1
|
Herruzo-Ruiz AM, Trombini C, Sendra M, Michán C, Moreno-Garrido I, Alhama J, Blasco J. Accumulation, biochemical responses and changes in the redox proteome promoted by Ag and Cd in the burrowing bivalve Scrobicularia plana. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107123. [PMID: 39423745 DOI: 10.1016/j.aquatox.2024.107123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Silver (Ag) and cadmium (Cd) are non-essential metals that, as a result of natural processes and human activities, reach the aquatic environment where they interact with biota inducing potential toxic effects. To determine the biological effects of these metals on the endobenthic bivalve Scrobicularia plana, specimens were exposed to Ag and Cd at two concentrations, 5 and 50 μg∙L-1, for 7 days in a controlled microcosm system. The levels of the metals were measured in the seawater, sediments and clam tissues. The possible toxic biological effects of Ag and Cd were studied using a battery of biochemical biomarkers that are responsive to oxidative stress: superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione-S-transferase (GST) activities, and metallothioneins (MTs) and lipid peroxidation (LPO) levels. Since both metals have been linked to oxidative stress, redox modifications to proteins were studied by differential isotopic labelling of the oxidised and reduced forms of cysteines (Cys). An accumulation of metals was observed in the digestive gland and gills following exposure, together with the activation of enzyme activities (SOD for the Cd exposure; SOD, CAT, GST, and GR for the Ag exposure). The MT and LPO levels (after individual exposure to Ag and Cd) increased, which suggests the existence of antioxidant and detoxification processes to mitigate the toxic oxidative effects of both metals. The redox proteomic analysis identified 771 Cys-containing peptides (out of 514 proteins), of which 195 and 226 changed after exposure to Ag and Cd, respectively. Bioinformatics analysis showed that exposure to metal affects relevant functional pathways and biological processes in S. plana, such as: "cellular respiration" (Ag), "metabolism of amino acids" and "synthesis and degradation of proteins" (Ag and Cd), "carbohydrate metabolism" and "oxidative stress" (Cd). The proteomic approach implemented here is a powerful complement to conventional biochemical biomarkers, since it evaluates changes at the protein level in a high-throughput unbiased manner, thus providing a general appraisal of the biological responses altered by exposure to the contaminants.
Collapse
Affiliation(s)
- Ana María Herruzo-Ruiz
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, Spain
| | - Chiara Trombini
- Instituto de Ciencias Marinas de Andalucía (CSIC), Campus Rio San Pedro, 11510, Puerto Real, Cádiz, Spain
| | - Marta Sendra
- Instituto de Ciencias Marinas de Andalucía (CSIC), Campus Rio San Pedro, 11510, Puerto Real, Cádiz, Spain
| | - Carmen Michán
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, Spain
| | - Ignacio Moreno-Garrido
- Instituto de Ciencias Marinas de Andalucía (CSIC), Campus Rio San Pedro, 11510, Puerto Real, Cádiz, Spain
| | - José Alhama
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, Spain
| | - Julián Blasco
- Instituto de Ciencias Marinas de Andalucía (CSIC), Campus Rio San Pedro, 11510, Puerto Real, Cádiz, Spain.
| |
Collapse
|
2
|
Fabrello J, Dalla Fontana M, Gaiani N, Ciscato M, Roverso M, Bogialli S, Matozzo V. Assessing the Effects of a Diet of BPA Analogue-Exposed Microalgae in the Clam Ruditapes philippinarum. J Xenobiot 2024; 14:1221-1237. [PMID: 39311148 PMCID: PMC11417738 DOI: 10.3390/jox14030069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024] Open
Abstract
In our previous study, we demonstrated that the microalgae Phaeodactylum tricornutum can bioaccumulate bisphenol A analogues. Since this microalgae species is part of the diet of marine filter-feeding organisms, such as bivalves, in this study we tested the hypothesis that a diet based on exposed microalgae can exert negative effects on the clam Ruditapes philippinarum. Microalgae were exposed for 7 days to 300 ng/L of bisphenol AF (BPAF), bisphenol F (BPF), and bisphenol S (BPS), alone or as a mixture (MIX), to allow bioaccumulation. Microalgae were then supplied as food to bivalves. After 7 and 14 days of diet, the effects of exposed microalgae were evaluated on a battery of biomarkers measured in haemolymph/haemocytes, gills and digestive glands of clams. In addition, bioaccumulation of the three bisphenols was investigated in clams by UHPLC-HRMS. The results obtained demonstrated that total haemocyte count (THC) increased in clams following ingestion for 7 days of BPAF- and BPF-exposed microalgae, while BPS-exposed microalgae significantly reduced THC after 14 days of diet. MIX- and BPS-exposed microalgae increased haemocyte proliferation. The diet of exposed microalgae affected acid and alkaline phosphatase activity in clams, with an opposite response between haemolymph and haemocytes. Regarding antioxidants, an increase in catalase activity was observed in clams after ingestion of BPA analogue-exposed microalgae. The results also demonstrated marked oxidative stress in gills, the first tissue playing an important role in the feeding process. Oxidative damage was recorded in both the gills and digestive glands of clams fed BPA analogue-exposed microalgae. Alterations in epigenetic-involved enzyme activity were also found, demonstrating for the first time that BPA analogue-exposed food can alter epigenetic mechanisms in marine invertebrates. No bioaccumulation of BPA analogues was detected in clam soft tissues. Overall, this study demonstrated that a diet of BPA analogue-exposed microalgae can induce significant alterations of some important biological responses of R. philippinarum. To our knowledge, this is the first study demonstrating the effects of ingestion of BPA analogue-exposed microalgae in the clam R. philippinarum, suggesting a potential ecotoxicological risk for the marine food chain, at least at the first levels.
Collapse
Affiliation(s)
- Jacopo Fabrello
- Department of Biology, University of Padova, Via Bassi 58/B, 35131 Padova, Italy; (M.D.F.); (N.G.); (M.C.)
| | - Michela Dalla Fontana
- Department of Biology, University of Padova, Via Bassi 58/B, 35131 Padova, Italy; (M.D.F.); (N.G.); (M.C.)
| | - Noemi Gaiani
- Department of Biology, University of Padova, Via Bassi 58/B, 35131 Padova, Italy; (M.D.F.); (N.G.); (M.C.)
| | - Maria Ciscato
- Department of Biology, University of Padova, Via Bassi 58/B, 35131 Padova, Italy; (M.D.F.); (N.G.); (M.C.)
| | - Marco Roverso
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy; (M.R.); (S.B.)
| | - Sara Bogialli
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy; (M.R.); (S.B.)
| | - Valerio Matozzo
- Department of Biology, University of Padova, Via Bassi 58/B, 35131 Padova, Italy; (M.D.F.); (N.G.); (M.C.)
| |
Collapse
|
3
|
Saberi MH, Bita S. Endogenous enzymatic antioxidant status of whiteleg shrimp (Litopenaeus vannamei) following exposure to sublethal concentrations of silver nanoparticles. MARINE POLLUTION BULLETIN 2023; 193:115072. [PMID: 37315417 DOI: 10.1016/j.marpolbul.2023.115072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 06/16/2023]
Abstract
Immunotoxicity of silver nanoparticles (AgNPs) to whiteleg shrimp (Litopenaeus vannamei) was assessed using redox-status orchestrating enzymes. To this end, the shrimp was exposed to sublethal AgNPs concentrations (0 % LC50: control; 25 % LC50: 0.97 mg/L; 50 % LC50: 1.95 mg/L; 75 % LC50: 2.92 mg/L). During the experiment, the behavior of superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and glutathione peroxidase (GPx) was monitored, besides total antioxidant capacity (TAC) and malondialdehyde (MDA). The hepatopancreas SOD activity reduced about 63 %-76 % at.%50 LC50 and %75 LC50 AgNPs treatments, and CAT decreased in both tissues at 50 % LC50 AgNPs. TAC exhibited a U-form response in the hepatopancreas organ against stress caused by AgNPs, and hepatopancreas MDA displayed a time-dependent increase. Taken together, AgNPs triggered severe immunotoxicity through suppression of CAT, SOD, and TAC in the hepatopancreas tissue.
Collapse
Affiliation(s)
| | - Seraj Bita
- Department of Fisheries sciences, Faculty of Marine Sciences, Chabahar Maritime University, Chabahar, Iran.
| |
Collapse
|
4
|
Possible Interaction between ZnS Nanoparticles and Phosphonates on Mediterranean Clams Ruditapes decussatus. Molecules 2023; 28:molecules28062460. [PMID: 36985432 PMCID: PMC10059899 DOI: 10.3390/molecules28062460] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/23/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
This study aims to evaluate the toxicity of ZnS nanoparticles (ZnS NP50 = 50 µg/L and ZnS NP100 = 100 µg/L) and diethyl (3-cyano-1-hydroxy-2-methyl-1-phenylpropyl)phosphonate or P (P50 = 50 µg/L and P100 = 100 µg/L) in the clams Ruditapes decussatus using chemical and biochemical approaches. The results demonstrated that clams accumulate ZnS NPs and other metallic elements following exposure. Moreover, ZnS NPs and P separately lead to ROS overproduction, while a mixture of both contaminants has no effect. In addition, data showed that exposure to P100 resulted in increased levels of oxidative stress enzyme activities catalase (CAT) in the gills and digestive glands. A similar trend was also observed in the digestive glands of clams treated with ZnS100. In contrast, CAT activity was decreased in the gills at the same concentration. Exposure to ZnS100 and P100 separately leads to a decrease in acetylcholinesterase (AChE) levels in both gills and digestive glands. Thus, AChE and CAT after co-exposure to an environmental mixture of nanoparticles (ZnS100) and phosphonate (P100) did not show any differences between treated and non-treated clams. The outcome of this work certifies the use of biomarkers and chemical assay when estimating the effects of phosphonate and nanoparticles as part of an ecotoxicological assessment program. An exceptional focus was given to the interaction between ZnS NPs and P. The antioxidant activity of P has been demonstrated to have an additive effect on metal accumulation and antagonistic agents against oxidative stress in clams treated with ZnS NPs.
Collapse
|
5
|
Zhang L, Wang WX. Silver nanoparticle toxicity to the larvae of oyster Crassostrea angulata: Contribution of in vivo dissolution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159965. [PMID: 36343823 DOI: 10.1016/j.scitotenv.2022.159965] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Understanding the toxic mechanism of silver nanoparticles (AgNPs) is crucial for it risk assessment in marine environment, but the role of Ag+ release in the AgNP toxicity to marine biota is not yet well addressed. This study investigated the toxicity of AgNPs to the veliger larvae of oyster Crassostrea angulata, with a specific focus on the possibility of the involvement of in vivo dissolution of AgNPs in the toxicity via an aggregation-induced emission luminogen (AIEgen)-based imaging technique. AgNO3 exhibited significantly greater toxicity than AgNPs based on the total Ag, as indicated by lower 50 % growth inhibition concentration (EC50). The average concentration of soluble Ag in seawater at the EC50 of AgNPs was far lower than the EC50 of AgNO3, indicating that the AgNP toxicity could not be fully explained by the dissolved Ag in the medium. Despite the comparable soluble Ag concentration in seawater for both treatments, more Ag was accumulated in the larvae exposed to AgNPs, suggesting their ability to directly ingest particulate Ag, which was further confirmed by the presence of AgNPs aggregates in the esophagus and stomach. With the application of AIEgen-based imaging technique, in vivo dissolution of AgNPs in oyster larvae was thoroughly verified by an increase in Ag(I) content in the larvae exposed to AgNPs after depuration. The results collectively implied that apart from the Ag released in the medium, the Ag dissolved from the ingested AgNPs may also greatly contribute to the toxicity of AgNPs toward the oyster larvae. The findings of this work shed new light on the bioavailability and toxicity of AgNPs in marine environment.
Collapse
Affiliation(s)
- Luqing Zhang
- Institute of Pesticide and Environmental Toxicology, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Wen-Xiong Wang
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China; School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong.
| |
Collapse
|
6
|
Garrard SL, Spicer JI, Thompson RC. Tyre particle exposure affects the health of two key estuarine invertebrates. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120244. [PMID: 36152711 DOI: 10.1016/j.envpol.2022.120244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Tyre wear particles may be the largest source of microplastic to the natural environment, yet information on their biological impacts is inadequate. Two key estuarine invertebrates; the clam Scrobicularia plana and the ragworm Hediste diversicolor were exposed to 10% tyre particles in sediment for three days. Both species consumed the particles, although S. plana consumed 25x more than H. diversicolor (967 compared with 35 particles.g-1 wet weight, respectively). We then investigated the impact of 21 days exposure to different concentrations of tyre particles in estuarine sediments (0.2, 1, and 5% dry weight sediment) on aspects of the health of S. plana and H. diversicolor. Reductions in feeding and burial rates were observed for S. plana but not H. diversicolor, whilst both species showed a decrease in protein content in response to the greatest tyre particle concentration (5%), linked to an 18% decrease in energy reserves for H. diversicolor. Five percent tyre particle exposure led to an increase in total glutathione in the tissues of H. diversicolor, whilst lipid peroxidation decreased in the digestive glands of S. plana, possibly due to an increase in cell turnover. This study found that S. plana's health was impacted at lower concentrations than H. diversicolor, likely due to its consumption of large quantities of sediment. At the high exposure concentration (5%), the health of both invertebrates was impacted. This study did not separate the effects caused by the microplastic particles versus the effects of the chemical additives leaching from these particles, but our results do indicate that future studies should investigate effects in isolation and in combination, to determine the main drivers of toxicity.
Collapse
Affiliation(s)
- S L Garrard
- Marine Biology and Ecology Research Centre, School of Biological & Marine Science University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK; Plymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH, UK.
| | - J I Spicer
- Marine Biology and Ecology Research Centre, School of Biological & Marine Science University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| | - R C Thompson
- Marine Biology and Ecology Research Centre, School of Biological & Marine Science University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| |
Collapse
|
7
|
Corsi I, Desimone MF, Cazenave J. Building the Bridge From Aquatic Nanotoxicology to Safety by Design Silver Nanoparticles. Front Bioeng Biotechnol 2022; 10:836742. [PMID: 35350188 PMCID: PMC8957934 DOI: 10.3389/fbioe.2022.836742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/14/2022] [Indexed: 01/13/2023] Open
Abstract
Nanotechnologies have rapidly grown, and they are considered the new industrial revolution. However, the augmented production and wide applications of engineered nanomaterials (ENMs) and nanoparticles (NPs) inevitably lead to environmental exposure with consequences on human and environmental health. Engineered nanomaterial and nanoparticle (ENM/P) effects on humans and the environment are complex and largely depend on the interplay between their peculiar properties such as size, shape, coating, surface charge, and degree of agglomeration or aggregation and those of the receiving media/body. These rebounds on ENM/P safety and newly developed concepts such as the safety by design are gaining importance in the field of sustainable nanotechnologies. This article aims to review the critical characteristics of the ENM/Ps that need to be addressed in the safe by design process to develop ENM/Ps with the ablility to reduce/minimize any potential toxicological risks for living beings associated with their exposure. Specifically, we focused on silver nanoparticles (AgNPs) due to an increasing number of nanoproducts containing AgNPs, as well as an increasing knowledge about these nanomaterials (NMs) and their effects. We review the ecotoxicological effects documented on freshwater and marine species that demonstrate the importance of the relationship between the ENM/P design and their biological outcomes in terms of environmental safety.
