1
|
Muhammad J, Xu P, Khan S, Su JQ, Sarwar T, Nazneen S, Khan A. Arsenic contribution of poultry manure towards soils and food plants contamination and associated cancer risk in Khyber Pakhtunkhwa, Pakistan. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:3321-3342. [PMID: 34542787 DOI: 10.1007/s10653-021-01096-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Exposure to high level of arsenic (As) through the ingestion of contaminated soil, dust and food plants can pose health risk to humans. This study investigates the total arsenic (As), arsenobetaine (AsB), monomethylarsenate (MMA), dimethylarsenate (DMA), arsenite (As3+) and arsenate (As5+) concentrations in poultry feed, manure, agricultural soils and food plants collected from Khyber Pakhtunkhwa Province, Pakistan. The total mean As concentrations in the edible parts of food plants ranged from 0.096 mg kg-1 to 1.25 mg kg-1 with percentile (P) values (P25-0.039, P50-0.0765, P75-0.165 1 mg kg-1 to P25-0.95, P50-1.23, P75-1.6 1 mg kg-1) and exceeded the food safety limit (0.1 mg kg-1) of Food & Agriculture Organization (FAO) and World Health Organization (WHO) in all plant species except Pisum sativum (pea) and Mentha arvensis (mint). The risk to human health was assessed through the average daily intake (ADI), hazards quotient (HQ), health risk index (HRI) and lifetime cancer risk (LTCR). The highest average daily intake of As via the ingestion of Malva neglecta (mallow, a leafy plant) was observed for adults and children. The ADI for adults and children (2.36 × 10-4 mg kg-1 day-1 and 6.33 × 10-4 mg kg-1 day-1) was about 13% and 5%, respectively, of the Bench Mark Dose Limit (BMDL0.5) of 3.00 × 10-3 mg kg-1 day-1 set by WHO. The HRI was 3 times more in the children (2.1) than the adults (0.79), posing non-cancer health risks (health risk index > 1) for children. The LTCR values were slightly higher (1.53 × 10-4) relative to USEPA and WHO limits (1 × 10-6 to 1 × 10-4) for children whereas a minimal cancer risk was observed for adults via consumption of selected food plants. The results showed that poultry manure can contaminate food plants that may lead to cancer and non-cancer risks in agricultural areas, Pakistan. Thus, it is important to minimize As concentration in poultry feed to safeguard human health and environment from adverse effects.
Collapse
Affiliation(s)
- Juma Muhammad
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan
- Department of Environmental Sciences, Shaheed Benazir Bhutto University, Sheringal, Dir Upper, Pakistan
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Ping Xu
- China National Rice Research Institute, Hangzhou, 310006, China
| | - Sardar Khan
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan.
| | - Jian Qiang Su
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Tasneem Sarwar
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan
| | - Shahla Nazneen
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan
| | - Alamgir Khan
- Department of Forestry, Shaheed Benazir Bhutto University, Sheringal, Dir Upper, Pakistan
| |
Collapse
|
2
|
Baig JA, Chandio IG, Kazi TG, Afridi HI, Akhtar K, Junaid M, Naher S, Solangi SA, Malghani NA. Risk Assessment of Macronutrients and Minerals by Processed, Street, and Restaurant Traditional Pakistani Foods: a Case Study. Biol Trace Elem Res 2022; 201:3553-3566. [PMID: 36149591 DOI: 10.1007/s12011-022-03429-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022]
Abstract
The current work is aimed to assess the impact of macronutrient and mineral contents in food products of packaged food, restaurant food, and street food in Hyderabad. The estimated daily intake of macronutrients and minerals, followed by the toxic risk assessment of microminerals by consuming studied food dishes, was also conducted. The collected products were freeze-dried and standard procedures for measuring macronutrients were followed. At the same time, the acid digestion method was used to prepare the solution for detecting minerals by atomic absorption spectrometry. The resulting data indicated that all the food dishes supplied 134-454 kcals/100 g. The chicken/meat and pulse food dishes of all three categories were enriched with protein except bhindi masala. All the food dishes have a massive variation in fat contents and differ based on the used quantity of hydrogenated oil during their preparations. A significant difference in the macro- and microminerals in studied food products was observed. However, all food dishes are a good supplementary source of fundamental nutrients, supplying the recommended daily allowances for adults. The estimated hazardous index (Ih) of microminerals in some street and restaurant food products (based on a survey) showed possible toxicity risk, especially for the workers of automechanic workshops (Ih > 1.00). Thus, it is concluded that the contaminated (cheap) raw materials and unhygienic conditions for preparing street and restaurant foods and hawking places (atmospheric pollution) are the significant sources of micromineral contamination.
Collapse
Affiliation(s)
- Jameel Ahmed Baig
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan.
| | - Iram Gul Chandio
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Tasneem Gul Kazi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Hassan Imran Afridi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Khalil Akhtar
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Mirza Junaid
- Department of Paediatric, Peoples University of Medical and Health Sciences for Women, Nawabshah, Shaheed Benazirabad, Pakistan
| | - Sumsun Naher
- Department of Mechanical Engineering and Aeronautics, University of London, London, UK
| | - Shakoor Ahmed Solangi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Niaz Ali Malghani
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| |
Collapse
|
3
|
Rokonuzzaman MD, Li WC, Wu C, Ye ZH. Human health impact due to arsenic contaminated rice and vegetables consumption in naturally arsenic endemic regions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119712. [PMID: 35798190 DOI: 10.1016/j.envpol.2022.119712] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/13/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Rice and vegetables cultivated in naturally arsenic (As) endemic areas are the substantial source of As body loading for persons using safe drinking water. However, tracing As intake, particularly from rice and vegetables by biomarker analysis, has been poorly addressed. This field investigation was conducted to trace the As transfer pathway and measure health risk associated with consuming As enriched rice and vegetables. Purposively selected 100 farmers from five sub-districts of Chandpur, Bangladesh fulfilling specific requirements constituted the subjects of this study. A total of 100 Irrigation water, soils, rice, and vegetable samples were collected from those farmers' who donated scalp hair. Socio-demographic and food consumption data were collected face to face through questionnaire administration. The mean As level in irrigation water, soils, rice, vegetables, and scalp hairs exceeded the acceptable limit, while As content was significant at 0.1%, 5%, 0.1%, 1%, and 0.1% probability levels, respectively, in all five locations. Arsenic in scalp hair is significantly (p ≤ 0.01) correlated with that in rice and vegetables. The bioconcentration factor (BCF) for rice and vegetables is less than one and significant at a 1% probability level. The average daily intake (ADI) is higher than the RfD limit for As. Both grains and vegetables have an HQ (hazard quotient) > 1. Maximum incremental lifetime cancer risk (ILCR) showed 2.8 per 100 people and 1.6 per 1000 people are at considerable and threshold risk, respectively. However, proteinaceous and nutritious food consumption might have kept the participants asymptomatic. The PCA analysis showed that the first principle component (PC1) explains 91.1% of the total variance dominated by As in irrigation water, grain, and vegetables. The dendrogram shows greater variations in similarity in rice and vegetables As, while the latter has been found to contribute more to human body loading compared to grain As.
