1
|
Octobre G, Delprat N, Doumèche B, Leca-Bouvier B. Herbicide detection: A review of enzyme- and cell-based biosensors. ENVIRONMENTAL RESEARCH 2024; 249:118330. [PMID: 38341074 DOI: 10.1016/j.envres.2024.118330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/18/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024]
Abstract
Herbicides are the most widely used class of pesticides in the world. Their intensive use raises the question of their harmfulness to the environment and human health. These pollutants need to be detected at low concentrations, especially in water samples. Commonly accepted analytical techniques (HPLC-MS, GC-MS, ELISA tests) are available, but these highly sensitive and time-consuming techniques suffer from high cost and from the need for bulky equipment, user training and sample pre-treatment. Biosensors can be used as complementary early-warning systems that are less sensitive and less selective. On the other hand, they are rapid, inexpensive, easy-to-handle and allow direct detection of the sample, on-site, without any further step other than dilution. This review focuses on enzyme- and cell- (or subcellular elements) based biosensors. Different enzymes (such as tyrosinase or peroxidase) whose activity is inhibited by herbicides are presented. Photosynthetic cells such as algae or cyanobacteria are also reported, as well as subcellular elements (thylakoids, chloroplasts). Atrazine, diuron, 2,4-D and glyphosate appear as the most frequently detected herbicides, using amperometry or optical transduction (mainly based on chlorophyll fluorescence). The recent new WSSA/HRAC classification of herbicides is also included in the review.
Collapse
Affiliation(s)
- Guillaume Octobre
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ICBMS, UMR5246, 69622 Villeurbanne, France.
| | - Nicolas Delprat
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ICBMS, UMR5246, 69622 Villeurbanne, France
| | - Bastien Doumèche
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ICBMS, UMR5246, 69622 Villeurbanne, France
| | - Béatrice Leca-Bouvier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ICBMS, UMR5246, 69622 Villeurbanne, France.
| |
Collapse
|
2
|
Purcarea C, Ruginescu R, Banciu RM, Vasilescu A. Extremozyme-Based Biosensors for Environmental Pollution Monitoring: Recent Developments. BIOSENSORS 2024; 14:143. [PMID: 38534250 PMCID: PMC10968539 DOI: 10.3390/bios14030143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
Extremozymes combine high specificity and sensitivity with the ability to withstand extreme operational conditions. This work presents an overview of extremozymes that show potential for environmental monitoring devices and outlines the latest advances in biosensors utilizing these unique molecules. The characteristics of various extremozymes described so far are presented, underlining their stability and operational conditions that make them attractive for biosensing. The biosensor design is discussed based on the detection of photosynthesis-inhibiting herbicides as a case study. Several biosensors for the detection of pesticides, heavy metals, and phenols are presented in more detail to highlight interesting substrate specificity, applications or immobilization methods. Compared to mesophilic enzymes, the integration of extremozymes in biosensors faces additional challenges related to lower availability and high production costs. The use of extremozymes in biosensing does not parallel their success in industrial applications. In recent years, the "collection" of recognition elements was enriched by extremozymes with interesting selectivity and by thermostable chimeras. The perspectives for biosensor development are exciting, considering also the progress in genetic editing for the oriented immobilization of enzymes, efficient folding, and better electron transport. Stability, production costs and immobilization at sensing interfaces must be improved to encourage wider applications of extremozymes in biosensors.
Collapse
Affiliation(s)
- Cristina Purcarea
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, 060031 Bucharest, Romania; (C.P.); (R.R.)
| | - Robert Ruginescu
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, 060031 Bucharest, Romania; (C.P.); (R.R.)
| | - Roberta Maria Banciu
- International Centre of Biodynamics, 1B Intrarea Portocalelor, 060101 Bucharest, Romania;
- Department of Analytical and Physical Chemistry, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030018 Bucharest, Romania
| | - Alina Vasilescu
- International Centre of Biodynamics, 1B Intrarea Portocalelor, 060101 Bucharest, Romania;
| |
Collapse
|
3
|
Delprat N, Martins LO, Blum LJ, Aymard CMG, Leca-Bouvier B, Octobre G, Doumèche B. User-friendly one-step disposable signal-on bioassay for glyphosate detection in water samples. Biosens Bioelectron 2023; 241:115689. [PMID: 37716158 DOI: 10.1016/j.bios.2023.115689] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/30/2023] [Accepted: 09/10/2023] [Indexed: 09/18/2023]
Abstract
The onsite detection of glyphosate requires an easy-to-handle, low-cost and disposable assay for untrained users as requested by the ASSURED guidelines. A new strategy based on the expression of fusion proteins is proposed here. A glyphosate oxidase derived from Bacillus subtilis and the 6E10 variant of the dye peroxidase from Pseudomonas putida, both fused with the carbohydrate binding module (CBM) 3a from Clostridium thermocellum, were designed and expressed, leading to GlyphOx-CBM and 6E10-CBM. Cell lysates were used to immobilise both enzymes on cotton buds' heads without any purification. The cotton buds exhibit glyphosate oxidase activity when dipped into a glyphosate-contaminated water sample containing the 6E10-CBM chromogenic substrates. The chromophore could be quantified both in the solution and on the cotton buds' heads. Photography followed by image analysis allows to detect glyphosate with a linear range of 0.25-2.5 mM and a limit of detection (LoD) of 0.12 mM. When the chromogenic substrates are replaced by luminol, the chemiluminescence reaction allows the detection of glyphosate with a linear range of 2-500 μM and a LoD of 0.45 μM. No interference was observed using glyphosate analogues (glycine, sarcosine, aminomethylphosphonic acid) or other herbicides used in a mixture. Only cysteine was found to inhibit 6E10-CBM. Two river waters spiked with glyphosate lead to recoveries of 64-131%. This work describes a very easy-to-handle and inexpensive signal-on bioassay for glyphosate detection in real surface water samples.