Collapse
Affiliation(s)
- Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | - Martin Federico Desimone
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Jimena Cazenave
- Laboratorio de Ictiología, Instituto Nacional de Limnología (INALI), CONICET, Universidad Nacional del Litoral, Santa Fe, Argentina
- *Correspondence: Jimena Cazenave,
| |
Collapse
|
8
|
In-Gel Assay to Evaluate Antioxidant Enzyme Response to Silver Nitrate and Silver Nanoparticles in Marine Bivalve Tissues. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12062760] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Silver is back in vogue today as this metal is used in the form of nanomaterials in numerous commercial products. We have developed in-gel electrophoretic techniques to measure the activity of the antioxidant enzymes catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPX), and used the same techniques in combination with HSP70 Western blot analysis to evaluate the effects of nanomolar amounts of silver nitrate and 5 nm alkane-coated silver nanoparticles in tissues of the marine bivalve Mytilus galloprovincialis (Lam.) exposed for 28 days in mesocosms. Our results showed a negligible effect for nanosilver exposure and dose-dependent effects for the nitrate form.
Collapse
|
9
|
Temiz Ö, Kargın F. Toxicological Impacts on Antioxidant Responses, Stress Protein, and Genotoxicity Parameters of Aluminum Oxide Nanoparticles in the Liver of Oreochromis niloticus. Biol Trace Elem Res 2022; 200:1339-1346. [PMID: 34021468 DOI: 10.1007/s12011-021-02723-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023]
Abstract
The aim of this study was to determine the toxic effects of aluminum oxide nanoparticles (Al2O3 NPs) on oxidative stress, stress protein, and genotoxicity parameters in Oreochromis niloticus. Ninety-six-hour LC50 value of Al2O3 NPs was found as 52.4 ppm for O. niloticus. The fish were exposed to 2.6 ppm (5% of the 96-h LC50) and 5.2 ppm (10% of the 96-h LC50) for 3 days and 7 days. Various biochemical parameters, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST) activities, glutathione (GSH), thiobarbituric acid reactive substance (TBARS), heat shock protein 70 (HSP70; stress protein), and genotoxicity biomarker 8-hydroxy-2-deoxyguanosine (8-OHdG) levels, were determined. Results showed that antioxidant enzymes were significantly decreased in SOD, CAT, and GPx enzyme activity, but GST enzyme activity was significantly increased in 7 days. The oxidative stress parameters, GSH levels, were significantly decreased while 8-OHdG and TBARS levels were increased in 3 and 7 days. HSP70 levels were decreased in the concentrations of Al2O3 NPs and exposure times. Our results showed that as a result of changes in oxidative stress parameters, stress protein, and genotoxicity parameters, O. niloticus liver tissue is highly sensitive and toxic to aluminum oxide nanoparticle exposure.
Collapse
Affiliation(s)
- Özge Temiz
- Vocational School of Health Services, Osmaniye Korkut Ata University, 80000, Osmaniye, Turkey.
| | - Ferit Kargın
- Department of Biology, Faculty of Science and Letters, Çukurova University, 01330, Adana, Turkey
| |
Collapse
|
10
|
Dellali M, Khallouli A, Harrath AH, Falodah F, Alwasel S, Beyrem H, Gyedu-Ababio T, Rohal-Lupher M, Boufahja F. Effects of Au/TiO 2 metallic nanoparticles on Unio ravoisieri: assessment through an oxidative stress and toxicity biomarkers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:18176-18185. [PMID: 33410041 DOI: 10.1007/s11356-020-12305-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
Several studies have been performed on the effects of nanoparticles on aquatic life. However, most of them investigated marine organisms, not freshwater organisms. This study investigated biomarker responses after exposure for 48 h and 7 days to newly made gold and titanium dioxide (Au/TiO2) metallic nanoparticles (MNPs) (100 and 200 μg·L-1) using the freshwater bivalve mussel Unio ravoisieri. Biochemical analysis of the gills and digestive glands showed induction of oxidative stress following exposure of the bivalve to Au/TiO2 MNPs. After 2 or 7 days of exposure to Au/TiO2 MNPs, both utilized concentrations of Au/TiO2 MNPs induce an overproduction of H2O2. Catalase and glutathione S-transferase activities and the malonedialdehyde content significantly increased in the presence of Au/TiO2 MNPs, depending on the concentration and target organ. In contrast, acetylcholinesterase activity was significantly inhibited, indicating a discernible disturbance of the cholinergic system in the presence of Au/TiO2 MNPs. The behavior of the freshwater mussel was altered by reducing the clearance rate. Therefore, U. ravoisieri can be used as a model species in laboratory studies to mirror the presence of MNPs, and the biomarker approach is important for detecting the effects of Au/TiO2 MNPs. In addition, digestive gland is the target organ of Au/TiO2NPs contamination.
Collapse
Affiliation(s)
- Mohamed Dellali
- Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, University of Carthage, 7021, Zarzouna, Tunisia
| | - Altaf Khallouli
- Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, University of Carthage, 7021, Zarzouna, Tunisia
| | - Abdel Halim Harrath
- King Saud University, Zoology Department, College of Science, Box 2455, Riyadh, 11451, Saudi Arabia
| | - Fawaz Falodah
- King Saud University, Zoology Department, College of Science, Box 2455, Riyadh, 11451, Saudi Arabia
| | - Saleh Alwasel
- King Saud University, Zoology Department, College of Science, Box 2455, Riyadh, 11451, Saudi Arabia
| | - Hamouda Beyrem
- Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, University of Carthage, 7021, Zarzouna, Tunisia
| | | | - Melissa Rohal-Lupher
- Texas Water Development Board, 1700 North Congress Avenue, Austin, TX, 78701, USA
| | - Fehmi Boufahja
- Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, University of Carthage, 7021, Zarzouna, Tunisia.
| |
Collapse
|
11
|
Mehennaoui K, Cambier S, Minguez L, Serchi T, Guérold F, Gutleb AC, Giamberini L. Sub-chronic effects of AgNPs and AuNPs on Gammarus fossarum (Crustacea Amphipoda): From molecular to behavioural responses. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 210:111775. [PMID: 33421722 DOI: 10.1016/j.ecoenv.2020.111775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
The aim of the present study was the assessment of the sub-chronic effects of silver (AgNPs) and gold nanoparticles (AuNPs) of 40 nm primary size either stabilised with citrate (CIT) or coated with polyethylene glycol (PEG) on the freshwater invertebrate Gammarus fossarum. Silver nitrate (AgNO3) was used as a positive control in order to study the contribution of silver ions potentially released from AgNPs on the observed effects. A multibiomarker approach was used to assess the long-term effects of AgNPs and AuNPs 40 nm on molecular, cellular, physiological and behavioural responses of G. fossarum. Specimen of G. fossarum were exposed for 15 days to 0.5 and 5 µgL-1 of CIT and PEG AgNPs and AuNPs 40 nm in the presence of food. A significant uptake of both Ag and Au was observed in exposed animals but was under the toxic threshold leading to mortality of G. fossarum. Silver nanoparticles (CIT-AgNPs and PEG-AgNPs 40 nm) led to an up-regulation of Na+K+ATPase gene expression. An up-regulation of Catalse and Chitinase gene expressions due to exposure to PEG-AgNPs 40 nm was also observed. Gold nanoparticles (CIT and PEG-AuNPs 40 nm) led to an increase of CuZnSOD gene expression. Furthermore, both AgNPs and AuNPs led to a more developed digestive lysosomal system indicating a general stress response in G. fossarum. Both AgNPs and AuNPs 40 nm significantly affected locomotor activity of G. fossarum while no effects were observed on haemolymphatic ions and ventilation.
Collapse
Affiliation(s)
- Kahina Mehennaoui
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, 41 rue du Brill, Belvaux, Luxembourg; Université de Lorraine, CNRS UMR 7360, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), Campus Bridoux, Rue du Général Delestraint, F-57000, Metz, France
| | - Sébastien Cambier
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, 41 rue du Brill, Belvaux, Luxembourg
| | - Laëtitia Minguez
- Université de Lorraine, CNRS UMR 7360, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), Campus Bridoux, Rue du Général Delestraint, F-57000, Metz, France
| | - Tommaso Serchi
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, 41 rue du Brill, Belvaux, Luxembourg
| | - François Guérold
- Université de Lorraine, CNRS UMR 7360, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), Campus Bridoux, Rue du Général Delestraint, F-57000, Metz, France
| | - Arno C Gutleb
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, 41 rue du Brill, Belvaux, Luxembourg
| | - Laure Giamberini
- Université de Lorraine, CNRS UMR 7360, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), Campus Bridoux, Rue du Général Delestraint, F-57000, Metz, France.
| |
Collapse
|
12
|
Duroudier N, Katsumiti A, Mikolaczyk M, Schäfer J, Bilbao E, Cajaraville MP. Cell and tissue level responses in mussels Mytilus galloprovincialis dietarily exposed to PVP/PEI coated Ag nanoparticles at two seasons. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 750:141303. [PMID: 32871366 DOI: 10.1016/j.scitotenv.2020.141303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/24/2020] [Accepted: 07/26/2020] [Indexed: 06/11/2023]
Abstract
Silver nanoparticles (Ag NPs) are present in numerous consumer products due to their antimicrobial and other unique properties, thus concerns about their potential input into aquatic ecosystems are increasing. Toxicity of Ag NPs in waterborne exposed aquatic organisms has been widely investigated, but studies assessing the potential toxic effects caused after ingestion through the food web, especially at low realistic concentrations, remain scarce. Moreover, it is not well known whether season may influence toxic effects of Ag NPs. The main objective of this study was to determine cell and tissue level responses in mussels Mytilus galloprovincialis dietarily exposed to poly-N-vinyl-2-pirrolidone/polyethyleneimine (PVP/PEI) coated 5 nm Ag NPs for 1, 7 and 21 days both in autumn and spring. Mussels were fed every day with microalgae Isochrysis galbana exposed for 24 h to a low dose (1 μg Ag/L Ag NPs) in spring and to a higher dose (10 μg Ag/L Ag NPs) in spring and autumn. Mussels fed with microalgae exposed to the high dose accumulated Ag significantly after 21 days in both seasons, higher levels being measured in autumn compared to spring. Intralysosomal metal accumulation measured in mussel digestive gland and time- and dose-dependent reduction of mussels health status was similar in both seasons. DNA strand breaks increased significantly in hemocytes at both exposure doses along the 21 days in spring and micronuclei frequency showed an increasing trend after 1 and 7 days of exposure to 1 μg Ag/L Ag NPs in spring and to 10 μg Ag/L in both seasons. Values decreased after 21 days of exposure in all the cases. In conclusion, PVP/PEI coated 5 nm Ag NPs ingested through the food web were significantly accumulated in mussel tissues and caused adverse cell and tissue level effects both in autumn and in spring.
Collapse
Affiliation(s)
- Nerea Duroudier
- CBET Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology, PiE, University of the Basque Country UPV/EHU, Basque Country, Spain
| | - Alberto Katsumiti
- CBET Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology, PiE, University of the Basque Country UPV/EHU, Basque Country, Spain
| | - Mathilde Mikolaczyk
- Université de Bordeaux, UMR 5805 EPOC, Allée Geoffroy St Hilaire, 33615 Pessac Cedex, France
| | - Jörg Schäfer
- Université de Bordeaux, UMR 5805 EPOC, Allée Geoffroy St Hilaire, 33615 Pessac Cedex, France
| | - Eider Bilbao
- CBET Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology, PiE, University of the Basque Country UPV/EHU, Basque Country, Spain
| | - Miren P Cajaraville
- CBET Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology, PiE, University of the Basque Country UPV/EHU, Basque Country, Spain.
| |
Collapse
|
13
|
Mansour C, Guibbolini M, Rouane Hacene O, Saidane Mosbahi D, Risso-de Faverney C. Oxidative Stress and Damage Biomarkers in Clam Ruditapes decussatus Exposed to a Polluted Site: The Reliable Biomonitoring Tools in Hot and Cold Seasons. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 78:478-494. [PMID: 32016484 DOI: 10.1007/s00244-020-00713-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/23/2020] [Indexed: 06/10/2023]
Abstract
In the present study, a multi-biomarker approach was used to assess the biological effects of metal pollution in the southern lagoon of Tunis, on clam Ruditapes decussatus both in "hot" (in summer) and "cold" (in winter) seasons. Clams were collected in August 2015 and February 2016 from three sites of the lagoon and from Louza considered a reference site. The concentrations of five trace metals (cadmium, copper, iron, lead, and zinc) in the soft tissues of R. decussatus were evaluated at the sampling sites. A core of biomarkers indicative of (a) neurotoxicity (acetylcholinesterase, AChE); (b) biotransformation (glutathione S-transferase, GST); (c) oxidative stress (catalase, CAT; total glutathione peroxidase, T-GPx; total glutathione peroxidase, T-GPx; selenium-dependent glutathione peroxidase, Se-GPx; glutathione reductase, GR; superoxide dismutase, SOD) (d) lipid peroxidation (malondialdhyde, MDA level), and (e) apoptotic process (caspase 3-like, CSP3) was selected for measurements of environmental effects on the populations of clams collected from the different sampling sites. The results of metal bioaccumulation in soft tissues of Ruditapes decussatus revealed a high pollution in the South Lagoon of Tunis with spatial variation and relatively high levels at the navigation channel. Anthropogenic pollutants in the lagoon led to the activation of antioxidant defense and biotransformation enzymes to oxidative damage of the membrane and activation of apoptosis, and revealed neurotoxicity. Among this core of biomarkers, the antioxidants enzymes (CAT, SOD, GR, and GPx) were very sensitive, allowing the discrimination among sites and pointing to the navigation channel as the most impacted site in the southern lagoon of Tunis. Moreover, a significant effect of season was recorded on biomarkers responses (e.g., CAT, GR, SOD, AChE, and CSP3 activities and MDA levels) with higher levels in winter than in summer, probably influenced by the reproductive stage and food availability. Finally, the measurement of the selected core of biomarkers in the whole soft tissues of clams was considered as an integrated indicator of environmental stress. Moreover, R. decussatus proved to be a remarkable sentinel species capable to establish a reliable diagnosis of the health status of the marine environment in different areas of the southern lagoon of Tunis, both in "hot" and "cold" seasons.