Collapse
Affiliation(s)
- M D Rokonuzzaman
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong Special Administrative Region, 999077, PR China
| | - W C Li
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong Special Administrative Region, 999077, PR China.
| | - C Wu
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong Special Administrative Region, 999077, PR China; School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Z H Ye
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| |
Collapse
|
4
|
Amir M, Asghar S, Ahsin M, Hussain S, Ismail A, Riaz M, Naz S. Arsenic exposure through drinking groundwater and consuming wastewater-irrigated vegetables in Multan, Pakistan. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:5025-5035. [PMID: 33891257 DOI: 10.1007/s10653-021-00940-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Arsenic (As) is one of the most toxic metalloids for humans. Above permissible levels of As cause severe health implications. Contaminated drinking water and food items may be the leading sources of As exposure to people all around the world. The current study assessed the levels of As in drinking water, vegetables, irrigation water, agricultural soils, and the human population (adult women and men) of rural and peri-urban areas of Multan (Pakistan). For a comparison between peri-urban (exposed site) and rural areas (control site), we sampled irrigation water, vegetables and vegetable-grown soils, drinking water, and human blood. In all sample types, As concentration was significantly higher at exposed site than at control site. Alarmingly, As concentration in drinking groundwater (34 µg As L-1) of exposed site was 3.4-folds higher than the permissible limit (set by WHO). Among the studied vegetables, the cumulative daily dietary intake of As was recorded maximum by the consumption of okra (474 ng d-1 on exposed site) and minimum by long melon (1 ng d-1 on control site). However, As intake via drinking water was estimated to contribute ≥ 98% of total As intake at both sites. Hence, the health risks associated with drinking As-contaminated groundwater were recorded much higher than the health risks associated with the consumption of As-contaminated vegetables. Blood As levels in most of the subjects at exposed site exceeded the safe limit of 12 µg L-1. Conclusively, the findings of the current study indicated that drinking contaminated groundwater may be the major cause of As-associated health risks in the region.
Collapse
Affiliation(s)
- Mamoona Amir
- Institute of Food Science and Nutrition, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Salman Asghar
- Institute of Food Science and Nutrition, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muhammad Ahsin
- Institute of Food Science and Nutrition, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, 60800, Pakistan
- National Institute of Food Science and Technology, Faculty of Food, Nutrition and Home Sciences, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Shahid Hussain
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Amir Ismail
- Institute of Food Science and Nutrition, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muhammad Riaz
- Institute of Food Science and Nutrition, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Safina Naz
- Department of Horticulture, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, 60800, Pakistan
| |
Collapse
|
5
|
Shahid M, Khalid S, Niazi NK, Murtaza B, Ahmad N, Farooq A, Zakir A, Imran M, Abbas G. Health risks of arsenic buildup in soil and food crops after wastewater irrigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145266. [PMID: 33578156 DOI: 10.1016/j.scitotenv.2021.145266] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Despite considerable research of arsenic (As) level in ground/drinking water of Pakistan, scarce data is available regarding irrigation water contamination by As and associated health risks. The municipal wastewater is routinely applied for soil irrigation in peri-urban agriculture of the country. Since the wastewater composition/contamination and its allied consequences greatly vary in different areas, therefore, it is imperative to check the possible health risks in areas where untreated wastewater is being applied for food crop production. This study analyzed potential health hazards of As-buildup in soil and food plants irrigated with municipal wastewater growing under natural conditions. Sixteen wastewater irrigation locations were selected in District Vehari. From these sites, a total of 16 wastewater samples, 108 soil samples and 65 plant samples were collected for As analysis. Total As contents in wastewater (5.3-63.6 μg/L), soil (1.4-19.6 mg/kg) and plants (0-6.5 mg/kg) greatly varied with sampling location, soil depths and plant type. Based on total As contents in edible tissues, risk assessment parameters, especially cancer risk factor, showed possible health risks (> 0.0001) for wheat crops for children while no risks for other food crops. The use of multiple and diversified food crops is recommended in the study area to minimize the possible risk of As exposure and poisoning. The study also anticipates some future viewpoints considering the on-ground situation of wastewater use, possible exposure of metal(loid)s to human and associated health concerns at local and global scale.