Collapse
Affiliation(s)
- N Delprat
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ICBMS, UMR, 5246, 69622, Villeurbanne, France.
| | - L O Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157, Oeiras, Portugal.
| | - L J Blum
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ICBMS, UMR, 5246, 69622, Villeurbanne, France.
| | - C M G Aymard
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ICBMS, UMR, 5246, 69622, Villeurbanne, France.
| | - B Leca-Bouvier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ICBMS, UMR, 5246, 69622, Villeurbanne, France.
| | - G Octobre
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ICBMS, UMR, 5246, 69622, Villeurbanne, France.
| | - B Doumèche
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ICBMS, UMR, 5246, 69622, Villeurbanne, France.
| |
Collapse
|
4
|
Madej-Kiełbik L, Gzyra-Jagieła K, Jóźwik-Pruska J, Dziuba R, Bednarowicz A. Biopolymer Composites with Sensors for Environmental and Medical Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7493. [PMID: 36363084 PMCID: PMC9659006 DOI: 10.3390/ma15217493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/13/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
One of the biggest economic and environmental sustainability problems is the over-reliance on petroleum chemicals in polymer production. This paper presents an overview of the current state of knowledge on biopolymers combined with biosensors in terms of properties, compounding methods and applications, with a focus on medical and environmental aspects. Therefore, this article is devoted to environmentally friendly polymer materials. The paper presents an overview of the current state of knowledge on biopolymers combined with biosensors in terms of properties, compounding methods and applications, with a special focus on medical and environmental aspects. The paper presents the current state of knowledge, as well as prospects. The article shows that biopolymers made from renewable raw materials are of great interest in various fields of science and industry. These materials not only replace existing polymers in many applications, but also provide new combinations of properties for new applications. Composite materials based on biopolymers are considered superior to traditional non-biodegradable materials due to their ability to degrade when exposed to environmental factors. The paper highlights the combination of polymers with nanomaterials which allows the preparation of chemical sensors, thus enabling their use in environmental or medical applications due to their biocompatibility and sensitivity. This review focuses on analyzing the state of research in the field of biopolymer-sensor composites.
Collapse
Affiliation(s)
- Longina Madej-Kiełbik
- Lukasiewicz Research Network—Lodz Institute of Technology, 19/27 M. Sklodowskiej-Curie Str., 90-570 Lodz, Poland
| | - Karolina Gzyra-Jagieła
- Lukasiewicz Research Network—Lodz Institute of Technology, 19/27 M. Sklodowskiej-Curie Str., 90-570 Lodz, Poland
- Faculty of Material Technologies and Textile Design, Lodz University of Technology, 116 Żeromskiego Street, 90-924 Lodz, Poland
| | - Jagoda Jóźwik-Pruska
- Lukasiewicz Research Network—Lodz Institute of Technology, 19/27 M. Sklodowskiej-Curie Str., 90-570 Lodz, Poland
| | - Radosław Dziuba
- Department of World Economy and European Integration, University of Lodz, 41/43 Rewolucji 1905 Str., 90-214 Lodz, Poland
| | - Anna Bednarowicz
- Lukasiewicz Research Network—Lodz Institute of Technology, 19/27 M. Sklodowskiej-Curie Str., 90-570 Lodz, Poland
- Faculty of Material Technologies and Textile Design, Lodz University of Technology, 116 Żeromskiego Street, 90-924 Lodz, Poland
| |
Collapse
|
5
|
Synthesis and fouling resistance of capsaicin derivatives containing amide groups. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Pesticide Detection in Vegetable Crops Using Enzyme Inhibition Methods: a Comprehensive Review. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02254-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
Voloshin R, Shumilova S, Zadneprovskaya E, Zharmukhamedov S, Alwasel S, Hou H, Allakhverdiev S. Photosystem II in bio-photovoltaic devices. PHOTOSYNTHETICA 2022; 60:121-135. [PMID: 39649000 PMCID: PMC11559483 DOI: 10.32615/ps.2022.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 02/18/2022] [Indexed: 12/10/2024]
Abstract
Hybrid photoelectrodes containing biological pigment-protein complexes can be used for environmentally friendly solar energy conversion, herbicide detection, and other applications. The total number of scientific publications on hybrid bio-based devices has grown rapidly over the past decades. Particular attention is paid to the integration of the complexes of PSII into photoelectrochemical devices. A notable feature of these complexes from a practical point of view is their ability to obtain electrons from abundant water. The utilization or imitation of the PSII functionality seems promising for all of the following: generating photoelectricity, photo-producing hydrogen, and detecting herbicides. This review summarizes recent advances in the development of hybrid devices based on PSII. In a brief historical review, we also highlighted the use of quinone-type bacterial reaction centers in hybrid devices. These proteins are the first from which the photoelectricity signal was detected. The photocurrent in these first systems, developed in the 70s-80s, was about 1 nA cm-2. In the latest work, by Güzel et al. (2020), a stable current of about 888 μA cm-2 as achieved in a PSII-based solar cell. The present review is inspired by this impressive progress. The advantages, disadvantages, and future endeavors of PSII-inspired bio-photovoltaic devices are also presented.
Collapse
Affiliation(s)
- R.A. Voloshin
- Controlled Photobiosynthesis Laboratory, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia
| | - S.M. Shumilova
- Controlled Photobiosynthesis Laboratory, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia
| | - E.V. Zadneprovskaya
- Controlled Photobiosynthesis Laboratory, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia
| | - S.K. Zharmukhamedov
- Institute of Basic Biological Problems, RAS, Pushchino, 142290 Moscow Region, Russia
| | - S. Alwasel
- College of Science, King Saud University, Riyadh, Saudi Arabia
| | - H.J.M. Hou
- Laboratory of Forensic Analysis and Photosynthesis, Department of Physical/Forensic Sciences, Alabama State University, Montgomery, 36104 Alabama, United States
| | - S.I. Allakhverdiev
- Controlled Photobiosynthesis Laboratory, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia
- Institute of Basic Biological Problems, RAS, Pushchino, 142290 Moscow Region, Russia
- College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Wang P, Zhao F, Hartmann V, Nowaczyk MM, Ruff A, Schuhmann W, Conzuelo F. Reassessing the rationale behind herbicide biosensors: The case of a photosystem II/redox polymer-based bioelectrode. Bioelectrochemistry 2020; 136:107597. [PMID: 32674005 DOI: 10.1016/j.bioelechem.2020.107597] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/04/2020] [Accepted: 07/04/2020] [Indexed: 01/12/2023]
Abstract
Interfacing photosynthetic protein complexes with electrodes is frequently used for the identification of electron transfer mechanisms and the fabrication of biosensors. Binding of herbicide compounds to the terminal plastoquinone QB at photosystem II (PSII) causes disruption of electron flow that is associated with a diminished performance of the associated biodevice. Thus, the principle of electron transport inhibition at PSII can be used for herbicide detection and has inspired the fabrication of several biosensors for this purpose. However, the biosensor performance may reveal a more complex behavior than generally expected. As we present here for a photobioelectrode constituted by PSII embedded in a redox polymer matrix, the effect caused by inhibitors does not only impact the electron transfer from PSII but also the properties of the polymer film used for immobilization and electrical wiring of the protein complexes. Incorporation of phenolic inhibitors into the polymer film surprisingly translates into enhanced photocurrents and, in particular cases, in a higher stability of the overall electrode architecture. The achieved results stress the importance to evaluate first the possible influence of analytes of interest on the biosensor architecture as a whole and provide important insights for consideration in future design of bioelectrochemical devices.
