cochrane Risk of Bias tool. Results Of the 33 studies, 27 analyzed immunogenicity (n = 9069, ACVs group; n = 3757, control), and 26 analyzed safety (n = 58669, ACVs groups; n = 30733 control). Compared with controls, full vaccination with ACVs produced significant immune responses (relative risk [RR] of seroneutralization reaction, 12.3; 95 % confidence interval [95 % CI], 6.92-21.89; standardized mean deviation of geometric mean titer 3.96, 95 % CI, 3.35-4.58). Additionally, ACVs produced significant immunoreactivity compared with NACVs only (P < 0.05). Furthermore, full vaccination with ACVs significantly increased the risk of local and systemic adverse reactions (AEs) compared with controls. However, vaccination with ACVs did not significantly increase the risk of systemic and localized AEs compared with vaccination with NACVs only (P > 0.05). It was observed that ACVs had a lower risk of all-cause mortality than controls (RR, 0.51; 95 % CI 0.30-0.87). It was further found that ACVs produced nAb response against all sublines of the Omicron variant, but the antibody titers were lower than those for the SARS-CoV-2 original strain. Conclusions The findings of this meta-analysis demonstrate that ACVs may have a superior effect and an acceptable safety in preventing COVID-19. Although these results suggest the potential of ACVs, further studies are required.
Collapse
Affiliation(s)
- Meng-Qun Cheng
- Department of Reproductive Medicine, The Puer People's Hospital, Pu'er, China
| | - Rong Li
- Department of Pharmacy, The Puer People's Hospital, Pu'er, China
| | - Xin Luo
- Department of Pharmacy, The Puer People's Hospital, Pu'er, China
| | - Jing-Yu Chen
- Department of Pharmacy, The Puer People's Hospital, Pu'er, China
| | - Zhong-Ping Bai
- Department of Pharmacy, The Puer People's Hospital, Pu'er, China
| | - Pin Zhao
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Zhi-Ying Weng
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Gao Song
- Department of Pharmacy, The Puer People's Hospital, Pu'er, China
| |
Collapse
|
14
|
Ni T, Mendonça L, Zhu Y, Howe A, Radecke J, Shah PM, Sheng Y, Krebs AS, Duyvesteyn HM, Allen E, Lambe T, Bisset C, Spencer A, Morris S, Stuart DI, Gilbert S, Zhang P. ChAdOx1 COVID vaccines express RBD open prefusion SARS-CoV-2 spikes on the cell surface. iScience 2023; 26:107882. [PMID: 37766989 PMCID: PMC10520439 DOI: 10.1016/j.isci.2023.107882] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/18/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been proven to be an effective means of decreasing COVID-19 mortality, hospitalization rates, and transmission. One of the vaccines deployed worldwide is ChAdOx1 nCoV-19, which uses an adenovirus vector to drive the expression of the original SARS-CoV-2 spike on the surface of transduced cells. Using cryo-electron tomography and subtomogram averaging, we determined the native structures of the vaccine product expressed on cell surfaces in situ. We show that ChAdOx1-vectored vaccines expressing the Beta SARS-CoV-2 variant produce abundant native prefusion spikes predominantly in one-RBD-up conformation. Furthermore, the ChAdOx1-vectored HexaPro-stabilized spike yields higher cell surface expression, enhanced RBD exposure, and reduced shedding of S1 compared to the wild type. We demonstrate in situ structure determination as a powerful means for studying antigen design options in future vaccine development against emerging novel SARS-CoV-2 variants and broadly against other infectious viruses.
Collapse
Affiliation(s)
- Tao Ni
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Luiza Mendonça
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Yanan Zhu
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Andrew Howe
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Julika Radecke
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Pranav M. Shah
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford OX3 7BN, UK
| | - Yuewen Sheng
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Anna-Sophia Krebs
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Helen M.E. Duyvesteyn
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Elizabeth Allen
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Teresa Lambe
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
- NIHR Oxford Biomedical Research Centre, Oxford OX3 7BN, UK
| | - Cameron Bisset
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Alexandra Spencer
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Susan Morris
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, OX3 7TY, UK
| | - David I. Stuart
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford OX3 7BN, UK
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, OX3 7TY, UK
| | - Sarah Gilbert
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
- NIHR Oxford Biomedical Research Centre, Oxford OX3 7BN, UK
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, OX3 7TY, UK
| | - Peijun Zhang
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford OX3 7BN, UK
| |
Collapse
|
15
|
Ponce-de-León S, Torres M, Soto-Ramírez LE, Calva JJ, Santillán-Doherty P, Carranza-Salazar DE, Carreño JM, Carranza C, Juárez E, Carreto-Binaghi LE, Ramírez-Martínez L, Paz De la Rosa G, Vigueras-Moreno R, Ortiz-Stern A, López-Vidal Y, Macías AE, Torres-Flores J, Rojas-Martínez O, Suárez-Martínez A, Peralta-Sánchez G, Kawabata H, González-Domínguez I, Martínez-Guevara JL, Sun W, Sarfati-Mizrahi D, Soto-Priante E, Chagoya-Cortés HE, López-Macías C, Castro-Peralta F, Palese P, García-Sastre A, Krammer F, Lozano-Dubernard B. Interim safety and immunogenicity results from an NDV-based COVID-19 vaccine phase I trial in Mexico. NPJ Vaccines 2023; 8:67. [PMID: 37164959 PMCID: PMC10170424 DOI: 10.1038/s41541-023-00662-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/14/2023] [Indexed: 05/12/2023] Open
Abstract
There is still a need for safe, efficient, and low-cost coronavirus disease 2019 (COVID-19) vaccines that can stop transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here we evaluated a vaccine candidate based on a live recombinant Newcastle disease virus (NDV) that expresses a stable version of the spike protein in infected cells as well as on the surface of the viral particle (AVX/COVID-12-HEXAPRO, also known as NDV-HXP-S). This vaccine candidate can be grown in embryonated eggs at a low cost, similar to influenza virus vaccines, and it can also be administered intranasally, potentially to induce mucosal immunity. We evaluated this vaccine candidate in prime-boost regimens via intramuscular, intranasal, or intranasal followed by intramuscular routes in an open-label non-randomized non-placebo-controlled phase I clinical trial in Mexico in 91 volunteers. The primary objective of the trial was to assess vaccine safety, and the secondary objective was to determine the immunogenicity of the different vaccine regimens. In the interim analysis reported here, the vaccine was found to be safe, and the higher doses tested were found to be immunogenic when given intramuscularly or intranasally followed by intramuscular administration, providing the basis for further clinical development of the vaccine candidate. The study is registered under ClinicalTrials.gov identifier NCT04871737.
