1
|
Zhang Y, Yang Y, Shao Y, Wang J, Chen Z, Roß-Nickoll M, Schäffer A. Conversion of Rice Field Ecosystems from Conventional to Ecological Farming: Effects on Pesticide Fate, Ecotoxicity and Soil Properties. ENVIRONMENTAL MANAGEMENT 2024:10.1007/s00267-024-02064-3. [PMID: 39414691 DOI: 10.1007/s00267-024-02064-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/06/2024] [Indexed: 10/18/2024]
Abstract
Rice is an important staple food around the world, the cultivation as sustainable agriculture and food supply are key to achieving the Sustainable Development Goals (SDGs) of 2030. In order to analyze the sustainability of the rice paddy ecosystem, a comparative study was carried out during the rice growing season between paddies with conventional agriculture (CA) and ecological agriculture (EA), integrating analysis of physico-chemical characteristics of soil and soil pore water, pesticide residues, acute toxic effects and potential ecological risk, as well as aquatic invertebrate community structure dynamics. Our study found that total carbon and nitrogen present in soil were significantly higher in CA than in EA, while opposite results were found in soil pore water, implying the improvement on soil properties in EA. Neonicotinoid pesticides (thiamethoxam and thiacloprid) were still detected in EA, although no pesticides were applied after conversing CA to EA. Additionally, toxic effects to zebrafish embryos with a peak toxicity in summer (July, LC50 = 55.26 mg soil equivalent/L) were also found in EA, which was lower than in CA. The dynamics of the aquatic invertebrate community structure were correlated with the toxicity results, with higher diversity recorded in EA. Therefore, for the purpose of ecosystem sustainability, the long-term implementation of EA is highly recommended.
Collapse
Affiliation(s)
- Yulin Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, 400045, Chongqing, China
| | - Yinjie Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, 400045, Chongqing, China
| | - Ying Shao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, 400045, Chongqing, China
| | - Junjie Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, 400045, Chongqing, China
| | - Zhongli Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, 400045, Chongqing, China.
| | - Martina Roß-Nickoll
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, 400045, Chongqing, China
- Institute for Environmental Research, RWTH Aachen University, 52074, Aachen, Germany
| | - Andreas Schäffer
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, 400045, Chongqing, China
- Institute for Environmental Research, RWTH Aachen University, 52074, Aachen, Germany
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210093, Nanjing, China
| |
Collapse
|
2
|
Hermann M, Polazzo F, Cherta L, Crettaz-Minaglia M, García-Astillero A, Peeters ETHM, Rico A, Van den Brink PJ. Combined stress of an insecticide and heatwaves or elevated temperature induce community and food web effects in a Mediterranean freshwater ecosystem. WATER RESEARCH 2024; 260:121903. [PMID: 38875860 DOI: 10.1016/j.watres.2024.121903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024]
Abstract
Ongoing global climate change will shift nature towards Anthropocene's unprecedented conditions by increasing average temperatures and the frequency and severity of extreme events, such as heatwaves. While such climatic changes pose an increased threat for freshwater ecosystems, other stressors like pesticides may interact with warming and lead to unpredictable effects. Studies that examine the underpinned mechanisms of multiple stressor effects are scarce and often lack environmental realism. Here, we conducted a multiple stressors experiment using outdoor freshwater mesocosms with natural assemblages of macroinvertebrates, zooplankton, phytoplankton, macrophytes, and microbes. The effects of the neonicotinoid insecticide imidacloprid (1 µg/L) were investigated in combination with three temperature scenarios representing ambient, elevated temperatures (+4 °C), and heatwaves (+0 to 8 °C), the latter two having similar energy input. We found similar imidacloprid dissipation patterns for all temperature treatments with lowest average dissipation half-lives under both warming scenarios (DT50: 3 days) and highest under ambient temperatures (DT50: 4 days) throughout the experiment. Amongst all communities, only the zooplankton community was significantly affected by the combined treatments. This community demonstrated low chemical sensitivity with lagged and significant negative imidacloprid effects only for cyclopoids. Heatwaves caused early and long-lasting significant effects on the zooplankton community as compared to elevated temperatures, with Polyarthra, Daphnia longispina, Lecanidae, and cyclopoids being the most negatively affected taxa, whereas Ceriodaphnia and nauplii showed positive responses to temperature. Community recovery from imidacloprid stress was slower under heatwaves, suggesting temperature-enhanced toxicity. Finally, microbial and macrofauna litter degradation were significantly enhanced by temperature, whereas the latter was also negatively affected by imidacloprid. A structural equation model depicted cascading food web effects of both stressors with stronger relationships and significant negative stressor effects at higher than at lower trophic levels. Our study highlights the threat of a series of heatwaves compared to elevated temperatures for imidacloprid-stressed freshwaters.
Collapse
Affiliation(s)
- Markus Hermann
- Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands.