Collapse
Affiliation(s)
- Panpan Wang
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Fangyuan Zhao
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Volker Hartmann
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Marc M Nowaczyk
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Adrian Ruff
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany.
| | - Felipe Conzuelo
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany.
| |
Collapse
|
9
|
Tucci M, Bombelli P, Howe CJ, Vignolini S, Bocchi S, Schievano A. A Storable Mediatorless Electrochemical Biosensor for Herbicide Detection. Microorganisms 2019; 7:E630. [PMID: 31795453 PMCID: PMC6956157 DOI: 10.3390/microorganisms7120630] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 11/16/2022] Open
Abstract
A novel mediatorless photo-bioelectrochemical sensor operated with a biofilm of the cyanobacterium Synechocystis PCC6803 wt. for herbicide detection with long term stability (>20 days) was successfully developed and tested. Photoanodic current generation was obtained in the absence of artificial mediators. The inhibitory effect on photocurrent of three commonly used herbicides (i.e., atrazine, diuron, and paraquat) was used as a means of measuring their concentrations in aqueous solution. The injection of atrazine and diuron into the algal medium caused an immediate photocurrent drop due to the inhibition of photosynthetic electron transport. The detected concentrations were suitable for environmental analysis, as revealed by a comparison with the freshwater quality benchmarks set by the Environmental Protection Agency of the United States (US EPA). In contrast, paraquat caused an initial increase (~2 h) of the photocurrent effect of about 200%, as this compound can act as a redox mediator between the cells and the anode. A relatively long-term stability of the biosensor was demonstrated, by keeping anodes colonized with cyanobacterial biofilm in the dark at 4 °C. After 22 days of storage, the performance in terms of the photocurrent was comparable with the freshly prepared biosensor. This result was confirmed by the measurement of chlorophyll content, which demonstrated preservation of the cyanobacterial biofilm. The capacity of this biosensor to recover after a cold season or other prolonged environmental stresses could be a key advantage in field applications, such as in water bodies and agriculture. This study is a step forward in the biotechnological development and implementation of storable mediatorless electrochemical biosensors for herbicide detection.
Collapse
Affiliation(s)
- Matteo Tucci
- e-Bio Center, Department of Environmental Science and Policy, Università degli Studi di Milano, via Celoria 2, 20,133 Milan, Italy; (M.T.); (A.S.)
| | - Paolo Bombelli
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Via Celoria, 2, 20,133 Milano, Italy;
- Department of Biochemistry, University of Cambridge, Hopkins Building, Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK;
| | - Christopher J. Howe
- Department of Biochemistry, University of Cambridge, Hopkins Building, Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK;
| | - Silvia Vignolini
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK;
| | - Stefano Bocchi
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Via Celoria, 2, 20,133 Milano, Italy;
| | - Andrea Schievano
- e-Bio Center, Department of Environmental Science and Policy, Università degli Studi di Milano, via Celoria 2, 20,133 Milan, Italy; (M.T.); (A.S.)
| |
Collapse
|
10
|
Antonacci A, Scognamiglio V. Biotechnological Advances in the Design of Algae-Based Biosensors. Trends Biotechnol 2019; 38:334-347. [PMID: 31706693 DOI: 10.1016/j.tibtech.2019.10.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/25/2019] [Accepted: 10/09/2019] [Indexed: 01/14/2023]
Abstract
In addition to their use in biomass production and bioremediation, algae have been extensively exploited in biosensing applications. Algae-based biosensors have demonstrated potential for sensitive, sustainable, and multiplexed detection of analytes of agroenvironmental and security interest. Their advantages include the availability of different algal bioreceptors including whole cells and their photosynthetic subcomponents, their potential to be integrated into dual transduction miniaturized devices, and the opportunity for continuous environmental monitoring. Despite obstacles including limited stability and selectivity, algae-based biosensing is a realistic prospect that has some recent effective applications. Strategic exploitation of cutting-edge technologies including materials science, nanotechnology, microfluidics, and genome editing will help to achieve the full potential of algae-based sensors.
Collapse
Affiliation(s)
- Amina Antonacci
- Institute of Crystallography (IC-CNR), Department of Chemical Sciences and Materials Technologies, Via Salaria km 29.300, 00015 Monterotondo, Italy.
| | - Viviana Scognamiglio
- Institute of Crystallography (IC-CNR), Department of Chemical Sciences and Materials Technologies, Via Salaria km 29.300, 00015 Monterotondo, Italy.
| |
Collapse
|
11
|
What are the Main Sensor Methods for Quantifying Pesticides in Agricultural Activities? A Review. Molecules 2019; 24:molecules24142659. [PMID: 31340442 PMCID: PMC6680408 DOI: 10.3390/molecules24142659] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/13/2019] [Accepted: 07/16/2019] [Indexed: 11/29/2022] Open
Abstract
In recent years, there has been an increase in pesticide use to improve crop production due to the growth of agricultural activities. Consequently, various pesticides have been present in the environment for an extended period of time. This review presents a general description of recent advances in the development of methods for the quantification of pesticides used in agricultural activities. Current advances focus on improving sensitivity and selectivity through the use of nanomaterials in both sensor assemblies and new biosensors. In this study, we summarize the electrochemical, optical, nano-colorimetric, piezoelectric, chemo-luminescent and fluorescent techniques related to the determination of agricultural pesticides. A brief description of each method and its applications, detection limit, purpose—which is to efficiently determine pesticides—cost and precision are considered. The main crops that are assessed in this study are bananas, although other fruits and vegetables contaminated with pesticides are also mentioned. While many studies have assessed biosensors for the determination of pesticides, the research in this area needs to be expanded to allow for a balance between agricultural activities and environmental protection.