Collapse
Affiliation(s)
- Samuel Ponce-de-León
- Programa Universitario de Investigación en Salud (PUIS), Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Edif. de los Programas Universitarios, Planta Alta. Circuito de la Investigación Científica S/N Ciudad Universitaria, Ciudad de México, C.P. 04510, México
| | - Martha Torres
- Laboratorio de Inmunobiología de la tuberculosis, Instituto Nacional de Enfermedades Respiratorias (INER), Ismael Cossio Villegas, Calzada de Tlalpan 4502, Sección XVI, CP 14080, Tlalpan, México
| | - Luis Enrique Soto-Ramírez
- Department of Infectious Diseases, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Vasco de Quiroga 15, Belisario Dominguez, Sección XVI, 14080, Tlalpan, México
- Departamento de Infectología y Vigilancia Epidemiológica, Hospital Médica Sur, S.A.B. de C. V., Puente de Piedra 150, Toriello Guerra, 14050, Tlalpan, México
| | - Juan José Calva
- Department of Infectious Diseases, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Vasco de Quiroga 15, Belisario Dominguez, Sección XVI, 14080, Tlalpan, México
| | - Patricio Santillán-Doherty
- Instituto Nacional de Enfermedades Respiratorias (INER), Ismael Cossio Villegas, Calzada de Tlalpan 4502, Sección XVI, CP 14080, Tlalpan, México
| | - Dora Eugenia Carranza-Salazar
- ProcliniQ Investigación Clínica, S. A. de C. V., Renato Leduc 155 (Xontepec 91), Toriello Guerra, 14050, Tlalpan, México
| | - Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA
| | - Claudia Carranza
- Laboratorio de Inmunobiología de la tuberculosis, Instituto Nacional de Enfermedades Respiratorias (INER), Ismael Cossio Villegas, Calzada de Tlalpan 4502, Sección XVI, CP 14080, Tlalpan, México
| | - Esmeralda Juárez
- Departamento de Investigación en Microbiología, Instituto Nacional de Enfermedades Respiratorias (INER), Ismael Cossio Villegas, Calzada de Tlalpan 4502, Sección XVI, CP 14080, Tlalpan, México
| | - Laura E Carreto-Binaghi
- Laboratorio de Inmunobiología de la tuberculosis, Instituto Nacional de Enfermedades Respiratorias (INER), Ismael Cossio Villegas, Calzada de Tlalpan 4502, Sección XVI, CP 14080, Tlalpan, México
| | - Luis Ramírez-Martínez
- Laboratorio Avi-Mex, S. A. de C. V. (Avimex), Maíz 18, Granjas Esmeralda, CP 09810, Iztapalapa, CDMX, Mexico
| | - Georgina Paz De la Rosa
- Laboratorio Avi-Mex, S. A. de C. V. (Avimex), Maíz 18, Granjas Esmeralda, CP 09810, Iztapalapa, CDMX, Mexico
| | - Rosalía Vigueras-Moreno
- Laboratorio Avi-Mex, S. A. de C. V. (Avimex), Maíz 18, Granjas Esmeralda, CP 09810, Iztapalapa, CDMX, Mexico
| | - Alejandro Ortiz-Stern
- iLS Clinical Research, S. C. (iLS), Matias Romero 102 - 205 Del Valle, Benito Juárez, CP 03100, CDMX, México
| | - Yolanda López-Vidal
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 3000, Circuito Interior S/N. Ciudad Universitaria, Coyoacán, CP.04510, México
| | - Alejandro E Macías
- Departamento de Medicina, Universidad de Guanajuato, 20 de Enero 929, C.P 37000, León Guanajuato, México
| | - Jesús Torres-Flores
- Dirección Adjunta de Desarrollo Tecnológico, Vinculación e Innovación, Consejo Nacional de Ciencia y Tecnología (CONACYT), Insurgentes Sur 1582, Crédito Constructor, CP 03940, Benito Juárez, CDMX, México
| | - Oscar Rojas-Martínez
- Laboratorio Avi-Mex, S. A. de C. V. (Avimex), Maíz 18, Granjas Esmeralda, CP 09810, Iztapalapa, CDMX, Mexico
| | - Alejandro Suárez-Martínez
- Laboratorio Avi-Mex, S. A. de C. V. (Avimex), Maíz 18, Granjas Esmeralda, CP 09810, Iztapalapa, CDMX, Mexico
| | - Gustavo Peralta-Sánchez
- Laboratorio Avi-Mex, S. A. de C. V. (Avimex), Maíz 18, Granjas Esmeralda, CP 09810, Iztapalapa, CDMX, Mexico
| | - Hisaaki Kawabata
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA
| | - Irene González-Domínguez
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA
| | - José Luis Martínez-Guevara
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA
| | - Weina Sun
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA
| | - David Sarfati-Mizrahi
- Laboratorio Avi-Mex, S. A. de C. V. (Avimex), Maíz 18, Granjas Esmeralda, CP 09810, Iztapalapa, CDMX, Mexico
| | - Ernesto Soto-Priante
- Laboratorio Avi-Mex, S. A. de C. V. (Avimex), Maíz 18, Granjas Esmeralda, CP 09810, Iztapalapa, CDMX, Mexico
| | - Héctor Elías Chagoya-Cortés
- Consultora Mextrategy, S.A.S. de C. V. (Mextrategy), Insurgentes Sur 1079 P7-127, Nochebuena, CP 03720, CDMX, Mexico
| | - Constantino López-Macías
- Unidad de Investigación Médica en Inmunoquímica. Hospital de Especialidades del Centro Médico Nacional Siglo XXI. Instituto Mexicano del Seguro Social (IMSS), Av. Cuauhtémoc 330, Doctores, C.P. 06720, Benito Juárez, CDMX, México
| | - Felipa Castro-Peralta
- Laboratorio Avi-Mex, S. A. de C. V. (Avimex), Maíz 18, Granjas Esmeralda, CP 09810, Iztapalapa, CDMX, Mexico
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA.
- Department of Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA.
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA.
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA.
- Department of Pathology, Molecular and Cell-based Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA.
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA.
- Department of Pathology, Molecular and Cell-based Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA.
| | - Bernardo Lozano-Dubernard
- Laboratorio Avi-Mex, S. A. de C. V. (Avimex), Maíz 18, Granjas Esmeralda, CP 09810, Iztapalapa, CDMX, Mexico.
| |
Collapse
|
16
|
Pilapitiya D, Wheatley AK, Tan HX. Mucosal vaccines for SARS-CoV-2: triumph of hope over experience. EBioMedicine 2023; 92:104585. [PMID: 37146404 PMCID: PMC10154910 DOI: 10.1016/j.ebiom.2023.104585] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/27/2023] [Accepted: 04/08/2023] [Indexed: 05/07/2023] Open
Abstract
Currently approved COVID-19 vaccines administered parenterally induce robust systemic humoral and cellular responses. While highly effective against severe disease, there is reduced effectiveness of these vaccines in preventing breakthrough infection and/or onward transmission, likely due to poor immunity elicited at the respiratory mucosa. As such, there has been considerable interest in developing novel mucosal vaccines that engenders more localised immune responses to provide better protection and recall responses at the site of virus entry, in contrast to traditional vaccine approaches that focus on systemic immunity. In this review, we explore the adaptive components of mucosal immunity, evaluate epidemiological studies to dissect if mucosal immunity conferred by parenteral vaccination or respiratory infection drives differential efficacy against virus acquisition or transmission, discuss mucosal vaccines undergoing clinical trials and assess key challenges and prospects for mucosal vaccine development.