| | - Francesco Polazzo
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, 28805 Alcalá de Henares, Madrid, Spain
| | - Laura Cherta
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, 28805 Alcalá de Henares, Madrid, Spain
| | - Melina Crettaz-Minaglia
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, 28805 Alcalá de Henares, Madrid, Spain
| | - Ariadna García-Astillero
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, 28805 Alcalá de Henares, Madrid, Spain
| | - Edwin T H M Peeters
- Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| | - Andreu Rico
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, 28805 Alcalá de Henares, Madrid, Spain
| | - Paul J Van den Brink
- Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| |
Collapse
|
3
|
Yadav S, Sewariya S, Singh P, Chandra R, Jain P, Kumari K. Analytic and In Silico Methods to Understand the Interactions between Dinotefuran and Haemoglobin. Chem Biodivers 2024; 21:e202400495. [PMID: 38838069 DOI: 10.1002/cbdv.202400495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
This work lies in the growing concern over the potential impacts of pesticides on human health and the environment. Pesticides are extensively used to protect crops and control pests, but their interaction with essential biomolecules like haemoglobin (Hb) remains poorly understood. Spectrofluorometric, electrochemical, and in silico investigations have been chosen as potential methods to delve into this issue, as they offer valuable insights into the molecular-level interactions between pesticides and haemoglobin. The research aims to address the gaps in knowledge and contribute to developing safer and more sustainable pesticide practices. The interaction was studied by spectroscopic techniques (UV-Visible & Fluorescence), in silico studies (molecular docking & molecular dynamics simulations) and electrochemical techniques (cyclic voltammetry and tafel). The studies showed effective binding of dinotefuran with the Hb which will cause toxicity to human. The formation of a stable molecular complex between ofloxacin and Haemoglobin was shown via molecular docking and the binding energy was found to be -5.37 kcal/mol. Further, molecular dynamics simulations provide an insight for the stability of the complex (Hb-dinotefuran) for a span of 250 ns with a binding free energy of -53.627 kJ/mol. Further, cyclic voltammetry and tafel studies show the interaction of dinotefuran with Hb effectively.
Collapse
Affiliation(s)
- Sandeep Yadav
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India
- Department of Chemistry, SRM Institute of Science & Technology, Delhi-NCR Campus, Modinagar, Ghaziabad, India
| | - Shubham Sewariya
- Department of Chemistry, University of Delhi, Delhi, India
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, United Kingdom
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India
- Department of Chemistry, SRM Institute of Science & Technology, Delhi-NCR Campus, Modinagar, Ghaziabad, India
| | - Ramesh Chandra
- Department of Chemistry, University of Delhi, Delhi, India
| | - Pallavi Jain
- Department of Chemistry, SRM Institute of Science & Technology, Delhi-NCR Campus, Modinagar, Ghaziabad, India
| | - Kamlesh Kumari
- Department of Zoology, University of Delhi, Delhi, India
| |
Collapse
|
4
|
Ishiwaka N, Hashimoto K, Hiraiwa MK, Sánchez-Bayo F, Kadoya T, Hayasaka D. Can warming accelerate the decline of Odonata species in experimental paddies due to insecticide fipronil exposure? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122831. [PMID: 37913977 DOI: 10.1016/j.envpol.2023.122831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/05/2023] [Accepted: 10/29/2023] [Indexed: 11/03/2023]
Abstract
Systemic insecticides are one of the causes of Odonata declines in paddy fields. Since rising temperatures associated with global warming can contribute to strengthen pesticide toxicity, insecticide exposures under increasing temperatures may accelerate the decline of Odonata species in the future. However, the combined effects of multiple stressors on Odonata diversity and abundance within ecosystems under various environmental conditions and species interactions are little known. Here, we evaluate the combined effects of the insecticide fipronil and warming on the abundance of Odonata nymphs in experimental paddies. We show that the stand-alone effect of the insecticide exposure caused a significant decrease in abundance of the Odonata community, while nymphs decreased synergistically in the combined treatments with temperature rise in paddy water. However, impacts of each stressor alone were different among species. This study provides experimental evidence that warming could accelerate a reduction in abundance of the Odonata community exposed to insecticides (synergistic effect), although the strength of that effect might vary with the community composition in targeted habitats, due mainly to different susceptibilities among species to each stressor. Community-based monitoring in actual fields is deemed necessary for a realistic evaluation of the combined effects of multiple stressors on biodiversity.
Collapse
Affiliation(s)
- Naoto Ishiwaka
- Graduate School of Agriculture, Kindai University, Nakamachi, 3327-204, Nara, Nara, 631-8505, Japan
| | - Koya Hashimoto
- Biodiversity Division, National Institute for Environmental Studies, Onogawa 16-2, Tsukuba, Ibaraki, 305-8506, Japan; Faculty of Agriculture and Life Science, Hirosaki University, Bunkyotyo 3, Hirosaki, Aomori, 036-8561, Japan
| | - Masayoshi K Hiraiwa
- Faculty of Agriculture, Kindai University, Nakamachi, 3327-204, Nara, Nara, 631-8505, Japan
| | - Francisco Sánchez-Bayo
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Taku Kadoya
- Biodiversity Division, National Institute for Environmental Studies, Onogawa 16-2, Tsukuba, Ibaraki, 305-8506, Japan
| | - Daisuke Hayasaka
- Faculty of Agriculture, Kindai University, Nakamachi, 3327-204, Nara, Nara, 631-8505, Japan.
| |
Collapse
|
5
|
Mamy L, Pesce S, Sanchez W, Aviron S, Bedos C, Berny P, Bertrand C, Betoulle S, Charles S, Chaumot A, Coeurdassier M, Coutellec MA, Crouzet O, Faburé J, Fritsch C, Gonzalez P, Hedde M, Leboulanger C, Margoum C, Mougin C, Munaron D, Nélieu S, Pelosi C, Rault M, Sucré E, Thomas M, Tournebize J, Leenhardt S. Impacts of neonicotinoids on biodiversity: a critical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-31032-3. [PMID: 38036909 DOI: 10.1007/s11356-023-31032-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/08/2023] [Indexed: 12/02/2023]
Abstract
Neonicotinoids are the most widely used class of insecticides in the world, but they have raised numerous concerns regarding their effects on biodiversity. Thus, the objective of this work was to do a critical review of the contamination of the environment (soil, water, air, biota) by neonicotinoids (acetamiprid, clothianidin, imidacloprid, thiacloprid, thiamethoxam) and of their impacts on terrestrial and aquatic biodiversity. Neonicotinoids are very frequently detected in soils and in freshwater, and they are also found in the air. They have only been recently monitored in coastal and marine environments, but some studies already reported the presence of imidacloprid and thiamethoxam in transitional or semi-enclosed ecosystems (lagoons, bays, and estuaries). The contamination of the environment leads to the exposure and to the contamination of non-target organisms and to negative effects on biodiversity. Direct impacts of neonicotinoids are mainly reported on terrestrial invertebrates (e.g., pollinators, natural enemies, earthworms) and vertebrates (e.g., birds) and on aquatic invertebrates (e.g., arthropods). Impacts on aquatic vertebrate populations and communities, as well as on microorganisms, are less documented. In addition to their toxicity to directly exposed organisms, neonicotinoid induce indirect effects via trophic cascades as demonstrated in several species (terrestrial and aquatic invertebrates). However, more data are needed to reach firmer conclusions and to get a clearer picture of such indirect effects. Finally, we identified specific knowledge gaps that need to be filled to better understand the effects of neonicotinoids on terrestrial, freshwater, and marine organisms, as well as on ecosystem services associated with these biotas.