Collapse
Affiliation(s)
- Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, 61100, Pakistan.
| | - Sana Khalid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, 61100, Pakistan
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; School of Civil Engineering and Surveying, University of Southern Queensland, Toowoomba, 4350 Queensland, Australia
| | - Behzad Murtaza
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, 61100, Pakistan
| | - Naveed Ahmad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, 61100, Pakistan
| | - Amjad Farooq
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, 61100, Pakistan
| | - Ali Zakir
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, 61100, Pakistan
| | - Muhammad Imran
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, 61100, Pakistan
| | - Ghulam Abbas
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, 61100, Pakistan
| |
Collapse
|
6
|
Sotomayor CG, Groothof D, Vodegel JJ, Gacitúa TA, Gomes-Neto AW, Osté MCJ, Pol RA, Ferreccio C, Berger SP, Chong G, Slart RHJA, Rodrigo R, Navis GJ, Touw DJ, Bakker SJL. Circulating Arsenic is Associated with Long-Term Risk of Graft Failure in Kidney Transplant Recipients: A Prospective Cohort Study. J Clin Med 2020; 9:417. [PMID: 32028652 PMCID: PMC7073559 DOI: 10.3390/jcm9020417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/26/2020] [Accepted: 01/31/2020] [Indexed: 12/24/2022] Open
Abstract
Arsenic is toxic to many organ systems, the kidney being the most sensitive target organ. We aimed to investigate whether, in kidney transplant recipients (KTRs), the nephrotoxic exposure to arsenic could represent an overlooked hazard for graft survival. We performed a prospective cohort study of 665 KTRs with a functional graft ≥1 year, recruited in a university setting (2008‒2011), in The Netherlands. Plasma arsenic was measured by ICP-MS, and dietary intake was comprehensively assessed using a validated 177-item food-frequency questionnaire. The endpoint graft failure was defined as restart of dialysis or re-transplantation. Median arsenic concentration was 1.26 (IQR, 1.04‒2.04) µg/L. In backwards linear regression analyses we found that fish consumption (std β = 0.26; p < 0.001) was the major independent determinant of plasma arsenic. During 5 years of follow-up, 72 KTRs developed graft failure. In Cox proportional-hazards regression analyses, we found that arsenic was associated with increased risk of graft failure (HR 1.80; 95% CI 1.28-2.53; p = 0.001). This association remained materially unaltered after adjustment for donor and recipient characteristics, immunosuppressive therapy, eGFR, primary renal disease, and proteinuria. In conclusion, in KTRs, plasma arsenic is independently associated with increased risk of late graft failure.
Collapse
Affiliation(s)
- Camilo G. Sotomayor
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (D.G.); (J.J.V.); (T.A.G.); (S.P.B.); (G.J.N.); (S.J.L.B.)
| | - Dion Groothof
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (D.G.); (J.J.V.); (T.A.G.); (S.P.B.); (G.J.N.); (S.J.L.B.)
| | - Joppe J. Vodegel
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (D.G.); (J.J.V.); (T.A.G.); (S.P.B.); (G.J.N.); (S.J.L.B.)
| | - Tomás A. Gacitúa
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (D.G.); (J.J.V.); (T.A.G.); (S.P.B.); (G.J.N.); (S.J.L.B.)
| | - António W. Gomes-Neto
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (D.G.); (J.J.V.); (T.A.G.); (S.P.B.); (G.J.N.); (S.J.L.B.)
| | - Maryse C. J. Osté
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (D.G.); (J.J.V.); (T.A.G.); (S.P.B.); (G.J.N.); (S.J.L.B.)
| | - Robert A. Pol
- Division of Transplantation Surgery, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands;
| | - Catterina Ferreccio
- Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, 8330033 Santiago, Chile;
| | - Stefan P. Berger
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (D.G.); (J.J.V.); (T.A.G.); (S.P.B.); (G.J.N.); (S.J.L.B.)
| | - Guillermo Chong
- Department of Radiology, Clínica Alemana de Santiago, Universidad del Desarrollo, 7610658 Santiago, Chile;
| | - Riemer H. J. A. Slart
- Department of Nuclear and Molecular Imaging, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands;
| | - Ramón Rodrigo
- Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, CP 8380453 Santiago, Chile;
| | - Gerjan J. Navis
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (D.G.); (J.J.V.); (T.A.G.); (S.P.B.); (G.J.N.); (S.J.L.B.)
| | - Daan J. Touw
- Department of Pharmacy and Clinical Pharmacology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands;
| | - Stephan J. L. Bakker
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (D.G.); (J.J.V.); (T.A.G.); (S.P.B.); (G.J.N.); (S.J.L.B.)
| |
Collapse
|
7
|
Jia X, Yang X, Zhao W, Hu Y, Cheng H. A method for rapid determination of arsenic species in vegetables using microwave‐assisted extraction followed by detection with HPLC hyphenated to inductively coupled plasma‐mass spectrometry. J Sep Sci 2019; 42:2957-2967. [DOI: 10.1002/jssc.201900282] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 06/29/2019] [Accepted: 07/01/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Xintong Jia
- MOE Laboratory for Earth Surface ProcessesCollege of Urban and Environmental SciencesPeking University Beijing P. R. China
| | - Xiaoyue Yang
- MOE Laboratory for Earth Surface ProcessesCollege of Urban and Environmental SciencesPeking University Beijing P. R. China
| | - Wei Zhao
- MOE Laboratory for Earth Surface ProcessesCollege of Urban and Environmental SciencesPeking University Beijing P. R. China
| | - Yuanan Hu
- MOE Laboratory of Groundwater Circulation and EvolutionSchool of Water Resources and EnvironmentChina University of Geosciences (Beijing) Beijing P. R. China
| | - Hefa Cheng
- MOE Laboratory for Earth Surface ProcessesCollege of Urban and Environmental SciencesPeking University Beijing P. R. China
| |
Collapse
|
8
|
Bhatti S, Baig JA, Kazi TG, Afridi HI, Pathan AA. Macro and micro mineral composition of Pakistani common spices: a case study. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-019-00173-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Kazi TG, Brahman KD, Baig JA, Afridi HI. Bioaccumulation of arsenic and fluoride in vegetables from growing media: health risk assessment among different age groups. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:1223-1234. [PMID: 30392056 DOI: 10.1007/s10653-018-0207-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 10/21/2018] [Indexed: 06/08/2023]
Abstract
The current study was conducted to evaluate the arsenic (As) and fluoride (F-) concentrations in growing media (stored rainwater and soil), of district Tharparkar, Pakistan. The bioaccumulation/transportation of As and F from growing media to different types of vegetables (wild cucumis, Indian squish and cluster bean) was evaluated. Total concentrations of As and F- in stored rainwater samples were observed up to 585 μg/L and 32.4 mg/L, respectively, exceeding many folds higher than WHO provisional guideline values. The As and F- contents in soil samples of nine agricultural sites were found in the range of 121-254 mg/kg and 115-478 mg/kg, respectively. The highest contents of As and F- were observed in wild cucumis as compared to Indian squish and cluster bean (p < 0.05), grown in the same agricultural field. The bioaccumulation factors of As and F- were to be > 4.00, indicating the high rate of transportation of As and F- from growing media to vegetables. A significant positive correlation of As and F- in vegetables with their concentrations in soil and water was observed (r > 0.60 with p < 0.05). The risk assessment elucidated that the population of different age group consuming local vegetables and drinking water contaminated with As and F- may have adverse health effects.
