1
|
Beerkens APM, Heskamp S, Reinema FV, Adema GJ, Span PN, Bussink J. Mitochondria Targeting of Oxidative Phosphorylation Inhibitors to Alleviate Hypoxia and Enhance Anticancer Treatment Efficacy. Clin Cancer Res 2025; 31:1186-1193. [PMID: 39898881 DOI: 10.1158/1078-0432.ccr-24-3296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/28/2024] [Accepted: 01/08/2025] [Indexed: 02/04/2025]
Abstract
Hypoxia is a common feature of solid tumors and is associated with a poor response to anticancer therapies. Hypoxia also induces metabolic changes, such as a switch to glycolysis. This glycolytic switch causes acidification of the tumor microenvironment (TME), thereby attenuating the anticancer immune response. A promising therapeutic strategy to reduce hypoxia and thereby sensitize tumors to irradiation and/or antitumor immune responses is pharmacological inhibition of oxidative phosphorylation (OXPHOS). Several OXPHOS inhibitors (OXPHOSi) have been tested in clinical trials. However, moderate responses and/or substantial toxicity have hampered clinical implementation. OXPHOSi tested in clinical trials inhibit the oxidative metabolism in tumor cells as well as healthy cells. Therefore, new strategies are needed to improve the efficacy of OXPHOSi while minimizing side effects. To enhance the therapeutic window, available OXPHOSi have, for instance, been conjugated to triphenylphosphonium to preferentially target the mitochondria of cancer cells, resulting in increased tumor uptake compared with healthy cells, as cancer cells have a higher mitochondrial membrane potential. However, OXPHOS inhibition also induces reactive oxygen species and subsequent antioxidant responses, which may influence the efficacy of therapies, such as platinum-based chemotherapy and radiotherapy. Here, we review the limitations of the clinically tested OXPHOSi metformin, atovaquone, tamoxifen, BAY 87-2243, and IACS-010759 and the potential of mitochondria-targeted OXPHOSi and their influence on reactive oxygen species production. Furthermore, the effect of the mitochondria-targeting moiety triphenylphosphonium on mitochondria is discussed as it affects mitochondrial bioenergetics.
Collapse
Affiliation(s)
- Anne P M Beerkens
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboudumc, Nijmegen, the Netherlands
| | - Sandra Heskamp
- Department of Medical Imaging, Radboudumc, Nijmegen, the Netherlands
| | - Flavia V Reinema
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboudumc, Nijmegen, the Netherlands
| | - Gosse J Adema
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboudumc, Nijmegen, the Netherlands
| | - Paul N Span
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboudumc, Nijmegen, the Netherlands
| | - Johan Bussink
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboudumc, Nijmegen, the Netherlands
| |
Collapse
|
2
|
Ghiglione N, Abbo D, Bushunova A, Costamagna A, Porporato PE, Martini M. Metabolic plasticity in pancreatic cancer: The mitochondrial connection. Mol Metab 2025; 92:102089. [PMID: 39736443 PMCID: PMC11846432 DOI: 10.1016/j.molmet.2024.102089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/01/2025] Open
Abstract
BACKGROUND Cellular metabolism plays a pivotal role in the development and progression of pancreatic ductal adenocarcinoma (PDAC), with dysregulated metabolic pathways contributing to tumorigenesis and therapeutic resistance. Distinct metabolic heterogeneity in pancreatic cancer significantly impacts patient prognosis, as variations in metabolic profiles influence tumor behavior and treatment responses. SCOPE OF THE REVIEW This review explores the intricate interplay between mitochondrial dynamics, mitophagy, and cellular metabolism in PDAC. We discuss the significance of mitophagy dysregulation in PDAC pathogenesis, emphasizing its influence on treatment responses and prognosis. Furthermore, we analyze the impact of mitochondrial dynamics alterations, including fission and fusion processes, on PDAC progression and tumorigenesis. MAJOR CONCLUSION Targeting mitochondrial metabolism holds promise for advancing PDAC therapeutics. Ongoing clinical trials underscore the therapeutic potential of modulating key regulators of mitochondrial dynamics and mitophagy. Despite inherent challenges, these approaches offer diverse strategies to enhance treatment efficacy and improve patient outcomes.
Collapse
Affiliation(s)
- Noemi Ghiglione
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center (MBC) Guido Tarone, University of Turin, Torino, Italy
| | - Damiano Abbo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center (MBC) Guido Tarone, University of Turin, Torino, Italy
| | - Anastasia Bushunova
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center (MBC) Guido Tarone, University of Turin, Torino, Italy
| | - Andrea Costamagna
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center (MBC) Guido Tarone, University of Turin, Torino, Italy
| | - Paolo Ettore Porporato
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center (MBC) Guido Tarone, University of Turin, Torino, Italy
| | - Miriam Martini
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center (MBC) Guido Tarone, University of Turin, Torino, Italy.