Collapse
Affiliation(s)
- Devaki Pilapitiya
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - Hyon-Xhi Tan
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia.
| |
Collapse
|
17
|
Wang S, Liang B, Wang W, Li L, Feng N, Zhao Y, Wang T, Yan F, Yang S, Xia X. Viral vectored vaccines: design, development, preventive and therapeutic applications in human diseases. Signal Transduct Target Ther 2023; 8:149. [PMID: 37029123 PMCID: PMC10081433 DOI: 10.1038/s41392-023-01408-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 04/09/2023] Open
Abstract
Human diseases, particularly infectious diseases and cancers, pose unprecedented challenges to public health security and the global economy. The development and distribution of novel prophylactic and therapeutic vaccines are the prioritized countermeasures of human disease. Among all vaccine platforms, viral vector vaccines offer distinguished advantages and represent prominent choices for pathogens that have hampered control efforts based on conventional vaccine approaches. Currently, viral vector vaccines remain one of the best strategies for induction of robust humoral and cellular immunity against human diseases. Numerous viruses of different families and origins, including vesicular stomatitis virus, rabies virus, parainfluenza virus, measles virus, Newcastle disease virus, influenza virus, adenovirus and poxvirus, are deemed to be prominent viral vectors that differ in structural characteristics, design strategy, antigen presentation capability, immunogenicity and protective efficacy. This review summarized the overall profile of the design strategies, progress in advance and steps taken to address barriers to the deployment of these viral vector vaccines, simultaneously highlighting their potential for mucosal delivery, therapeutic application in cancer as well as other key aspects concerning the rational application of these viral vector vaccines. Appropriate and accurate technological advances in viral vector vaccines would consolidate their position as a leading approach to accelerate breakthroughs in novel vaccines and facilitate a rapid response to public health emergencies.
Collapse
Affiliation(s)
- Shen Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Bo Liang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Weiqi Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ling Li
- China National Research Center for Exotic Animal Diseases, China Animal Health and Epidemiology Center, Qingdao, China
| | - Na Feng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yongkun Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Tiecheng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.
| | - Songtao Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.
| |
Collapse
|
18
|
Zhang Y, Lu M, Thongpan I, Xu J, Kc M, Dravid P, Trivedi S, Sharma H, Liang X, Kapoor A, Peeples ME, Li J. Recombinant measles virus expressing prefusion spike protein stabilized by six rather than two prolines is more efficacious against SARS-CoV-2 infection. J Med Virol 2023; 95:e28687. [PMID: 36941778 DOI: 10.1002/jmv.28687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023]
Abstract
Measles virus (MeV) has been an excellent vector platform for delivering vaccines against many pathogens because of its high safety and efficacy, and induction of long-lived immunity. Early in the COVID-19 pandemic, a recombinant MeV (rMeV) expressing the prefusion full-length spike protein stabilized by two prolines (TMV-083) was developed and tested in phase 1 and 1/2 clinical trials but was discontinued because of insufficient immunogenicity and a low seroconversion rate in adults. Here, we compared the immunogenicity of rMeV expressing a soluble prefusion spike (preS) protein stabilized by two prolines (rMeV-preS-2P) with a rMeV expressing a soluble preS protein stabilized by six prolines (rMeV-preS-6P). We found that rMeV-preS-6P expressed approximately five times more preS than rMeV-preS-2P in cell culture. Importantly, rMeV-preS-6P induced 30-60 and six times more serum immunoglobulin G and neutralizing antibody than rMeV-preS-2P, respectively, in IFNAR-/- mice. IFNAR-/- mice immunized with rMeV-preS-6P were completely protected from challenge with a mouse-adapted SARS-CoV-2, whereas those immunized with rMeV-preS-2P were partially protected. In addition, hamsters immunized with rMeV-preS-6P were completely protected from the challenge with a Delta variant of SARS-CoV-2. Our results demonstrate that rMeV-preS-6P is significantly more efficacious than rMeV-preS-2P, highlighting the value of using preS-6P as the antigen for developing vaccines against SARS-CoV-2.
Collapse
Affiliation(s)
- Yuexiu Zhang
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Mijia Lu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Ilada Thongpan
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Jiayu Xu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Mahesh Kc
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Piyush Dravid
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Sheetal Trivedi
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Himanshu Sharma
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Xueya Liang
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Amit Kapoor
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio, USA
- Infectious Disease Institute, The Ohio State University, Columbus, Ohio, USA
| | - Mark E Peeples
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio, USA
- Infectious Disease Institute, The Ohio State University, Columbus, Ohio, USA
| | - Jianrong Li
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
- Infectious Disease Institute, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
19
|
Carreño JM, Raskin A, Singh G, Tcheou J, Kawabata H, Gleason C, Srivastava K, Vigdorovich V, Dambrauskas N, Gupta SL, González Domínguez I, Martinez JL, Slamanig S, Sather DN, Raghunandan R, Wirachwong P, Muangnoicharoen S, Pitisuttithum P, Wrammert J, Suthar MS, Sun W, Palese P, García-Sastre A, Simon V, Krammer F. An inactivated NDV-HXP-S COVID-19 vaccine elicits a higher proportion of neutralizing antibodies in humans than mRNA vaccination. Sci Transl Med 2023; 15:eabo2847. [PMID: 36791207 DOI: 10.1126/scitranslmed.abo2847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
NDV-HXP-S is a recombinant Newcastle disease virus-based vaccine against SARS-CoV-2, which expresses an optimized (HexaPro) spike protein on its surface. The vaccine can be produced in embryonated chicken eggs using the same process as that used for the production of the vast majority of influenza virus vaccines. Here, we performed a secondary analysis of the antibody responses after vaccination with inactivated NDV-HXP-S in a phase 1 clinical study in Thailand. The SARS-CoV-2 neutralizing and spike protein binding activity of NDV-HXP-S postvaccination serum samples was compared to that of samples from mRNA BNT162b2 (Pfizer) vaccinees. Neutralizing activity of sera from NDV-HXP-S vaccinees was comparable to that of BNT162b2 vaccinees, whereas spike protein binding activity of the NDV-HXP-S vaccinee samples was lower than that of sera obtained from mRNA vaccinees. This led us to calculate ratios between binding and neutralizing antibody titers. Samples from NDV-HXP-S vaccinees had binding to neutralizing activity ratios that were lower than those of BNT162b2 sera, suggesting that NDV-HXP-S vaccination elicits a high proportion of neutralizing antibodies and low non-neutralizing antibody titers. Further analysis showed that, in contrast to mRNA vaccination, which induces strong antibody titers to the receptor binding domain (RBD), the N-terminal domain, and the S2 domain, NDV-HXP-S vaccination induced an RBD-focused antibody response with little reactivity to S2. This finding may explain the high proportion of neutralizing antibodies. In conclusion, vaccination with inactivated NDV-HXP-S induces a high proportion of neutralizing antibodies and absolute neutralizing antibody titers that are comparable to those elicited by mRNA vaccination.