Collapse
Affiliation(s)
- Tasneem G Kazi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Sindh, 76080, Pakistan.
| | - Kapil D Brahman
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Sindh, 76080, Pakistan
| | - Jameel A Baig
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Sindh, 76080, Pakistan
| | - Hassan I Afridi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Sindh, 76080, Pakistan
| |
Collapse
|
10
|
Chowdhury NR, Das R, Joardar M, Ghosh S, Bhowmick S, Roychowdhury T. Arsenic accumulation in paddy plants at different phases of pre-monsoon cultivation. CHEMOSPHERE 2018; 210:987-997. [PMID: 30208559 DOI: 10.1016/j.chemosphere.2018.07.041] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/05/2018] [Accepted: 07/09/2018] [Indexed: 06/08/2023]
Abstract
Geogenic arsenic (As) contamination in Bengal Delta Plain is a growing environmental and research concern. Cultivation of staple crops like paddy on these contaminated fields is one of the major routes for human dietary exposure. The present study investigates changes of arsenic concentrations in paddy plant parts, root soil and surface soil throughout the various phases of pre-monsoon (boro) cultivation. Arsenic uptake property of paddy plants collected from 10 fields was found to be dependent on the variety of paddy plant (like Minikit, Jaya) rather than arsenic levels in groundwater (0.074-0.301 mg/l) or soil (25.3-60 mg/kg). Arsenic is translocated from root to aerial parts in descending order. Leaf, stem, root, root soil and surface soil showed a similar trend in their change of arsenic concentration throughout the cultivation period. Arsenic concentration was highest in vegetative phase; sharply declined in reproductive phase; followed by moderate increase in ripening phase. The young root tissues in vegetative (primary) phase could uptake arsenic at a much faster rate than the older tissues in later phases. With the growth of the plant, higher concentrations of iron in root soil in the reproductive phase confirmed the formation of iron plaques on the surface of the root, which sequester arsenic and prevented its uptake by plants. Finally, co-precipitation of arsenic with iron released from crystallized iron plaques results in loosening of the iron plaques from root surface. Thus, soil arsenic concentration increases in the final phase of cultivation which in turn contributes to increased concentration in plant parts.
Collapse
Affiliation(s)
| | - Reshmi Das
- Earth Observatory of Singapore, Nanyang Technological University, 639798, Singapore
| | - Madhurima Joardar
- School of Environmental Studies, Jadavpur University, Kokata, 700032, India
| | - Soma Ghosh
- School of Environmental Studies, Jadavpur University, Kokata, 700032, India
| | - Subhojit Bhowmick
- School of Environmental Studies, Jadavpur University, Kokata, 700032, India
| | - Tarit Roychowdhury
- School of Environmental Studies, Jadavpur University, Kokata, 700032, India.
| |
Collapse
|
11
|
Hou S, Zheng N, Tang L, Ji X. Effects of cadmium and copper mixtures to carrot and pakchoi under greenhouse cultivation condition. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 159:172-181. [PMID: 29751225 DOI: 10.1016/j.ecoenv.2018.04.060] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/23/2018] [Accepted: 04/26/2018] [Indexed: 06/08/2023]
Abstract
A pot experiment was undertaken to investigate the effects of Cd and Cu mixtures to growth and nutrients (sugar, carotene or vitamin C) of carrot and pakchoi under greenhouse cultivation condition. The study included: (a) physical-chemical properties of soil and soil animals in response to Cd and Cu stress; (b) bioaccumulation of heavy metals, length, biomass, contents of sugar and carotene (vitamin C) of carrot and pakchoi; (c) estimation the effects of Cd and Cu mixtures by multivariate regression analysis. The results implied that heavy metals impacted negative influence on soil animals' abundance. The metals contents in plants increased obviously with Cd and Cu contamination in soil. The biomass production and nutrients declined with Cd and Cu contents increasing. Cd (20 mg kg-1) treatment caused maximum reduction of sugar content (45.29%) in carrot root; maximum reduction in carotene content (75.73%) in carrot, 75.1% sugar content reduction and 70.58% vitamin C content reduction in pakchoi shoots were observed with addition of Cd (20 mg kg-1) and Cu (400 mg kg-1) mixture. The results of multivariate regression analysis indicated that combination of Cd and Cu exerts negative effects to both carrot and pakchoi, and both growth and nutrients were negatively correlated with metals concentrations. It is concluded that the Cd and Cu mixtures caused toxic damage to vegetable plants as Cd and Cu gradient concentrations increased.
Collapse
Affiliation(s)
- Shengnan Hou
- Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Changchun, Jilin, China; University of Chinese Academy of Sciences, Beijing, China
| | - Na Zheng
- Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Changchun, Jilin, China; The College of Environment and Resources, Jilin University, China.