Collapse
Affiliation(s)
- Chalbia Mansour
- Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products, Faculty of Pharmacy, University of Monastir, Ibn Sina Street, 5000, Monastir, Tunisia.
| | - Marielle Guibbolini
- University Côte d'Azur, CNRS, ECOSEAS, UMR 7035, 28 Avenue Valrose BP 71, 06108, Nice Cedex 2, France
| | - Omar Rouane Hacene
- Laboratoire Réseau de Surveillance Environnementale (LRSE), Department of Biology, University of Oran, 1 Ahmed Ben Bella, BP 1524 El M'naouer, 31000, Oran, Algeria
| | - Dalila Saidane Mosbahi
- Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products, Faculty of Pharmacy, University of Monastir, Ibn Sina Street, 5000, Monastir, Tunisia
| | | |
Collapse
|
14
|
Gonçalves JM, Rocha T, Mestre NC, Fonseca TG, Bebianno MJ. Assessing cadmium-based quantum dots effect on the gonads of the marine mussel Mytilus galloprovincialis. MARINE ENVIRONMENTAL RESEARCH 2020; 156:104904. [PMID: 32174334 DOI: 10.1016/j.marenvres.2020.104904] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/21/2020] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
This study assesses the sex-specific effects induced by CdTe QDs, on the marine mussel Mytilus galloprovincialis in comparison to its dissolved counterpart. A 14 days exposure to CdTe QDs and dissolved Cd was conducted (10 μg Cd L-1), analysing Cd accumulation, oxidative stress, biotransformation, metallothionein and oxidative damage in the gonads. Both Cd forms caused significant antioxidant alterations, whereby QDs were more pro-oxidant, leading to oxidative damage, being females more affected. Overall, biochemical impairments on gonads of M. galloprovincialis demonstrate that the reproductive toxicity induced by CdTe QDs in mussels are sex-dependent and mediated by oxidative stress and lipid peroxidation. It is crucial to acknowledge how gametes are affected by metal-based nanoparticles, such as Cd-based QDs. As well as understanding the potential changes they may undergo at the cellular level during gametogenesis, embryogenesis and larval development potentially leading to serious impacts on population sustainability and ecosystem health.
Collapse
Affiliation(s)
- J M Gonçalves
- CIMA, Centre of Marine and Environmental Research, University of Algarve, Campus de Gambelas, 8000-139, Faro, Portugal
| | - T Rocha
- CIMA, Centre of Marine and Environmental Research, University of Algarve, Campus de Gambelas, 8000-139, Faro, Portugal; Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - N C Mestre
- CIMA, Centre of Marine and Environmental Research, University of Algarve, Campus de Gambelas, 8000-139, Faro, Portugal
| | - T G Fonseca
- CIMA, Centre of Marine and Environmental Research, University of Algarve, Campus de Gambelas, 8000-139, Faro, Portugal
| | - M J Bebianno
- CIMA, Centre of Marine and Environmental Research, University of Algarve, Campus de Gambelas, 8000-139, Faro, Portugal.
| |
Collapse
|
15
|
Ates M, Cimen ICC, Unal I, Kutlu B, Ertit Tastan B, Danabas D, Aksu O, Arslan Z. Assessment of impact of α-Fe 2 O 3 and γ-Fe 2 O 3 nanoparticles on phytoplankton species Selenastrum capricornutum and Nannochloropsis oculata. ENVIRONMENTAL TOXICOLOGY 2020; 35:385-394. [PMID: 31709674 DOI: 10.1002/tox.22875] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/17/2019] [Accepted: 10/19/2019] [Indexed: 06/10/2023]
Abstract
In this study, the impact of alpha-iron oxide (α-Fe2 O3 , 20-40 nm) and gamma iron oxide (γ-Fe2 O3 , 20-40 nm) nanoparticles (NPs) on phytoplankton species Selenastrum capricornutum and Nannochloropsis oculata was investigated Characterizations of the NPs were systematically carried out by TEM, dynamic light scattering, zeta potential, X-ray diffraction, SEM, and Fourier transformation infrared spectroscopy. Acute toxicity was tested between 0.2 and 50 mg/L for each NP for a period of 72 hours exposure. γ-Fe2 O3 NP inhibited development of N oculata at the rate of 54% in 0.2 mg/L group with a high mortality rate of up to 82%. α-Fe2 O3 NPs were less toxic that induced 97% mortality on N oculata at 10 mg/L suspensions. In contrast, α-Fe2 O3 NP inhibited growth of S capricornutum strongly (73%) in 0.2 mg/L group. γ-Fe2 O3 NPs showed similar growth inhibition (72%) on S capricornutum in 10 mg/L suspensions. Despite the differential effects, the results indicated acute toxicity of α-Fe2 O3 and γ-Fe2 O3 NPs on N oculata and S capricornutum.
Collapse
Affiliation(s)
- Mehmet Ates
- Department of Biotechnology, Munzur University, Graduate Institute of Education, Tunceli, Turkey
| | | | - Ilkay Unal
- Faculty of Fine Arts, Munzur University, Tunceli, Turkey
| | - Banu Kutlu
- Fisheries Faculty, Munzur University, Tunceli, Turkey
| | | | | | - Onder Aksu
- Fisheries Faculty, Munzur University, Tunceli, Turkey
| | - Zikri Arslan
- Department of Biochemistry and Chemistry, Jackson State University, Jackson, Mississippi
| |
Collapse
|
16
|
Arini A, Pierron F, Mornet S, Baudrimont M. Bioaccumulation dynamics and gene regulation in a freshwater bivalve after aqueous and dietary exposures to gold nanoparticles and ionic gold. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:3637-3650. [PMID: 30612357 DOI: 10.1007/s11356-018-4009-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 12/14/2018] [Indexed: 06/09/2023]
Abstract
Gold nanoparticles (AuNPs) are being developed and produced for a wide variety of industrial and biomedical applications, which raises the concern about their release and potential effects in the environment. In this study, we aim to assess the effects of PEGylated AuNPs and ionic gold on the freshwater bivalve Corbicula fluminea. As NP bioavailability is conditioned by many factors of variability, we focused on the determination of biodynamic parameters which control AuNP uptake and elimination in bivalves. Three experiments were conducted: (1) a waterborne exposure (0-24 mg/L for AuNPs and 0-12 mg/L for ionic gold), (2) a dietborne exposure (0-48 mg/L for AuNPs and 0-24 mg/L for ionic gold), and (3) an elimination phase (after waterborne exposure to 12 mg/L for AuNPs and 24 mg/L for ionic gold), to calculate rate constants for uptake from water(kuw), from food (kuf), and for the physiological elimination (ke) for AuNPs and AuCl(OH)3-. Jointly, the relative expression of several genes was investigated in the hemolymph cells to relate AuNPs and gold ion exposures to detoxification, oxidative stress, immune, and apoptosis responses in C. fluminea. Results show that kuw and kuf were around 10 and 30 times higher for AuNPs compared to AuCl(OH)3-, respectively. The ke was also faster in clams exposed to AuNPs meaning that they also had greater excretion capacities in comparison to gold ions. Water seems to be the main exposure pathway for C. fluminea according to kuw and kuf values for AuNPs and AuCl(OH)3- (kuw = 0.28 and 0.03, kuf = 0.009 and 0.001, respectively). The gene analyses pointed out important responses against oxidative stress, strong activations of genes of the immunity, and apoptosis after the waterborne exposure to AuNPs and to a lesser extent after exposure to gold ions. Very few responses were observed after the dietary exposure to both forms of gold, probably due to valve closure in response to contamination. While some studies suggest that the toxicity of nanoparticles may come from the release of metal ions, our results showed that the AuNPs we used were very stable (less than 1% of ion release) and generated more effects at the gene level than ionic gold. Therefore these results highlight the strong potential of toxicity of AuNPs compared to ionic gold and raise new concerns about the toxicity inherent to NPs in the environment.
Collapse
Affiliation(s)
- Adeline Arini
- UMR EPOC 5805, Place du Dr Peyneau, Université de Bordeaux - CNRS, 33120, Arcachon, France.
| | - Fabien Pierron
- UMR EPOC 5805, Place du Dr Peyneau, Université de Bordeaux - CNRS, 33120, Arcachon, France
| | - Stéphane Mornet
- UMR 5026, Institut de Chimie de la Matière Condensée de Bordeaux Université de Bordeaux- CNRS, 33600, Pessac, France
| | - Magalie Baudrimont
- UMR EPOC 5805, Place du Dr Peyneau, Université de Bordeaux - CNRS, 33120, Arcachon, France
| |
Collapse
|
17
|
Lekamge S, Miranda AF, Pham B, Ball AS, Shukla R, Nugegoda D. The toxicity of non-aged and aged coated silver nanoparticles to the freshwater shrimp Paratya australiensis. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 82:1207-1222. [PMID: 31900064 DOI: 10.1080/15287394.2019.1710887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nanoparticles (NPs) transform in the environment which result in alterations to their physicochemical properties. However, the effects of aging on the toxicity of NPs to aquatic organisms remain to be determined. Further the reports that have been published present contradictory results. The aim of this study was to examine the stability of differently coated silver nanoparticles (AgNPs) in media and the influence of aging of these NP on potential toxicity to freshwater shrimp Paratya australiensis. Coating-dependent changes in the stability of AgNP were observed with aging. Curcumin (C) coated AgNPs were stable, while tyrosine (T) coated AgNPs and epigallocatechin gallate (E) coated AgNPs aggregated in the P. australiensis medium. Increased lipid peroxidation and catalase activity was noted in P. australiensis exposed to AgNPs, suggesting oxidative stress was associated with NP exposure. The enhanced oxidative stress initiated by aged C-AgNPs suggests that aging of these NPs produced different toxicological responses. In summary, data suggest that coating-dependent alterations in NPs, together with aging affect both persistence and subsequent toxicity of NPs to freshwater organisms. Thus, the coating-dependent fate and toxicity of AgNPs together with the effect of their aging need to be considered in assessing the environmental risk of AgNPs to aquatic organisms.
Collapse
Affiliation(s)
- Sam Lekamge
- Ecotoxicology Research Group, School of Science, RMIT University, Bundoora, Australia
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Australia
| | - Ana F Miranda
- Ecotoxicology Research Group, School of Science, RMIT University, Bundoora, Australia
| | - Ben Pham
- Ecotoxicology Research Group, School of Science, RMIT University, Bundoora, Australia
| | - Andrew S Ball
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Australia
| | - Ravi Shukla
- Nanobiotechnology Research Laboratory, RMIT University, Melbourne, Australia
| | - Dayanthi Nugegoda
- Ecotoxicology Research Group, School of Science, RMIT University, Bundoora, Australia
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Australia
| |
Collapse
|
18
|
Lekamge S, Ball AS, Shukla R, Nugegoda D. The Toxicity of Nanoparticles to Organisms in Freshwater. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 248:1-80. [PMID: 30413977 DOI: 10.1007/398_2018_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanotechnology is a rapidly growing industry yielding many benefits to society. However, aquatic environments are at risk as increasing amounts of nanoparticles (NPs) are contaminating waterbodies causing adverse effects on aquatic organisms. In this review, the impacts of environmental exposure to NPs, the influence of the physicochemical characteristics of NPs and the surrounding environment on toxicity and mechanisms of toxicity together with NP bioaccumulation and trophic transfer are assessed with a focus on their impacts on bacteria, algae and daphnids. We identify several gaps which need urgent attention in order to make sound decisions to protect the environment. These include uncertainty in both estimated and measured environmental concentrations of NPs for reliable risk assessment and for regulating the NP industry. In addition toxicity tests and risk assessment methodologies specific to NPs are still at the research and development stage. Also conflicting and inconsistent results on physicochemical characteristics and the fate and transport of NPs in the environment suggest the need for further research. Finally, improved understanding of the mechanisms of NP toxicity is crucial in risk assessment of NPs, since conventional toxicity tests may not reflect the risks associated with NPs. Behavioural effects may be more sensitive and would be efficient in certain situations compared with conventional toxicity tests due to low NP concentrations in field conditions. However, the development of such tests is still lacking, and further research is recommended.
Collapse
Affiliation(s)
- Sam Lekamge
- Ecotoxicology Research Group, Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC, Australia.
| | - Andrew S Ball
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC, Australia
| | - Ravi Shukla
- Nanobiotechnology Research Laboratory, RMIT University, Melbourne, VIC, Australia
| | - Dayanthi Nugegoda
- Ecotoxicology Research Group, Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC, Australia
| |
Collapse
|
19
|
Aouini F, Trombini C, Sendra M, Blasco J. Biochemical response of the clam Ruditapes philippinarum to silver (AgD and AgNPs) exposure and application of an integrated biomarker response approach. MARINE ENVIRONMENTAL RESEARCH 2019; 152:104783. [PMID: 31558295 DOI: 10.1016/j.marenvres.2019.104783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 08/28/2019] [Accepted: 09/02/2019] [Indexed: 06/10/2023]
Abstract
Silver is a ubiquitous metal in the marine environment which can be accumulated by marine organisms. In order to assess the effect of dissolved silver (AgD) and AgNPs in R. philippinarum, the organisms were exposed to 20 μg L-1 of AgD and AgNPs (15 nm) over 7 days. Bioaccumulation of the metal and oxidative and detoxification biomarkers were studied in control and exposed clams. Ag was accumulated in gills and digestive glands. Results for biochemical biomarkers (superoxide dismutase, catalase and glutathione reductase activity, lipid peroxidation and metallothionein provoked a general increase in the integrated biomarker response index (IBR) values) indicating the induction of oxidative stress in the clams exposed to both Ag treatments. Therefore, the presence of Ag forms at the tested concentration in the aquatic medium represent a risk for R. philippinarum.
Collapse
Affiliation(s)
- Fatma Aouini
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Río S. Pedro, 11510, Puerto Real, Cádiz, Spain; Laboratory of Ecology, Biology and Physiology of Aquatic Organisms. Department of Biology. Faculty of Sciences of Tunis. University of Tunis El Manar, 2092, Tunis, Tunisia.
| | - Chiara Trombini
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Río S. Pedro, 11510, Puerto Real, Cádiz, Spain
| | - Marta Sendra
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Río S. Pedro, 11510, Puerto Real, Cádiz, Spain
| | - Julian Blasco
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Río S. Pedro, 11510, Puerto Real, Cádiz, Spain
| |
Collapse
|
20
|
De Marchi L, Coppola F, Soares AMVM, Pretti C, Monserrat JM, Torre CD, Freitas R. Engineered nanomaterials: From their properties and applications, to their toxicity towards marine bivalves in a changing environment. ENVIRONMENTAL RESEARCH 2019; 178:108683. [PMID: 31539823 DOI: 10.1016/j.envres.2019.108683] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/18/2019] [Accepted: 08/20/2019] [Indexed: 05/05/2023]
Abstract
As a consequence of their unique characteristics, the use of Engineered Nanomaterials (ENMs) is rapidly increasing in industrial, agricultural products, as well as in environmental technology. However, this fast expansion and use make likely their release into the environment with particular concerns for the aquatic ecosystems, which tend to be the ultimate sink for this type of contaminants. Considering the settling behaviour of particulates, benthic organisms are more likely to be exposed to these compounds. In this way, the present review aims to summarise the most recent data available from the literature on ENMs behaviour and fate in aquatic ecosystems, focusing on their ecotoxicological impacts towards marine and estuarine bivalves. The selection of ENMs presented here was based on the OECD's Working Party on Manufactured Nanomaterials (WPMN), which involves the safety testing and risk assessment of ENMs. Physical-chemical characteristics and properties, applications, environmental relevant concentrations and behaviour in aquatic environment, as well as their toxic impacts towards marine bivalves are discussed. Moreover, it is also identified the impacts derived from the simultaneous exposure of marine organisms to ENMs and climate changes as an ecologically relevant scenario.