Collapse
Affiliation(s)
- Laure Mamy
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France.
| | | | | | | | - Carole Bedos
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France
| | - Philippe Berny
- UR ICE Vetagro Sup, Campus Vétérinaire, 69280, Marcy‑L'Etoile, France
| | - Colette Bertrand
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France
| | - Stéphane Betoulle
- Université de Reims Champagne-Ardenne, Normandie Université, ULH, INERIS, SEBIO, 51100, Reims, France
| | | | | | - Michael Coeurdassier
- Laboratoire Chrono-Environnement, UMR 6249 CNRS-Université de Franche-Comté, 25000, Besançon, France
| | - Marie-Agnès Coutellec
- DECOD (Ecosystem Dynamics and Sustainability), INRAE, L'Institut Agro, Ifremer, 35042, Rennes, France
| | - Olivier Crouzet
- OFB, Direction de la Recherche et Appui Scientifique (DRAS), 78610, Auffargis, France
| | - Juliette Faburé
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France
| | - Clémentine Fritsch
- Laboratoire Chrono-Environnement, UMR 6249 CNRS-Université de Franche-Comté, 25000, Besançon, France
| | - Patrice Gonzalez
- CNRS, Bordeaux INP, EPOC, UMR 5805, Univ. Bordeaux, 33600, Pessac, France
| | - Mickael Hedde
- Eco&Sols, Univ. Montpellier, INRAE, IRD, CIRAD, Institut Agro Montpellier, 34060, Montpellier, France
| | | | | | - Christian Mougin
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France
| | | | - Sylvie Nélieu
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France
| | - Céline Pelosi
- INRAE, Avignon Université, UMR EMMAH, 84000, Avignon, France
| | - Magali Rault
- Université d'Avignon, Université Aix-Marseille, CNRS, IRD, IMBE, Pôle Agrosciences, 84916, Avignon, France
| | - Elliott Sucré
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, 34200, Sète, France
- Centre Universitaire de Formation Et de Recherche de Mayotte (CUFR), 97660, Dembeni, Mayotte, France
| | - Marielle Thomas
- Université de Lorraine, INRAE, UR AFPA, 54000, Nancy, France
| | | | | |
Collapse
|
6
|
Lu Y, Zheng X, He X, Guo J, Fu Q, Xu H, Lu Z. Sublethal effects of chlorantraniliprole on growth, biochemical and molecular parameters in two chironomids, Chironomus kiiensis and Chironomus javanus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114658. [PMID: 36796207 DOI: 10.1016/j.ecoenv.2023.114658] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Pesticide residues have serious environmental impacts on rice-based ecosystems. In rice fields, Chironomus kiiensis and Chironomus javanus provide alternative food sources to predatory natural enemies of rice insect pests, especially when pests are low. Chlorantraniliprole is a substitute for older classes of insecticides and has been used extensively to control rice pests. To determine the ecological risks of chlorantraniliprole in rice fields, we evaluated its toxic effects on certain growth, biochemical and molecular parameters in these two chironomids. The toxicity tests were performed by exposing third-instar larvae to a range of concentrations of chlorantraniliprole. LC50 values at 24 h, 48 h, and 10 days showed that chlorantraniliprole was more toxic to C. javanus than to C. kiiensis. Chlorantraniliprole significantly prolonged the larval growth duration, inhibited pupation and emergence, and decreased egg numbers of C. kiiensis and C. javanus at sublethal dosages (LC10 = 1.50 mg/L and LC25 = 3.00 mg/L for C. kiiensis; LC10 = 0.25 mg/L and LC25 = 0.50 mg/L for C. javanus). Sublethal exposure to chlorantraniliprole significantly decreased the activity of the detoxification enzymes carboxylesterase (CarE) and glutathione S-transferases (GSTs) in both C. kiiensis and C. javanus. Sublethal exposure to chlorantraniliprole also markedly inhibited the activity of the antioxidant enzyme peroxidase (POD) in C. kiiensis and POD and catalase (CAT) in C. javanus. Expression levels of 12 genes revealed that detoxification and antioxidant abilities were affected by sublethal exposures to chlorantraniliprole. There were significant changes in the expression levels of seven genes (CarE6, CYP9AU1, CYP6FV2, GSTo1, GSTs1, GSTd2, and POD) in C. kiiensis and ten genes (CarE6, CYP9AU1, CYP6FV2, GSTo1, GSTs1, GSTd2, GSTu1, GSTu2, CAT, and POD) in C. javanus. These results provide a comprehensive overview of the differences in chlorantraniliprole toxicity to chironomids, indicating that C. javanus is more susceptible and suitable as an indicator for ecological risk assessment in rice ecosystems.