| | - Lin Tang
- Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Changchun, Jilin, China; The College of Environment and Resources, Jilin University, China
| | - Xiaofeng Ji
- Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Changchun, Jilin, China; University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Nho EY, Jamila N, Khan N, Dang YM, Lee GH, Park YM, Choi JY, Kim KS. Determination of Metals in Fruits of Cucurbitaceae Species from South Korea, to Characterize Potential Effects on Human Health. ANAL LETT 2017. [DOI: 10.1080/00032719.2017.1360896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Eun Yeong Nho
- Department of Food and Nutrition, Chosun University, Gwangju, Republic of Korea
| | - Nargis Jamila
- Department of Food and Nutrition, Chosun University, Gwangju, Republic of Korea
- Department of Chemistry, Shaheed Benazir Bhutto Women University Peshawar, Peshawar, Pakistan
| | - Naeem Khan
- Department of Chemistry, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Yun Mi Dang
- Department of Food and Nutrition, Chosun University, Gwangju, Republic of Korea
| | - Ga Hyun Lee
- Department of Food and Nutrition, Chosun University, Gwangju, Republic of Korea
| | - Yu Min Park
- Department of Food and Nutrition, Chosun University, Gwangju, Republic of Korea
| | - Ji Yeon Choi
- Department of Food and Nutrition, Chosun University, Gwangju, Republic of Korea
| | - Kyong Su Kim
- Department of Food and Nutrition, Chosun University, Gwangju, Republic of Korea
| |
Collapse
|
13
|
Bian B, Lin C, Lv L. Health risk assessment of heavy metals in soil-plant system amended with biogas slurry in Taihu basin, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:16955-16964. [PMID: 27178292 DOI: 10.1007/s11356-016-6712-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 04/17/2016] [Indexed: 06/05/2023]
Abstract
Biogas slurry is a product of anaerobic digestion of manure that has been widely used as a soil fertilizer. Although the use for soil fertilizer is a cost-effective solution, it has been found that repeated use of biogas slurry that contains high heavy metal contents can cause pollution to the soil-plant system and risk to human health. The objective of this study was to investigate effects of biogas slurry on the soil-plant system and the human health. We analyzed the heavy metal concentrations (including As, Pb, Cu, Zn, Cr and Cd) in 106 soil samples and 58 plant samples in a farmland amended with biogas slurry in Taihu basin, China. Based on the test results, we assessed the potential human health risk when biogas slurry containing heavy metals was used as a soil fertilizer. The test results indicated that the Cd and Pb concentrations in soils exceeded the contamination limits and Cd exhibited the highest soil-to-root migration potential. Among the 11 plants analyzed, Kalimeris indica had the highest heavy metal absorption capacity. The leafy vegetables showed higher uptake of heavy metals than non-leafy vegetables. The non-carcinogenic risks mainly resulted from As, Pb, Cd, Cu and Zn through plant ingestion exposure. The integrated carcinogenic risks were associated with Cr, As and Cd in which Cr showed the highest risk while Cd showed the lowest risk. Among all the heavy metals analyzed, As and Cd appeared to have a lifetime health threat, which thus should be attenuated during production of biogas slurry to mitigate the heavy metal contamination.
Collapse
Affiliation(s)
- Bo Bian
- Jiangsu Provincial Academy of Environmental Science, 176 Jiang Dong North Road, Nanjing, Jiangsu Province, 210036, China.
- Jiangsu Province Key Laboratory of Environmental Engineering, 176 Jiang Dong North Road, Nanjing, Jiangsu, 210036, China.
| | - Cheng Lin
- Terracon Consultants, Inc, 2201 Rowland Ave, Savannah, GA, 31404, USA
| | - Lin Lv
- Jiangsu Provincial Academy of Environmental Science, 176 Jiang Dong North Road, Nanjing, Jiangsu Province, 210036, China
- Jiangsu Province Key Laboratory of Environmental Engineering, 176 Jiang Dong North Road, Nanjing, Jiangsu, 210036, China
| |
Collapse
|
14
|
Rehman ZU, Khan S, Qin K, Brusseau ML, Shah MT, Din I. Quantification of inorganic arsenic exposure and cancer risk via consumption of vegetables in southern selected districts of Pakistan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 550:321-329. [PMID: 26820935 PMCID: PMC4833018 DOI: 10.1016/j.scitotenv.2016.01.094] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 01/16/2016] [Accepted: 01/16/2016] [Indexed: 05/19/2023]
Abstract
Human exposures to arsenic (As) through different pathways (dietary and non-dietary) are considered to be one of the primary worldwide environmental health risks to humans. This study was conducted to investigate the presence of As in soil and vegetable samples collected from agricultural lands located in selected southern districts of Khyber Pakhtunkhwa (KPK) Province, Pakistan. We examined the concentrations of total arsenic (TAs), organic species of As such as monomethylarsonic acid (MMA) and dimethylarsonic acid (DMA), and inorganic species including arsenite (AsIII) and arsenate (AsV) in both soil and vegetables. The data were used to determine several parameters to evaluate human health risk, including bioconcentration factor (BCF) from soil to plant, average daily intake (ADI), health risk index (HRI), incremental lifetime cancer risk (ILTCR), and hazard quotient (HQ). The total As concentration in soil samples of the five districts ranged from 3.0-3.9mgkg(-1), exhibiting minimal variations from site to site. The mean As concentration in edible portions of vegetable samples ranged from 0.03-1.38mgkg(-1). It was observed that As concentrations in 75% of the vegetable samples exceeded the safe maximum allowable limit (0.1mgkg(-1)) set by WHO/FAO. The highest value of ADI for As was measured for Momordica charantia, while the lowest was for Allium chinense. The results of this study revealed minimal health risk (HI<1) associated with consumption of vegetables for the local inhabitants. The ILTCR values for inorganic As indicated a minimal potential cancer risk through ingestion of vegetables. In addition, the HQ values for total As were <1, indicating minimal non-cancer risk.