Collapse
Affiliation(s)
- Lucia De Marchi
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal; Department of Mechanical Engineering & Center for Mechanical Technology and Automation (TEMA), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Francesca Coppola
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Amadeu M V M Soares
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Carlo Pretti
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado, Pisa, 56122, Italy
| | - José M Monserrat
- Universidade Federal Do Rio Grande, FURG, Instituto de Ciências Biológicas (ICB), Av Itália km 8 s/n - Caixa Postal 474, 96200-970, Rio Grande, RS, Brazil
| | - Camilla Della Torre
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milano, Italy
| | - Rosa Freitas
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
21
|
Carrazco-Quevedo A, Römer I, Salamanca MJ, Poynter A, Lynch I, Valsami-Jones E. Bioaccumulation and toxic effects of nanoparticulate and ionic silver in Saccostrea glomerata (rock oyster). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 179:127-134. [PMID: 31030055 DOI: 10.1016/j.ecoenv.2019.04.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 04/05/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
The increasing production of Ag nanoparticle (AgNP) containing products has inevitably led to a growing concern about their release into the aquatic environment, along with their potential behaviour, toxicity, and bioaccumulation in marine organisms exposed to NPs released from these products. Hence, this study is focused on the effects of AgNPs in Saccostrea glomerata (rock oyster) in artificial seawater (ASW); evaluating the NP's stability, dissolution, and bioaccumulation rate. AgNPs NM300K (20 ± 5 nm) in concentrations of 12.5 μgL-1 and 125 μgL-1 were used to conduct the experiments, and were compared to a blank and a positive control of 12.5 μgL-1 AgNO3. Dissolution in ASW was measured by ICP-OES and stability was assessed by TEM after 1 h and 3, 5, and 7 days of exposure. Bioaccumulation in gills and digestive glands was measured after 7 days of exposure. The higher concentration of AgNPs induced more aggregation, underwent less dissolution, and showed less bioaccumulation, while the lower concentration showed less aggregation, more dissolution and higher bioaccumulation. Five biomarkers (EROD: ethoxyresorufin-o-deethylase, DNA strand breaks, LPO: lipid peroxidation, GST: glutathione S-transferase and GR: glutathione reductase) were analysed at 0, 3, 5 and 7 days. Significant differences compared to the initial day of exposure (day 0) were reported in DNA strand breaks after 5 and 7 days of exposure, GST, from the third day of exposure, in all the Ag samples, and in some samples for LPO and GR biomarkers, while no significant induction of EROD was observed. A combined effect for each type of treatment and time of exposure was also reported for DNA strand breaks and GST biomarkers measured at the digestive glands. In general, the significant inductions measured showed the following trend: 125 μgL-1 AgNPs >12.5 μgL-1 AgNPs ∼12.5 μgL-1 AgNO3 even though bioaccumulation followed the opposite trend.
Collapse
Affiliation(s)
- Ana Carrazco-Quevedo
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Isabella Römer
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Maria J Salamanca
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Alexander Poynter
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Eugenia Valsami-Jones
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
22
|
Duroudier N, Markaide P, Cajaraville MP, Bilbao E. Season influences the transcriptomic effects of dietary exposure to PVP/PEI coated Ag nanoparticles on mussels Mytilus galloprovincialis. Comp Biochem Physiol C Toxicol Pharmacol 2019; 222:19-30. [PMID: 30940556 DOI: 10.1016/j.cbpc.2019.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 12/17/2022]
Abstract
Toxicity of AgNPs has been widely studied in waterborne exposed aquatic organisms. However, toxic effects caused by AgNPs ingested through the diet and depending on the season are still unexplored. The first cell response after exposure to xenobiotics occurs at gene transcription level. Thus, the aim of this study was to assess transcription level effects in the digestive gland of female mussels after dietary exposure to AgNPs both in autumn and in spring. Mussels were fed daily for 21 days with Isochrysis galbana microalgae previously exposed for 24 h to a dose close to environmentally relevant concentrations of 1 μg Ag/L PVP/PEI coated 5 nm AgNPs (in spring) and to a higher dose of 10 μg Ag/L of the same AgNPs both in autumn and in spring. After 1 and 21 days, mussels RNA was hybridized in a custom microarray containing 7806 annotated genes. Mussels were more responsive to the high dose compared to the low dose of AgNPs and a higher number of probes were altered in autumn than in spring. In both seasons, significantly regulated genes were involved in the cytoskeleton and lipid transport and metabolism COG categories, among others, while genes involved in carbohydrate transport and metabolism were specifically altered in autumn. Overall, transcription patterns were differently altered depending on the exposure time and season, indicating that season should be considered in ecotoxicological studies of metal nanoparticles in mussels.
Collapse
Affiliation(s)
- Nerea Duroudier
- CBET Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology, Research Centre for Experimental Marine Biology and Biotechnology PiE, University of the Basque Country (UPV/EHU), Basque Country, Spain
| | - Pablo Markaide
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Basque Country, Spain
| | - Miren P Cajaraville
- CBET Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology, Research Centre for Experimental Marine Biology and Biotechnology PiE, University of the Basque Country (UPV/EHU), Basque Country, Spain
| | - Eider Bilbao
- CBET Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology, Research Centre for Experimental Marine Biology and Biotechnology PiE, University of the Basque Country (UPV/EHU), Basque Country, Spain.
| |
Collapse
|
23
|
Taboada-López MV, Alonso-Seijo N, Herbello-Hermelo P, Bermejo-Barrera P, Moreda-Piñeiro A. Determination and characterization of silver nanoparticles in bivalve molluscs by ultrasound assisted enzymatic hydrolysis and sp-ICP-MS. Microchem J 2019. [DOI: 10.1016/j.microc.2019.05.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Ale A, Liberatori G, Vannuccini ML, Bergami E, Ancora S, Mariotti G, Bianchi N, Galdopórpora JM, Desimone MF, Cazenave J, Corsi I. Exposure to a nanosilver-enabled consumer product results in similar accumulation and toxicity of silver nanoparticles in the marine mussel Mytilus galloprovincialis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 211:46-56. [PMID: 30946994 DOI: 10.1016/j.aquatox.2019.03.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
The incorporation of silver nanoparticles (AgNPs) in commercial products is increasing rapidly. The consequent release of AgNPs into domestic and industrial wastewater raises environmental concerns due to their anti-microbial properties and toxicity to non-target aquatic organisms. The aim of the present study was to investigate the effects of nanArgen™ (Nanotek S.A.), a AgNP-enabled consumer product, in the marine bivalve Mytilus galloprovincialis. Two environmentally relevant concentrations of nanArgen™ (1 and 10 μg/L) were tested in vivo for 96 h, and Ag was quantified in mussel soft tissue and natural seawater (NSW). nanArgen™ suspensions were characterized via TEM, SEM, EDS, DLS, and UV-vis optical analysis. Several molecular and biochemical responses were investigated in exposed mussels: lysosomal membrane stability by Neutral Red Retention Time (NRRT) assay; micronucleus (MN) frequency in hemocytes; metallothionein (MT) protein content and gene expression (mt10 and mt20); catalase (CAT) and glutathione-S-transferase (GST) activities; malondialdehyde (MDA) accumulation in digestive glands; and efflux activity of ATP-binding cassette transport proteins (ABC) in gill biopsies. SEM, TEM and DLS analyses confirmed the presence of well-defined AgNPs in nanArgen™ which were roughly spherical with an average particle size of approx. 30 ± 10 nm. DLS analysis revealed the formation of AgNP aggregates in nanArgen™ suspension in NSW (Z-average of 547.80 ± 90.23 nm; PDI of 0.044). A significant concentration-dependent accumulation of Ag was found in mussels' whole soft tissue in agreement with a concentration-dependent decrease in NRRT and an increase of MN frequency in hemocytes and GST activities in digestive glands. A significant increase in MDA levels and MT via both molecular and biochemical tests, were also observed but only at the highest nanArgen™ concentration (10 μg/L). No changes were observed in CAT activities. ABC efflux activities in gill biopsies showed a significant decrease (p < 0.05) only at the lowest concentration (1 μg/L). On such basis, nanArgen™ is shown to be able to induce toxicity and Ag accumulation in marine mussels similarly to AgNPs and in short-term exposure conditions at environmentally relevant concentrations. AgNP-enabled products, instead of pristine AgNPs, should be the focus of future ecotoxicity studies in order to address any risks associated to their widespread use, disposal and uncontrolled release into the aquatic environment for non target species.
Collapse
Affiliation(s)
- Analía Ale
- Laboratorio de Ictiología, Instituto Nacional de Limnología (INALI-CONICET-UNL), Paraje El Pozo, Ciudad Universitaria UNL, Santa Fe, Argentina.
| | - Giulia Liberatori
- Department of Physical, Earth and Environmental Sciences, University of Siena, via Mattioli 4, Siena, Italy.
| | - Maria Luisa Vannuccini
- Department of Physical, Earth and Environmental Sciences, University of Siena, via Mattioli 4, Siena, Italy
| | - Elisa Bergami
- Department of Physical, Earth and Environmental Sciences, University of Siena, via Mattioli 4, Siena, Italy
| | - Stefania Ancora
- Department of Physical, Earth and Environmental Sciences, University of Siena, via Mattioli 4, Siena, Italy
| | - Giacomo Mariotti
- Department of Physical, Earth and Environmental Sciences, University of Siena, via Mattioli 4, Siena, Italy
| | - Nicola Bianchi
- Department of Physical, Earth and Environmental Sciences, University of Siena, via Mattioli 4, Siena, Italy
| | - Juan M Galdopórpora
- Universidad de Buenos Aires, CONICET, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Cátedra de Química Analítica Instrumental, Buenos Aires, Argentina
| | - Martín F Desimone
- Universidad de Buenos Aires, CONICET, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Cátedra de Química Analítica Instrumental, Buenos Aires, Argentina
| | - Jimena Cazenave
- Laboratorio de Ictiología, Instituto Nacional de Limnología (INALI-CONICET-UNL), Paraje El Pozo, Ciudad Universitaria UNL, Santa Fe, Argentina; Departamento de Ciencias Naturales, Facultad de Humanidades y Ciencias, Universidad Nacional del Litoral (FHUC-UNL), Paraje El Pozo, Ciudad Universitaria UNL, Santa Fe, Argentina
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, via Mattioli 4, Siena, Italy
| |
Collapse
|
25
|
Duroudier N, Cardoso C, Mehennaoui K, Mikolaczyk M, Schäfer J, Gutleb AC, Giamberini L, Bebianno MJ, Bilbao E, Cajaraville MP. Changes in protein expression in mussels Mytilus galloprovincialis dietarily exposed to PVP/PEI coated silver nanoparticles at different seasons. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 210:56-68. [PMID: 30825730 DOI: 10.1016/j.aquatox.2019.02.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 06/09/2023]
Abstract
Potential toxic effects of Ag NPs ingested through the food web and depending on the season have not been addressed in marine bivalves. This work aimed to assess differences in protein expression in the digestive gland of female mussels after dietary exposure to Ag NPs in autumn and spring. Mussels were fed daily with microalgae previously exposed for 24 h to 10 μg/L of PVP/PEI coated 5 nm Ag NPs. After 21 days, mussels significantly accumulated Ag in both seasons and Ag NPs were found within digestive gland cells and gills. Two-dimensional electrophoresis distinguished 104 differentially expressed protein spots in autumn and 142 in spring. Among them, chitinase like protein-3, partial and glyceraldehyde-3-phosphate dehydrogenase, that are involved in amino sugar and nucleotide sugar metabolism, carbon metabolism, glycolysis/gluconeogenesis and the biosynthesis of amino acids KEGG pathways, were overexpressed in autumn but underexpressed in spring. In autumn, pyruvate metabolism, citrate cycle, cysteine and methionine metabolism and glyoxylate and dicarboxylate metabolism were altered, while in spring, proteins related to the formation of phagosomes and hydrogen peroxide metabolism were differentially expressed. Overall, protein expression signatures depended on season and Ag NPs exposure, suggesting that season significantly influences responses of mussels to NP exposure.
Collapse
Affiliation(s)
- Nerea Duroudier
- CBET Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PiE, University of the Basque Country UPV/EHU, Basque Country, Spain
| | - Câtia Cardoso
- CIMA, Marine and Environmental Research Center, University of Algarve, Campus de Gambelas, 8000-135 Faro, Portugal
| | - Kahina Mehennaoui
- Environmental Research and Innovation (ERIN) Department, Luxembourg Insitute of Science and Technology (LIST), L-4422 Belvaux, Luxembourg; Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), UMR 7360 CNRS, F-57070, Metz, France
| | - Mathilde Mikolaczyk
- Université de Bordeaux, UMR 5805 EPOC, Allée Geoffroy St Hilaire, 33615 Pessac Cedex, France
| | - Jörg Schäfer
- Université de Bordeaux, UMR 5805 EPOC, Allée Geoffroy St Hilaire, 33615 Pessac Cedex, France
| | - Arno C Gutleb
- Environmental Research and Innovation (ERIN) Department, Luxembourg Insitute of Science and Technology (LIST), L-4422 Belvaux, Luxembourg
| | - Laure Giamberini
- Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), UMR 7360 CNRS, F-57070, Metz, France
| | - Maria J Bebianno
- CIMA, Marine and Environmental Research Center, University of Algarve, Campus de Gambelas, 8000-135 Faro, Portugal
| | - Eider Bilbao
- CBET Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PiE, University of the Basque Country UPV/EHU, Basque Country, Spain
| | - Miren P Cajaraville
- CBET Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PiE, University of the Basque Country UPV/EHU, Basque Country, Spain.
| |
Collapse
|
26
|
Duroudier N, Katsumiti A, Mikolaczyk M, Schäfer J, Bilbao E, Cajaraville MP. Dietary exposure of mussels to PVP/PEI coated Ag nanoparticles causes Ag accumulation in adults and abnormal embryo development in their offspring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 655:48-60. [PMID: 30469068 DOI: 10.1016/j.scitotenv.2018.11.181] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/11/2018] [Accepted: 11/12/2018] [Indexed: 06/09/2023]
Abstract
Toxicity of silver nanoparticles (Ag NPs) to aquatic organisms has been widely studied. However, the potential toxic effects of Ag NPs ingested through the food web, especially at environmentally relevant concentrations, as well as the potential effects on the offspring remain unknown. The aims of this work were to screen the cytotoxicity of Poly N‑vinyl‑2‑pirrolidone/Polyethyleneimine (PVP/PEI) coated 5 nm Ag NPs in hemocytes exposed in vitro and to assess the effects of dietary exposure to Ag NPs on mussels growth, immune status, gonad condition, reproductive success and offspring embryo development. For this, mussels Mytilus galloprovincialis were fed daily with microalgae Isochrysis galbana previously exposed for 24 h to a dose close to environmentally relevant concentrations (1 μg Ag/L Ag NPs) and to a high dose of 10 μg Ag/L Ag NPs. After 24 h of in vitro exposure, Ag NPs were cytotoxic to mussel hemocytes starting at 1 mg Ag/L (LC50: 2.05 mg Ag/L). Microalgae significantly accumulated Ag after the exposure to both doses and mussels fed for 21 days with microalgae exposed to 10 μg Ag/L Ag NPs significantly accumulated Ag in the digestive gland and gills. Sperm motility and fertilization success were not affected but exposed females released less eggs than non-exposed ones. The percentage of abnormal embryos was significantly higher than in control individuals after parental exposure to both doses. Overall, results indicate that Ag NPs taken up through the diet can significantly affect ecologically relevant endpoints such as reproduction success and embryo development in marine mussels.