| |
Collapse
|
3
|
Miklovicova S, Volpini L, Sanovec O, Monaco F, Vanova KH, Novak J, Boukalova S, Zobalova R, Klezl P, Tomasetti M, Bobek V, Fiala V, Vcelak J, Santarelli L, Bielcikova Z, Komrskova K, Kolostova K, Pacak K, Dvorakova S, Neuzil J. Mitochondrial respiratory complex II is altered in renal carcinoma. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167556. [PMID: 39486656 DOI: 10.1016/j.bbadis.2024.167556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 10/18/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Renal cell carcinoma (RCC) is a disease typified by anomalies in cell metabolism. The function of mitochondria, including subunits of mitochondrial respiratory complex II (CII), in particular SDHB, are often affected. Here we investigated the state and function of CII in RCC patients. METHODS We evaluated tumour tissue as well as the adjacent healthy kidney tissue of 78 patients with RCC of different histotypes, focusing on their mitochondrial function. As clear cell RCC (ccRCC) is by far the most frequent histotype of RCC, we focused on these patients, which were grouped based on the pathological WHO/ISUP grading system to low- and high-grade patients, indicative of prognosis. We also evaluated mitochondrial function in organoids derived from tumour tissue of 7 patients. RESULTS ccRCC tumours were characterized by mutated von Hippel-Lindau gene and high expression of carbonic anhydrase IX. We found low levels of mitochondrial DNA, protein and function, together with CII function in ccRCC tumour tissue, but not in other RCC types and non-tumour tissues. Mitochondrial content increased in high-grade tumours, while the function of CII remained low. Tumour organoids from ccRCC patients recapitulated molecular characteristics of RCC tissue. CONCLUSIONS Our findings suggest that the state of CII, epitomized by its assembly and SDHB levels, deteriorates with the progressive severity of ccRCC. These observations hold the potential for stratification of patients with worse prognosis and may guide the exploration of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Sona Miklovicova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic; Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Luca Volpini
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic; Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy
| | - Ondrej Sanovec
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic; Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Federica Monaco
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy
| | - Katerina Hadrava Vanova
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jaromir Novak
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic; Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Stepana Boukalova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic
| | - Renata Zobalova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic
| | - Petr Klezl
- General University Hospital Kralovske Vinohrady, 100 34 Prague, Czech Republic
| | - Marco Tomasetti
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy
| | - Vladimir Bobek
- General University Hospital Kralovske Vinohrady, 100 34 Prague, Czech Republic; Department of Thoracic Surgery, Krajska zdravotni a.s. and UJEP, 400 11 Usti and Labem, Czech Republic; Department of Thoracic Surgery, Faculty of Medicine, Wroclaw University of Science and Technology, 51 377 Wroclaw, Poland
| | - Vojtech Fiala
- General University Hospital, 128 08 Prague, Czech Republic
| | - Josef Vcelak
- Department of Molecular Endocrinology, Institute of Endocrinology, 110 00 Prague, Czech Republic
| | - Lory Santarelli
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy
| | | | - Katerina Komrskova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic; Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Katarina Kolostova
- General University Hospital Kralovske Vinohrady, 100 34 Prague, Czech Republic
| | - Karel Pacak
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sarka Dvorakova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic.
| | - Jiri Neuzil
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic; Faculty of Science, Charles University, 128 00 Prague, Czech Republic; School of Pharmacy and Medical Science, Griffith University, Southport, Qld 4222, Australia; First Faculty of Medicine, Charles University, 121 08 Prague, Czech Republic.
| |
Collapse
|
4
|
Yoon NG, Choi D, Lee JH, Kim SY, Im JY, Yun J, Yang S, Kim T, Kang S, Kang BH. Development of a Fluorescence Probe for High-Throughput Screening of Allosteric Inhibitors Targeting TRAP1. J Med Chem 2024; 67:21421-21437. [PMID: 39568139 DOI: 10.1021/acs.jmedchem.4c02343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Tumor necrosis factor receptor-associated protein 1 (TRAP1) is a molecular chaperone implicated in pro-tumorigenic pathways by regulating the folding of substrate proteins (clients) within cancer cells. Recent research has pinpointed a potentially druggable allosteric site within the client binding site (CBS) of TRAP1, suggesting this site might offer a more effective strategy for developing potent and selective TRAP1 inhibitors. However, the absence of reliable assay systems has hindered quantitative evaluation of inhibitors. In this study, we have developed a fluorescent probe, Rho6TPP, designed to target the CBS. Utilizing fluorescence polarization-based high-throughput screening assays, Rho6TPP exhibits excellent signal-to-noise ratio (>20), Z factor (>0.6), and Z' factor (>0.6). Additionally, it facilitates comparative analysis of existing small molecules and discovery of novel binders. MitoTam, a mitochondria-targeted tamoxifen, emerges as a potent CBS-targeting TRAP1 inhibitor. Our findings highlight the potential of Rho6TPP as a crucial tool for advancing the development of CBS-targeting TRAP1 inhibitors.
Collapse
Affiliation(s)
- Nam Gu Yoon
- Department of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Danbi Choi
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Ji Hye Lee
- Department of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - So-Yeon Kim
- Department of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jin Young Im
- SmartinBio Inc., Cheongju 28160, Republic of Korea
| | - Jisu Yun
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sujae Yang
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Taeeun Kim
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Soosung Kang
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Byoung Heon Kang
- Department of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- SmartinBio Inc., Cheongju 28160, Republic of Korea
| |
Collapse
|
5
|
Soon JW, Manca MA, Laskowska A, Starkova J, Rohlenova K, Rohlena J. Aspartate in tumor microenvironment and beyond: Metabolic interactions and therapeutic perspectives. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167451. [PMID: 39111633 DOI: 10.1016/j.bbadis.2024.167451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/19/2024] [Accepted: 07/31/2024] [Indexed: 08/11/2024]
Abstract
Aspartate is a proteinogenic non-essential amino acid with several essential functions in proliferating cells. It is mostly produced in a cell autonomous manner from oxalacetate via glutamate oxalacetate transaminases 1 or 2 (GOT1 or GOT2), but in some cases it can also be salvaged from the microenvironment via transporters such as SLC1A3 or by macropinocytosis. In this review we provide an overview of biosynthetic pathways that produce aspartate endogenously during proliferation. We discuss conditions that favor aspartate uptake as well as possible sources of exogenous aspartate in the microenvironment of tumors and bone marrow, where most available data have been generated. We highlight metabolic fates of aspartate, its various functions, and possible approaches to target aspartate metabolism for cancer therapy.