Collapse
Affiliation(s)
- Zahir Ur Rehman
- Department of Environmental Sciences, University of Peshawar, Peshawar 25120, Pakistan; School of Earth and Environmental Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Sardar Khan
- Department of Environmental Sciences, University of Peshawar, Peshawar 25120, Pakistan.
| | - Kun Qin
- College of Chemical Engineering, Taishan Medical University, Tai'an 271016, China.
| | - Mark L Brusseau
- School of Earth and Environmental Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Mohammad Tahir Shah
- National Centre of Excellence in Geology, University of Peshawar, Peshawar 25120, Pakistan
| | - Islamud Din
- Department of Environmental Sciences, FBAS, International Islamic University, Islamabad, Sector H-10, 44000 Islamabad, Pakistan
| |
Collapse
|
15
|
Chandra S, Saha R, Pal P. Arsenic Uptake and Accumulation in Okra (Abelmoschus esculentus) as Affected by Different Arsenical Speciation. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 96:395-400. [PMID: 26679322 DOI: 10.1007/s00128-015-1712-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 12/08/2015] [Indexed: 05/25/2023]
Abstract
Experimental investigations were conducted to evaluate the toxic effects of different arsenic (As) species such as arsenite (As(III)), arsenate (As(V)) and dimethylarsinic acid (DMA) on the growth of okra (Abelmoschus esculentus). The present study describes the changes in the growth, yield and accumulation characteristics of okra plants spiked with 20 and 50 mg kg(-1) of As(III), As(V) and DMA. As species negatively affected the yield and growth of the plant.The availability of arsenic compounds in the aerial parts decreased in the order As(V) > As(III) > DMA and in the roots observed as As(III) > As(V) > DMA. The results showed that except As(V), okra accumulated As(III) and DMA mainly in its roots with limited transport to shoots. Thus the plant has the capacity to tolerate As stress and can be considered as a resistive variety. The study also reveals that removal of As by boiling the vegetables with excess of water is not possible.
Collapse
Affiliation(s)
- Sukanya Chandra
- Department of Chemistry, National Institute of Technology, Durgapur, West Bengal, 713209, India
| | - Rajnarayan Saha
- Department of Chemistry, National Institute of Technology, Durgapur, West Bengal, 713209, India.
| | - Parimal Pal
- Department of Chemical Engineering, National Institute of Technology, Durgapur, West Bengal, 713209, India
| |
Collapse
|
16
|
Rezende PS, Costa LM, Windmöller CC. Arsenic mobility in sediments from Paracatu River Basin, MG, Brazil. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2015; 68:588-602. [PMID: 25672271 DOI: 10.1007/s00244-015-0134-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 01/27/2015] [Indexed: 06/04/2023]
Abstract
Paracatu River Basin, Minas Gerais, Brazil, houses long areas of irrigated agriculture and gold-, lead-, and zinc-mining activities. This region has a prevalence of sulfide minerals and a natural occurrence of high levels of arsenopyrite. In this work, surface water, groundwater, sediments and local vegetable samples were collected in October 2010 and November 2011 and were analyzed to evaluate arsenic (As) distribution, mobility, and transport in these environmental compartments. All sediment samples (738-2,750 mg kg(-1)) and 37 % of the water samples [less than the limit of detection (LOD) to 110 µg L(-1)] from the rivers and streams of Paracatu had As concentrations greater than the quality standards established by national and international environmental organizations (5.9 mg kg(-1) for sediments and 10 µg L(-1) for water). Most vegetable samples had As concentrations within the normal range for plants (lower than the LOD to 120 mg kg(-1)). A correlation among As concentrations in water, sediment, and vegetable samples was verified.
Collapse
Affiliation(s)
- Patrícia Sueli Rezende
- Departamento de Química, ICEx, UFMG - Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil,
| | | | | |
Collapse
|
17
|
Waseem A, Arshad J, Iqbal F, Sajjad A, Mehmood Z, Murtaza G. Pollution status of Pakistan: a retrospective review on heavy metal contamination of water, soil, and vegetables. BIOMED RESEARCH INTERNATIONAL 2014; 2014:813206. [PMID: 25276818 PMCID: PMC4167953 DOI: 10.1155/2014/813206] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/22/2014] [Accepted: 07/26/2014] [Indexed: 01/04/2023]
Abstract
Trace heavy metals, such as arsenic, cadmium, lead, chromium, nickel, and mercury, are important environmental pollutants, particularly in areas with high anthropogenic pressure. In addition to these metals, copper, manganese, iron, and zinc are also important trace micronutrients. The presence of trace heavy metals in the atmosphere, soil, and water can cause serious problems to all organisms, and the ubiquitous bioavailability of these heavy metal can result in bioaccumulation in the food chain which especially can be highly dangerous to human health. This study reviews the heavy metal contamination in several areas of Pakistan over the past few years, particularly to assess the heavy metal contamination in water (ground water, surface water, and waste water), soil, sediments, particulate matter, and vegetables. The listed contaminations affect the drinking water quality, ecological environment, and food chain. Moreover, the toxicity induced by contaminated water, soil, and vegetables poses serious threat to human health.
Collapse
Affiliation(s)
- Amir Waseem
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Jahanzaib Arshad
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Farhat Iqbal
- Department of Statistics, University of Balochistan, Quetta 87300, Pakistan
| | - Ashif Sajjad
- Institute of Biochemistry, University of Balochistan, Quetta 87300, Pakistan
| | - Zahid Mehmood
- Institute of Biochemistry, University of Balochistan, Quetta 87300, Pakistan
| | - Ghulam Murtaza
- COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan
| |
Collapse
|
18
|
Falinski KA, Yost RS, Sampaga E, Peard J. Arsenic accumulation by edible aquatic macrophytes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 99:74-81. [PMID: 24210365 DOI: 10.1016/j.ecoenv.2013.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 09/26/2013] [Accepted: 10/02/2013] [Indexed: 06/02/2023]
Abstract
Edible aquatic macrophytes grown in arsenic (As)-contaminated soil and sediment were investigated to determine the extent of As accumulation and potential risk to humans when consumed. Nasturtium officinale (watercress) and Diplazium esculentum (warabi) are two aquatic macrophytes grown and consumed in Hawaii. Neither has been assessed for potential to accumulate As when grown in As-contaminated soil. Some former sugarcane plantation soils in eastern Hawaii have been shown to have concentrations of total As over 500 mg kg(-1). It was hypothesized that both species will accumulate more As in contaminated soils than in non-contaminated soils. N. officinale and D. esculentum were collected in areas with and without As-contaminated soil and sediment. High soil As concentrations averaged 356 mg kg(-1), while low soil As concentrations were 0.75 mg kg(-1). Average N. officinale and D. esculentum total As concentrations were 0.572 mg kg(-1) and 0.075 mg kg(-1), respectively, corresponding to hazard indices of 0.12 and 0.03 for adults. Unlike previous studies where watercress was grown in As-contaminated water, N. officinale did not show properties of a hyperaccumulator, yet plant concentrations in high As areas were more than double those in low As areas. There was a slight correlation between high total As in sediment and soil and total As concentrations in watercress leaves and stems, resulting in a plant uptake factor of 0.010, an order of magnitude higher than previous studies. D. esculentum did not show signs of accumulating As in the edible fiddleheads. Hawaii is unique in having volcanic ash soils with extremely high sorption characteristics of As and P that limit release into groundwater. This study presents a case where soils and sediments were significantly enriched in total As concentration, but the water As concentration was below detection limits.