Collapse
Affiliation(s)
- Yanhui Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Xusong Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Xiaochan He
- Jinhua Academy of Agricultural Sciences, Jinhua 321000, PR China
| | - Jiawen Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Qiming Fu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Hongxing Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China.
| | - Zhongxian Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China.
| |
Collapse
|
7
|
Toxicity and genotoxicity of imidacloprid in the tadpoles of Leptodactylus luctator and Physalaemus cuvieri (Anura: Leptodactylidae). Sci Rep 2022; 12:11926. [PMID: 35831394 PMCID: PMC9279336 DOI: 10.1038/s41598-022-16039-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 07/04/2022] [Indexed: 11/30/2022] Open
Abstract
Imidacloprid is a neonicotinoid insecticide used to control agricultural pests around the world. This pesticide can have adverse effects on non-target organisms, especially in aquatic environments. The present study evaluated the toxicity of an imidacloprid-based insecticide in amphibians, using Leptodactylus luctator and Physalaemus cuvieri tadpoles as study models. Spawning of both species were collected within less than 24 h of oviposition from a non-agricultural land at Erechim, Rio Grande do Sul state, Brazil. Survival, swimming activity, body size, morphological malformations, and genotoxic parameters were analyzed at laboratory conditions. A short-term assay was conducted over 168 h (7 days) with five different concentrations of imidacloprid (3–300 µg L−1) being tested. The insecticide did not affect survival, although the tadpoles of both species presented reduced body size, malformed oral and intestine structures, and micronuclei and other erythrocyte nuclear abnormalities following exposure to this imidacloprid-based compound. Exposure also affected swimming activity in L. luctator, which reflected the greater sensitivity of L. luctator to imidacloprid in comparison with P. cuvieri. The swimming activity, body size, and malformations observed in L. luctator and the morphological malformations found in P. cuvieri indicated that even the lowest tested concentration of the insecticide were harmful to amphibians. At concentrations of over 3 μg L−1, P. cuvieri presents a smaller body size, and both species are affected by genotoxic cell damage. This demonstrates that imidacloprid is potentially toxic for the two study species at environmentally relevant concentrations.
Collapse
|
8
|
Bakonyi G, Vásárhelyi T, Szabó B. Pollution impacts on water bugs (Nepomorpha, Gerromorpha): state of the art and their biomonitoring potential. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:301. [PMID: 35344112 PMCID: PMC8960648 DOI: 10.1007/s10661-022-09961-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
As water pollution poses an increasing risk worldwide, it is timely to assess the achievements of the aquatic macroinvertebrate ecotoxicology to provide a sound basis for the discipline's future and support the development of biomonitoring. Aquatic and semi-aquatic bugs (Hemiptera: Nepomorpha, Gerromorpha) are ubiquitous in almost all water types, sometimes in high densities, and play a significant role in organic material turnover and energy flow. Nevertheless, they are ignored in the water pollution biomonitoring schemes. Here, based on 300 papers, we review and evaluate the effects of chemical pesticides, microorganism-derived pesticides, insecticides of plant origin, heavy metals, eutrophication, salinisation and light pollution which are summarised for the first time. Our review encompasses the results of 100 laboratory and 39 semi-field/field experiments with 47 pesticides and 70 active ingredients. Pyrethroids were found to be more toxic than organochlorine, organophosphate and neonicotinoid insecticides to water bugs, like other macroinvertebrate groups. Additionally, in 10 out of 17 cases, the recommended field concentration of the pesticide was higher than the LC50 values, indicating potential hazards to water bugs. The recommended field concentrations of pesticides used in mosquito larvae control were found non-toxic to water bugs. As very few replicated studies are available, other findings on the effects of pesticides cannot be generalised. The microorganism-derived pesticide Bti appears to be safe when used at the recommended field concentration. Data indicates that plant-derived pesticides are safe with a high degree of certainty. We have identified three research areas where water bugs could be better involved in water biomonitoring. First, some Halobates spp. are excellent, and Gerris spp. are promising sentinels for Cd contamination. Second, Micronecta and, to a certain extent, Corixidae species composition is connected to and the indicator of eutrophication. Third, the species composition of the Corixidae is related to salinisation, and a preliminary method to quantify the relationship is already available. Our review highlights the potential of water bugs in water pollution monitoring.
Collapse
Affiliation(s)
- Gábor Bakonyi
- Department of Zoology and Ecology, Hungarian University of Agriculture and Life Sciences, 2100, Gödöllő, Hungary.
| | | | - Borbála Szabó
- Centre for Ecological Research, Institute of Ecology and Botany, "Lendület" Landscape and Conservation Ecology, 2163, Vácrátót, Hungary
| |
Collapse
|
9
|
Polylactic acid nanoparticles for co-delivery of dinotefuran and avermectin against pear tree pests with improved effective period and enhanced bioactivity. Int J Biol Macromol 2022; 206:633-641. [PMID: 35247422 DOI: 10.1016/j.ijbiomac.2022.02.182] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/22/2022] [Accepted: 02/27/2022] [Indexed: 11/22/2022]
Abstract
Pesticide compounding technology for disease and pest control emerges as an effective way to increase the effectiveness of pesticides while reducing pesticides resistance. Nanomaterials and encapsulation technology have offered a new insight into preparing efficient pesticide formulations, especially constructing a co-delivery nanoparticle for synergistic pesticides. In this study, a dinotefuran/avermectin co-delivery nanoparticles (DACNPs) against pear tree pests with polylactic acid (PLA) as the wall material were constructed by double-emulsion method combined with high-pressure homogenization technique. The drug content of the DACNPs was 39.1% with an average size of 245.7 ± 4.2 nm and the mean polymer dispersity index (PDI) value was 0.123. The DACNPs showed high foliar retention and good spread performance on target leaves due to the nanoscale effect. The obtained DACNPs showed a better control effect on Grapholitha molesta Busck and Psylla chinensis Yang et Li compared with the commercial formulations, which could significantly prolong the effective duration and enhance the bioactivity with lower amounts and application frequency of pesticides. This study may provide new insights into developing novel pesticide formulations to improve the utilization rate of pesticides, reduce environmental pollution and minimize the cost of farming.