Collapse
|
12
|
Scognamiglio V, Antonacci A, Arduini F, Moscone D, Campos EVR, Fraceto LF, Palleschi G. An eco-designed paper-based algal biosensor for nanoformulated herbicide optical detection. JOURNAL OF HAZARDOUS MATERIALS 2019; 373:483-492. [PMID: 30947038 DOI: 10.1016/j.jhazmat.2019.03.082] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/20/2019] [Accepted: 03/18/2019] [Indexed: 05/23/2023]
Abstract
In this study we reported the development of a paper-based algal biosensor for the optical detection of nanoencapsulated-atrazine, a forefront nanoformulated herbicide with a high effective post-emergence herbicidal activity. In particular, the unicellular green photosynthetic algae Chlamydomonas reinhardtii was immobilised on a paper substrate soaked with an agar thin film and placed in a glass optical measurement cell, obtaining a totally environmental-friendly device. Nanoencapsulated-atrazine was detected by following the variable fluorescence (1-VJ) parameter, which decreased inversely proportional to the herbicide concentrations, in a range between 0.5 and 200 nM, indicating a linear relationship in the measured dose-response curves and a detection limit of 4 pM. Interference studies resulted in a very slight interference in presence of 2 ppm copper and 10 ppb arsenic at safety limits, as well as a slight matrix effect and a satisfactory recovery value of 96 ± 5% for 75 nM nanoencapsulated-atrazine in tap water. Stability studies were also performed obtaining a good storage stability up to 3 weeks. Results demonstrated the suitability of the proposed paper-based optical biosensor as a valid support in smart agriculture for on site, environmental friendly, cost effective and sensitive nanoencapsulated-atrazine analysis.
Collapse
Affiliation(s)
- Viviana Scognamiglio
- Institute of Crystallography, National Research Council, Department of Chemical Sciences and Materials Technologies, Via Salaria Km 29.3, 00015, Monterotondo Scalo, Rome, Italy.
| | - Amina Antonacci
- Institute of Crystallography, National Research Council, Department of Chemical Sciences and Materials Technologies, Via Salaria Km 29.3, 00015, Monterotondo Scalo, Rome, Italy
| | - Fabiana Arduini
- Department of Chemical Science and Technologies, Università di Roma Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Danila Moscone
- Department of Chemical Science and Technologies, Università di Roma Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Estefania V R Campos
- São Paulo State University (UNESP), Institute of Science and Technology of Sorocaba, Laboratory of Environmental Nanotechnology, Av. Três de Março, 511 - CEP 18-087-180, Sorocaba, Brazil
| | - Leonardo F Fraceto
- São Paulo State University (UNESP), Institute of Science and Technology of Sorocaba, Laboratory of Environmental Nanotechnology, Av. Três de Março, 511 - CEP 18-087-180, Sorocaba, Brazil
| | - Giuseppe Palleschi
- Department of Chemical Science and Technologies, Università di Roma Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| |
Collapse
|
13
|
Misaki K, Morita Y, Kobayashi K, Sugawara Y, Shimizu Y, Kusakabe T. Evaluation of algal photosynthesis inhibition activity for dissolved organic matter with the consideration of inorganic and coloring constituents. CHEMOSPHERE 2019; 224:333-342. [PMID: 30826703 DOI: 10.1016/j.chemosphere.2019.02.106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/15/2019] [Accepted: 02/16/2019] [Indexed: 06/09/2023]
Abstract
The effect of waterborne ingredient on ecosystem has been of great interest. In the present study, the evaluation method using algal photosynthesis inhibition assay with dual-channel pulse amplitude modulation (PAM) system was established for a series of water samples to elucidate the potential effect of the total body of organic compounds including natural organic matter (NOM) on aquatic ecosystems. The more sensitive and less time-consuming monitoring method compared with algal growth inhibition assay was suggested, especially considering inorganic and coloring constituents. Algal photosynthesis inhibition activity was detected with high sensitivity for photosystem II (PSII) inhibitors, whereas the IC10 of the other chemicals was over the environmental standard concentration for Chlamydomonas moewusii (Chlorophyceae) and Pheodactylum tricornutum (Diatomea). The photosynthesis inhibition activity of Lake Biwa dissolved organic matter (LBDOM) and fulvic acid (LBFA) was significantly detected at ≥10 times the concentration and >10 mgC L-1, respectively, whereas prominent activity was confirmed for Suwannee River NOM (SRNOM) on the river original concentration (>30 mgC L-1) for both algae. Significant inhibition activity was detected in both algae at least in twice-concentration for water samples from a wastewater treatment pilot plant. There was no great difference in the activity between sewage secondary effluent and its filtrate with ultrafiltration (UF), and physically washing water for the UF membrane.
Collapse
Affiliation(s)
- Kentaro Misaki
- Research Center for Environmental Quality Management (RCEQM), Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga, Japan; School of Nursing, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Japan.
| | - Yuhei Morita
- Research Center for Environmental Quality Management (RCEQM), Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga, Japan
| | - Kentaro Kobayashi
- Global Environmental Research Laboratories, Toray Industries, Inc., 3-2-1 Sonoyama, Otsu, Shiga, Japan
| | - Yuichi Sugawara
- Water Treatment Technical Dept., Toray Industries, Inc., 3-3-3 Sonoyama, Otsu, Shiga, Japan
| | - Yoshihisa Shimizu
- Research Center for Environmental Quality Management (RCEQM), Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga, Japan.
| | - Taketoshi Kusakabe
- Research Center for Environmental Quality Management (RCEQM), Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga, Japan.
| |
Collapse
|
14
|
Tucci M, Grattieri M, Schievano A, Cristiani P, Minteer SD. Microbial amperometric biosensor for online herbicide detection: Photocurrent inhibition of Anabaena variabilis. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.02.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
15
|
Fan X, Chang W, Feng F, Song F. Responses of photosynthesis-related parameters and chloroplast ultrastructure to atrazine in alfalfa (Medicago sativa L.) inoculated with arbuscular mycorrhizal fungi. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 166:102-108. [PMID: 30253284 DOI: 10.1016/j.ecoenv.2018.09.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 08/13/2018] [Accepted: 09/06/2018] [Indexed: 05/25/2023]
Abstract
Atrazine is an ingredient in photosynthesis-inhibiting herbicides and has been widely used to combat weeds in farmland. However, most atrazine that is applied fails to degrade in the soil and subsequently affects non-target plants. In this study, we investigated the influence of arbuscular mycorrhizal fungi (AMF), Funneliformis mosseae on the photosynthesis-related parameters, chlorophyll content, and chloroplast ultrastructure in alfalfa plants, some of which had been exposed to atrazine. Our results showed that the percentage of AMF hyphal colonization reached 91.23% 35 days after the alfalfa was planted, which suggests a symbiotic relationship between F. mosseae and alfalfa roots. F. mosseae alleviated the inhibition of net photosynthesis and stomatal function significantly in alfalfa exposed to atrazine for 24 h. A chlorophyll fluorescence analysis revealed that F. mosseae prevented a major reduction in the performance of photosystem II (PSII) photochemistry in the presence of atrazine, such as the relative decrease of Fv/Fm between the non-mycorrhizal and F. mosseae mycorrhizal treatments was 4.4% and 5.8% after 24 and 48 h of atrazine exposure time. However, F. mosseae has no significant alleviation on a sharp reduction in the chlorophyll a, chlorophyll b and carotenoid content in alfalfa exposed to atrazine. For the chloroplast ultrastructure in alfalfa exposed to atrazine, the number of both plastoglobules and partial granal stacks was greater in the presence of F. mosseae. In general, our results indicate that the F. mosseae inoculation was beneficial to sustain photosynthesis-related performance, such as net photosynthesis, stomatal conductance, the maximum quantum yield (Fv/Fm) and effective quantum yield (ΦPSII) of PSII photochemistry in alfalfa after exposure to atrazine, because the mycorrhizal alfalfa had a greater number of plastoglobules and granal stacks in the chloroplast, thereby enhancing its resistance to the oxidative damage induced by atrazine.