Collapse
Affiliation(s)
- K A Falinski
- Department of Tropical Plant and Soil Sciences, University of Hawaii at Manoa, 3190 Maile Way, Honolulu, HI 96822, United States.
| | | | | | | |
Collapse
|
19
|
Bhatti SM, Anderson CWN, Stewart RB, Robinson BH. Risk assessment of vegetables irrigated with arsenic-contaminated water. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2013; 15:1866-1875. [PMID: 23934025 DOI: 10.1039/c3em00218g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Arsenic (As) contaminated water is used in South Asian countries to irrigate food crops, but the subsequent uptake of As by vegetables and associated human health risk is poorly understood. We used a pot trial to determine the As uptake of four vegetable species (carrot, radish, spinach and tomato) with As irrigation levels ranging from 50 to 1000 μg L(-1) and two irrigation techniques, non-flooded (70% field capacity for all studied vegetables), and flooded (110% field capacity initially followed by aerobic till next irrigation) for carrot and spinach only. Only the 1000 μg As L(-1) treatment showed a significant increase of As concentration in the vegetables over all other treatments (P < 0.05). The distribution of As in vegetable tissues was species dependent; As was mainly found in the roots of tomato and spinach, but accumulated in the leaves and skin of root crops. There was a higher concentration of As in the vegetables grown under flood irrigation relative to non-flood irrigation. The trend of As bioaccumulation was spinach > tomato > radish > carrot. The As concentration in spinach leaves exceeded the Chinese maximum permissible concentration for inorganic As (0.05 μg g(-1) fresh weight) by a factor of 1.6 to 6.4 times. No other vegetables recorded an As concentration that exceeded this threshold. The USEPA parameters hazard quotient and cancer risk were calculated for adults and adolescents. A hazard quotient value greater than 1 and a cancer risk value above the highest target value of 10(-4) confirms potential risk to humans from ingestion of spinach leaves. In our study, spinach presents a direct risk to human health where flood irrigated with water containing an arsenic concentration greater than 50 μg As L(-1).
Collapse
Affiliation(s)
- S M Bhatti
- Soil and Earth Sciences Group, Institute of Agriculture and Environment, Massey University, Manawatu Private Bag 11 222, Palmerston North 4442, New Zealand.
| | | | | | | |
Collapse
|
20
|
Gebrekidan A, Weldegebriel Y, Hadera A, Van der Bruggen B. Toxicological assessment of heavy metals accumulated in vegetables and fruits grown in Ginfel river near Sheba Tannery, Tigray, Northern Ethiopia. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 95:171-178. [PMID: 23790523 DOI: 10.1016/j.ecoenv.2013.05.035] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 05/17/2013] [Accepted: 05/29/2013] [Indexed: 06/02/2023]
Abstract
The accumulation of heavy metals in vegetables resulting from irrigation with contaminated water obtained from industrial effluents may create a potential public health risk. We quantified the concentration of heavy metals (Cu, Zn, Fe, Mn, Cr, Cd, Ni, Co and Pb) in soil, vegetables and the water used for irrigation at two sites (Laelay Wukro and Tahtay Wukro) around Wukro Town, Tigray, Northern Ethiopia. The concentrations of heavy metals in irrigation water measured during this study were lower than permissible limits of heavy metals allowed for irrigation water. The mean concentrations of heavy metals in irrigated soil samples obtained from Tahtay Wukro were higher for Mn, Zn, Cr, and Cu. The overall results of soil samples ranged 2.62-827, 1.4-51.6, 25.5-33.6, 23.5-28.2, 2.52-25.1, 15-17.8, 3-4, 2.5-40.49 and 0.7-0.8 mg/kg for Mn, Zn, Cr, Ni, Cu, Co, Pb, Fe and Cd, respectively. Higher concentrations of heavy metals were also observed in vegetable samples from Tahtay Wukro. Pb was found to accumulate the most in all vegetable samples. It was observed that green pepper and lettuce accumulate high amounts of Cu and Zn; Swiss chard accumulates excessive amounts of Fe, Mn, Cr, Cd, Ni and Co; lettuce and tomato higher amounts of Cd; and green pepper, tomato and onion a higher concentration of Pb. Significant differences in the elemental concentrations between the vegetables analyzed from Laelay and Tahtay Wukro were observed. This was attributed in part to the geological nature of the study area and the discharges from the town and from a tannery. The results also indicate that Fe, Pb and Cd have high transfer factor values (mean values: 42.89, 0.84 and 0.37, respectively). The transfer pattern for heavy metals in different vegetables showed a trend in the order: Fe>Pb>Cd>Mn>Cu>Zn>Ni>Zn>Cr=Co. The heavy metal contamination of vegetables grown in Tahtay Wukro, located downstream of the tannery, may pose increased health risks in the future to the local population through consumption of vegetables.