Collapse
|
10
|
Dimitri VDP, Yao KS, Li D, Lei HJ, Van den Brink PJ, Ying GG. Imidacloprid treatments induces cyanobacteria blooms in freshwater communities under sub-tropical conditions. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 240:105992. [PMID: 34656895 DOI: 10.1016/j.aquatox.2021.105992] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/06/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Imidacloprid is one of the most used neonicotinoid insecticides all over the world and is considered as a contaminant of concern due to its high toxicity potential to aquatic organisms. However, the majority of the studies that have evaluated the effects of imidacloprid on aquatic organisms were conducted under temperate conditions. In the present study, a mesocosm experiment was conducted under sub-tropical conditions to assess the effects of imidacloprid on the structure (macroinvertebrates, zooplankton and phytoplankton) and functional endpoints of an aquatic ecosystem and to compare the results with similar temperate and (sub-)tropical mesocosm studies. Imidacloprid (0, 0.03, 0.3 and 3 µg/L) was applied to 13 mesocosms weekly over a period of 4 weeks, followed by a one month recovery period. At the community level a lowest NOECcommunity of 0.03 µg/L was calculated for the zooplankton, phytoplankton and macroinvertebrate communities. The highest sensitivity to imidacloprid (NOEC < 0.03 µg/L) were observed for Gerris sp., Diaptomus sp. and Brachionus quadridentatus. Imidacloprid induced population declines of the larger zooplankton species (Diaptomus sp. and Ostracoda) resulted in increased rotifer abundances and shifted the phytoplankton community to a graze resistant gelatinous cyanobacteria dominated ecosystem. These cyanobacteria blooms occurred at all different concentrations and could pose an important public health and environmental concern. Although there are some differences in species and community sensitivity between the present and the other (sub-)topical mesocosm studies, it can be observed that all show a similar general community response to imidacloprid. Under (sub-)tropical conditions, the toxic effects of imidacloprid occur at lower concentrations than found for temperate ecosystems.
Collapse
Affiliation(s)
- Van de Perre Dimitri
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; School of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Kai-Sheng Yao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; Wageningen University, Aquatic Ecology and Water Quality Management Group, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| | - Dan Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; School of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Hao-Jun Lei
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; School of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Paul J Van den Brink
- Wageningen University, Aquatic Ecology and Water Quality Management Group, P.O. Box 47, 6700 AA Wageningen, The Netherlands; Wageningen Environmental Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands.
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; School of Environment, South China Normal University, Guangzhou 510006, PR China
| |
Collapse
|
11
|
Olivares-Castro G, Cáceres-Jensen L, Guerrero-Bosagna C, Villagra C. Insect Epigenetic Mechanisms Facing Anthropogenic-Derived Contamination, an Overview. INSECTS 2021; 12:780. [PMID: 34564220 PMCID: PMC8468710 DOI: 10.3390/insects12090780] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022]
Abstract
Currently, the human species has been recognized as the primary species responsible for Earth's biodiversity decline. Contamination by different chemical compounds, such as pesticides, is among the main causes of population decreases and species extinction. Insects are key for ecosystem maintenance; unfortunately, their populations are being drastically affected by human-derived disturbances. Pesticides, applied in agricultural and urban environments, are capable of polluting soil and water sources, reaching non-target organisms (native and introduced). Pesticides alter insect's development, physiology, and inheritance. Recently, a link between pesticide effects on insects and their epigenetic molecular mechanisms (EMMs) has been demonstrated. EMMs are capable of regulating gene expression without modifying genetic sequences, resulting in the expression of different stress responses as well as compensatory mechanisms. In this work, we review the main anthropogenic contaminants capable of affecting insect biology and of triggering EMMs. EMMs are involved in the development of several diseases in native insects affected by pesticides (e.g., anomalous teratogenic reactions). Additionally, EMMs also may allow for the survival of some species (mainly pests) under contamination-derived habitats; this may lead to biodiversity decline and further biotic homogenization. We illustrate these patterns by reviewing the effect of neonicotinoid insecticides, insect EMMs, and their ecological consequences.
Collapse
Affiliation(s)
- Gabriela Olivares-Castro
- Instituto de Entomología, Universidad Metropolitana de Ciencias de la Educación, Avenida José Pedro Alessandri 774, Santiago 7760197, Chile;
| | - Lizethly Cáceres-Jensen
- Laboratorio de Físicoquímica Analítica, Departamento de Química, Facultad de Ciencias Básicas, Universidad Metropolitana de Ciencias de la Educación, Santiago 7760197, Chile;
| | - Carlos Guerrero-Bosagna
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 581 83 Linköping, Sweden;
- Environmental Toxicology Program, Department of Integrative Biology, Uppsala University, 752 36 Uppsala, Sweden
| | - Cristian Villagra
- Instituto de Entomología, Universidad Metropolitana de Ciencias de la Educación, Avenida José Pedro Alessandri 774, Santiago 7760197, Chile;
| |
Collapse
|
12
|
Merga LB, Van den Brink PJ. Ecological effects of imidacloprid on a tropical freshwater ecosystem and subsequent recovery dynamics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147167. [PMID: 34088063 DOI: 10.1016/j.scitotenv.2021.147167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
This study aimed to investigate the effect of imidacloprid on structural (invertebrates and primary producers) and functional (organic matter decomposition and physicochemical parameters) characteristics of tropical freshwaters using acute single species and mesocosm studies performed in Ethiopia. The recovery of affected endpoints was also studied by using a mesocosm study period of 21 weeks. Our acute toxicity test showed that Cloeon dipterum (96-h EC50 = 1.5 μg/L) and Caenis horaria (96-h EC50 = 1.9 μg/L) are relatively sensitive arthropods to imidacloprid. The mesocosm experiment evaluated the effects of four applications of imidacloprid with a weekly interval and the results showed that the macroinvertebrate and zooplankton community structure changed significantly due to imidacloprid contamination in mesocosms repeatedly dosed with ≥0.1 and ≥ 0.01 μg/L, respectively (time weighted average concentrations of 112 days (TWA112d) of ≥0.124 and ≥ ≈0.02 μg/L, respectively). The largest responses were found for C. dipterum, C. horaria, Brachionus sp. and Filinia sp. Chlorophyll-a concentrations of periphyton and phytoplankton significantly increased in the ≥0.1 μg/L treatments levels which are indirect effects as a result of the release of grazing pressure. A significant, but quantitatively small, decrease of organic matter decomposition rate was observed in mesocosms treated with repeated doses of 1 μg/L (TWA112d of 2.09 μg/L). No recovery was observed for the macroinvertebrates community during the study period of 21 weeks, but zooplankton recovered after 9 weeks. We observed spatio-temporal related toxicity differences between tropical and temperate aquatic taxa, with tropical taxa generally being more sensitive. This suggests that use of temperate toxicity data for the risk assessment of imidacloprid in tropical region is not recommended.