Collapse
Affiliation(s)
- Xiaoxu Fan
- Northeast Forestry University, Harbin 150040, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, College of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Wei Chang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, College of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Fujuan Feng
- Northeast Forestry University, Harbin 150040, China.
| | - Fuqiang Song
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, College of Life Sciences, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
16
|
Moro L, Pezzotti G, Turemis M, Sanchís J, Farré M, Denaro R, Giacobbe MG, Crisafi F, Giardi MT. Fast pesticide pre-screening in marine environment using a green microalgae-based optical bioassay. MARINE POLLUTION BULLETIN 2018; 129:212-221. [PMID: 29680540 DOI: 10.1016/j.marpolbul.2018.02.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 02/15/2018] [Accepted: 02/20/2018] [Indexed: 06/08/2023]
Abstract
The present study evaluates an optical bioassay based on green photosynthetic microalgae as a promising alternative for monitoring of relevant seawater pollutants. Photosystem II fluorescence parameters from several microalgae species were examined in the presence of three common marine pesticides that act as photosynthesis inhibitors. The three pollutants were detected within 10 min in concentrations between ng/L-μg/L. The different algae species showed slightly diverse pesticide sensitivities, being Chlorella mirabilis the most sensitive one. Potential interferences due to oil-spill pollutants were discarded. The lipid content was characterized to identify microorganisms with suitable mechanisms that could facilitate stress acclimatization. C. mirabilis presented elevated content of unsaturated lipids, showing a promising potential for biosensing in saline stress conditions. The optimized microalgae-based bioassay was preliminarily incorporated into a marine buoy for autonomous pre-screening of pesticides in coastal areas, demonstrating its suitability for real-time monitoring of marine water and quantitative evaluation of total biotoxicity.
Collapse
Affiliation(s)
- Laura Moro
- Biosensor Srl, Via degli Olmetti 44, 00060 Formello, Rome, Italy.
| | - Gianni Pezzotti
- Biosensor Srl, Via degli Olmetti 44, 00060 Formello, Rome, Italy.
| | - Mehmet Turemis
- Biosensor Srl, Via degli Olmetti 44, 00060 Formello, Rome, Italy.
| | - Josep Sanchís
- Water and Soil Quality Research Group, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), c/ Jordi Girona 18-26, 08034 Barcelona, Catalonia, Spain.
| | - Marinella Farré
- Water and Soil Quality Research Group, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), c/ Jordi Girona 18-26, 08034 Barcelona, Catalonia, Spain.
| | - Renata Denaro
- Institute for Coastal Marine Environment (IAMC-CNR), Spianata S. Raineri 86, 98122 Messina, Italy.
| | - Maria Grazia Giacobbe
- Institute for Coastal Marine Environment (IAMC-CNR), Spianata S. Raineri 86, 98122 Messina, Italy.
| | - Francesca Crisafi
- Institute for Coastal Marine Environment (IAMC-CNR), Spianata S. Raineri 86, 98122 Messina, Italy.
| | - Maria Teresa Giardi
- Biosensor Srl, Via degli Olmetti 44, 00060 Formello, Rome, Italy; Crystallography Institute, CNR Area della Ricerca di Roma, Via Salaria km 29,300, 00015 Monterotondo, Rome, Italy.
| |
Collapse
|
17
|
Bucur B, Munteanu FD, Marty JL, Vasilescu A. Advances in Enzyme-Based Biosensors for Pesticide Detection. BIOSENSORS 2018; 8:E27. [PMID: 29565810 PMCID: PMC6022933 DOI: 10.3390/bios8020027] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/18/2018] [Accepted: 03/20/2018] [Indexed: 01/10/2023]
Abstract
The intensive use of toxic and remanent pesticides in agriculture has prompted research into novel performant, yet cost-effective and fast analytical tools to control the pesticide residue levels in the environment and food. In this context, biosensors based on enzyme inhibition have been proposed as adequate analytical devices with the added advantage of using the toxicity of pesticides for detection purposes, being more "biologically relevant" than standard chromatographic methods. This review proposes an overview of recent advances in the development of biosensors exploiting the inhibition of cholinesterases, photosynthetic system II, alkaline phosphatase, cytochrome P450A1, peroxidase, tyrosinase, laccase, urease, and aldehyde dehydrogenase. While various strategies have been employed to detect pesticides from different classes (organophosphates, carbamates, dithiocarbamates, triazines, phenylureas, diazines, or phenols), the number of practical applications and the variety of environmental and food samples tested remains limited. Recent advances focus on enhancing the sensitivity and selectivity by using nanomaterials in the sensor assembly and novel mutant enzymes in array-type sensor formats in combination with chemometric methods for data analysis. The progress in the development of solar cells enriched the possibilities for efficient wiring of photosynthetic enzymes on different surfaces, opening new avenues for development of biosensors for photosynthesis-inhibiting herbicides.