Collapse
Affiliation(s)
- Nerea Duroudier
- CBET Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PiE, University of the Basque Country UPV/EHU, Basque Country, Spain
| | - Alberto Katsumiti
- CBET Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PiE, University of the Basque Country UPV/EHU, Basque Country, Spain
| | - Mathilde Mikolaczyk
- Université de Bordeaux, UMR 5805 EPOC, Allée Geoffroy St Hilaire, 33615 Pessac Cedex, France
| | - Jörg Schäfer
- Université de Bordeaux, UMR 5805 EPOC, Allée Geoffroy St Hilaire, 33615 Pessac Cedex, France
| | - Eider Bilbao
- CBET Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PiE, University of the Basque Country UPV/EHU, Basque Country, Spain
| | - Miren P Cajaraville
- CBET Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PiE, University of the Basque Country UPV/EHU, Basque Country, Spain.
| |
Collapse
|
27
|
Huang X, Lan Y, Liu Z, Huang W, Guo Q, Liu L, Hu M, Sui Y, Wu F, Lu W, Wang Y. Salinity mediates the toxic effect of nano-TiO 2 on the juvenile olive flounder Paralichthys olivaceus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 640-641:726-735. [PMID: 29879661 DOI: 10.1016/j.scitotenv.2018.05.350] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/03/2018] [Accepted: 05/28/2018] [Indexed: 06/08/2023]
Abstract
Increased production of engineered nanoparticles has raised extensive concern about the potential toxic effects on marine organisms living in estuarine and coastal environments. Meanwhile, salinity is one of the key environmental factors that may influence the physiological activities in flatfish species inhabiting in those waters due to fluctuations caused by freshwater input or rainfall. In this study, we investigated the oxidative stress and histopathological alteration of the juvenile Paralichthys olivaceus exposed to nano-TiO2 (1 and 10 mg L-1) under salinities of 10 and 30 psu for 4 days. In the gills, Na+-K+-ATPase activity significantly deceased after 4 days 10 psu exposure without nano-TiO2 compared with 1 day of acclimating the salinity from the normal salinity (30 psu) to 10 psu. Under this coastal salinity, low concentration (1 mg L-1) of nano-TiO2 exerted significant impacts. In the liver, the activities of superoxide dismutase, catalase, the levels of lipid peroxide and malondialdehyde increased with nano-TiO2 exposed under 30 psu. Such increase indicated an oxidative stress response. The result of the integrated biomarker responses showed that P. olivaceus can be adversely affected by high salinity and high concentration of nano-TiO2 for a short-term (4 days) exposure. The histological analysis revealed the accompanying severe damages for the gill filaments. Principal component analysis further showed that the oxidative stress was associated with the nano-TiO2 effect at normal salinity. These findings indicated that nano-TiO2 and normal salinity exert synergistic effects on juvenile P. olivaceus, and low salinity plays a protective role in its physiological state upon short-term exposure to nano-TiO2. The mechanism of salinity mediating the toxic effects of NPs on estuarine fish should be further considered.
Collapse
Affiliation(s)
- Xizhi Huang
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China.
| | - Yawen Lan
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China
| | - Zekang Liu
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China
| | - Wei Huang
- Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography State Oceanic Administration, Hangzhou 310058, China
| | - Qindan Guo
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China
| | - Liping Liu
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China
| | - Menghong Hu
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China
| | - Yanming Sui
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Fangli Wu
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China
| | - Weiqun Lu
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China
| | - Youji Wang
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China; Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography State Oceanic Administration, Hangzhou 310058, China; State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, China.
| |
Collapse
|
28
|
Khosravi-Katuli K, Shabani A, Paknejad H, Imanpoor MR. Comparative toxicity of silver nanoparticle and ionic silver in juvenile common carp (Cyprinus carpio): Accumulation, physiology and histopathology. JOURNAL OF HAZARDOUS MATERIALS 2018; 359:373-381. [PMID: 30048952 DOI: 10.1016/j.jhazmat.2018.07.064] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 07/12/2018] [Accepted: 07/14/2018] [Indexed: 06/08/2023]
Abstract
Many studies have investigated the potential negative effects of silver on aquatic organisms, but most focused on short-term exposure in few species. Moreover, there are many uncertainties about differences in potential toxicity mechanisms and adverse effects of silver nanoparticles (AgNPs) and ionic form of silver (AgNO3). We investigated chronic effects of AgNPs and AgNO3 on the juvenile common carp (Cyprinus carpio). AgNPs and AgNO3 accumulated in the liver, gill and intestine, respectively and highest was related to AgNPs. Our results indicated, silver uptake was accompanied with histological alteration in the target organs such that different tissue lesions were observed in exposed groups. Superoxide dismutase (SOD), catalase (CAT) and lactate dehydrogenase (LDH) activity and also hsp70, ghrelin and IGF-1 genes expression were induced in both forms. After 7 days, highest hsp70 gene expression was observed in AgNO3 treatment and highest ghrelin and IGF-1 gene expression was observed in AgNPs treatment. The results revealed that adverse effects of AgNPs on different aspects of the health of juvenile common carp, may not be solely a result of particle dissolution. In addition, the main toxic mechanism of AgNPs was probably related to the accumulation of silver followed by the molecular and oxidative stress response.
Collapse
Affiliation(s)
- Kheyrollah Khosravi-Katuli
- Department of Fishery, Gorgan University of Agricultural Sciences and Natural Resources, Via 45165-386, Gorgan, Iran; Niksa, Design and Development Company, Avadis Holding Group, 1917734795, Tehran, Iran
| | - Ali Shabani
- Department of Fishery, Gorgan University of Agricultural Sciences and Natural Resources, Via 45165-386, Gorgan, Iran.
| | - Hamed Paknejad
- Department of Fishery, Gorgan University of Agricultural Sciences and Natural Resources, Via 45165-386, Gorgan, Iran
| | - Mohammad Reza Imanpoor
- Department of Fishery, Gorgan University of Agricultural Sciences and Natural Resources, Via 45165-386, Gorgan, Iran
| |
Collapse
|
29
|
Huang X, Liu Z, Xie Z, Dupont S, Huang W, Wu F, Kong H, Liu L, Sui Y, Lin D, Lu W, Hu M, Wang Y. Oxidative stress induced by titanium dioxide nanoparticles increases under seawater acidification in the thick shell mussel Mytilus coruscus. MARINE ENVIRONMENTAL RESEARCH 2018; 137:49-59. [PMID: 29503109 DOI: 10.1016/j.marenvres.2018.02.029] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/22/2018] [Accepted: 02/24/2018] [Indexed: 06/08/2023]
Abstract
Biochemical responses of the mussel Mytilus coruscus exposed to different concentrations of titanium dioxide nanoparticles (nano-TiO2) (0, 2.5, 10 mg L-1) and two pH levels (pH 8.1 and pH 7.3) for 14 days. Mussel responses were also investigated after a 7 days recovery period (pH 8.1 and no nanoparticle). Exposure to nano-TiO2 led changes in antioxidant indexes (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione (GSH)), biotransformation enzyme activity (GST) and malondialdehyde level (MDA) in gills and digestive glands. An increase in MDA level and a decrease in SOD and GSH activities were observed in gill of mussels exposed to 10 mg L-1 nano-TiO2. This effect was more severe in mussels kept at pH 7.3 as compared to pH 8.1. A different response was observed in the digestive gland as SOD, CAT and GSH levels increased in mussels exposed to nano-TiO2. These contrasting results in digestive glands and gills were only evident at high concentration of nano-TiO2 and low pH. A 7 days recovery period was not sufficient to fully restore SOD, GPx, GST, GSH and MDA levels to levels before exposure to nano-TiO2 and low pH. Overall, our results confirmed that seawater acidification modulates effects of nanoparticles in mussels, and that gills are more sensitive to these stressors as compared with digestive glands.
Collapse
Affiliation(s)
- Xizhi Huang
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China.
| | - Zekang Liu
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China
| | - Zhe Xie
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China
| | - Sam Dupont
- Department of Biological and Environmental Sciences, Sven Lovén Centre for Marine Infrastructure - Kristineberg, University of Gothenburg, Fiskebäckskil, Sweden
| | - Wei Huang
- Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography State Oceanic Administration, Hangzhou, 310058, China
| | - Fangli Wu
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China
| | - Hui Kong
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China
| | - Liping Liu
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China
| | - Yanming Sui
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China
| | - Daohui Lin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, 310058, China
| | - Weiqun Lu
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China
| | - Menghong Hu
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China
| | - Youji Wang
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China; Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography State Oceanic Administration, Hangzhou, 310058, China; State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, China; Department of Biological and Environmental Sciences, Sven Lovén Centre for Marine Infrastructure - Kristineberg, University of Gothenburg, Fiskebäckskil, Sweden.
| |
Collapse
|
30
|
Choi Y, Kim HA, Kim KW, Lee BT. Comparative toxicity of silver nanoparticles and silver ions to Escherichia coli. J Environ Sci (China) 2018; 66:50-60. [PMID: 29628108 DOI: 10.1016/j.jes.2017.04.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/02/2017] [Accepted: 04/27/2017] [Indexed: 05/11/2023]
Abstract
UNLABELLED With the increase in silver (Ag)-based products in our lives, it is essential to test the potential toxicity of silver nanoparticles (AgNPs) and silver ions (Ag ions) on living organisms under various conditions. Here, we investigated the toxicity of AgNPs with Ag ions to Escherichia coli K-12 strain under various conditions. We observed that both AgNPs and Ag ions display antibacterial activities, and that Ag ions had higher toxicity to E. coli K-12 strain than AgNPs under the same concentrations. To understand the toxicity of AgNPs at a cellular level, reactive oxygen species (ROS) enzymes were detected for use as antioxidant enzymatic biomarkers. We have also studied the toxicity of AgNPs and Ag ions under various coexistence conditions including: fixed total concentration, with a varied the ratio of AgNPs to Ag ions; fixed the AgNPs concentration and then increased the Ag ions concentration; fixed Ag ions concentration and then increasing the AgNPs concentration. Exposure to AgNPs and Ag ions clearly had synergistic toxicity; however, decreased toxicity (for a fixed AgNPs concentration of 5mg/L, after increasing the Ag ions concentration) to E. coli K-12 strain. AgNPs and Ag ions in the presence of L-cysteine accelerated the bacterial cell growth rate, thereby reducing the bioavailability of Ag ions released from AgNPs under the single and coexistence conditions. Further works are needed to consider this potential for AgNPs and Ag ions toxicity across a range of environmental conditions. ENVIRONMENTAL SIGNIFICANCE STATEMENT As silver nanoparticles (AgNPs)-based products are being broadly used in commercial industries, an ecotoxicological understanding of the AgNPs being released into the environment should be further considered. Here, we investigate the comparative toxicity of AgNPs and silver ions (Ag ions) to Escherichia coli K-12 strain, a representative ecotoxicological bioreporter. This study showed that toxicities of AgNPs and Ag ions to E. coli K-12 strain display different relationships when existing individually or when coexisting, and in the presence of L-cysteine materials. These findings suggest that the toxicology research of nanomaterials should consider conditions when NPs coexist with and without their bioavailable ions.
Collapse
Affiliation(s)
- Yoojin Choi
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Hyun-A Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Kyoung-Woong Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Byung-Tae Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| |
Collapse
|
31
|
Magesky A, Pelletier É. Cytotoxicity and Physiological Effects of Silver Nanoparticles on Marine Invertebrates. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1048:285-309. [DOI: 10.1007/978-3-319-72041-8_17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
32
|
Sellami B, Mezni A, Khazri A, Bouzidi I, Saidani W, Sheehan D, Beyrem H. Toxicity assessment of ZnO-decorated Au nanoparticles in the Mediterranean clam Ruditapes decussatus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 188:10-19. [PMID: 28441607 DOI: 10.1016/j.aquatox.2017.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 04/07/2017] [Accepted: 04/09/2017] [Indexed: 05/05/2023]
Abstract
The synthesis of hybrid nanomaterials has greatly increased in recent years due to their special physical and chemical properties. However, information regarding the environmental toxicity associated with these chemicals is limited, in particular in the aquatic environment. In the present study, an experiment was performed in which the marine bivalve (Ruditapes decussatus) was exposed for 14days to 2 concentrations of zinc oxide-decorated Au nanoparticles (Au-ZnONPs: Au-ZnONP50=50μg/L; Au-ZnONP100=100μg/L). The stability and resistance of Au-ZnONPs in the natural seawater were assessed by combining transmission electron microscopy and dynamic light scattering. Inductively coupled plasma-atomic emission spectroscopy revealed uptake of these nanoparticles within clams and their ability to induce metallic deregulation. The results obtained indicate that Au-ZnONPs induce biochemical and histological alterations within either the digestive gland or gill tissues at high concentration. This was deduced from the significant increase in H2O2 level, superoxide dismutase and catalase activities and malondialdehyde content. Furthermore, the toxicity of Au-ZnO nanoparticles was linked with the increase of intracellular iron and calcium levels in both tissues. Histological alterations in gill and digestive gland were more pronounced with Au-ZnONP100 and this is likely related to oxidative mechanisms. Gill and digestive gland are differentially sensitive to Au-ZnONPs if the exposure concentration is higher than 50μg/L. In conclusion, the parameters considered here could constitute reliable biomarkers for evaluation of hybrid nanoparticles toxicity in environmental model organisms. In addition, based on the results obtained, gill and digestive gland of R. decussatus could be proposed as models to detect harmful effects of hybrid nanoparticles.