Collapse
Affiliation(s)
- Lemessa B Merga
- Aquatic Ecology and Water Quality Management group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands; Department of Chemistry, Ambo University, P.O. Box 240, Ambo, Ethiopia
| | - Paul J Van den Brink
- Aquatic Ecology and Water Quality Management group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands; Wageningen Environmental Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands.
| |
Collapse
|
13
|
Neurotoxic Effects of Neonicotinoids on Mammals: What Is There beyond the Activation of Nicotinic Acetylcholine Receptors?-A Systematic Review. Int J Mol Sci 2021; 22:ijms22168413. [PMID: 34445117 PMCID: PMC8395098 DOI: 10.3390/ijms22168413] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 02/07/2023] Open
Abstract
Neonicotinoids are a class of insecticides that exert their effect through a specific action on neuronal nicotinic acetylcholine receptors (nAChRs). The success of these insecticides is due to this mechanism of action, since they act as potent agonists of insect nAChRs, presenting low affinity for vertebrate nAChRs, which reduces potential toxic risk and increases safety for non-target species. However, although neonicotinoids are considered safe, their presence in the environment could increase the risk of exposure and toxicity. On the other hand, although neonicotinoids have low affinity for mammalian nAChRs, the large quantity, variety, and ubiquity of these receptors, combined with its diversity of functions, raises the question of what effects these insecticides can produce in non-target species. In the present systematic review, we investigate the available evidence on the biochemical and behavioral effects of neonicotinoids on the mammalian nervous system. In general, exposure to neonicotinoids at an early age alters the correct neuronal development, with decreases in neurogenesis and alterations in migration, and induces neuroinflammation. In adulthood, neonicotinoids induce neurobehavioral toxicity, these effects being associated with their modulating action on nAChRs, with consequent neurochemical alterations. These alterations include decreased expression of nAChRs, modifications in acetylcholinesterase activity, and significant changes in the function of the nigrostriatal dopaminergic system. All these effects can lead to the activation of a series of intracellular signaling pathways that generate oxidative stress, neuroinflammation and, finally, neuronal death. Neonicotinoid-induced changes in nAChR function could be responsible for most of the effects observed in the different studies.
Collapse
|
14
|
Sánchez-Bayo F. Indirect Effect of Pesticides on Insects and Other Arthropods. TOXICS 2021; 9:177. [PMID: 34437495 PMCID: PMC8402326 DOI: 10.3390/toxics9080177] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/04/2022]
Abstract
Pesticides released to the environment can indirectly affect target and non-target species in ways that are often contrary to their intended use. Such indirect effects are mediated through direct impacts on other species or the physical environment and depend on ecological mechanisms and species interactions. Typical mechanisms are the release of herbivores from predation and release from competition among species with similar niches. Application of insecticides to agriculture often results in subsequent pest outbreaks due to the elimination of natural enemies. The loss of floristic diversity and food resources that result from herbicide applications can reduce populations of pollinators and natural enemies of crop pests. In aquatic ecosystems, insecticides and fungicides often induce algae blooms as the chemicals reduce grazing by zooplankton and benthic herbivores. Increases in periphyton biomass typically result in the replacement of arthropods with more tolerant species such as snails, worms and tadpoles. Fungicides and systemic insecticides also reduce nutrient recycling by impairing the ability of detritivorous arthropods. Residues of herbicides can reduce the biomass of macrophytes in ponds and wetlands, indirectly affecting the protection and breeding of predatory insects in that environment. The direct impacts of pesticides in the environment are therefore either amplified or compensated by their indirect effects.
Collapse
Affiliation(s)
- Francisco Sánchez-Bayo
- School of Life and Environmental Sciences, The University of Sydney, Eveleigh, NSW 2015, Australia
| |
Collapse
|
15
|
Bernardino MM, Alves PRL, de Santo FB, Niemeyer JC, Leal RMP. Ecotoxicity of imidacloprid to soil invertebrates in two tropical soils with contrasting texture. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:27655-27665. [PMID: 33512682 DOI: 10.1007/s11356-021-12562-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
Imidacloprid is one of the most commercialized insecticides in agriculture in the world, with a broad spectrum of action. However, little is known about the effects of commercial formulations containing this active ingredient (a.i.) on non-target organisms in tropical soils. Our objective was to assess the toxicity based on the predicted environmental concentration (PEC) of imidacloprid, in the avoidance behaviour of earthworms and collembolans as well as in the reproduction of collembolans, in two representative soils of the Brazilian Cerrado with contrasting texture (clayey Oxisol and sandy Entisol). Ecotoxicity tests were carried out according to ISO protocols to assess the avoidance behaviour of earthworms (Eisenia andrei) and avoidance and reproduction of collembolans (Folsomia candida). In the earthworm's avoidance test, more than 80% of the individuals were found in the control, in all tested concentrations, indicating a possible habitat function loss in both soils. The avoidance behaviour of collembolans was observed in both soils, being more expressive (up to 75% of escape) in Oxisol. In Entisol, only the two highest concentrations were avoided (up to 63%). There was a negative effect on the reproduction of collembolans in both soils, with a higher EC50 value (0.255 mg kg-1) in Oxisol than in Entisol (0.177 mg kg-1), demonstrating higher toxicity in the sandy soil. These differences were attributed to the contrasting texture of the studied soils, probably due to lower retention of the a.i. in the sandy soil, causing an increased bioavailability. This study demonstrated that imidacloprid can be highly toxic to soil invertebrates, even in soil concentrations lower than those expected from recommended dose, causing an impact on the edaphic organisms and, consequently, compromising its functions in the soil ecosystem.