Collapse
Affiliation(s)
- Bogdan Bucur
- National Institute of Research and Development for Biological Sciences, Centre of Bioanalysis, 296 Splaiul Independentei, 060031 Bucharest, Romania.
| | - Florentina-Daniela Munteanu
- Faculty of Food Engineering, Tourism and Environmental Protection, "Aurel Vlaicu" University of Arad, Elena Dragoi, No. 2, 310330 Arad, Romania.
| | - Jean-Louis Marty
- BAE Laboratory, Université de Perpignan via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan, France.
| | - Alina Vasilescu
- International Centre of Biodynamics, 1B Intrarea Portocalelor, 060101 Bucharest, Romania.
| |
Collapse
|
18
|
Mansano AS, Moreira RA, Dornfeld HC, Freitas EC, Vieira EM, Sarmento H, Rocha O, Seleghim MHR. Effects of diuron and carbofuran and their mixtures on the microalgae Raphidocelis subcapitata. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 142:312-321. [PMID: 28433596 DOI: 10.1016/j.ecoenv.2017.04.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 06/07/2023]
Abstract
In aquatic environments, organisms are often exposed to mixtures of several pesticides. In this study, the effects of carbofuran and diuron and their mixtures on the microalgae Raphidocelis subcapitata were investigated. For this purpose, toxicity tests were performed with the single compounds (active ingredients and commercial formulations) and their combinations (only active ingredients). According to the results, the toxicity of active ingredients and their commercial formulations to R. subcapitata was similar. In the single exposures, both carbofuran and diuron inhibited significantly the R. subcapitata growth and caused physiological (chlorophyll a content) and morphological (complexity and cell size) changes in cells, as captured by flow cytometry single-cell properties. Regarding the mixture toxicity tests, data fitted to both reference models, concentration addition (CA) and independent action (IA), and evidenced significant deviations. After the CA fitting, dose-ratio dependent deviation had the best fit to the data, demonstrating synergism caused mainly by diuron and antagonism caused mainly by carbofuran. After fitting the IA model, a synergistic deviation represented the best fit for the diuron and carbofuran mixtures. In general, the two reference models indicated the occurrence of synergism in the mixtures of these compounds, especially when diuron was the dominant chemical in the combinations. The increased toxicity caused by the mixture of these pesticides could pose a greater environmental risk for phytoplankton. Thus, exposure to diuron and carbofuran mixtures must also be considered in risk assessments, since the combination of these compounds may result in more severe effects on algae population growth than single exposures.
Collapse
Affiliation(s)
- Adrislaine S Mansano
- Department of Ecology and Evolutionary Biology, Federal University of São Carlos, Rodovia Washington Luis, km 235, 13565-905 São Carlos, SP, Brazil.
| | - Raquel A Moreira
- Department of Ecology and Evolutionary Biology, Federal University of São Carlos, Rodovia Washington Luis, km 235, 13565-905 São Carlos, SP, Brazil
| | - Hugo C Dornfeld
- Department of Ecology and Evolutionary Biology, Federal University of São Carlos, Rodovia Washington Luis, km 235, 13565-905 São Carlos, SP, Brazil
| | - Emanuela C Freitas
- Department of Ecology and Evolutionary Biology, Federal University of São Carlos, Rodovia Washington Luis, km 235, 13565-905 São Carlos, SP, Brazil
| | - Eny M Vieira
- São Carlos Institute of Chemistry, University of São Paulo, Av. Trabalhador São Carlense, 400, 13560-970 São Carlos, SP, Brazil
| | - Hugo Sarmento
- Department of Hydrobiology, Federal University of São Carlos, Rodovia Washington Luis, km 235, 13565-905 São Carlos, SP, Brazil
| | - Odete Rocha
- Department of Ecology and Evolutionary Biology, Federal University of São Carlos, Rodovia Washington Luis, km 235, 13565-905 São Carlos, SP, Brazil
| | - Mirna H R Seleghim
- Department of Ecology and Evolutionary Biology, Federal University of São Carlos, Rodovia Washington Luis, km 235, 13565-905 São Carlos, SP, Brazil
| |
Collapse
|
19
|
Buckova M, Licbinsky R, Jandova V, Krejci J, Pospichalova J, Huzlik J. Fast Ecotoxicity Detection Using Biosensors. WATER, AIR, AND SOIL POLLUTION 2017; 228:166. [PMID: 28450754 PMCID: PMC5382182 DOI: 10.1007/s11270-017-3341-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/14/2017] [Indexed: 05/27/2023]
Abstract
The article provides information about a new device, AlgaTox developed in the R&D project sponsored by the Technology Agency (n.TA02030179) and patented in Czech Republic (CZ 305687). Its functionality is based on the use of biosensor, and its main advantage is fast response rate. The toxicity detection is achieved through precise measurement of green algae oxygen production dynamics after their exposure to light of wavelength of 680 nm. Clark sensor with a resolution of 0.05% of the equilibrium oxygen concentrations and stability at a constant pressure and temperature of 0.1% of the equilibrium oxygen concentration at the 24-h measurement is used for the oxygen detection. Laboratory testing of the device has been made using silver nitrate, substance with known inhibitory effect on algae. Real samples of aqueous soil extracts and waste sample from old dried-up industrial tailing pond enriched with insecticide have been also tested. The values of oxygen production inhibition or stimulation determined with the new device in the evaluation of real samples were up to six times higher in comparison with the corresponding values of inhibition (stimulation) of growth rates determined by standard procedure.
Collapse
Affiliation(s)
- Martina Buckova
- Transport Research Centre, Líšeňská 33a, 636 00 Brno, Czech Republic
| | - Roman Licbinsky
- Transport Research Centre, Líšeňská 33a, 636 00 Brno, Czech Republic
| | - Vilma Jandova
- Transport Research Centre, Líšeňská 33a, 636 00 Brno, Czech Republic
| | - Jan Krejci
- BVT Technologies, a.s, Strážek 206, 592 53 Strážek, Czech Republic
| | | | - Jiri Huzlik
- Transport Research Centre, Líšeňská 33a, 636 00 Brno, Czech Republic
| |
Collapse
|
20
|
Grattieri M, Hasan K, Minteer SD. Bioelectrochemical Systems as a Multipurpose Biosensing Tool: Present Perspective and Future Outlook. ChemElectroChem 2016. [DOI: 10.1002/celc.201600507] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Matteo Grattieri
- Departments of Chemistry and Materials Science & Engineering University of Utah 315 S 1400 E Salt Lake City UT 84112 USA
| | - Kamrul Hasan
- Departments of Chemistry and Materials Science & Engineering University of Utah 315 S 1400 E Salt Lake City UT 84112 USA
| | - Shelley D. Minteer
- Departments of Chemistry and Materials Science & Engineering University of Utah 315 S 1400 E Salt Lake City UT 84112 USA
| |
Collapse
|
21
|
Wong A, Foguel MV, Khan S, Oliveira FMD, Tarley CRT, Sotomayor MD. DEVELOPMENT OF AN ELECTROCHEMICAL SENSOR MODIFIED WITH MWCNT-COOH AND MIP FOR DETECTION OF DIURON. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.09.054] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
22
|
Yu XB, Hao K, Ling F, Wang GX. Aquatic environmental safety assessment and inhibition mechanism of chemicals for targeting Microcystis aeruginosa. ECOTOXICOLOGY (LONDON, ENGLAND) 2014; 23:1638-1647. [PMID: 25139029 DOI: 10.1007/s10646-014-1303-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/06/2014] [Indexed: 06/03/2023]
Abstract
Cyanobacteria are a diverse group of Gram-negative bacteria that produce an array of secondary compounds with selective bioactivity against vertebrates, invertebrates, fungi, bacteria and cell lines. Recently the main methods of controlling cyanobacteria are using chemicals, medicinal plants and microorganism but fewer involved the safety research in hydrophytic ecosystems. In search of an environmentally safe compound, 53 chemicals were screened against the developed heavy cyanobacteria bloom Microcystis aeruginosa using coexistence culture system assay. The results of the coexistence assay showed that 9 chemicals inhibited M. aeruginosa effectively at 20 mg L(-1) after 7 days of exposure. Among them dimethomorph, propineb, and paraquat were identified that they are safe for Chlorella vulgaris, Scenedesmus obliquus, Carassius auratus (Goldfish) and Bacillus subtilis within half maximal effective concentration (EC50) values 5.2, 4.2 and 0.06 mg L(-1) after 7 days, respectively. Paraquat as the positive control observed to be more efficient than the other compounds with the inhibitory rate (IR) of 92% at 0.5 mg L(-1). For the potential inhibition mechanism, the chemicals could destroy the cell ultrastructure in different speed. The safety assay proved dimethomorph, propineb and paraquat as harmless formulations or products having potential value in M. aeruginosa controlling, with the advantage of its cell morphology degrading ability.