Collapse
Affiliation(s)
- Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
| | - Ariel Raskin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
| | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
| | - Johnstone Tcheou
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
| | - Hisaaki Kawabata
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
| | - Charles Gleason
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
| | - Komal Srivastava
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
| | - Vladimir Vigdorovich
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Nicholas Dambrauskas
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Sneh Lata Gupta
- Department of Pediatrics, Centers for Childhood Infections and Vaccines, Children's Healthcare of Atlanta, Emory University, Atlanta, GA 30329, USA.,Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Irene González Domínguez
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
| | - Jose Luis Martinez
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
| | - Stefan Slamanig
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
| | - D Noah Sather
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA.,Department of Pediatrics, University of Washington, Seattle, WA 98109, USA
| | | | - Ponthip Wirachwong
- Government Pharmaceutical Organization, 75/1 Rama VI Road, Ratchathewi, Bangkok 10400, Thailand
| | - Sant Muangnoicharoen
- Vaccine Trial Centre Faculty of Tropical Medicine, Mahidol, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand
| | - Punnee Pitisuttithum
- Vaccine Trial Centre Faculty of Tropical Medicine, Mahidol, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand
| | - Jens Wrammert
- Department of Pediatrics, Centers for Childhood Infections and Vaccines, Children's Healthcare of Atlanta, Emory University, Atlanta, GA 30329, USA.,Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Mehul S Suthar
- Department of Pediatrics, Centers for Childhood Infections and Vaccines, Children's Healthcare of Atlanta, Emory University, Atlanta, GA 30329, USA.,Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30329, USA.,Department of Microbiology and Immunology, Emory University, Atlanta, GA 30329, USA
| | - Weina Sun
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA.,Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA.,Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA.,Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA.,Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA.,Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA.,Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
| |
Collapse
|
20
|
Zhang J, Xia Y, Liu X, Liu G. Advanced Vaccine Design Strategies against SARS-CoV-2 and Emerging Variants. Bioengineering (Basel) 2023; 10:bioengineering10020148. [PMID: 36829642 PMCID: PMC9951973 DOI: 10.3390/bioengineering10020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Vaccination is the most cost-effective means in the fight against infectious diseases. Various kinds of vaccines have been developed since the outbreak of COVID-19, some of which have been approved for clinical application. Though vaccines available achieved partial success in protecting vaccinated subjects from infection or hospitalization, numerous efforts are still needed to end the global pandemic, especially in the case of emerging new variants. Safe and efficient vaccines are the key elements to stop the pandemic from attacking the world now; novel and evolving vaccine technologies are urged in the course of fighting (re)-emerging infectious diseases. Advances in biotechnology offered the progress of vaccinology in the past few years, and lots of innovative approaches have been applied to the vaccine design during the ongoing pandemic. In this review, we summarize the state-of-the-art vaccine strategies involved in controlling the transmission of SARS-CoV-2 and its variants. In addition, challenges and future directions for rational vaccine design are discussed.
Collapse
Affiliation(s)
- Jianzhong Zhang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yutian Xia
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xuan Liu
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Gang Liu
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
- Innovation Center for Cell Biology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
- Correspondence:
| |
Collapse
|
21
|
He L, Zhong J, Li G, Lin Z, Zhao P, Yang C, Wang H, Zhang Y, Yang X, Wang Z. Development of SARS-CoV-2 animal vaccines using a stable and efficient NDV expression system. J Med Virol 2023; 95:e28237. [PMID: 36258299 PMCID: PMC9874532 DOI: 10.1002/jmv.28237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/24/2022] [Accepted: 10/16/2022] [Indexed: 01/27/2023]
Abstract
With the continuation of the coronavirus disease 2019 pandemic and the emergence of new severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants, the control of the spread of the virus remains urgent. Various animals, including cats, ferrets, hamsters, nonhuman primates, minks, tree shrews, fruit bats, and rabbits, are susceptible to SARS-CoV-2 infection naturally or experimentally. Therefore, to avoid animals from becoming mixing vessels of the virus, vaccination of animals should be considered. In the present study, we report the establishment of an efficient and stable system using Newcastle disease virus (NDV) as a vector to express SARS-CoV-2 spike protein/subunit for the rapid generation of vaccines against SARS-CoV-2 in animals. Our data showed that the S and S1 protein was sufficiently expressed in rNDV-S and rNDV-S1-infected cells, respectively. The S protein was incorporated into and displayed on the surface of rNDV-S viral particles. Intramuscular immunization with rNDV-S was found to induce the highest level of binding and neutralizing antibodies, as well as strong S-specific T-cell response in mice. Intranasal immunization with rNDV-S1 provoked a robust T-cell response but barely any detectable antibodies. Overall, the NDV-vectored vaccine candidates were able to induce profound humoral and cellular immunity, which will provide a good system for developing vaccines targeting both T-cell and antibody responses.
Collapse
Affiliation(s)
- Lei He
- College of Animal Science and Technology, Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and ControlHenan University of Science and TechnologyHenanLuoyangChina
| | - Jiaying Zhong
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouChina
| | - Guichang Li
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouChina
| | - Zhengfang Lin
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouChina
| | - Peijing Zhao
- Division of MicrobiologyGuangdong Huawei Testing Co., Ltd.GuangzhouChina
| | - Chuhua Yang
- Division of MicrobiologyGuangdong Huawei Testing Co., Ltd.GuangzhouChina
| | - Hairong Wang
- College of Animal Science and Technology, Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and ControlHenan University of Science and TechnologyHenanLuoyangChina
| | - Yuhao Zhang
- College of Animal Science and Technology, Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and ControlHenan University of Science and TechnologyHenanLuoyangChina
| | - Xiaoyun Yang
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouChina,Guangzhou LaboratoryGuangzhouChina