Collapse
Affiliation(s)
- Murilo Martins Bernardino
- Postgraduate Program in Agrochemistry, Goiano Federal Institute of Education, Science and Technology, P.O Box 66, Campus Rio Verde, Rio Verde, Goiás, 75901-970, Brazil
| | - Paulo Roger Lopes Alves
- Federal University of Fronteira Sul, Av. Fernando Machado 108 E, Chapeco, SC, 89802112, Brazil
| | - Fernanda Benedet de Santo
- Postgraduate Program in Agricultural and Natural Ecosystems (PPGEAN), Federal University of Santa Catarina (UFSC), Campus of Curitibanos, Curitibanos, Santa Catarina, 89520-000, Brazil
| | - Júlia Carina Niemeyer
- Postgraduate Program in Agricultural and Natural Ecosystems (PPGEAN), Federal University of Santa Catarina (UFSC), Campus of Curitibanos, Curitibanos, Santa Catarina, 89520-000, Brazil.
| | - Rafael Marques Pereira Leal
- Postgraduate Program in Agrochemistry, Goiano Federal Institute of Education, Science and Technology, P.O Box 66, Campus Rio Verde, Rio Verde, Goiás, 75901-970, Brazil
| |
Collapse
|
16
|
Saka M, Tada N. Acute and chronic toxicity tests of systemic insecticides, four neonicotinoids and fipronil, using the tadpoles of the western clawed frog Silurana tropicalis. CHEMOSPHERE 2021; 270:129418. [PMID: 33423002 DOI: 10.1016/j.chemosphere.2020.129418] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
Extensive use of neonicotinoids and fipronil, which are popular systemic insecticides used in Japanese rice paddies, has raised concerns about their impacts on nontarget aquatic organisms such as amphibians. This study employed premetamorphic tadpoles of Silurana tropicalis and addressed the toxicity of four neonicotinoids (acetamiprid, clothianidin, dinotefuran, and imidacloprid) and fipronil. Acute toxicity tests were conducted under a 96-h semistatic exposure regime and median lethal concentration (LC50) values were calculated at 24-h intervals. All LC50 values of the four neonicotinoids exceeded 100 mg/L, suggesting their low acute toxicity to amphibians. Fipronil yielded much lower LC50 values (3.00-1.34 mg/L) and was highly toxic compared to the four neonicotinoids. Additionally, exposure to fipronil at >1 mg/L induced axial malformations, suggesting its teratogenicity. However, the LC50 values of fipronil were three orders of magnitude higher than the realistic concentrations in paddy water. Chronic toxicity tests were conducted with morphometric, gravimetric, and thyroid-histological endpoints. Premetamorphic tadpoles were exposed to each insecticide at two test concentrations: 0.1 and 1.0 mg/L for the four neonicotinoids; and 1/100 and 1/10 of the 96-h LC50 value for fipronil. Exposure to each insecticide continued until all tadpoles in the control reached late prometamorphic stages or the initial stage of metamorphic climax. At test termination, all insecticides showed no significant differences in any of the endpoints between the respective controls and chemical exposure groups. Overall, our results suggest that these insecticides alone do not directly affect amphibians through their larval stages at concentrations that likely occur in paddy water.
Collapse
Affiliation(s)
- Masahiro Saka
- Division of Aquatic Environment, Kyoto Prefectural Institute of Public Health and Environment, Murakamicho 395, Fushimi-ku, Kyoto, 612-8369, Japan.
| | - Noriko Tada
- Division of Aquatic Environment, Kyoto Prefectural Institute of Public Health and Environment, Murakamicho 395, Fushimi-ku, Kyoto, 612-8369, Japan.
| |
Collapse
|
17
|
Pitombeira de Figueirêdo L, Athayde DB, Daam MA, Guerra G, Duarte-Neto PJ, Sarmento H, Espíndola ELG. Integrated ecosystem models (soil-water) to analyze pesticide toxicity to aquatic organisms at two different temperature conditions. CHEMOSPHERE 2021; 270:129422. [PMID: 33421753 DOI: 10.1016/j.chemosphere.2020.129422] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
In order to increase the knowledge about pesticides considering the soil-water interaction, ecosystem models (mesoscosms) were used to analyze the of leachate on the immobility and feeding rate of the cladocerans, Ceriodaphnia silvestrii and D. similis and algae Raphidocelis subcapitata, at two different temperatures. Mesocosm were filled with natural soil (latosolo) that were contaminated with insecticide/acaricide Kraft 36 EC® and fungicide Score 250 EC®, using the recommended concentration for strawberry crops (10.8 g abamectin/ha and 20 g difenoconazole/ha). Pesticides were applied once (hand sprayers) and the precipitation was simulated twice a week (Days 1, 4, 8, 11, 15 and 18). The mesocosm were kept in a room with a controlled temperature (23 and 33 °C) and photoperiod (12h light/12h dark). The Kraft 36 EC® insecticide showed toxicity for both species of cladocerans tested, with effects on immobility and feeding rate, both at 23 and 33 °C. Score 250 EC® showed to be toxic only for the experiments that analyzed the immobility of C. silvestrii at 23 °C and the feeding of D. smilis at 33 °C, demonstrating that the effects are species-specific and related to the temperature at which they are tested. While for species R. subcapitata there was an effect only for mixture treatments of the pesticides analyzed at both temperatures. Thereby, zooplanktonic organisms may be at risk when exposed to this compound even after percolating in a soil column, which could lead to effects on the entire aquatic trophic chain and that temperature can influence the organism response to the contaminant.