Collapse
Affiliation(s)
- Xiao-Bo Yu
- Northwest A&F University, Xinong Road 22nd, Yangling, 712100, Shaanxi, China
| | | | | | | |
Collapse
|
23
|
Swainsbury DJK, Friebe VM, Frese RN, Jones MR. Evaluation of a biohybrid photoelectrochemical cell employing the purple bacterial reaction centre as a biosensor for herbicides. Biosens Bioelectron 2014; 58:172-8. [PMID: 24637165 PMCID: PMC4009402 DOI: 10.1016/j.bios.2014.02.050] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 02/17/2014] [Accepted: 02/18/2014] [Indexed: 01/21/2023]
Abstract
The Rhodobacter sphaeroides reaction centre is a relatively robust and tractable membrane protein that has potential for exploitation in technological applications, including biohybrid devices for photovoltaics and biosensing. This report assessed the usefulness of the photocurrent generated by this reaction centre adhered to a small working electrode as the basis for a biosensor for classes of herbicides used extensively for the control of weeds in major agricultural crops. Photocurrent generation was inhibited in a concentration-dependent manner by the triazides atrazine and terbutryn, but not by nitrile or phenylurea herbicides. Measurements of the effects of these herbicides on the kinetics of charge recombination in photo-oxidised reaction centres in solution showed the same selectivity of response. Titrations of reaction centre photocurrents yielded half maximal inhibitory concentrations of 208 nM and 2.1 µM for terbutryn and atrazine, respectively, with limits of detection estimated at around 8 nM and 50 nM, respectively. Photocurrent attenuation provided a direct measure of herbicide concentration, with no need for model-dependent kinetic analysis of the signal used for detection or the use of prohibitively complex instrumentation, and prospects for the use of protein engineering to develop the sensitivity and selectivity of herbicide binding by the Rba. sphaeroides reaction centre are discussed. The Rhodobacter sphaeroides reaction centre was used as a biosensor for herbicides. Herbicide concentration was assessed through the attenuation of a photocurrent. The biosensor showed selectivity for triazine herbicides. The limit of detection of the biosensor was in the low nanomolar range. Photocurrent attenuation is a simple and direct basis for a herbicide biosensor.
Collapse
Affiliation(s)
- David J K Swainsbury
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom.
| | - Vincent M Friebe
- Division of Physics and Astronomy, Department of Biophysics, VU University Amsterdam, De Boelelaan 1081, Amsterdam 1081 HV, The Netherlands.
| | - Raoul N Frese
- Division of Physics and Astronomy, Department of Biophysics, VU University Amsterdam, De Boelelaan 1081, Amsterdam 1081 HV, The Netherlands.
| | - Michael R Jones
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom.
| |
Collapse
|
24
|
Effect of selenate on viability and selenomethionine accumulation of Chlorella sorokiniana grown in batch culture. ScientificWorldJournal 2014; 2014:401265. [PMID: 24688385 PMCID: PMC3928859 DOI: 10.1155/2014/401265] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Accepted: 10/31/2013] [Indexed: 11/18/2022] Open
Abstract
The aim of this work was to study the effect of Se(+VI) on viability, cell morphology, and selenomethionine accumulation of the green alga Chlorella sorokiniana grown in batch cultures. Culture exposed to sublethal Se concentrations of 40 mg·L−1 (212 μM) decreased growth rates for about 25% compared to control. A selenate EC50 value of 45 mg·L−1 (238.2 μM) was determined. Results showed that chlorophyll and carotenoids contents were not affected by Se exposure, while oxygen evolution decreased by half. Ultrastructural studies revealed granular stroma, fingerprint-like appearance of thylakoids which did not compromise cell activity. Unlike control cultures, SDS PAGE electrophoresis of crude extracts from selenate-exposed cell cultures revealed appearance of a protein band identified as 53 kDa Rubisco large subunit of Chlorella sorokiniana, suggesting that selenate affects expression of the corresponding chloroplast gene as this subunit is encoded in the chloroplast DNA. Results revealed that the microalga was able to accumulate up to 140 mg·kg−1 of SeMet in 120 h of cultivation. This paper shows that Chlorella sorokiniana biomass can be enriched in the high value aminoacid SeMet in batch cultures, while keeping photochemical viability and carbon dioxide fixation activity intact, if exposed to suitable sublethal concentrations of Se.