Collapse
Affiliation(s)
- Badreddine Sellami
- Institut National des Sciences et Technologies de la Mer, Tabarka, Tunisia.
| | - Amine Mezni
- Unit of Research 99/UR12-30, Department of Chemistry, Faculty of Sciences of Bizerte, 7021 Jarzouna, Tunisia; Department of Chemistry, Faculty of Science, Taif University, Taif, Saudi Arabia
| | - Abdelhafidh Khazri
- Laboratoire de Biosurveillance de l'Environnement (LBE), Unité d'Ecotoxicologie et d'Ecologie Côtière (GREEC), Faculté des Sciences de Bizerte, 7021 Zarzouna-Bizerte, Tunisia
| | - Imen Bouzidi
- Laboratoire de Biosurveillance de l'Environnement (LBE), Unité d'Ecotoxicologie et d'Ecologie Côtière (GREEC), Faculté des Sciences de Bizerte, 7021 Zarzouna-Bizerte, Tunisia
| | - Wiem Saidani
- Laboratoire de Biosurveillance de l'Environnement (LBE), Unité d'Ecotoxicologie et d'Ecologie Côtière (GREEC), Faculté des Sciences de Bizerte, 7021 Zarzouna-Bizerte, Tunisia
| | - David Sheehan
- Environmental Research Institute, University College Cork, Ireland and Khalifa University of Science and Technology, Western Road, Cork, Western Gateway Building, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Hamouda Beyrem
- Laboratoire de Biosurveillance de l'Environnement (LBE), Unité d'Ecotoxicologie et d'Ecologie Côtière (GREEC), Faculté des Sciences de Bizerte, 7021 Zarzouna-Bizerte, Tunisia
| |
Collapse
|
33
|
Jimeno-Romero A, Bilbao E, Izagirre U, Cajaraville MP, Marigómez I, Soto M. Digestive cell lysosomes as main targets for Ag accumulation and toxicity in marine mussels, Mytilus galloprovincialis, exposed to maltose-stabilised Ag nanoparticles of different sizes. Nanotoxicology 2017; 11:168-183. [DOI: 10.1080/17435390.2017.1279358] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- A. Jimeno-Romero
- CBET Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology, Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country, Basque Country, Spain
| | - E. Bilbao
- CBET Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology, Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country, Basque Country, Spain
| | - U. Izagirre
- CBET Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology, Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country, Basque Country, Spain
| | - M. P. Cajaraville
- CBET Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology, Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country, Basque Country, Spain
| | - I. Marigómez
- CBET Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology, Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country, Basque Country, Spain
| | - M. Soto
- CBET Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology, Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country, Basque Country, Spain
| |
Collapse
|
34
|
Zhang P, Selck H, Tangaa SR, Pang C, Zhao B. Bioaccumulation and effects of sediment-associated gold- and graphene oxide nanoparticles on Tubifex tubifex. J Environ Sci (China) 2017; 51:138-145. [PMID: 28115124 DOI: 10.1016/j.jes.2016.08.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 08/01/2016] [Accepted: 08/19/2016] [Indexed: 06/06/2023]
Abstract
With the development of nanotechnology, gold (Au) and graphene oxide (GO) nanoparticles have been widely used in various fields, resulting in an increased release of these particles into the environment. The released nanoparticles may eventually accumulate in sediment, causing possible ecotoxicological effects to benthic invertebrates. However, the impact of Au-NPs and GO-NPs on the cosmopolitan oligochaete, Tubifex tubifex, in sediment exposure is not known. Mortality, behavioral impact (GO-NP and Au-NP) and uptake (only Au-NP) of sediment-associated Au-NPs (4.9±0.14nm) and GO-NPs (116±0.05nm) to T. tubifex were assessed in a number of 5-day exposure experiments. The results showed that the applied Au-NP concentrations (10 and 60μg Au/g dry weight sediment) had no adverse effect on T. tubifex survival, while Au bioaccumulation increased with exposure concentration. In the case of GO-NPs, no mortality of T. tubifex was observed at a concentration range of 20 and 180μg GO/g dry weight sediment, whereas burrowing activity was significantly reduced at 20 and 180μg GO/g dry weight sediment. Our results suggest that Au-NPs at 60μg Au/g or GO-NPs at 20 and 180μg GO/g were detected by T. tubifex as toxicants during short-term exposures.
Collapse
Affiliation(s)
- Panhong Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100085, China; Sino-Danish Center for Education and Research, Beijing 100190, China.
| | - Henriette Selck
- Department of Science and Environment, Roskilde University, P.O. Box 260, 4000 Roskilde, Denmark.
| | - Stine Rosendal Tangaa
- Department of Science and Environment, Roskilde University, P.O. Box 260, 4000 Roskilde, Denmark
| | - Chengfang Pang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100085, China
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
35
|
Fonseca TG, Morais MB, Rocha T, Abessa DMS, Aureliano M, Bebianno MJ. Ecotoxicological assessment of the anticancer drug cisplatin in the polychaete Nereis diversicolor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 575:162-172. [PMID: 27744150 DOI: 10.1016/j.scitotenv.2016.09.185] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 09/22/2016] [Accepted: 09/22/2016] [Indexed: 02/07/2023]
Abstract
Anticancer drugs are designed to inhibit tumor cell proliferation by interacting with DNA and altering cellular growth factors. When released into the waterbodies of municipal and hospital effluents these pharmaceutical compounds may pose a risk to non-target aquatic organisms, due to their mode of action (cytotoxic, genotoxic, mutagenic and teratogenic). The present study aimed to assess the ecotoxicological potential of the alkylating agent cisplatin (CisPt) to the polychaete Nereis diversicolor, at a range of relevant environmental concentrations (i.e. 0.1, 10 and 100ngPtL-1). Behavioural impairment (burrowing kinetic impairment), ion pump effects (SR Ca2+-ATPase), neurotoxicity (AChE activity), oxidative stress (SOD, CAT and GPXs activities), metal exposure (metallothionein-like proteins - MTLP), biotransformation (GST), oxidative damage (LPO) and genotoxicity (DNA damage), were selected as endpoints to evaluate the sublethal responses of the ragworms after 14-days of exposure in a water-sediment system. Significant burrowing impairment occurred in worms exposed to the highest CisPt concentration (100ngPtL-1) along with neurotoxic effects. The activity of antioxidant enzymes (SOD, CAT) and second phase biotransformation enzyme (GST) was inhibited but such effects were compensated by MTLP induction. Furthermore, LPO levels also increased. Results showed that the mode of action of cisplatin may pose a risk to this aquatic species even at the range of ngL-1.
Collapse
Affiliation(s)
- T G Fonseca
- CIMA, Centre for Marine and Environmental Research, University of Algarve, Campus Gambelas, 8005-135 Faro, Portugal; NEPEA, Núcleo de Estudos em Poluição e Ecotoxicologia. Aquática, São Paulo State University - UNESP, Campus Experimental do Litoral Paulista, Praça Infante Dom Henrique, s/n, 11330-900, São Vicente, SP, Brazil
| | - M B Morais
- CIMA, Centre for Marine and Environmental Research, University of Algarve, Campus Gambelas, 8005-135 Faro, Portugal
| | - T Rocha
- CIMA, Centre for Marine and Environmental Research, University of Algarve, Campus Gambelas, 8005-135 Faro, Portugal
| | - D M S Abessa
- NEPEA, Núcleo de Estudos em Poluição e Ecotoxicologia. Aquática, São Paulo State University - UNESP, Campus Experimental do Litoral Paulista, Praça Infante Dom Henrique, s/n, 11330-900, São Vicente, SP, Brazil
| | - M Aureliano
- CCMar, Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-135 Faro, Portugal
| | - M J Bebianno
- CIMA, Centre for Marine and Environmental Research, University of Algarve, Campus Gambelas, 8005-135 Faro, Portugal.
| |
Collapse
|
36
|
Devin S, Buffet PE, Châtel A, Perrein-Ettajani H, Valsami-Jones E, Mouneyrac C. The integrated biomarker response: a suitable tool to evaluate toxicity of metal-based nanoparticles. Nanotoxicology 2016; 11:1-6. [DOI: 10.1080/17435390.2016.1269374] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Simon Devin
- Laboratoire interdisciplinaire des environnements continentaux (LIEC), CNRS UMR 7360, Campus Bridoux, rue du Général Delestraint, Université de Lorraine, Metz, France
| | - Pierre E. Buffet
- Laboratoire Mer, Molécules, UBL, Université Catholique de l’Ouest, Angers, France
| | - Amélie Châtel
- Laboratoire Mer, Molécules, UBL, Université Catholique de l’Ouest, Angers, France
| | | | - Eugénia Valsami-Jones
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Catherine Mouneyrac
- Laboratoire Mer, Molécules, UBL, Université Catholique de l’Ouest, Angers, France
| |
Collapse
|
37
|
Mehennaoui K, Georgantzopoulou A, Felten V, Andreï J, Garaud M, Cambier S, Serchi T, Pain-Devin S, Guérold F, Audinot JN, Giambérini L, Gutleb AC. Gammarus fossarum (Crustacea, Amphipoda) as a model organism to study the effects of silver nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 566-567:1649-1659. [PMID: 27328878 DOI: 10.1016/j.scitotenv.2016.06.068] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/10/2016] [Accepted: 06/10/2016] [Indexed: 05/25/2023]
Abstract
Amphipods are one of the most important components of freshwater ecosystems. Among them, gammarids are the most widespread group in Europe and are often used as bioindicators and model organisms in ecotoxicology. However, their use, especially of Gammarus fossarum for the study of the environmental impact of nanoparticles, has been rather limited so far. G. fossarum was selected to assess effects of well-characterized chemically synthesized silver nanoparticles (AgNPs 20nm and 200nm) and "green" laboratory synthetized (from plant leaf extracts) AgNPs (AgNPs 23nm and 27nm). AgNO3 was used as a positive control to compare AgNPs effects and silver ions effects. A multibiomarker approach was used to investigate the sub-lethal effects of AgNPs on physiological and behavioural responses of G. fossarum. Two different experiments were carried out. In a preliminary experiment, two populations of G. fossarum (G.f1 and G.f2) were tested for sensitivity differences and the most sensitive one was exposed, in a final experiment, to sub-lethal concentrations of AgNO3 and the most toxic AgNPs. AgNO3 and AgNPs 23nm led to a significant decrease in survival rates, osmoregulation and locomotor activity. Ag internalisation, performed with Secondary Ion Mass Spectrometry (SIMS), showed the presence of silver in gills of G.f2 exposed to AgNPs 23 and 27nm. This study highlighted the influence of method of synthesis on ion release, uptake and toxic effects of AgNPs on G. fossarum. Osmoregulation appeared to be an effective biomarker indicating the physiological health status of G. fossarum. Locomotor activity, which was the most impacted response, reflects the potential effects of released ions from AgNPs 23nm at the population level as locomotion is necessary for foraging, finding mates and escaping from predators. Therefore, we propose G. fossarum as a suitable model for environmental nanotoxicology, providing information both at individual and population levels.
Collapse
Affiliation(s)
- Kahina Mehennaoui
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts-Fourneaux, Esch-sur-Alzette, Luxembourg; Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), CNRS UMR 7360, Université de Lorraine, Metz, France
| | - Anastasia Georgantzopoulou
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts-Fourneaux, Esch-sur-Alzette, Luxembourg; Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway
| | - Vincent Felten
- Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), CNRS UMR 7360, Université de Lorraine, Metz, France
| | - Jennifer Andreï
- Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), CNRS UMR 7360, Université de Lorraine, Metz, France
| | - Maël Garaud
- Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), CNRS UMR 7360, Université de Lorraine, Metz, France
| | - Sébastien Cambier
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts-Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Tommaso Serchi
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts-Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Sandrine Pain-Devin
- Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), CNRS UMR 7360, Université de Lorraine, Metz, France
| | - François Guérold
- Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), CNRS UMR 7360, Université de Lorraine, Metz, France
| | - Jean-Nicolas Audinot
- Materials Research and Technology (MRT) Department, Luxembourg Institute of Science and Technology, (LIST), 5 avenue des Hauts-Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Laure Giambérini
- Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), CNRS UMR 7360, Université de Lorraine, Metz, France
| | - Arno C Gutleb
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts-Fourneaux, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
38
|
Wang Y, Zhu X, Lao Y, Lv X, Tao Y, Huang B, Wang J, Zhou J, Cai Z. TiO2 nanoparticles in the marine environment: Physical effects responsible for the toxicity on algae Phaeodactylum tricornutum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 565:818-826. [PMID: 27060054 DOI: 10.1016/j.scitotenv.2016.03.164] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/22/2016] [Accepted: 03/22/2016] [Indexed: 05/23/2023]
Abstract
Nanoscale titanium dioxide (nTiO2) has been widely used in cosmetics, catalysts, varnishes, etc., which is raising concerns about its potential hazards to the ecosystem, including the marine environment. In this study, the toxicological effect of nTiO2 on the marine phytoplankton Phaeodactylum tricornutum was carefully investigated. The results showed that nTiO2 at concentrations ≥20mg/L could significantly inhibit P. tricornutum growth. The 5-day EC50 of nTiO2 to P. tricornutum growth is 167.71mg/L. Interestingly, nTiO2 was found to exert its most severe inhibition effects on the first day of exposure, at a lower EC50 of 12.65mg/L. During the experiment, nTiO2 aggregates were found to entrap algae cells, which is likely responsible for the observed toxic effects. Direct physical effects such as cell wall damage from the algae entrapment were confirmed by flow cytometry and TEM imaging. Moreover, low indirect effects such as shading and oxidative stress were observed, which supported the idea that direct physical effects could be the dominant factor that causes nTiO2 toxicity in P. tricornutum. Our research provides direct evidence for the toxicological impact of nTiO2 on marine microalgae, which will help us to build a good understanding of the ecological risks of nanoparticles in the marine environment.
Collapse
Affiliation(s)
- Yixiang Wang
- School of Environment, Tsinghua University, Beijing 100084, China; Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Xiaoshan Zhu
- School of Environment, Tsinghua University, Beijing 100084, China; Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China; Joint Center for Global Change Studies (JCGCS), Beijing 100875, China.
| | - Yongmin Lao
- Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Xiaohui Lv
- Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China
| | - Yi Tao
- Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Boming Huang
- School of Environment, Tsinghua University, Beijing 100084, China; Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Jiangxin Wang
- School of Life Science, Shenzhen University, Shenzhen 518060, China
| | - Jin Zhou
- Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Zhonghua Cai
- Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
39
|
Canesi L, Corsi I. Effects of nanomaterials on marine invertebrates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 565:933-940. [PMID: 26805446 DOI: 10.1016/j.scitotenv.2016.01.085] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 01/14/2016] [Accepted: 01/14/2016] [Indexed: 06/05/2023]
Abstract
The development of nanotechnology will inevitably lead to the release of consistent amounts of nanomaterials (NMs) and nanoparticles (NPs) into marine ecosystems. Ecotoxicological studies have been carried out to identify potential biological targets of NPs, and suitable models for predicting their impact on the health of the marine environment. Recent studies in invertebrates mainly focused on NP accumulation and sub-lethal effects, rather than acute toxicity. Among marine invertebrates, bivalves represent by large the most studied group, with polychaetes and echinoderms also emerging as significant targets of NPs. However, major scientific gaps still need to be filled. In this work, factors affecting the fate of NPs in the marine environment, and their consequent uptake/accumulation/toxicity in marine invertebrates will be summarized. The results show that in different model species, NP accumulation mainly occurs in digestive tract and gills. Data on sub-lethal effects and modes of action of different types of NPs (mainly metal oxides and metal based NPs) in marine invertebrates will be reviewed, in particular on immune function, oxidative stress and embryo development. Moreover, the possibility that such effects may be influenced by NP interactions with biomolecules in both external and internal environment will be introduced. In natural environmental media, NP interactions with polysaccharides, proteins and colloids may affect their agglomeration/aggregation and consequent bioavailability. Moreover, once within the organism, NPs are known to interact with plasma proteins, forming a protein corona that can affect particle uptake and toxicity in target cells in a physiological environment. These interactions, leading to the formation of eco-bio-coronas, may be crucial in determining particle behavior and effects also in marine biota. In order to classify NPs into groups and predict the implications of their release into the marine environment, information on their intrinsic properties is clearly insufficient, and a deeper understanding of NP eco/bio-interactions is required.
Collapse
Affiliation(s)
- Laura Canesi
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Italy.