| | - Zhongfang Wang
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouChina,Guangzhou LaboratoryGuangzhouChina
| |
Collapse
|
22
|
Graña C, Ghosn L, Evrenoglou T, Jarde A, Minozzi S, Bergman H, Buckley BS, Probyn K, Villanueva G, Henschke N, Bonnet H, Assi R, Menon S, Marti M, Devane D, Mallon P, Lelievre JD, Askie LM, Kredo T, Ferrand G, Davidson M, Riveros C, Tovey D, Meerpohl JJ, Grasselli G, Rada G, Hróbjartsson A, Ravaud P, Chaimani A, Boutron I. Efficacy and safety of COVID-19 vaccines. Cochrane Database Syst Rev 2022; 12:CD015477. [PMID: 36473651 PMCID: PMC9726273 DOI: 10.1002/14651858.cd015477] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Different forms of vaccines have been developed to prevent the SARS-CoV-2 virus and subsequent COVID-19 disease. Several are in widespread use globally. OBJECTIVES: To assess the efficacy and safety of COVID-19 vaccines (as a full primary vaccination series or a booster dose) against SARS-CoV-2. SEARCH METHODS We searched the Cochrane COVID-19 Study Register and the COVID-19 L·OVE platform (last search date 5 November 2021). We also searched the WHO International Clinical Trials Registry Platform, regulatory agency websites, and Retraction Watch. SELECTION CRITERIA We included randomized controlled trials (RCTs) comparing COVID-19 vaccines to placebo, no vaccine, other active vaccines, or other vaccine schedules. DATA COLLECTION AND ANALYSIS We used standard Cochrane methods. We used GRADE to assess the certainty of evidence for all except immunogenicity outcomes. We synthesized data for each vaccine separately and presented summary effect estimates with 95% confidence intervals (CIs). MAIN RESULTS: We included and analyzed 41 RCTs assessing 12 different vaccines, including homologous and heterologous vaccine schedules and the effect of booster doses. Thirty-two RCTs were multicentre and five were multinational. The sample sizes of RCTs were 60 to 44,325 participants. Participants were aged: 18 years or older in 36 RCTs; 12 years or older in one RCT; 12 to 17 years in two RCTs; and three to 17 years in two RCTs. Twenty-nine RCTs provided results for individuals aged over 60 years, and three RCTs included immunocompromized patients. No trials included pregnant women. Sixteen RCTs had two-month follow-up or less, 20 RCTs had two to six months, and five RCTs had greater than six to 12 months or less. Eighteen reports were based on preplanned interim analyses. Overall risk of bias was low for all outcomes in eight RCTs, while 33 had concerns for at least one outcome. We identified 343 registered RCTs with results not yet available. This abstract reports results for the critical outcomes of confirmed symptomatic COVID-19, severe and critical COVID-19, and serious adverse events only for the 10 WHO-approved vaccines. For remaining outcomes and vaccines, see main text. The evidence for mortality was generally sparse and of low or very low certainty for all WHO-approved vaccines, except AD26.COV2.S (Janssen), which probably reduces the risk of all-cause mortality (risk ratio (RR) 0.25, 95% CI 0.09 to 0.67; 1 RCT, 43,783 participants; high-certainty evidence). Confirmed symptomatic COVID-19 High-certainty evidence found that BNT162b2 (BioNtech/Fosun Pharma/Pfizer), mRNA-1273 (ModernaTx), ChAdOx1 (Oxford/AstraZeneca), Ad26.COV2.S, BBIBP-CorV (Sinopharm-Beijing), and BBV152 (Bharat Biotect) reduce the incidence of symptomatic COVID-19 compared to placebo (vaccine efficacy (VE): BNT162b2: 97.84%, 95% CI 44.25% to 99.92%; 2 RCTs, 44,077 participants; mRNA-1273: 93.20%, 95% CI 91.06% to 94.83%; 2 RCTs, 31,632 participants; ChAdOx1: 70.23%, 95% CI 62.10% to 76.62%; 2 RCTs, 43,390 participants; Ad26.COV2.S: 66.90%, 95% CI 59.10% to 73.40%; 1 RCT, 39,058 participants; BBIBP-CorV: 78.10%, 95% CI 64.80% to 86.30%; 1 RCT, 25,463 participants; BBV152: 77.80%, 95% CI 65.20% to 86.40%; 1 RCT, 16,973 participants). Moderate-certainty evidence found that NVX-CoV2373 (Novavax) probably reduces the incidence of symptomatic COVID-19 compared to placebo (VE 82.91%, 95% CI 50.49% to 94.10%; 3 RCTs, 42,175 participants). There is low-certainty evidence for CoronaVac (Sinovac) for this outcome (VE 69.81%, 95% CI 12.27% to 89.61%; 2 RCTs, 19,852 participants). Severe or critical COVID-19 High-certainty evidence found that BNT162b2, mRNA-1273, Ad26.COV2.S, and BBV152 result in a large reduction in incidence of severe or critical disease due to COVID-19 compared to placebo (VE: BNT162b2: 95.70%, 95% CI 73.90% to 99.90%; 1 RCT, 46,077 participants; mRNA-1273: 98.20%, 95% CI 92.80% to 99.60%; 1 RCT, 28,451 participants; AD26.COV2.S: 76.30%, 95% CI 57.90% to 87.50%; 1 RCT, 39,058 participants; BBV152: 93.40%, 95% CI 57.10% to 99.80%; 1 RCT, 16,976 participants). Moderate-certainty evidence found that NVX-CoV2373 probably reduces the incidence of severe or critical COVID-19 (VE 100.00%, 95% CI 86.99% to 100.00%; 1 RCT, 25,452 participants). Two trials reported high efficacy of CoronaVac for severe or critical disease with wide CIs, but these results could not be pooled. Serious adverse events (SAEs) mRNA-1273, ChAdOx1 (Oxford-AstraZeneca)/SII-ChAdOx1 (Serum Institute of India), Ad26.COV2.S, and BBV152 probably result in little or no difference in SAEs compared to placebo (RR: mRNA-1273: 0.92, 95% CI 0.78 to 1.08; 2 RCTs, 34,072 participants; ChAdOx1/SII-ChAdOx1: 0.88, 95% CI 0.72 to 1.07; 7 RCTs, 58,182 participants; Ad26.COV2.S: 0.92, 95% CI 0.69 to 1.22; 1 RCT, 43,783 participants); BBV152: 0.65, 95% CI 0.43 to 0.97; 1 RCT, 25,928 participants). In each of these, the likely absolute difference in effects was fewer than 5/1000 participants. Evidence for SAEs is uncertain for BNT162b2, CoronaVac, BBIBP-CorV, and NVX-CoV2373 compared to placebo (RR: BNT162b2: 1.30, 95% CI 0.55 to 3.07; 2 RCTs, 46,107 participants; CoronaVac: 0.97, 95% CI 0.62 to 1.51; 4 RCTs, 23,139 participants; BBIBP-CorV: 0.76, 95% CI 0.54 to 1.06; 1 RCT, 26,924 participants; NVX-CoV2373: 0.92, 95% CI 0.74 to 1.14; 4 RCTs, 38,802 participants). For the evaluation of heterologous schedules, booster doses, and efficacy against variants of concern, see main text of review. AUTHORS' CONCLUSIONS Compared to placebo, most vaccines reduce, or likely reduce, the proportion of participants with confirmed symptomatic COVID-19, and for some, there is high-certainty evidence that they reduce severe or critical disease. There is probably little or no difference between most vaccines and placebo for serious adverse events. Over 300 registered RCTs are evaluating the efficacy of COVID-19 vaccines, and this review is updated regularly on the COVID-NMA platform (covid-nma.com). Implications for practice Due to the trial exclusions, these results cannot be generalized to pregnant women, individuals with a history of SARS-CoV-2 infection, or immunocompromized people. Most trials had a short follow-up and were conducted before the emergence of variants of concern. Implications for research Future research should evaluate the long-term effect of vaccines, compare different vaccines and vaccine schedules, assess vaccine efficacy and safety in specific populations, and include outcomes such as preventing long COVID-19. Ongoing evaluation of vaccine efficacy and effectiveness against emerging variants of concern is also vital.