Collapse
Affiliation(s)
- Julian Wong Soon
- Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Prague-West, Czech Republic
| | - Maria Antonietta Manca
- Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Prague-West, Czech Republic
| | - Agnieszka Laskowska
- Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Prague-West, Czech Republic
| | - Julia Starkova
- CLIP (Childhood Leukaemia Investigation Prague), Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Katerina Rohlenova
- Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Prague-West, Czech Republic.
| | - Jakub Rohlena
- Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Prague-West, Czech Republic.
| |
Collapse
|
6
|
Reinema FV, Hudson N, Adema GJ, Peeters WJM, Neuzil J, Stursa J, Werner L, Sweep FCGJ, Bussink J, Span PN. MitoTam induces ferroptosis and increases radiosensitivity in head and neck cancer cells. Radiother Oncol 2024; 200:110503. [PMID: 39186982 DOI: 10.1016/j.radonc.2024.110503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND AND PURPOSE Radiotherapy (RT) is an integral treatment part for patients with head and neck squamous cell carcinoma (HNSCC), but radioresistance remains a major issue. Here, we use MitoTam, a mitochondrially targeted analogue of tamoxifen, which we aim to stimulate ferroptotic cell death with, and sensitize radioresistant cells to RT. MATERIALS AND METHODS We assessed viability, reactive oxygen species (ROS) production, disruption of mitochondrial membrane potential, and lipid peroxidation in radiosensitive (UT-SCC-40) and radioresistant (UT-SCC-5) HNSCC cells following MitoTam treatment. To assess ferroptosis specificity, we used the ferroptosis inhibitor ferrostatin-1 (fer-1). Also, total antioxidant capacity and sensitivity to tert-butyl hydroperoxide were evaluated to assess ROS-responses. 53BP1 staining was used to assess radiosensitivity after MitoTam treatment. RESULTS Our data revealed increased ROS, cell death, disruption of mitochondrial membrane potential, and lipid peroxidation following MitoTam treatment in both cell lines. Adverse effects of MitoTam on cell death, membrane potential and lipid peroxidation were prevented by fer-1, indicating induction of ferroptosis. Radioresistant HNSCC cells were less sensitive to the effects of MitoTam due to intrinsic higher antioxidant capacity. MitoTam treatment prior to RT led to superadditive residual DNA damage expressed by 53BP1 foci compared to RT or MitoTam alone. CONCLUSION MitoTam induced ferroptosis in HNSCC cells, which could be used to overcome the elevated antioxidant capacity of radioresistant cells and sensitize such cells to RT. Treatment with MitoTam followed by RT could therefore present a promising effective therapy of radioresistant cancers. STATEMENT OF SIGNIFICANCE Radiotherapy is applied in the treatment of a majority of cancer patients. Radioresistance due to elevated antioxidant levels can be overcome by promoting ferroptotic cell death combining ROS-inducing drug MitoTam with radiotherapy.
Collapse
Affiliation(s)
- F V Reinema
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen the Netherlands
| | - N Hudson
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen the Netherlands
| | - G J Adema
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen the Netherlands
| | - W J M Peeters
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen the Netherlands
| | - J Neuzil
- School of Pharmacy and Medical Science, Griffith University, Southport, QLD 4222, Australia; Faculty of Science and First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic; Institute of Biotechnology, Czech Academy of Sciences, Prague-West 252 50, Czech Republic
| | - J Stursa
- Faculty of Science and First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic; Institute of Biotechnology, Czech Academy of Sciences, Prague-West 252 50, Czech Republic
| | - L Werner
- Faculty of Science and First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic; Institute of Biotechnology, Czech Academy of Sciences, Prague-West 252 50, Czech Republic
| | - F C G J Sweep
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - J Bussink
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen the Netherlands
| | - P N Span
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen the Netherlands.
| |
Collapse
|
7
|
Singh T, Sharma K, Jena L, Kaur P, Singh S, Munshi A. Mitochondrial bioenergetics of breast cancer. Mitochondrion 2024; 79:101951. [PMID: 39218051 DOI: 10.1016/j.mito.2024.101951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/05/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Breast cancer cells exhibit metabolic heterogeneity based on tumour aggressiveness. Glycolysis and mitochondrial respiration are two major metabolic pathways for ATP production. The oxygen flux, oxygen tension, proton leakage, protonmotive force, inner mitochondrial membrane potential, ECAR and electrochemical proton gradient maintain metabolic homeostasis, ATP production, ROS generation, heat dissipation, and carbon flow and are referred to as "sub-domains" of mitochondrial bioenergetics. Tumour aggressiveness is influenced by these mechanisms, especially when breast cancer cells undergo metastasis. These physiological parameters for healthy mitochondria are as crucial as energy demands for tumour growth and metastasis. The instant energy demands are already elucidated under Warburg effects, while these parameters may have dual functionality to maintain cellular bioenergetics and cellular health. The tumour cell might maintain these mitochondrial parameters for mitochondrial health or avoid apoptosis, while energy production could be a second priority. This review focuses explicitly on the crosstalk between metabolic domains and the utilisation of these parameters by breast cancer cells for their progression. Some major interventions are discussed based on mitochondrial bioenergetics that need further investigation. This review highlights the pathophysiological significance of mitochondrial bioenergetics and the regulation of its sub-domains by breast tumour cells for uncontrolled proliferation.
Collapse
Affiliation(s)
- Tashvinder Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Kangan Sharma
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Laxmipriya Jena
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Prabhsimran Kaur
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Sandeep Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India.
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India.