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences (DSFTA), University of Siena, Italy
| |
Collapse
|
40
|
Minetto D, Volpi Ghirardini A, Libralato G. Saltwater ecotoxicology of Ag, Au, CuO, TiO2, ZnO and C60 engineered nanoparticles: An overview. ENVIRONMENT INTERNATIONAL 2016; 92-93:189-201. [PMID: 27107224 DOI: 10.1016/j.envint.2016.03.041] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 02/28/2016] [Accepted: 03/29/2016] [Indexed: 06/05/2023]
Abstract
This review paper examined 529 papers reporting experimental nanoecotoxicological original data. Only 126 papers referred to saltwater environments (water column and sediment) including a huge variety of species (n=51), their relative endpoints and engineered nanoparticles (ENPs) (n=38). We tried to provide a synthetic overview of the ecotoxicological effects of ENPs from existing data, refining papers on the basis of cross-cutting selection criteria and supporting a "mind the gap" approach stressing on missing data for hazard and risk assessment. After a codified selection procedure, attention was paid to Ag, Au, CuO, TiO2, ZnO and C60 ENPs, evidencing and comparing the observed nanoecotoxicity range of effect. Several criticisms were evidenced: i) some model organisms are overexploited like microalgae and molluscs compared to annelids, echinoderms and fish; ii) underexploited model organisms: mainly bacteria and fish; iii) exposure scenario variability: high species-specific and ENP scenarios including organism life stage and way of administration/spiking of toxicants; iv) scarce comparability between results due to exposure scenario variability; v) micro- and mesocosms substantially unexplored; vi) mixture effects: few examples are available only for ENPs and traditional pollutants; mixtures of ENPs have not been investigated yet; vii) effects of ions and ENPs: nAg, nCuO and nZnO toxicity aetiology is still a matter of discussion; viii) size and morphology effects of ENPs: scarcely investigated, justified and understood. Toxicity results evidenced that: nAu>nZnO>nAg>nCuO>nTiO2>C60.
Collapse
Affiliation(s)
- D Minetto
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari Venice, Via Torino, 155, 30172 Mestre-Venice, Italy
| | - A Volpi Ghirardini
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari Venice, Via Torino, 155, 30172 Mestre-Venice, Italy
| | - G Libralato
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari Venice, Via Torino, 155, 30172 Mestre-Venice, Italy.
| |
Collapse
|
41
|
Rocha TL, Gomes T, Mestre NC, Cardoso C, Bebianno MJ. Tissue specific responses to cadmium-based quantum dots in the marine mussel Mytilus galloprovincialis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 169:10-18. [PMID: 26478991 DOI: 10.1016/j.aquatox.2015.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/08/2015] [Accepted: 10/02/2015] [Indexed: 06/05/2023]
Abstract
In recent years, Cd-based quantum dots (QDs) have generated interest from the life sciences community due to their potential applications in nanomedicine, biology and electronics. However, these engineered nanomaterials can be released into the marine environment, where their environmental health hazards remain unclear. This study investigated the tissue-specific responses related to alterations in the antioxidant defense system induced by CdTe QDs, in comparison with its dissolved counterpart, using the marine mussel Mytilus galloprovincialis. Mussels were exposed to CdTe QDs and dissolved Cd for 14 days at 10 μgCd L(-1) and biomarkers of oxidative stress [superoxide dismutase (SOD), catalase (CAT), glutathione peroxidases (total, Se-independent and Se-dependent GPx) and glutathione-S-transferase (GST) activities] were analyzed along with Cd accumulation in the gills and digestive gland of mussels. Results show that both Cd forms changed mussels' antioxidant responses with distinct modes of action (MoA). There were tissue- and time-dependent differences in the biochemical responses to each Cd form, wherein QDs are more pro-oxidant when compared to dissolved Cd. The gills are the main tissue affected by QDs, with effects related to the increase of SOD, GST and GPx activities, while those of dissolved Cd was associated to the increase of CAT activity, Cd accumulation and exposure time. Digestive gland is a main tissue for accumulation of both Cd forms, but changes in antioxidant enzyme activities are smaller than in gills. A multivariate analysis revealed that the antioxidant patterns are tissue dependent, indicating nano-specific effects possibly associated to oxidative stress and changes in redox homeostasis.
Collapse
Affiliation(s)
- Thiago Lopes Rocha
- CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Tânia Gomes
- CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway
| | - Nélia C Mestre
- CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Cátia Cardoso
- CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Maria João Bebianno
- CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
42
|
Dedeh A, Ciutat A, Lecroart P, Treguer-Delapierre M, Bourdineaud JP. Cadmium sulfide nanoparticles trigger DNA alterations and modify the bioturbation activity of tubificidae worms exposed through the sediment. Nanotoxicology 2015; 10:322-31. [PMID: 26618487 DOI: 10.3109/17435390.2015.1071444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To address the impact of cadmium sulfide nanoparticles (CdS NPs) in freshwater ecosystems, aquatic oligochaete Tubifex tubifex were exposed through the sediment to a low dose (0.52 mg of 8 nm in size of CdS NPs/kg) for 20 days using microcosms. Cadmium (Cd) was released from the CdS NPs-contaminated sediment to the water column, and during this period the average concentrations of Cd in the filtered water fraction were 0.026 ± 0.006 µg/L in presence of oligochaetes. Similar experiments with microparticular CdS and cadmium chloride (CdCl2) were simultaneously performed for comparative purposes. CdS NPs exposure triggered various effects on Tubifex worms compared to control, microsized and ionic reference, including modification of genome composition as assessed using RAPD-PCR genotoxicity tests. Bioaccumulation levels showed that CdS NPs were less bioavailable than CdCl2 to oligochaetes and reached 0.08 ± 0.01 µg Cd/g for CdS NPs exposure versus 0.76 ± 0.3 µg Cd/g for CdCl2 exposure (fresh weight). CdS NPs altered worm's behavior by decreasing significantly the bioturbation activity as assessed after the exposure period using conservative fluorescent particulate tracers. This study demonstrated the high potential harm of the CdS nanoparticular form despite its lower bioavailability for Tubifex worms.
Collapse
Affiliation(s)
- Amina Dedeh
- a University of Bordeaux, CNRS, UMR EPOC 5805, Arcachon Marine Station, Place du Dr Peyneau , 33120 Arcachon , France
| | - Aurélie Ciutat
- a University of Bordeaux, CNRS, UMR EPOC 5805, Arcachon Marine Station, Place du Dr Peyneau , 33120 Arcachon , France
| | - Pascal Lecroart
- b University of Bordeaux, CNRS, UMR EPOC 5805, Bâtiment B18, Allée Geoffroy Saint-Hilaire , 33615 Pessac , France
| | - Mona Treguer-Delapierre
- c University of Bordeaux, CNRS, UPR 9048, Institute of Chemistry of Condensed Matter of Bordeaux, 87, Avenue du Docteur Schweitzer , 33600 Pessac , France , and
| | - Jean-Paul Bourdineaud
- a University of Bordeaux, CNRS, UMR EPOC 5805, Arcachon Marine Station, Place du Dr Peyneau , 33120 Arcachon , France .,d CRIIGEN , Paris , France
| |
Collapse
|
43
|
Bebianno MJ, Gonzalez-Rey M, Gomes T, Mattos JJ, Flores-Nunes F, Bainy ACD. Is gene transcription in mussel gills altered after exposure to Ag nanoparticles? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:17425-17433. [PMID: 26278907 DOI: 10.1007/s11356-015-5186-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 08/10/2015] [Indexed: 06/04/2023]
Abstract
Nanotechnology is a rapid field of development with the enhancement of the production of different types of nanoparticles (NPs) applied in several industrial and commercial applications which increase the risk of their presence in the aquatic environment. Ag NPs have a wide application in everyday life products. However, there is concern about the exposure effects on aquatic organisms to these NPs. Therefore, this study aims to assess gene transcription alterations in mussels Mytilus galloprovincialis gills exposed for 2 weeks to Ag NPs (42 ± 10 nm, 10 μg.L(-1)). The genes were selected based on previous biomarkers and proteomic results and included superoxide dismutase (SOD), catalase (CAT), glutathione transferase (GST), caspase 3/7-1 (CAS), cathepsin L (CATH), heat-shock protein 70 (HSP 70), cytochrome P450 4YA (CYP 4YA), the elongation factor (EF1), actin and α- tubulin. No significant changes in gene transcription profiles were observed after exposure of M. galloprovincialis to Ag NPs for 15 days. The lack of significant gene transcription responses is in light with previous results obtained for mussels exposed to these NPs and may be related to the fact that enzyme kinetics and relative abundance of proteins (increase of antioxidant enzymes and metalllothioneins (MTs) with the time of exposure) do not always directly reflect their relative mRNA levels. Nevertheless, their overall expression maintenance may signify that, at end of the exposure period (15 days), the transcription of the respective genes is no longer required, pointing out to a possible adaptation effect to nanoparticles or due to the levels of Ag NPs accumulated in this tissue at this exposure time. This study highlights that gene transcription application and role as an additional and/or alternative end point approach is important to understand the mode of action of these emergent contaminants in aquatic organisms. However, in future studies, the time window needs to be adjusted, as genes are likely to respond earlier to the nanoparticle exposure.
Collapse
Affiliation(s)
- M J Bebianno
- CIMA, Marine and Environmental Research Center, University of Algarve, Campus de Gambelas, 8000135, Faro, Portugal.
| | - M Gonzalez-Rey
- CIMA, Marine and Environmental Research Center, University of Algarve, Campus de Gambelas, 8000135, Faro, Portugal
| | - T Gomes
- CIMA, Marine and Environmental Research Center, University of Algarve, Campus de Gambelas, 8000135, Faro, Portugal
| | - J J Mattos
- LABCAI, Department of Biochemistry, Federal University of Santa Catarina, 88034-257, Florianopolis, SC, Brazil
| | - F Flores-Nunes
- LABCAI, Department of Biochemistry, Federal University of Santa Catarina, 88034-257, Florianopolis, SC, Brazil
| | - A C D Bainy
- LABCAI, Department of Biochemistry, Federal University of Santa Catarina, 88034-257, Florianopolis, SC, Brazil
| |
Collapse
|
44
|
Gambardella C, Costa E, Piazza V, Fabbrocini A, Magi E, Faimali M, Garaventa F. Effect of silver nanoparticles on marine organisms belonging to different trophic levels. MARINE ENVIRONMENTAL RESEARCH 2015; 111:41-9. [PMID: 26065810 DOI: 10.1016/j.marenvres.2015.06.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 05/22/2015] [Accepted: 06/01/2015] [Indexed: 05/24/2023]
Abstract
Silver nanoparticles (Ag-NPs) are increasingly used in a wide range of consumer products and such an extensive use raises questions about their safety and environmental toxicity. We investigated the potential toxicity of Ag-NPs in the marine ecosystem by analyzing the effects on several organisms belonging to different trophic levels. Algae (Dunaliella tertiolecta, Skeletonema costatum), cnidaria (Aurelia aurita jellyfish), crustaceans (Amphibalanus amphitrite and Artemia salina) and echinoderms (Paracentrotus lividus) were exposed to Ag-NPs and different end-points were evaluated: algal growth, ephyra jellyfish immobilization and frequency of pulsations, crustaceans mortality and swimming behavior, and sea urchin sperm motility. Results showed that all the end-points were able to underline a dose-dependent effect. Jellyfish were the most sensitive species, followed by barnacles, sea urchins, green algae, diatoms and brine shrimps. In conclusion, Ag-NPs exposure can influence different trophic levels within the marine ecosystem.
Collapse
Affiliation(s)
| | - Elisa Costa
- CNR - ISMAR, Arsenale - Tesa 104, Castello 2737/F, 30122 Venezia, Italy
| | | | | | - Emanuele Magi
- DCCI, University of Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | | | | |
Collapse
|
45
|
Moreno-Garrido I, Pérez S, Blasco J. Toxicity of silver and gold nanoparticles on marine microalgae. MARINE ENVIRONMENTAL RESEARCH 2015; 111:60-73. [PMID: 26002248 DOI: 10.1016/j.marenvres.2015.05.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 05/12/2015] [Accepted: 05/15/2015] [Indexed: 06/04/2023]
Abstract
The increased use of nanomaterials in several novel industrial applications during the last decade has led to a rise in concerns about the potential toxic effects of released engineered nanoparticles (NPs) into the environment, as their potential toxicity to aquatic organisms is just beginning to be recognised. Toxicity of metallic nanoparticles to aquatic organisms, including microalgae, seems to be related to their physical and chemical properties, as well as their behaviour in the aquatic media where processes of dissolution, aggregation and agglomeration can occur. Although the production of these particles has increased considerably in recent years, data on their toxicity on microalgae, especially those belonging to marine or estuarine environments remain scarce and scattered. The literature shows a wide variation of results on toxicity, mainly due to the different methodology used in bioassays involving microalgae. These can range for up to EC50 data, in the case of AgNPs, representing five orders of magnitude. The importance of initial cellular density is also addressed in the text, as well as the need for keeping test conditions as close as possible to environmental conditions, in order to increase their environmental relevance. This review focuses on the fate and toxicity of silver, gold, and gold-silver alloy nanoparticles on microalgae, as key organisms in aquatic ecosystems. It is prompted by their increased production and use, and taking into account that oceans and estuaries are the final sink for those NPs. The design of bioassays and further research in the field of microalgae nanoecotoxicology is discussed, with a brief survey on newly developed technology of green (algae mediated) production of Ag, Au and Ag-Au bimetallic NPs, as well as some final considerations about future research on this field.
Collapse
Affiliation(s)
- Ignacio Moreno-Garrido
- Institute of Marine Sciences of Andalusia (ICMAN-CSIC), Campus Río San Pedro, 11510 Puerto Real, Cádiz, Spain.
| | - Sara Pérez
- Institute of Marine Sciences of Andalusia (ICMAN-CSIC), Campus Río San Pedro, 11510 Puerto Real, Cádiz, Spain.
| | - Julián Blasco
- Institute of Marine Sciences of Andalusia (ICMAN-CSIC), Campus Río San Pedro, 11510 Puerto Real, Cádiz, Spain.
| |
Collapse
|
46
|
Chronic Effects of Coated Silver Nanoparticles on Marine Invertebrate Larvae: A Proof of Concept Study. PLoS One 2015; 10:e0132457. [PMID: 26171857 PMCID: PMC4501789 DOI: 10.1371/journal.pone.0132457] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 06/15/2015] [Indexed: 12/05/2022] Open
Abstract
Silver nanoparticles (AgNPs), owing to their unique physical and chemical properties, have become increasingly popular in consumer products. However, data on their potential biological effects on marine organisms, especially invertebrates, remain very limited. This proof of principle study reports the chronic sub-lethal toxicity of two coated AgNPs (oleic acid coated AgNPs and polyvinylpyrrolidone coated AgNPs) on marine benthic invertebrate larvae across three phyla (i.e., the barnacle Balanus Amphitrite, the slipper-limpet Crepidula onyx, and the polychaete Hydroides elegans) in terms of growth, development, and metamorphosis. Bioaccumulation and biodistribution of silver were also investigated. Larvae were also exposed to silver nitrate (AgNO3) in parallel to distinguish the toxic effects derived from nano-silver and the aqueous form of silver. The sub-lethal effect of chronic exposure to coated AgNPs resulted in a significant retardation in growth and development, and reduction of larval settlement rate. The larval settlement rate of H. elegans was significantly lower in the coated AgNP treatment than the AgNO3 treatment, suggesting that the toxicity of coated AgNPs might not be solely evoked by the release of silver ions (Ag+) in the test medium. The three species accumulated silver effectively from coated AgNPs as well as AgNO3, and coated AgNPs were observed in the vacuoles of epithelial cell in the digestive tract of C. onyx. Types of surface coatings did not affect the sub-lethal toxicity of AgNPs. This study demonstrated that coated AgNPs exerted toxic effects in a species-specific manner, and their exposure might allow bioaccumulation of silver, and affect growth, development, and settlement of marine invertebrate larvae. This study also highlighted the possibility that coated AgNPs could be taken up through diet and the toxicity of coated AgNPs might be mediated through toxic Ag+ as well as the novel modalities of coated AgNPs.