Collapse
Affiliation(s)
- Carolina Graña
- Cochrane France, Paris, France
- Centre of Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Université de Paris, Paris, France
| | - Lina Ghosn
- Cochrane France, Paris, France
- Centre of Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Université de Paris, Paris, France
| | - Theodoros Evrenoglou
- Centre of Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Université de Paris, Paris, France
| | - Alexander Jarde
- Cochrane France, Paris, France
- Centre of Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Université de Paris, Paris, France
| | | | | | | | | | | | | | - Hillary Bonnet
- Cochrane France, Paris, France
- Centre of Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Université de Paris, Paris, France
| | - Rouba Assi
- Cochrane France, Paris, France
- Centre of Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Université de Paris, Paris, France
| | | | - Melanie Marti
- Department of Immunization, Vaccines and Biologicals, World Health Organization, Geneva, Switzerland
| | - Declan Devane
- Evidence Synthesis Ireland, Cochrane Ireland and HRB-Trials Methodology Research Network, National University of Ireland, Galway, Ireland
| | - Patrick Mallon
- UCD Centre for Experimental Pathogen Host Research and UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Jean-Daniel Lelievre
- Department of Clinical Immunology and Infectious Diseases, Henri Mondor Hospital, Vaccine Research Institute, Université Paris Est Créteil, Paris, France
| | - Lisa M Askie
- Quality Assurance Norms and Standards Department, World Health Organization, Geneva, Switzerland
| | - Tamara Kredo
- Cochrane South Africa, South African Medical Research Council, Cape Town, South Africa
| | | | - Mauricia Davidson
- Cochrane France, Paris, France
- Centre of Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Université de Paris, Paris, France
| | - Carolina Riveros
- Cochrane France, Paris, France
- Centre of Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Université de Paris, Paris, France
| | | | - Joerg J Meerpohl
- Institute for Evidence in Medicine, Medical Center & Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Cochrane Germany, Cochrane Germany Foundation, Freiburg, Germany
| | - Giacomo Grasselli
- Department of Anesthesia, Intensive Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Gabriel Rada
- Epistemonikos Foundation, Santiago, Chile
- UC Evidence Center, Cochrane Chile Associated Center, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Asbjørn Hróbjartsson
- Centre for Evidence Based Medicine Odense (CEBMO) and Cochrane Denmark, University of Southern Denmark, Odense, Denmark
- Open Patient data Explorative Network (OPEN), Odense University Hospital, Odense, Denmark
| | - Philippe Ravaud
- Cochrane France, Paris, France
- Centre of Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Université de Paris, Paris, France
| | - Anna Chaimani
- Cochrane France, Paris, France
- Centre of Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Université de Paris, Paris, France
| | - Isabelle Boutron
- Cochrane France, Paris, France
- Centre of Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Université de Paris, Paris, France
| |
Collapse
|
23
|
García-Sastre A. Mucosal delivery of RNA vaccines by Newcastle disease virus vectors. CURRENT RESEARCH IN IMMUNOLOGY 2022; 3:234-238. [PMID: 36245642 PMCID: PMC9552541 DOI: 10.1016/j.crimmu.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/04/2022] [Indexed: 10/31/2022] Open
Abstract
The rapid evolution of SARS-CoV-2 since its pandemic outbreak has underscored the need for improved SARS-CoV-2 vaccines that efficiently reduce not only hospitalizations and deaths, but also infections and transmission. This might be achieved by a new generation of intranasally administered SARS-CoV-2 vaccines to stimulate protective mucosal immunity. Among all different approaches, preclinical and clinical information using Newcastle Disease Virus (NDV)-vectors expressing S of SARS-CoV2 as a COVID-19 vaccine show the potential of this vaccine platform as an affordable, highly immunogenic, safe strategy to intranasally vaccinate humans against SARS-CoV-2 and other infectious diseases. These vaccine vectors consist on the use of a harmless avian negative strand RNA virus to deliver intranasally a self-replicating RNA expressing the vaccine antigen in the cells of the respiratory mucosa. The vector also incorporates the antigen in the virus particle used for RNA delivery, thus combining the properties of nanoparticle-based and RNA-based vaccines. Other advantages of NDV-based vectors include the worldwide availability of manufacturing facilities for their production and their stability at non-freezing temperatures. While phase 3 clinical studies to evaluate efficacy are still pending, phase 1 and 2 clinical studies have demonstrated the safety and immunogenicity of NDV-S vaccines against SARS-CoV-2.
Collapse
Affiliation(s)
- Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
24
|
Lu M, Chamblee M, Zhang Y, Ye C, Dravid P, Park JG, Mahesh KC, Trivedi S, Murthy S, Sharma H, Cassady C, Chaiwatpongsakorn S, Liang X, Yount JS, Boyaka PN, Peeples ME, Martinez-Sobrido L, Kapoor A, Li J. SARS-CoV-2 prefusion spike protein stabilized by six rather than two prolines is more potent for inducing antibodies that neutralize viral variants of concern. Proc Natl Acad Sci U S A 2022; 119:e2110105119. [PMID: 35994646 PMCID: PMC9436349 DOI: 10.1073/pnas.2110105119] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/11/2022] [Indexed: 11/18/2022] Open
Abstract
The spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the main target for neutralizing antibodies (NAbs). The S protein trimer is anchored in the virion membrane in its prefusion (preS) but metastable form. The preS protein has been stabilized by introducing two or six proline substitutions, to generate stabilized, soluble 2P or HexaPro (6P) preS proteins. Currently, it is not known which form is the most immunogenic. Here, we generated recombinant vesicular stomatitis virus (rVSV) expressing preS-2P, preS-HexaPro, and native full-length S, and compared their immunogenicity in mice and hamsters. The rVSV-preS-HexaPro produced and secreted significantly more preS protein compared to rVSV-preS-2P. Importantly, rVSV-preS-HexaPro triggered significantly more preS-specific serum IgG antibody than rVSV-preS-2P in both mice and hamsters. Antibodies induced by preS-HexaPro neutralized the B.1.1.7, B.1.351, P.1, B.1.427, and B.1.617.2 variants approximately two to four times better than those induced by preS-2P. Furthermore, preS-HexaPro induced a more robust Th1-biased cellular immune response than preS-2P. A single dose (104 pfu) immunization with rVSV-preS-HexaPro and rVSV-preS-2P provided complete protection against challenge with mouse-adapted SARS-CoV-2 and B.1.617.2 variant, whereas rVSV-S only conferred partial protection. When the immunization dose was lowered to 103 pfu, rVSV-preS-HexaPro induced two- to sixfold higher antibody responses than rVSV-preS-2P in hamsters. In addition, rVSV-preS-HexaPro conferred 70% protection against lung infection whereas only 30% protection was observed in the rVSV-preS-2P. Collectively, our data demonstrate that both preS-2P and preS-HexaPro are highly efficacious but preS-HexaPro is more immunogenic and protective, highlighting the advantages of using preS-HexaPro in the next generation of SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Mijia Lu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, 43210
| | - Michelle Chamblee
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, 43210
| | - Yuexiu Zhang
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, 43210
| | - Chengjin Ye
- Texas Biomedical Research Institute, San Antonio, TX, 78227
| | - Piyush Dravid
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, 43205
| | - Jun-Gyu Park
- Texas Biomedical Research Institute, San Antonio, TX, 78227
| | - KC Mahesh
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, 43205
| | - Sheetal Trivedi
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, 43205
| | - Satyapramod Murthy
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, 43205
| | - Himanshu Sharma
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, 43205
| | - Cole Cassady
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, 43205
| | - Supranee Chaiwatpongsakorn
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, 43205
| | - Xueya Liang
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, 43210
| | - Jacob S. Yount
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, 43210