| |
Collapse
|
8
|
Novotna E, Milosevic M, Prukova D, Magalhaes-Novais S, Dvorakova S, Dmytruk K, Gemperle J, Zudova D, Nickl T, Vrbacky M, Rosel D, Filimonenko V, Prochazka J, Brabek J, Neuzil J, Rohlenova K, Rohlena J. Mitochondrial HER2 stimulates respiration and promotes tumorigenicity. Eur J Clin Invest 2024; 54:e14174. [PMID: 38291340 DOI: 10.1111/eci.14174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/15/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024]
Abstract
BACKGROUND Amplification of HER2, a receptor tyrosine kinase and a breast cancer-linked oncogene, is associated with aggressive disease. HER2 protein is localised mostly at the cell membrane, but a fraction translocates to mitochondria. Whether and how mitochondrial HER2 contributes to tumorigenicity is currently unknown. METHODS We enriched the mitochondrial (mt-)HER2 fraction in breast cancer cells using an N-terminal mitochondrial targeting sequence and analysed how this manipulation impacts bioenergetics and tumorigenic properties. The role of the tyrosine kinase activity of mt-HER2 was assessed in wild type, kinase-dead (K753M) and kinase-enhanced (V659E) mtHER2 constructs. RESULTS We document that mt-HER2 associates with the oxidative phosphorylation system, stimulates bioenergetics and promotes larger respiratory supercomplexes. mt-HER2 enhances proliferation and invasiveness in vitro and tumour growth and metastatic potential in vivo, in a kinase activity-dependent manner. On the other hand, constitutively active mt-HER2 provokes excessive mitochondria ROS generation, sensitises to cell death, and restricts growth of primary tumours, suggesting that regulation of HER2 activity in mitochondria is required for the maximal pro-tumorigenic effect. CONCLUSIONS mt-HER2 promotes tumorigenicity by supporting bioenergetics and optimal redox balance.
Collapse
Affiliation(s)
- Eliska Novotna
- Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Mirko Milosevic
- Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Dana Prukova
- Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Silvia Magalhaes-Novais
- Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Sarka Dvorakova
- Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Kristina Dmytruk
- Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Jakub Gemperle
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Dagmar Zudova
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tereza Nickl
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Marek Vrbacky
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Daniel Rosel
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Vlada Filimonenko
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Prochazka
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Brabek
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Jiri Neuzil
- Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
- School of Medical Science, Griffith University, Gold Coast, Queensland, Australia
- 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Katerina Rohlenova
- Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Jakub Rohlena
- Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
| |
Collapse
|
9
|
Beerkens APM, Boreel DF, Nathan JA, Neuzil J, Cheng G, Kalyanaraman B, Hardy M, Adema GJ, Heskamp S, Span PN, Bussink J. Characterizing OXPHOS inhibitor-mediated alleviation of hypoxia using high-throughput live cell-imaging. Cancer Metab 2024; 12:13. [PMID: 38702787 PMCID: PMC11067257 DOI: 10.1186/s40170-024-00342-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Hypoxia is a common feature of many solid tumors and causes radiotherapy and immunotherapy resistance. Pharmacological inhibition of oxidative phosphorylation (OXPHOS) has emerged as a therapeutic strategy to reduce hypoxia. However, the OXPHOS inhibitors tested in clinical trials caused only moderate responses in hypoxia alleviation or trials were terminated due to dose-limiting toxicities. To improve the therapeutic benefit, FDA approved OXPHOS inhibitors (e.g. atovaquone) were conjugated to triphenylphosphonium (TPP+) to preferentially target cancer cell's mitochondria. In this study, we evaluated the hypoxia reducing effects of several mitochondria-targeted OXPHOS inhibitors and compared them to non-mitochondria-targeted OXPHOS inhibitors using newly developed spheroid models for diffusion-limited hypoxia. METHODS B16OVA murine melanoma cells and MC38 murine colon cancer cells expressing a HIF-Responsive Element (HRE)-induced Green Fluorescent Protein (GFP) with an oxygen-dependent degradation domain (HRE-eGFP-ODD) were generated to assess diffusion-limited hypoxia dynamics in spheroids. Spheroids were treated with IACS-010759, atovaquone, metformin, tamoxifen or with mitochondria-targeted atovaquone (Mito-ATO), PEGylated mitochondria-targeted atovaquone (Mito-PEG-ATO) or mitochondria-targeted tamoxifen (MitoTam). Hypoxia dynamics were followed and quantified over time using the IncuCyte Zoom Live Cell-Imaging system. RESULTS Hypoxic cores developed in B16OVA.HRE and MC38.HRE spheroids within 24 h hours after seeding. Treatment with IACS-010759, metformin, atovaquone, Mito-PEG-ATO and MitoTam showed a dose-dependent reduction of hypoxia in both B16OVA.HRE and MC38.HRE spheroids. Mito-ATO only alleviated hypoxia in MC38.HRE spheroids while tamoxifen was not able to reduce hypoxia in any of the spheroid models. The mitochondria-targeted OXPHOS inhibitors demonstrated stronger anti-hypoxic effects compared to the non-mito-targeted OXPHOS inhibitors. CONCLUSIONS We successfully developed a high-throughput spheroid model in which hypoxia dynamics can be quantified over time. Using this model, we showed that the mitochondria-targeted OXPHOS inhibitors Mito-ATO, Mito-PEG-ATO and MitoTam reduce hypoxia in tumor cells in a dose-dependent manner, potentially sensitizing hypoxic tumor cells for radiotherapy.
Collapse
Affiliation(s)
- Anne P M Beerkens
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, 6525GA, The Netherlands.
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, 6525GA, The Netherlands.