Collapse
|
25
|
da Silva AC, Deda DK, da Róz AL, Prado RA, Carvalho CC, Viviani V, Leite FL. Nanobiosensors based on chemically modified AFM probes: a useful tool for metsulfuron-methyl detection. SENSORS 2013; 13:1477-89. [PMID: 23348034 PMCID: PMC3649369 DOI: 10.3390/s130201477] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 01/06/2013] [Accepted: 01/06/2013] [Indexed: 11/16/2022]
Abstract
The use of agrochemicals has increased considerably in recent years, and consequently, there has been increased exposure of ecosystems and human populations to these highly toxic compounds. The study and development of methodologies to detect these substances with greater sensitivity has become extremely relevant. This article describes, for the first time, the use of atomic force spectroscopy (AFS) in the detection of enzyme-inhibiting herbicides. A nanobiosensor based on an atomic force microscopy (AFM) tip functionalised with the acetolactate synthase (ALS) enzyme was developed and characterised. The herbicide metsulfuron-methyl, an ALS inhibitor, was successfully detected through the acquisition of force curves using this biosensor. The adhesion force values were considerably higher when the biosensor was used. An increase of ~250% was achieved relative to the adhesion force using an unfunctionalised AFM tip. This considerable increase was the result of a specific interaction between the enzyme and the herbicide, which was primarily responsible for the efficiency of the nanobiosensor. These results indicate that this methodology is promising for the detection of herbicides, pesticides, and other environmental contaminants.
Collapse
Affiliation(s)
- Aline C.N. da Silva
- Multidisciplinary Laboratory of Nanoneurobiophysics, Nanoneurobiophysics Research Group, Department of Physics, Chemistry and Mathematics, Federal University of São Carlos, CP 3031, Sorocaba-SP, 18052-780, Brazil; E-Mails: (A.C.N.S.); (A.L.R.)
| | - Daiana K. Deda
- Multidisciplinary Laboratory of Nanoneurobiophysics, Nanoneurobiophysics Research Group, Department of Physics, Chemistry and Mathematics, Federal University of São Carlos, CP 3031, Sorocaba-SP, 18052-780, Brazil; E-Mails: (A.C.N.S.); (A.L.R.)
- Authors to whom correspondence should be addressed; E-Mails: (D.K.D.); (F.L.L.); Tel./Fax: +55-3229-6014
| | - Alessandra L. da Róz
- Multidisciplinary Laboratory of Nanoneurobiophysics, Nanoneurobiophysics Research Group, Department of Physics, Chemistry and Mathematics, Federal University of São Carlos, CP 3031, Sorocaba-SP, 18052-780, Brazil; E-Mails: (A.C.N.S.); (A.L.R.)
| | - Rogilene A. Prado
- Laboratory of Biochemistry and Biotechnology of Bioluminescence, Department of Physics, Chemistry and Mathematics, Federal University of São Carlos, CP 3031, Sorocaba-SP, 18052-780, Brazil; E-Mails: (R.A.P.); (C.C.C.); (V.V.)
| | - Camila C. Carvalho
- Laboratory of Biochemistry and Biotechnology of Bioluminescence, Department of Physics, Chemistry and Mathematics, Federal University of São Carlos, CP 3031, Sorocaba-SP, 18052-780, Brazil; E-Mails: (R.A.P.); (C.C.C.); (V.V.)
| | - Vadim Viviani
- Laboratory of Biochemistry and Biotechnology of Bioluminescence, Department of Physics, Chemistry and Mathematics, Federal University of São Carlos, CP 3031, Sorocaba-SP, 18052-780, Brazil; E-Mails: (R.A.P.); (C.C.C.); (V.V.)
| | - Fabio L. Leite
- Multidisciplinary Laboratory of Nanoneurobiophysics, Nanoneurobiophysics Research Group, Department of Physics, Chemistry and Mathematics, Federal University of São Carlos, CP 3031, Sorocaba-SP, 18052-780, Brazil; E-Mails: (A.C.N.S.); (A.L.R.)
- Authors to whom correspondence should be addressed; E-Mails: (D.K.D.); (F.L.L.); Tel./Fax: +55-3229-6014
| |
Collapse
|
26
|
Jia K, Eltzov E, Toury T, Marks RS, Ionescu RE. A lower limit of detection for atrazine was obtained using bioluminescent reporter bacteria via a lower incubation temperature. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 84:221-226. [PMID: 22858105 DOI: 10.1016/j.ecoenv.2012.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 07/07/2012] [Accepted: 07/10/2012] [Indexed: 06/01/2023]
Abstract
The present article reports on the influence of various atrazine concentrations to the response of genetically modified Escherichia coli TV1061 bacterial cells while modulating the experimental conditions. Interesting increases of bioluminescence signals are recorded for E. coli TV1061 bacteria in the presence of 10 μg/mL atrazine concentration named "high-toxicity bacteria alert" when compared with 1 μg/mL -10 fg/mL atrazine termed "low-toxicity bacteria alert". Detecting the effect of atrazine via its effect on bioluminescence of bacteria has been carried out by two consecutive measurements (fresh and overnight modes) at different concentrations of analyte. We have shown that a more precise discrimination at lower-toxicity concentrations can be obtained through overnight incubation of bacteria with the analyte at 4 °C. In addition, centrifugation of bacterial cells and analyte dilutions has been performed in order to ensure a better interaction between the insoluble atrazine pesticide and the bacterial cells.
Collapse
Affiliation(s)
- Kun Jia
- Laboratoire de Nanotechnologie et d'Instrumentation Optique, Institute Charles Delaunay, Université de Technologie de Troyes, UMR-STMR CNRS 6279, 12 rue Marie-Curie BP2060, 10010 Troyes Cedex, France
| | | | | | | | | |
Collapse
|
27
|
Hu JY, Dong BZ, Zhen ZH. Residue determination and dissipation of ioxynil octanoate in maize and soil. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2012; 47:385-389. [PMID: 22424062 DOI: 10.1080/03601234.2012.648533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A simple and efficient residue analysis method for direct determination of ioxynil octanoate in maize and soil was developed and validated with High Performance Liquid Chromatography-Ultra Violet (HPLC-UV). The samples were extracted with mixtures of acetonitrile and deionized water followed by Solid Phase Extraction (SPE) to remove co-extractives prior to analysis by HPLC-UV. The recoveries of ioxynil octanoate extracted from maize and soil samples ranged from 86 %-104 % and 84 %-96 %, respectively, with relative standard deviation (RSD) less than 7.84% and sensitivity of 0.01 mg kg(-1). The method was applied to determine the residue of ioxynil octanoate in maize and soil samples from experimental field. Data had shown that the dissipation rate in soil was described as pseudo-first-order kinetics and the half-life (t(1/2)) was less than 1.78 days. No ioxynil octanoate residue (<0.01 mg kg(-1)) was detected in maize at harvest time withholding period of 60 days after treatments of the pesticide. Direct confirmation of the analytes in field trial samples was realized by Liquid Chromatography-Mass Spectrometry (LC-MS).
Collapse
Affiliation(s)
- Ji Y Hu
- School of Chemical and Biological Engineering, University of Science & Technology Beijing, Beijing, China.
| | | | | |
Collapse
|