Collapse
Affiliation(s)
- Abraha Gebrekidan
- Department of Chemistry, College of Natural and Computational Sciences, Mekelle University, Mekelle, Ethiopia.
| | | | | | | |
Collapse
|
21
|
Wu H, Liu X, Zhang X, Ji C, Zhao J, Yu J. Proteomic and metabolomic responses of clam Ruditapes philippinarum to arsenic exposure under different salinities. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 136-137:91-100. [PMID: 23660018 DOI: 10.1016/j.aquatox.2013.03.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 03/04/2013] [Accepted: 03/31/2013] [Indexed: 06/02/2023]
Abstract
Arsenic (As) contamination is a severe problem in the intertidal zones of the Bohai Sea (China) with wide salinity variation. In the present study, we combined proteomics and metabolomics to characterize the differential responses of arsenic in clam Ruditapes philippinarum under different salinities (31.1, 23.3 and 15.6 psu). Both proteomic and metabolomic responses indicated that varying salinities could significantly affect the toxicological responses of clams to As. Metabolic biomarkers revealed that the environmentally relevant arsenic (20 μg L(-1)) exposure induced disturbance in energy metabolism and/or osmotic regulation under different salinities, whereas protein biomarkers indicated oxidative stress, cellular injury and apoptosis and disturbance in energy metabolism. In addition, the up-regulated proteins including ATP synthase, succinyl-CoA synthetase and nucleoside diphosphate kinase were validated by related metabolites, succinate and ATP, which confirmed the disturbance in energy metabolism in clam gills at low salinity (15.6 psu). These findings provide important insights into toxicological effects of environmental contaminant at molecular levels using combined proteomics and metabolomics.
Collapse
Affiliation(s)
- Huifeng Wu
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), YICCAS, Yantai, 264003, PR China.
| | | | | | | | | | | |
Collapse
|
22
|
Wu H, Zhang X, Wang Q, Li L, Ji C, Liu X, Zhao J, Yin X. A metabolomic investigation on arsenic-induced toxicological effects in the clam Ruditapes philippinarum under different salinities. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 90:1-6. [PMID: 23374855 DOI: 10.1016/j.ecoenv.2012.02.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Revised: 02/17/2012] [Accepted: 02/22/2012] [Indexed: 06/01/2023]
Abstract
Arsenic is an important contaminant in the Bohai marine ecosystem due to the anthropogenic activities. In this work, we investigated the toxicological effects of arsenic in Ruditapes philippinarum under different seawater salinities using NMR-based metabolomics. Under normal salinity (31.1 ppt), arsenic decreased the levels of amino acids (glutamate, β-alanine, etc.), and increased the levels of betaine and fumarate. The metabolic biomarkers including decreased threonine, histidine, ATP and fumarate were found in the muscles of arsenic-treated clams under medium salinity (23.3 ppt). However, only elevated ATP and depleted succinate were detected in the arsenic-exposed clam samples under low salinity (15.6 ppt). These differential metabolic biomarkers indicated that arsenic could induce osmotic stress and disturbance in energy metabolism in clam under normal and medium salinities. However, arsenic caused only disturbance in energy metabolism in clam under low salinity. Overall, our results demonstrated that seawater salinity could influence the toxicological effects of arsenic.
Collapse
Affiliation(s)
- Huifeng Wu
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai Shandong 264003, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Soylak M, Cihan Z, Yilmaz E. Heavy metal contents of organically produced, harvested, and dried fruit samples from Kayseri, Turkey. ENVIRONMENTAL MONITORING AND ASSESSMENT 2013; 185:2577-2583. [PMID: 22736211 DOI: 10.1007/s10661-012-2741-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 06/11/2012] [Indexed: 06/01/2023]
Abstract
Organically produced, harvested, and dried fruit samples bought at organic markets in Kayseri, Turkey have been analyzed for their trace element contents. In the determinations, flame atomic absorption spectrometer (FAAS) was used. This pilot study is the first to be performed for organically produced, harvested, and dried fruit samples from Kayseri, Turkey. The copper, iron, manganese, and zinc concentrations were found to be 1.6-15.5, 10.3-144, 23.0-211, and 23.3-91.6 μg/g, respectively. The cobalt, lead, cadmium, chromium, and nickel concentrations in all analyzed organic fruit samples were below the quantification limits of FAAS. SRM 1570A spinach leaves and SRM 1515 apple leaves were used to check the accuracy of the procedure. The results for the dried fruit samples found in this work were compared with the values from some studies from the world. The results found in the presented work may also be useful for future studies about organically produced, harvested, and dried fruit samples.
Collapse
Affiliation(s)
- Mustafa Soylak
- Chemistry Department, Science Faculty, University of Erciyes, 38039, Kayseri, Turkey.
| | | | | |
Collapse
|
24
|
Park S, Lee BK. Strong positive associations between seafood, vegetables, and alcohol with blood mercury and urinary arsenic levels in the Korean adult population. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2013; 64:160-170. [PMID: 23011092 DOI: 10.1007/s00244-012-9808-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Accepted: 08/27/2012] [Indexed: 06/01/2023]
Abstract
Blood mercury and urinary arsenic levels are more than fivefold greater in the Korean population compared with those of the United States. This may be related to the foods people consumed. Therefore, we examined the associations between food categories and mercury and arsenic exposure in the Korean adult population. Data regarding nutritional, biochemical, and health-related parameters were obtained from a cross-sectional study, the 2008-2009 Korean National Health and Nutrition Examination Survey (3,404 men and women age ≥ 20 years). The log-transformed blood mercury and urinary arsenic levels were regressed against the frequency tertiles of each food group after covariate adjustment for sex, age, residence area, education level, smoking status, and drinking status using food-frequency data. Blood mercury levels in the high consumption groups compared to the low consumption groups were elevated by about 20 percents with salted fish, shellfish, whitefish, bluefish, and alcohol, and by about 9-14 percents with seaweeds, green vegetables, fruits and tea, whereas rice did not affect blood mercury levels. Urinary arsenic levels were markedly increased with consumption of rice, bluefish, salted fish, shellfish, whitefish, and seaweed, whereas they were moderately increased with consumption of grains, green and white vegetables, fruits, coffee, and alcohol. The remaining food categories tended to lower these levels only minimally. In conclusion, the typical Asian diet, which is high in rice, salted fish, shellfish, vegetables, alcoholic beverages, and tea, may be associated with greater blood mercury and urinary arsenic levels. This study suggests that mercury and arsenic contents should be monitored and controlled in soil and water used for agriculture to decrease health risks from heavy-metal contamination.
Collapse
Affiliation(s)
- Sunmin Park
- Department of Food and Nutrition, Hoseo University, Chungnam-Do, 336-795, South Korea
| | | |
Collapse
|