| | - Daan F Boreel
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, 6525GA, The Netherlands
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, 6525GA, The Netherlands
| | - James A Nathan
- Department of Medicine, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Jiri Neuzil
- School of Pharmacy and Medical Science, Griffith University, Southport Qld, 4222, Australia
- Institute of Biotechnology, Czech Academy of Sciences, Prague-West, 252 50, Czech Republic
| | - Gang Cheng
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Micael Hardy
- Aix Marseille University, CNRS, ICR, UMR 7273, Marseille, 13013, France
| | - Gosse J Adema
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, 6525GA, The Netherlands
| | - Sandra Heskamp
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, 6525GA, The Netherlands
| | - Paul N Span
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, 6525GA, The Netherlands
| | - Johan Bussink
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, 6525GA, The Netherlands
| |
Collapse
|
10
|
Al Assi A, Posty S, Lamarche F, Chebel A, Guitton J, Cottet-Rousselle C, Prudent R, Lafanechère L, Giraud S, Dallemagne P, Suzanne P, Verney A, Genestier L, Castets M, Fontaine E, Billaud M, Cordier-Bussat M. A novel inhibitor of the mitochondrial respiratory complex I with uncoupling properties exerts potent antitumor activity. Cell Death Dis 2024; 15:311. [PMID: 38697987 PMCID: PMC11065874 DOI: 10.1038/s41419-024-06668-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 05/05/2024]
Abstract
Cancer cells are highly dependent on bioenergetic processes to support their growth and survival. Disruption of metabolic pathways, particularly by targeting the mitochondrial electron transport chain complexes (ETC-I to V) has become an attractive therapeutic strategy. As a result, the search for clinically effective new respiratory chain inhibitors with minimized adverse effects is a major goal. Here, we characterize a new OXPHOS inhibitor compound called MS-L6, which behaves as an inhibitor of ETC-I, combining inhibition of NADH oxidation and uncoupling effect. MS-L6 is effective on both intact and sub-mitochondrial particles, indicating that its efficacy does not depend on its accumulation within the mitochondria. MS-L6 reduces ATP synthesis and induces a metabolic shift with increased glucose consumption and lactate production in cancer cell lines. MS-L6 either dose-dependently inhibits cell proliferation or induces cell death in a variety of cancer cell lines, including B-cell and T-cell lymphomas as well as pediatric sarcoma. Ectopic expression of Saccharomyces cerevisiae NADH dehydrogenase (NDI-1) partially restores the viability of B-lymphoma cells treated with MS-L6, demonstrating that the inhibition of NADH oxidation is functionally linked to its cytotoxic effect. Furthermore, MS-L6 administration induces robust inhibition of lymphoma tumor growth in two murine xenograft models without toxicity. Thus, our data present MS-L6 as an inhibitor of OXPHOS, with a dual mechanism of action on the respiratory chain and with potent antitumor properties in preclinical models, positioning it as the pioneering member of a promising drug class to be evaluated for cancer therapy. MS-L6 exerts dual mitochondrial effects: ETC-I inhibition and uncoupling of OXPHOS. In cancer cells, MS-L6 inhibited ETC-I at least 5 times more than in isolated rat hepatocytes. These mitochondrial effects lead to energy collapse in cancer cells, resulting in proliferation arrest and cell death. In contrast, hepatocytes which completely and rapidly inactivated this molecule, restored their energy status and survived exposure to MS-L6 without apparent toxicity.
Collapse
Affiliation(s)
- Alaa Al Assi
- Université Grenoble Alpes, Inserm U1055, Laboratoire de Bioénergétique Fondamentale et Appliquée (LBFA), Grenoble, France
| | - Solène Posty
- Cell death and Childhood Cancers Laboratory, Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM U1052- CNRS UMR5286, Université Claude Bernard de Lyon1, Centre Léon Bérard, LabEx DEVweCAN, Institut Convergence Plascan, Lyon, France
| | - Frédéric Lamarche
- Université Grenoble Alpes, Inserm U1055, Laboratoire de Bioénergétique Fondamentale et Appliquée (LBFA), Grenoble, France
| | - Amel Chebel
- Centre International de Recherche en Infectiologie (Team LIB), Equipe labellisée La Ligue 2017 and 2023. Université Lyon, INSERM, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
| | - Jérôme Guitton
- Laboratoire de biochimie et pharmacologie-toxicologie, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, F-69495, Pierre Bénite, France. Laboratoire de Toxicologie, Faculté de pharmacie ISPBL, Université Lyon 1, 69373, Lyon, France
| | - Cécile Cottet-Rousselle
- Université Grenoble Alpes, Inserm U1055, Laboratoire de Bioénergétique Fondamentale et Appliquée (LBFA), Grenoble, France
| | - Renaud Prudent
- Université Grenoble Alpes, Inserm U1209, CNRS UMR5309, Institute for Advanced Biosciences, Grenoble, France
| | - Laurence Lafanechère
- Université Grenoble Alpes, Inserm U1209, CNRS UMR5309, Institute for Advanced Biosciences, Grenoble, France
| | - Stéphane Giraud
- Center for Drug Discovery and Development, Synergie Lyon Cancer Foundation, Lyon, Cancer Research Center, Centre Léon Bérard, Lyon, France
| | | | - Peggy Suzanne
- Normandie Univ., UNICAEN, CERMN, 14000, Caen, France
| | - Aurélie Verney
- Centre International de Recherche en Infectiologie (Team LIB), Equipe labellisée La Ligue 2017 and 2023. Université Lyon, INSERM, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
| | - Laurent Genestier
- Centre International de Recherche en Infectiologie (Team LIB), Equipe labellisée La Ligue 2017 and 2023. Université Lyon, INSERM, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
| | - Marie Castets
- Cell death and Childhood Cancers Laboratory, Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM U1052- CNRS UMR5286, Université Claude Bernard de Lyon1, Centre Léon Bérard, LabEx DEVweCAN, Institut Convergence Plascan, Lyon, France
| | - Eric Fontaine
- Université Grenoble Alpes, Inserm U1055, Laboratoire de Bioénergétique Fondamentale et Appliquée (LBFA), Grenoble, France.
| | - Marc Billaud
- Cell death and Childhood Cancers Laboratory, Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM U1052- CNRS UMR5286, Université Claude Bernard de Lyon1, Centre Léon Bérard, LabEx DEVweCAN, Institut Convergence Plascan, Lyon, France.
| | - Martine Cordier-Bussat
- Cell death and Childhood Cancers Laboratory, Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM U1052- CNRS UMR5286, Université Claude Bernard de Lyon1, Centre Léon Bérard, LabEx DEVweCAN, Institut Convergence Plascan, Lyon, France.
| |
Collapse
|
11
|
Guiraud M, Ali LMA, Gabrieli-Magot E, Lichon L, Daurat M, Egron D, Gary-Bobo M, Peyrottes S. Probing the Use of Triphenyl Phosphonium Cation for Mitochondrial Nucleoside Delivery. ACS Med Chem Lett 2024; 15:418-422. [PMID: 38505859 PMCID: PMC10945795 DOI: 10.1021/acsmedchemlett.3c00568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/09/2024] [Accepted: 02/09/2024] [Indexed: 03/21/2024] Open
Abstract
Herein, we report the design, the synthesis, and the study of novel triphenyl phosphonium-based nucleoside conjugates. 2'-Deoxycytidine was chosen as nucleosidic cargo, as it allows the introduction of fluorescein on the exocyclic amine of the nucleobase and grafting of the vector was envisaged through the formation of a biolabile ester bond with the hydroxyl function at the 5'-position. Compound 3 was identified as a potential nucleoside prodrug, showing ability to be internalized efficiently into cells and to be co-localized with mitochondria.