Collapse
|
47
|
Bour A, Mouchet F, Cadarsi S, Silvestre J, Verneuil L, Baqué D, Chauvet E, Bonzom JM, Pagnout C, Clivot H, Fourquaux I, Tella M, Auffan M, Gauthier L, Pinelli E. Toxicity of CeO₂ nanoparticles on a freshwater experimental trophic chain: A study in environmentally relevant conditions through the use of mesocosms. Nanotoxicology 2015; 10:245-55. [PMID: 26152687 DOI: 10.3109/17435390.2015.1053422] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The toxicity of CeO2 NPs on an experimental freshwater ecosystem was studied in mesocosm, with a focus being placed on the higher trophic level, i.e. the carnivorous amphibian species Pleurodeles waltl. The system comprised species at three trophic levels: (i) bacteria, fungi and diatoms, (ii) Chironomus riparius larvae as primary consumers and (iii) Pleurodeles larvae as secondary consumers. NP contamination consisted of repeated additions of CeO2 NPs over 4 weeks, to obtain a final concentration of 1 mg/L. NPs were found to settle and accumulate in the sediment. No effects were observed on litter decomposition or associated fungal biomass. Changes in bacterial communities were observed from the third week of NP contamination. Morphological changes in CeO2 NPs were observed at the end of the experiment. No toxicity was recorded in chironomids, despite substantial NP accumulation (265.8 ± 14.1 mg Ce/kg). Mortality (35.3 ± 6.8%) and a mean Ce concentration of 13.5 ± 3.9 mg/kg were reported for Pleurodeles. Parallel experiments were performed on Pleurodeles to determine toxicity pathways: no toxicity was observed by direct or dietary exposures, although Ce concentrations almost reached 100 mg/kg. In view of these results, various toxicity mechanisms are proposed and discussed. The toxicity observed on Pleurodeles in mesocosm may be indirect, due to microorganism's interaction with CeO2 NPs, or NP dissolution could have occurred in mesocosm due to the structural complexity of the biological environment, resulting in toxicity to Pleurodeles. This study strongly supports the importance of ecotoxicological assessment of NPs under environmentally relevant conditions, using complex biological systems.
Collapse
Affiliation(s)
- Agathe Bour
- a CNRS, Université de Toulouse, INP, UPS, EcoLab (Laboratoire d'écologie fonctionnelle et environnement) UMR 5245 , ENSAT, Avenue de l'Agrobiopole , Castanet Tolosan , France .,b International Consortium for the Environmental Implications of Nanotechnology (iCEINT) , Aix-en-Provence , France
| | - Florence Mouchet
- a CNRS, Université de Toulouse, INP, UPS, EcoLab (Laboratoire d'écologie fonctionnelle et environnement) UMR 5245 , ENSAT, Avenue de l'Agrobiopole , Castanet Tolosan , France .,b International Consortium for the Environmental Implications of Nanotechnology (iCEINT) , Aix-en-Provence , France
| | - Stéphanie Cadarsi
- a CNRS, Université de Toulouse, INP, UPS, EcoLab (Laboratoire d'écologie fonctionnelle et environnement) UMR 5245 , ENSAT, Avenue de l'Agrobiopole , Castanet Tolosan , France .,b International Consortium for the Environmental Implications of Nanotechnology (iCEINT) , Aix-en-Provence , France
| | - Jérôme Silvestre
- a CNRS, Université de Toulouse, INP, UPS, EcoLab (Laboratoire d'écologie fonctionnelle et environnement) UMR 5245 , ENSAT, Avenue de l'Agrobiopole , Castanet Tolosan , France .,b International Consortium for the Environmental Implications of Nanotechnology (iCEINT) , Aix-en-Provence , France
| | - Laurent Verneuil
- a CNRS, Université de Toulouse, INP, UPS, EcoLab (Laboratoire d'écologie fonctionnelle et environnement) UMR 5245 , ENSAT, Avenue de l'Agrobiopole , Castanet Tolosan , France .,b International Consortium for the Environmental Implications of Nanotechnology (iCEINT) , Aix-en-Provence , France
| | - David Baqué
- a CNRS, Université de Toulouse, INP, UPS, EcoLab (Laboratoire d'écologie fonctionnelle et environnement) UMR 5245 , ENSAT, Avenue de l'Agrobiopole , Castanet Tolosan , France
| | - Eric Chauvet
- c CNRS, Université de Toulouse, INP, UPS, EcoLab (Laboratoire d'écologie fonctionnelle et environnement) UMR 5245 , Toulouse , France
| | - Jean-Marc Bonzom
- b International Consortium for the Environmental Implications of Nanotechnology (iCEINT) , Aix-en-Provence , France .,d Laboratoire de Radioécologie et d'Ecotoxicologie , IRSN (Institut de Radioprotection et de Sûreté Nucléaire), DEI/SECRE , Cadarache , France
| | - Christophe Pagnout
- b International Consortium for the Environmental Implications of Nanotechnology (iCEINT) , Aix-en-Provence , France .,e CNRS, Université de Lorraine, LIEC (Laboratoire Interdisciplinaire des Environnements Continentaux) UMR 7360, Metz, France
| | - Hugues Clivot
- b International Consortium for the Environmental Implications of Nanotechnology (iCEINT) , Aix-en-Provence , France .,e CNRS, Université de Lorraine, LIEC (Laboratoire Interdisciplinaire des Environnements Continentaux) UMR 7360, Metz, France
| | - Isabelle Fourquaux
- f CMEAB (Centre de Microscopie Electronique Appliqué à la Biologie), Université Paul Sabatier, Faculté de Médecine Rangueil , Toulouse , France , and
| | - Marie Tella
- b International Consortium for the Environmental Implications of Nanotechnology (iCEINT) , Aix-en-Provence , France .,g CNRS, Université d'Aix-Marseille, CEREGE UMR 7330 , Aix-en-Provence , France
| | - Mélanie Auffan
- b International Consortium for the Environmental Implications of Nanotechnology (iCEINT) , Aix-en-Provence , France .,g CNRS, Université d'Aix-Marseille, CEREGE UMR 7330 , Aix-en-Provence , France
| | - Laury Gauthier
- a CNRS, Université de Toulouse, INP, UPS, EcoLab (Laboratoire d'écologie fonctionnelle et environnement) UMR 5245 , ENSAT, Avenue de l'Agrobiopole , Castanet Tolosan , France .,b International Consortium for the Environmental Implications of Nanotechnology (iCEINT) , Aix-en-Provence , France
| | - Eric Pinelli
- a CNRS, Université de Toulouse, INP, UPS, EcoLab (Laboratoire d'écologie fonctionnelle et environnement) UMR 5245 , ENSAT, Avenue de l'Agrobiopole , Castanet Tolosan , France .,b International Consortium for the Environmental Implications of Nanotechnology (iCEINT) , Aix-en-Provence , France
| |
Collapse
|
48
|
Katsumiti A, Gilliland D, Arostegui I, Cajaraville MP. Mechanisms of Toxicity of Ag Nanoparticles in Comparison to Bulk and Ionic Ag on Mussel Hemocytes and Gill Cells. PLoS One 2015; 10:e0129039. [PMID: 26061169 PMCID: PMC4465040 DOI: 10.1371/journal.pone.0129039] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 05/04/2015] [Indexed: 11/19/2022] Open
Abstract
Silver nanoparticles (Ag NPs) are increasingly used in many products and are expected to end up in the aquatic environment. Mussels have been proposed as marine model species to evaluate NP toxicity in vitro. The objective of this work was to assess the mechanisms of toxicity of Ag NPs on mussel hemocytes and gill cells, in comparison to ionic and bulk Ag. Firstly, cytotoxicity of commercial and maltose stabilized Ag NPs was screened in parallel with the ionic and bulk forms at a wide range of concentrations in isolated mussel cells using cell viability assays. Toxicity of maltose alone was also tested. LC50 values were calculated and the most toxic Ag NPs tested were selected for a second step where sublethal concentrations of each Ag form were tested using a wide array of mechanistic tests in both cell types. Maltose-stabilized Ag NPs showed size-dependent cytotoxicity, smaller (20 nm) NPs being more toxic than larger (40 and 100 nm) NPs. Maltose alone provoked minor effects on cell viability. Ionic Ag was the most cytotoxic Ag form tested whereas bulk Ag showed similar cytotoxicity to the commercial Ag NPs. Main mechanisms of action of Ag NPs involved oxidative stress and genotoxicity in the two cell types, activation of lysosomal AcP activity, disruption of actin cytoskeleton and stimulation of phagocytosis in hemocytes and increase of MXR transport activity and inhibition of Na-K-ATPase in gill cells. Similar effects were observed after exposure to ionic and bulk Ag in the two cell types, although generally effects were more marked for the ionic form. In conclusion, results suggest that most observed responses were due at least in part to dissolved Ag.
Collapse
Affiliation(s)
- Alberto Katsumiti
- CBET Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE, University of the Basque Country UPV/EHU, Plentzia, Spain
| | - Douglas Gilliland
- European Commission–Joint Research Centre, Institute of Health and Consumer Protection, NSB Unit, Ispra (VA), Italy
| | - Inmaculada Arostegui
- Department of Applied Mathematics, Statistics and Operations Research, Faculty of Science and Technology, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Miren P. Cajaraville
- CBET Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE, University of the Basque Country UPV/EHU, Plentzia, Spain
- * E-mail:
| |
Collapse
|
49
|
Aravantinou AF, Tsarpali V, Dailianis S, Manariotis ID. Effect of cultivation media on the toxicity of ZnO nanoparticles to freshwater and marine microalgae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 114:109-16. [PMID: 25625916 DOI: 10.1016/j.ecoenv.2015.01.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 01/16/2015] [Accepted: 01/17/2015] [Indexed: 05/22/2023]
Abstract
The aim of this work was to investigate the effect of zinc oxide nanoparticles (ZnO NPs) on freshwater and marine microalgae cultivated in different media. Freshwater species Chlorococcum sp. and Scenedesmus rubescens were cultivated in modified Blue-Green medium (BG-11) and Bold's Basal Medium (BBM), and marine species Dunaliella tertiolecta, and Tetraselmis suesica, cultured in salt modified BG-11 and f/2 medium. The microalgae species were exposed for 96 h with a daily reading of algal growth rate, to different ZnO NPs concentrations (0.081-810 mg/L). Significant differences were observed on microalgae growth rates, with the marine being more sensitive than the freshwater species, as revealed by their half inhibitory concentration values (IC50). The IC50 values in freshwater species were affected by the culture medium. The lowest IC50 values (<2.57 mg/L) were observed in the marine species. S. rubescens showed the less toxic effect in cultures with modified BG-11, compared to BBM cultures, with IC50 values >810 mg/L and 14.27 mg/L after 96 h exposure time, respectively. ZnO nanoparticles appeared to have toxic effects in all species tested, depended on the species type, the exposure time, the NPs concentration, and mainly the culture medium.
Collapse
Affiliation(s)
- Andriana F Aravantinou
- Environmental Engineering Laboratory, Department of Civil Engineering, University of Patras, 26504 Patras, Greece
| | - Vasiliki Tsarpali
- Section of Animal Biology, Department of Biology, Faculty of Sciences, University of Patras, 26504 Patras, Greece
| | - Stefanos Dailianis
- Section of Animal Biology, Department of Biology, Faculty of Sciences, University of Patras, 26504 Patras, Greece
| | - Ioannis D Manariotis
- Environmental Engineering Laboratory, Department of Civil Engineering, University of Patras, 26504 Patras, Greece.
| |
Collapse
|
50
|
Cid A, Picado A, Correia JB, Chaves R, Silva H, Caldeira J, de Matos APA, Diniz MS. Oxidative stress and histological changes following exposure to diamond nanoparticles in the freshwater Asian clam Corbicula fluminea (Müller, 1774). JOURNAL OF HAZARDOUS MATERIALS 2015; 284:27-34. [PMID: 25463214 DOI: 10.1016/j.jhazmat.2014.10.055] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 10/16/2014] [Accepted: 10/21/2014] [Indexed: 06/04/2023]
Abstract
Recently, the scientific community became aware of the potential ability of nanoparticles to cause toxicity in living organisms. Therefore, many of the implications for aquatic ecosystems and its effects on living organisms are still to be evaluated and fully understood. In this study, the toxicity of nanodiamonds (NDs) was assessed in the freshwater bivalve (Corbicula fluminea) following exposure to different nominal concentrations of NDs (0.01, 0.1, 1, and 10 mg l(-1)) throughout 14 days. The NDs were characterized (gravimetry, pH, zeta potential, electron microscopy, and atomic force microscopy) confirming manufacturer information and showing NDs with a size of 4-6 nm. Oxidative stress enzymes activities (glutathione-S-transferase, catalase) and lipid peroxidation were determined. The results show a trend to increase in GST activities after seven days of exposure in bivalves exposed to NDs concentrations (>0.1 mg l(-1)), while for catalase a significant increase was found in bivalves exposed from 0.01 to 1.0 mg l(-1) following an exposure of 14 days. The histological analysis revealed alterations in digestive gland cells, such as vacuolization and thickening. The lipid peroxidation showed a trend to increase for the different tested NDs concentrations which is compatible with the observed cellular damage.
Collapse
Affiliation(s)
- Antonio Cid
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnología, Centro de Química Fina e Biotecnología, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Ana Picado
- LNEG-Laboratório Nacional de Energia e Geologia, I.P. Estrada do Paço do Lumiar 22, 1649-038 Lisboa, Portugal
| | - José Brito Correia
- LNEG-Laboratório Nacional de Energia e Geologia, I.P. Estrada do Paço do Lumiar 22, 1649-038 Lisboa, Portugal
| | - Rúben Chaves
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Superior de Ciências da Saúde Egas Moniz, 2825-511 Caparica, Portugal
| | - Héber Silva
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Superior de Ciências da Saúde Egas Moniz, 2825-511 Caparica, Portugal
| | - Jorge Caldeira
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnología, Centro de Química Fina e Biotecnología, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; Centro de Investigação Interdisciplinar Egas Moniz, Instituto Superior de Ciências da Saúde Egas Moniz, 2825-511 Caparica, Portugal
| | - António P Alves de Matos
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Superior de Ciências da Saúde Egas Moniz, 2825-511 Caparica, Portugal; Centro de Estudos do Ambiente e do Mar (CESAM/FCUL)-Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Mário S Diniz
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnología, Centro de Química Fina e Biotecnología, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| |
Collapse
|