- Infectious Disease Institute, The Ohio State University, Columbus, OH, 43210
| | - Prosper N. Boyaka
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, 43210
- Infectious Disease Institute, The Ohio State University, Columbus, OH, 43210
| | - Mark E. Peeples
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, 43205
- Infectious Disease Institute, The Ohio State University, Columbus, OH, 43210
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, 43210
| | | | - Amit Kapoor
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, 43205
- Infectious Disease Institute, The Ohio State University, Columbus, OH, 43210
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, 43210
| | - Jianrong Li
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, 43210
- Infectious Disease Institute, The Ohio State University, Columbus, OH, 43210
| |
Collapse
|
25
|
Duc Dang A, Dinh Vu T, Hai Vu H, Thanh Ta V, Thi Van Pham A, Thi Ngoc Dang M, Van Le B, Huu Duong T, Van Nguyen D, Lawpoolsri S, Chinwangso P, McLellan JS, Hsieh CL, Garcia-Sastre A, Palese P, Sun W, Martinez JL, Gonzalez-Dominguez I, Slamanig S, Manuel Carreño J, Tcheou J, Krammer F, Raskin A, Minh Vu H, Cong Tran T, Mai Nguyen H, Mercer LD, Raghunandan R, Lal M, White JA, Hjorth R, Innis BL, Scharf R. Safety and immunogenicity of an egg-based inactivated Newcastle disease virus vaccine expressing SARS-CoV-2 spike: Interim results of a randomized, placebo-controlled, phase 1/2 trial in Vietnam. Vaccine 2022; 40:3621-3632. [PMID: 35577631 PMCID: PMC9106407 DOI: 10.1016/j.vaccine.2022.04.078] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/03/2022] [Accepted: 04/25/2022] [Indexed: 01/13/2023]
Abstract
Production of affordable coronavirus disease 2019 (COVID-19) vaccines in low- and middle-income countries is needed. NDV-HXP-S is an inactivated egg-based Newcastle disease virus (NDV) vaccine expressing the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Wuhan-Hu-1. The spike protein was stabilized and incorporated into NDV virions by removing the polybasic furin cleavage site, introducing the transmembrane domain and cytoplasmic tail of the fusion protein of NDV, and introducing six prolines for stabilization in the prefusion state. Vaccine production and clinical development was initiated in Vietnam, Thailand, and Brazil. Here the interim results from the first stage of the randomized, dose-escalation, observer-blind, placebo-controlled, phase 1/2 trial conducted at the Hanoi Medical University (Vietnam) are presented. Healthy adults aged 18-59 years, non-pregnant, and with self-reported negative history for SARS-CoV-2 infection were eligible. Participants were randomized to receive one of five treatments by intramuscular injection twice, 28 days apart: 1 μg +/- CpG1018 (a toll-like receptor 9 agonist), 3 μg alone, 10 μg alone, or placebo. Participants and personnel assessing outcomes were masked to treatment. The primary outcomes were solicited adverse events (AEs) during 7 days and subject-reported AEs during 28 days after each vaccination. Investigators further reviewed subject-reported AEs. Secondary outcomes were immunogenicity measures (anti-spike immunoglobulin G [IgG] and pseudotyped virus neutralization). This interim analysis assessed safety 56 days after first vaccination (day 57) in treatment-exposed individuals and immunogenicity through 14 days after second vaccination (day 43) per protocol. Between March 15 and April 23, 2021, 224 individuals were screened and 120 were enrolled (25 per group for active vaccination and 20 for placebo). All subjects received two doses. The most common solicited AEs among those receiving active vaccine or placebo were all predominantly mild and included injection site pain or tenderness (<58%), fatigue or malaise (<22%), headache (<21%), and myalgia (<14%). No higher proportion of the solicited AEs were observed for any group of active vaccine. The proportion reporting vaccine-related AEs during the 28 days after either vaccination ranged from 4% to 8% among vaccine groups and was 5% in controls. No vaccine-related serious adverse event occurred. The immune response in the 10 μg formulation group was highest, followed by 1 μg + CpG1018, 3 μg, and 1 μg formulations. Fourteen days after the second vaccination, the geometric mean concentrations (GMC) of 50% neutralizing antibody against the homologous Wuhan-Hu-1 pseudovirus ranged from 56.07 IU/mL (1 μg, 95% CI 37.01, 84.94) to 246.19 IU/mL (10 μg, 95% CI 151.97, 398.82), with 84% to 96% of vaccine groups attaining a ≥ 4-fold increase over baseline. This was compared to a panel of human convalescent sera (N = 29, 72.93 95% CI 33.00-161.14). Live virus neutralization to the B.1.617.2 (Delta) variant of concern was reduced but in line with observations for vaccines currently in use. Since the adjuvant has shown modest benefit, GMC ratio of 2.56 (95% CI, 1.4-4.6) for 1 μg +/- CpG1018, a decision was made not to continue studying it with this vaccine. NDV-HXP-S had an acceptable safety profile and potent immunogenicity. The 3 μg dose was advanced to phase 2 along with a 6 μg dose. The 10 μg dose was not selected for evaluation in phase 2 due to potential impact on manufacturing capacity. ClinicalTrials.gov NCT04830800.
Collapse
Affiliation(s)
- Anh Duc Dang
- National Institute of Hygiene and Epidemiology, 1 Yersin Street, Hai Ba Trung District, Hanoi, Viet Nam
| | - Thiem Dinh Vu
- National Institute of Hygiene and Epidemiology, 1 Yersin Street, Hai Ba Trung District, Hanoi, Viet Nam
| | - Ha Hai Vu
- National Institute of Hygiene and Epidemiology, 1 Yersin Street, Hai Ba Trung District, Hanoi, Viet Nam
| | - Van Thanh Ta
- Hanoi Medical University, 1 Ton That Tung Street, Dong Da District, Hanoi, Viet Nam
| | - Anh Thi Van Pham
- Hanoi Medical University, 1 Ton That Tung Street, Dong Da District, Hanoi, Viet Nam
| | - Mai Thi Ngoc Dang
- Hanoi Medical University, 1 Ton That Tung Street, Dong Da District, Hanoi, Viet Nam
| | - Be Van Le
- Institute of Vaccines and Medical Biologicals, 9 Pasteur, Xuong Huan, Nha Trang City, Khanh Hoa, Viet Nam
| | - Thai Huu Duong
- Institute of Vaccines and Medical Biologicals, 9 Pasteur, Xuong Huan, Nha Trang City, Khanh Hoa, Viet Nam
| | - Duoc Van Nguyen
- Institute of Vaccines and Medical Biologicals, 9 Pasteur, Xuong Huan, Nha Trang City, Khanh Hoa, Viet Nam
| | - Saranath Lawpoolsri
- Center of Excellence for Biomedical and Public Health Informatics (BIOPHICS), Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand; Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand
| | - Pailinrut Chinwangso
- Center of Excellence for Biomedical and Public Health Informatics (BIOPHICS), Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand
| | - Jason S McLellan
- College of Natural Sciences, The University of Texas at Austin, 120 Inner Campus Dr Stop G2500, Austin, TX 78712, USA
| | - Ching-Lin Hsieh
- College of Natural Sciences, The University of Texas at Austin, 120 Inner Campus Dr Stop G2500, Austin, TX 78712, USA
| | - Adolfo Garcia-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA; Department of Pathology, Molecular and Cell Based Medicine Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA; The Global Health and Emerging Pathogen Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
| | - Weina Sun
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
| | - Jose L Martinez
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
| | - Irene Gonzalez-Dominguez
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
| | - Stefan Slamanig
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
| | - Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
| | - Johnstone Tcheou
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA; Department of Pathology, Molecular and Cell Based Medicine Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
| | - Ariel Raskin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
| | - Huong Minh Vu
- WHO Vietnam Country Office, 304 Kim Ma Street, Ba Dinh District, Hanoi, Viet Nam
| | - Thang Cong Tran
- PATH Vietnam, 1101, 11th Floor, Hanoi Towers, 49 Hai Ba Trung Street, Hoan Kiem District, Hanoi, Viet Nam
| | - Huong Mai Nguyen
- PATH Vietnam, 1101, 11th Floor, Hanoi Towers, 49 Hai Ba Trung Street, Hoan Kiem District, Hanoi, Viet Nam
| | - Laina D Mercer
- PATH, 2201 Westlake Avenue, Suite 200, Seattle, WA 98121, USA
| | | | - Manjari Lal
- PATH, 2201 Westlake Avenue, Suite 200, Seattle, WA 98121, USA
| | - Jessica A White
- PATH, 2201 Westlake Avenue, Suite 200, Seattle, WA 98121, USA
| | - Richard Hjorth
- PATH, 2201 Westlake Avenue, Suite 200, Seattle, WA 98121, USA
| | - Bruce L Innis
- PATH, 2201 Westlake Avenue, Suite 200, Seattle, WA 98121, USA.