Collapse
Affiliation(s)
- Mathis Guiraud
- Team
Nucleosides & Phosphorylated Effectors, IBMM, Pole Balard Recherche, University of Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Lamiaa M. A. Ali
- Team
Glyco & Nanovectors for Therapeutic Targeting, IBMM, Pole Balard
Recherche, University of Montpellier, CNRS,
ENSCM, 34293 Montpellier, France
- Department
of Biochemistry, Medical Research Institute, University of Alexandria, Alexandria 21561, Egypt
| | - Emma Gabrieli-Magot
- Team
Glyco & Nanovectors for Therapeutic Targeting, IBMM, Pole Balard
Recherche, University of Montpellier, CNRS,
ENSCM, 34293 Montpellier, France
| | - Laure Lichon
- Team
Glyco & Nanovectors for Therapeutic Targeting, IBMM, Pole Balard
Recherche, University of Montpellier, CNRS,
ENSCM, 34293 Montpellier, France
| | | | - David Egron
- Team
Nucleosides & Phosphorylated Effectors, IBMM, Pole Balard Recherche, University of Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Magali Gary-Bobo
- Team
Glyco & Nanovectors for Therapeutic Targeting, IBMM, Pole Balard
Recherche, University of Montpellier, CNRS,
ENSCM, 34293 Montpellier, France
| | - Suzanne Peyrottes
- Team
Nucleosides & Phosphorylated Effectors, IBMM, Pole Balard Recherche, University of Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| |
Collapse
|
12
|
Arbon D, Mach J, Čadková A, Sipkova A, Stursa J, Klanicová K, Machado M, Ganter M, Levytska V, Sojka D, Truksa J, Werner L, Sutak R. Chelation of Mitochondrial Iron as an Antiparasitic Strategy. ACS Infect Dis 2024; 10:676-687. [PMID: 38287902 PMCID: PMC10862539 DOI: 10.1021/acsinfecdis.3c00529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/31/2024]
Abstract
Iron, as an essential micronutrient, plays a crucial role in host-pathogen interactions. In order to limit the growth of the pathogen, a common strategy of innate immunity includes withdrawing available iron to interfere with the cellular processes of the microorganism. Against that, unicellular parasites have developed powerful strategies to scavenge iron, despite the effort of the host. Iron-sequestering compounds, such as the approved and potent chelator deferoxamine (DFO), are considered a viable option for therapeutic intervention. Since iron is heavily utilized in the mitochondrion, targeting iron chelators in this organelle could constitute an effective therapeutic strategy. This work presents mitochondrially targeted DFO, mitoDFO, as a candidate against a range of unicellular parasites with promising in vitro efficiency. Intracellular Leishmania infection can be cleared by this compound, and experimentation with Trypanosoma brucei 427 elucidates its possible mode of action. The compound not only affects iron homeostasis but also alters the physiochemical properties of the inner mitochondrial membrane, resulting in a loss of function. Furthermore, investigating the virulence factors of pathogenic yeasts confirms that mitoDFO is a viable candidate for therapeutic intervention against a wide spectrum of microbe-associated diseases.
Collapse
Affiliation(s)
- Dominik Arbon
- Department of Parasitology, Faculty
of Science, Charles University, BIOCEV, Vestec 25250, Czech Republic
| | - Jan Mach
- Department of Parasitology, Faculty
of Science, Charles University, BIOCEV, Vestec 25250, Czech Republic
| | - Aneta Čadková
- Department of Parasitology, Faculty
of Science, Charles University, BIOCEV, Vestec 25250, Czech Republic
| | - Anna Sipkova
- Department of Parasitology, Faculty
of Science, Charles University, BIOCEV, Vestec 25250, Czech Republic
| | - Jan Stursa
- Institute
of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec 25250, Czech Republic
- Laboratory
of Clinical Pathophysiology, Diabetes Centre, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21 Prague, Czech
Republic
| | - Kristýna Klanicová
- Institute
of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec 25250, Czech Republic
- Department
of Organic Chemistry, Faculty of Science, Charles University, Prague 128 00, Czech Republic
| | - Marta Machado
- Graduate
Program in Areas of Basic and Applied Biology, Instituto de Ciências
Biomédicas Abel Salazar, Universidade
do Porto, Porto 4050-313, Portugal
- Centre for
Infectious Diseases, Parasitology, Heidelberg
University Hospital, Heidelberg 69120, Germany
| | - Markus Ganter
- Centre for
Infectious Diseases, Parasitology, Heidelberg
University Hospital, Heidelberg 69120, Germany
| | - Viktoriya Levytska
- Institute
of Parasitology, Biology Centre, Academy
of Sciences of the Czech Republic, Branišovská 1160/31, České Budějovice 37005, Czech Republic
| | - Daniel Sojka
- Institute
of Parasitology, Biology Centre, Academy
of Sciences of the Czech Republic, Branišovská 1160/31, České Budějovice 37005, Czech Republic
| | - Jaroslav Truksa
- Institute
of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec 25250, Czech Republic
| | - Lukáš Werner
- Institute
of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec 25250, Czech Republic
- Laboratory
of Clinical Pathophysiology, Diabetes Centre, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21 Prague, Czech
Republic
| | - Robert Sutak
- Department of Parasitology, Faculty
of Science, Charles University, BIOCEV, Vestec 25250, Czech Republic
| |
Collapse
|
13
|
Yang Y, An Y, Ren M, Wang H, Bai J, Du W, Kong D. The mechanisms of action of mitochondrial targeting agents in cancer: inhibiting oxidative phosphorylation and inducing apoptosis. Front Pharmacol 2023; 14:1243613. [PMID: 37954849 PMCID: PMC10635426 DOI: 10.3389/fphar.2023.1243613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/12/2023] [Indexed: 11/14/2023] Open
Abstract
The tumor microenvironment affects the structure and metabolic function of mitochondria in tumor cells. This process involves changes in metabolic activity, an increase in the amount of reactive oxygen species (ROS) in tumor cells compared to normal cells, the production of more intracellular free radicals, and the activation of oxidative pathways. From a practical perspective, it is advantageous to develop drugs that target mitochondria for the treatment of malignant tumors. Such drugs can enhance the selectivity of treatments for specific cell groups, minimize toxic effects on normal tissues, and improve combinational treatments. Mitochondrial targeting agents typically rely on small molecule medications (such as synthetic small molecules agents, active ingredients of plants, mitochondrial inhibitors or autophagy inhibitors, and others), modified mitochondrial delivery system agents (such as lipophilic cation modification or combining other molecules to form targeted mitochondrial agents), and a few mitochondrial complex inhibitors. This article will review these compounds in three main areas: oxidative phosphorylation (OXPHOS), changes in ROS levels, and endogenous oxidative and apoptotic processes.
Collapse
Affiliation(s)
- Yi Yang
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yahui An
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Mingli Ren
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Haijiao Wang
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jing Bai
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wenli Du
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Dezhi Kong
- Institute of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
14
|
Bielcikova Z, Werner L, Stursa J, Cerny V, Krizova L, Spacek J, Hlousek S, Vocka M, Bartosova O, Pesta M, Kolostova K, Klezl P, Bobek V, Truksa J, Stemberkova-Hubackova S, Petruzelka L, Michalek P, Neuzil J. Mitochondrially targeted tamoxifen as anticancer therapy: case series of patients with renal cell carcinoma treated in a phase I/Ib clinical trial. Ther Adv Med Oncol 2023; 15:17588359231197957. [PMID: 37786538 PMCID: PMC10541747 DOI: 10.1177/17588359231197957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/03/2023] [Indexed: 10/04/2023] Open
Abstract
Mitochondrially targeted anticancer drugs (mitocans) that disrupt the energy-producing systems of cancer are emerging as new potential therapeutics. Mitochondrially targeted tamoxifen (MitoTam), an inhibitor of mitochondrial respiration respiratory complex I, is a first-in-class mitocan that was tested in the phase I/Ib MitoTam-01 trial of patients with metastatic cancer. MitoTam exhibited a manageable safety profile and efficacy; among 37% (14/38) of responders, the efficacy was greatest in patients with metastatic renal cell carcinoma (RCC) with a clinical benefit rate of 83% (5/6) of patients. This can be explained by the preferential accumulation of MitoTam in the kidney tissue in preclinical studies. Here we report the mechanism of action and safety profile of MitoTam in a case series of RCC patients. All six patients were males with a median age of 69 years, who had previously received at least three lines of palliative systemic therapy and suffered progressive disease before starting MitoTam. We recorded stable disease in four, partial response in one, and progressive disease (PD) in one patient. The histological subtype matched clear cell RCC (ccRCC) in the five responders and claro-cellular carcinoma with sarcomatoid features in the non-responder. The number of circulating tumor cells (CTCs) was evaluated longitudinally to monitor disease dynamics. Beside the decreased number of CTCs after MitoTam administration, we observed a significant decrease of the mitochondrial network mass in enriched CTCs. Two patients had long-term clinical responses to MitoTam, of 50 and 36 weeks. Both patients discontinued treatment due to adverse events, not PD. Two patients who completed the trial in November 2019 and May 2020 are still alive without subsequent anticancer therapy. The toxicity of MitoTam increased with the dosage but was manageable. The efficacy of MitoTam in pretreated ccRCC patients is linked to the novel mechanism of action of this first-in-class mitochondrially targeted drug.
Collapse
Affiliation(s)
- Zuzana Bielcikova
- Department of Oncology, General Faculty Hospital, U Nemocnice 499/2, Prague 2, 128 08, Czech Republic
| | - Lukas Werner
- Institute of Biotechnology, Czech Academy of Sciences, Prumyslova 595, Prague-West 252 50, Czech Republic Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague 4, Czech Republic
| | - Jan Stursa
- Institute of Biotechnology, Czech Academy of Sciences, Prague-West, Czech RepublicDiabetes Centre, Institute for Clinical and Experimental Medicine, Prague 4, Czech Republic
| | - Vladimir Cerny
- Department of Radiodiagnostics, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ludmila Krizova
- Department of Oncology, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jan Spacek
- Department of Oncology, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Stanislav Hlousek
- Department of Oncology, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Michal Vocka
- Department of Oncology, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Olga Bartosova
- Institute of Pharmacology, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Michal Pesta
- Department of Probability and Mathematical Statistics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
| | - Katarina Kolostova
- Laboratory of Personalized Medicine, Oncology Clinic, Faculty Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Petr Klezl
- Laboratory of Personalized Medicine, Oncology Clinic, Faculty Hospital Kralovske Vinohrady, Prague, Czech Republic Urology Clinic, Third Faculty of Medicine, Charles University and Faculty Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Vladimir Bobek
- Laboratory of Personalized Medicine, Oncology Clinic, Faculty Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Jaroslav Truksa
- Institute of Biotechnology, Czech Academy of Sciences, Prague-West, Czech Republic
| | - Sona Stemberkova-Hubackova
- Institute of Biotechnology, Czech Academy of Sciences, Prague-West, Czech RepublicDiabetes Centre, Institute for Clinical and Experimental Medicine, Prague 4, Czech Republic
| | - Lubos Petruzelka
- Department of Oncology, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Pavel Michalek
- Department of Anesthesiology and Intensive Care, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jiri Neuzil
- School of Pharmacy and Medical Science, Griffith University, Southport, Qld 4222, Australia Department of Pediatrics and Inherited Metabolic Diseases, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic Department of Physiology, Faculty of Science, Charles University, and General University Hospital, Prague, Czech Republic Institute of Biotechnology, Czech Academy of Sciences, Prumyslova 595, Prague-West 252 50, Czech Republic
| |
Collapse
|
15
|
Neuzil J, Rohlena J, Werner L, Bielcikova Z. MitoTam-01 Trial: Mitochondrial Targeting as Plausible Approach to Cancer Therapy. Comment on Yap et al. Complex I Inhibitor of Oxidative Phosphorylation in Advanced Solid Tumors and Acute Myeloid Leukemia: Phase I Trials. Nat. Med. 2023, 29, 115-126. Cancers (Basel) 2023; 15:4476. [PMID: 37760446 PMCID: PMC10526283 DOI: 10.3390/cancers15184476] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/25/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
A recent paper published in Nature Medicine reported on the Phase I clinical trial of a mitochondria-targeting anti-cancer agent IACS-01059 in patients with acute myeloid leukemia (AML) and solid tumors [...].