| | - Rami Scharf
- PATH, 2201 Westlake Avenue, Suite 200, Seattle, WA 98121, USA.
| |
Collapse
|
26
|
Trivalent NDV-HXP-S Vaccine Protects against Phylogenetically Distant SARS-CoV-2 Variants of Concern in Mice. Microbiol Spectr 2022; 10:e0153822. [PMID: 35658571 PMCID: PMC9241906 DOI: 10.1128/spectrum.01538-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Equitable access to vaccines is necessary to limit the global impact of the coronavirus disease 2019 (COVID-19) pandemic and the emergence of new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. In previous studies, we described the development of a low-cost vaccine based on a Newcastle Disease virus (NDV) expressing the prefusion-stabilized spike protein from SARS-CoV-2, named NDV-HXP-S. Here, we present the development of next-generation NDV-HXP-S variant vaccines, which express the stabilized spike protein of the Beta, Gamma, and Delta variants of concerns (VOC). Combinations of variant vaccines in bivalent, trivalent, and tetravalent formulations were tested for immunogenicity and protection in mice. We show that the trivalent preparation, composed of the ancestral Wuhan, Beta, and Delta vaccines, substantially increases the levels of protection and of cross-neutralizing antibodies against mismatched, phylogenetically distant variants, including the currently circulating Omicron variant. IMPORTANCE This manuscript describes an extended work on the Newcastle disease virus (NDV)-based vaccine focusing on multivalent formulations of NDV vectors expressing different prefusion-stabilized versions of the spike proteins of different SARS-CoV-2 variants of concern (VOC). We demonstrate here that this low-cost NDV platform can be easily adapted to construct vaccines against SARS-CoV-2 variants. Importantly, we show that the trivalent preparation, composed of the ancestral Wuhan, Beta, and Delta vaccines, substantially increases the levels of protection and of cross-neutralizing antibodies against mismatched, phylogenetically distant variants, including the currently circulating Omicron variant. We believe that these findings will help to guide efforts for pandemic preparedness against new variants in the future.
Collapse
|
27
|
Fulber JPC, Kamen AA. Development and Scalable Production of Newcastle Disease Virus-Vectored Vaccines for Human and Veterinary Use. Viruses 2022; 14:975. [PMID: 35632717 PMCID: PMC9143368 DOI: 10.3390/v14050975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022] Open
Abstract
The COVID-19 pandemic has highlighted the need for efficient vaccine platforms that can rapidly be developed and manufactured on a large scale to immunize the population against emerging viruses. Viral-vectored vaccines are prominent vaccine platforms that have been approved for use against the Ebola virus and SARS-CoV-2. The Newcastle Disease Virus is a promising viral vector, as an avian paramyxovirus that infects poultry but is safe for use in humans and other animals. NDV has been extensively studied not only as an oncolytic virus but also a vector for human and veterinary vaccines, with currently ongoing clinical trials for use against SARS-CoV-2. However, there is a gap in NDV research when it comes to process development and scalable manufacturing, which are critical for future approved vaccines. In this review, we summarize the advantages of NDV as a viral vector, describe the steps and limitations to generating recombinant NDV constructs, review the advances in human and veterinary vaccine candidates in pre-clinical and clinical tests, and elaborate on production in embryonated chicken eggs and cell culture. Mainly, we discuss the existing data on NDV propagation from a process development perspective and provide prospects for the next steps necessary to potentially achieve large-scale NDV-vectored vaccine manufacturing.
Collapse
Affiliation(s)
| | - Amine A. Kamen
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada;
| |
Collapse
|
28
|
González-Domínguez I, Martínez JL, Slamanig S, Lemus N, Liu Y, Lai TY, Carreño JM, Singh (a) G, Singh (b) G, Schotsaert M, Mena I, McCroskery S, Coughlan L, Krammer F, García-Sastre A, Palese P, Sun W. Trivalent NDV-HXP-S vaccine protects against phylogenetically distant SARS-CoV-2 variants of concern in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.03.21.485247. [PMID: 35350201 PMCID: PMC8963686 DOI: 10.1101/2022.03.21.485247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Equitable access to vaccines is necessary to limit the global impact of the coronavirus disease 2019 (COVID-19) pandemic and the emergence of new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. In previous studies, we described the development of a low-cost vaccine based on a Newcastle Disease virus (NDV) expressing the prefusion stabilized spike protein from SARS-CoV-2, named NDV-HXP-S. Here, we present the development of next-generation NDV-HXP-S variant vaccines, which express the stabilized spike protein of the Beta, Gamma and Delta variants of concerns (VOC). Combinations of variant vaccines in bivalent, trivalent and tetravalent formulations were tested for immunogenicity and protection in mice. We show that the trivalent preparation, composed of the ancestral Wuhan, Beta and Delta vaccines, substantially increases the levels of protection and of cross-neutralizing antibodies against mismatched, phylogenetically distant variants, including the currently circulating Omicron variant.
Collapse
Affiliation(s)
| | - Jose Luis Martínez
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Stefan Slamanig
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nicholas Lemus
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yonghong Liu
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tsoi Ying Lai
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gagandeep Singh (a)
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gagandeep Singh (b)
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ignacio Mena
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Stephen McCroskery
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lynda Coughlan
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Vaccine Development and Global Health (CVD), University of Maryland School of Medicine, Baltimore, MD, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Weina Sun
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
29
|
Hofmeyer KA, Bianchi KM, Wolfe DN. Utilization of Viral Vector Vaccines in Preparing for Future Pandemics. Vaccines (Basel) 2022; 10:436. [PMID: 35335068 PMCID: PMC8950656 DOI: 10.3390/vaccines10030436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 02/04/2023] Open
Abstract
As the global response to COVID-19 continues, government stakeholders and private partners must keep an eye on the future for the next emerging viral threat with pandemic potential. Many of the virus families considered to be among these threats currently cause sporadic outbreaks of unpredictable size and timing. This represents a major challenge in terms of both obtaining sufficient funding to develop vaccines, and the ability to evaluate clinical efficacy in the field. However, this also presents an opportunity in which vaccines, along with robust diagnostics and contact tracing, can be utilized to respond to outbreaks as they occur, and limit the potential for further spread of the disease in question. While mRNA-based vaccines have proven, during the COVID-19 response, to be an effective and safe solution in terms of providing a rapid response to vaccine development, virus vector-based vaccines represent a class of vaccines that can offer key advantages in certain performance characteristics with regard to viruses of pandemic potential. Here, we will discuss some of the key pros and cons of viral vector vaccines in the context of preparing for future pandemics.
Collapse
Affiliation(s)
| | | | - Daniel N. Wolfe
- US Department of Health and Human Services, Office of the Assistant Secretary for Preparedness and Response, Biomedical Advanced Research and Development Authority, Washington, DC 20201, USA; (K.A.H.); (K.M.B.)
| |
Collapse
|