Collapse
Affiliation(s)
- Jiri Neuzil
- School of Pharmacy and Medical Science, Griffith University, Southport, Qld 4222, Australia
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague, Czech Republic; (J.R.); (L.W.)
- Faculty of Science, Charles University, 128 00 Prague, Czech Republic
- First Faculty of Medicine, Charles University, 121 08 Prague, Czech Republic;
| | - Jakub Rohlena
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague, Czech Republic; (J.R.); (L.W.)
| | - Lukas Werner
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague, Czech Republic; (J.R.); (L.W.)
| | - Zuzana Bielcikova
- First Faculty of Medicine, Charles University, 121 08 Prague, Czech Republic;
- General University Hospital, Charles University, 128 08 Prague, Czech Republic
| |
Collapse
|
16
|
Kalyanaraman B, Cheng G, Hardy M, You M. OXPHOS-targeting drugs in oncology: new perspectives. Expert Opin Ther Targets 2023; 27:939-952. [PMID: 37736880 PMCID: PMC11034819 DOI: 10.1080/14728222.2023.2261631] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
INTRODUCTION Drugs targeting mitochondria are emerging as promising antitumor therapeutics in preclinical models. However, a few of these drugs have shown clinical toxicity. Developing mitochondria-targeted modified natural compounds and US FDA-approved drugs with increased therapeutic index in cancer is discussed as an alternative strategy. AREAS COVERED Triphenylphosphonium cation (TPP+)-based drugs selectively accumulate in the mitochondria of cancer cells due to their increased negative membrane potential, target the oxidative phosphorylation proteins, inhibit mitochondrial respiration, and inhibit tumor proliferation. TPP+-based drugs exert minimal toxic side effects in rodents and humans. These drugs can sensitize radiation and immunotherapies. EXPERT OPINION TPP+-based drugs targeting the tumor mitochondrial electron transport chain are a new class of oxidative phosphorylation inhibitors with varying antiproliferative and antimetastatic potencies. Some of these TPP+-based agents, which are synthesized from naturally occurring molecules and FDA-approved drugs, have been tested in mice and did not show notable toxicity, including neurotoxicity, when used at doses under the maximally tolerated dose. Thus, more effort should be directed toward the clinical translation of TPP+-based OXPHOS-inhibiting drugs in cancer prevention and treatment.
Collapse
Affiliation(s)
- Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Gang Cheng
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Micael Hardy
- Aix Marseille Univ, CNRS, ICR, UMR 7273, Marseille 13013, France
| | - Ming You
- Center for Cancer Prevention, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, United States
| |
Collapse
|
17
|
Rainho MDA, Siqueira PB, de Amorim ÍSS, Mencalha AL, Thole AA. Mitochondria in colorectal cancer stem cells - a target in drug resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:273-283. [PMID: 37457136 PMCID: PMC10344721 DOI: 10.20517/cdr.2022.116] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/15/2023] [Accepted: 04/24/2023] [Indexed: 07/18/2023]
Abstract
Colorectal cancer (CRC) is the third most diagnosed cancer and the second most deadly type of cancer worldwide. In late diagnosis, CRC can resist therapy regimens in which cancer stem cells (CSCs) are intimately related. CSCs are a subpopulation of tumor cells responsible for tumor initiation and maintenance, metastasis, and resistance to conventional treatments. In this scenario, colorectal cancer stem cells (CCSCs) are considered an important key for therapeutic failure and resistance. In its turn, mitochondria is an organelle involved in many mechanisms in cancer, including chemoresistance of cytotoxic drugs due to alterations in mitochondrial metabolism, apoptosis, dynamics, and mitophagy. Therefore, it is crucial to understand the mitochondrial role in CCSCs regarding CRC drug resistance. It has been shown that enhanced anti-apoptotic protein expression, mitophagy rate, and addiction to oxidative phosphorylation are the major strategies developed by CCSCs to avoid drug insults. Thus, new mitochondria-targeted drug approaches must be explored to mitigate CRC chemoresistance via the ablation of CCSCs.
Collapse
Affiliation(s)
- Mateus de Almeida Rainho
- Laboratory of Stem Cell Research, Histology and Embryology Department, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil
| | - Priscyanne Barreto Siqueira
- Laboratory of Cancer Biology, Biometry and Biophysics Department, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil
| | - Ísis Salviano Soares de Amorim
- Laboratory of Cancer Biology, Biometry and Biophysics Department, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil
| | - Andre Luiz Mencalha
- Laboratory of Cancer Biology, Biometry and Biophysics Department, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil
| | - Alessandra Alves Thole
- Laboratory of Stem Cell Research, Histology and Embryology Department, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil
| |
Collapse
|