Collapse
Affiliation(s)
- Livia Pitombeira de Figueirêdo
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, 13.560-970, São Carlos, Brazil.
| | - Danillo B Athayde
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, 13.560-970, São Carlos, Brazil
| | - Michiel A Daam
- CENSE, Department of Environmental Sciences and Engineering, Faculty of Sciences and Technology, New University of Lisbon, Quinta da Torre, 2829-516, Caparica, Portugal
| | - Glauce Guerra
- PPGBEA, Department of Statistics and Informatics, Rural Federal University of Pernambuco, R. Dom Manoel de Medeiros, s/n, Dois Irmãos, 52171900, Recife, Brazil
| | - Paulo José Duarte-Neto
- PPGBEA, Department of Statistics and Informatics, Rural Federal University of Pernambuco, R. Dom Manoel de Medeiros, s/n, Dois Irmãos, 52171900, Recife, Brazil
| | - Hugo Sarmento
- Laboratory of Microbial Processes and Biodiversity, Department of Hydrobiology, Federal University of São Carlos (UFSCar), 13565-905, São Carlos, Brazil
| | - Evaldo L G Espíndola
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, 13.560-970, São Carlos, Brazil
| |
Collapse
|
18
|
Pisa L, Goulson D, Yang EC, Gibbons D, Sánchez-Bayo F, Mitchell E, Aebi A, van der Sluijs J, MacQuarrie CJK, Giorio C, Long EY, McField M, Bijleveld van Lexmond M, Bonmatin JM. An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 2: impacts on organisms and ecosystems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:11749-11797. [PMID: 29124633 PMCID: PMC7921077 DOI: 10.1007/s11356-017-0341-3] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 09/25/2017] [Indexed: 05/15/2023]
Abstract
New information on the lethal and sublethal effects of neonicotinoids and fipronil on organisms is presented in this review, complementing the previous Worldwide Integrated Assessment (WIA) in 2015. The high toxicity of these systemic insecticides to invertebrates has been confirmed and expanded to include more species and compounds. Most of the recent research has focused on bees and the sublethal and ecological impacts these insecticides have on pollinators. Toxic effects on other invertebrate taxa also covered predatory and parasitoid natural enemies and aquatic arthropods. Little new information has been gathered on soil organisms. The impact on marine and coastal ecosystems is still largely uncharted. The chronic lethality of neonicotinoids to insects and crustaceans, and the strengthened evidence that these chemicals also impair the immune system and reproduction, highlights the dangers of this particular insecticidal class (neonicotinoids and fipronil), with the potential to greatly decrease populations of arthropods in both terrestrial and aquatic environments. Sublethal effects on fish, reptiles, frogs, birds, and mammals are also reported, showing a better understanding of the mechanisms of toxicity of these insecticides in vertebrates and their deleterious impacts on growth, reproduction, and neurobehaviour of most of the species tested. This review concludes with a summary of impacts on the ecosystem services and functioning, particularly on pollination, soil biota, and aquatic invertebrate communities, thus reinforcing the previous WIA conclusions (van der Sluijs et al. 2015).
Collapse
Affiliation(s)
| | - Dave Goulson
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - En-Cheng Yang
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - David Gibbons
- RSPB Centre for Conservation of Science, The Lodge, Sandy, Bedfordshire, SG19 2DL, UK
| | - Francisco Sánchez-Bayo
- School of Life and Environmental Sciences, The University of Sydney, 1 Central Avenue, Eveleigh, NSW, 2015, Australia
| | - Edward Mitchell
- Laboratory of Soil Biodiversity, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
| | - Alexandre Aebi
- Laboratory of Soil Biodiversity, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
- Anthropology Institute, University of Neuchâtel, Rue Saint-Nicolas 4, 2000, Neuchâtel, Switzerland
| | - Jeroen van der Sluijs
- Centre for the Study of the Sciences and the Humanities, University of Bergen, Postboks 7805, 5020, Bergen, Norway
- Department of Chemistry, University of Bergen, Postboks 7805, 5020, Bergen, Norway
- Copernicus Institute of Sustainable Development, Environmental Sciences, Utrecht University, Heidelberglaan 2, 3584 CS, Utrecht, The Netherlands
| | - Chris J K MacQuarrie
- Natural Resources Canada, Canadian Forest Service, 1219 Queen St. East, Sault Ste. Marie, ON, P6A 2E5, Canada
| | | | - Elizabeth Yim Long
- Department of Entomology, The Ohio State University, 1680 Madison Ave, Wooster, OH, 44691, USA
| | - Melanie McField
- Smithsonian Institution, 701 Seaway Drive Fort Pierce, Florida, 34949, USA
| | | | - Jean-Marc Bonmatin
- Centre National de la Recherche Scientifique (CNRS), Centre de Biophysique Moléculaire, Rue Charles Sadron, 45071, Orléans, France.
| |
Collapse
|
19
|
Queiroz LG, do Prado CCA, de Almeida ÉC, Dörr FA, Pinto E, da Silva FT, de Paiva TCB. Responses of Aquatic Nontarget Organisms in Experiments Simulating a Scenario of Contamination by Imidacloprid in a Freshwater Environment. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 80:437-449. [PMID: 33275184 DOI: 10.1007/s00244-020-00782-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/01/2020] [Indexed: 06/12/2023]
Abstract
Several studies have indicated the presence of the neonicotinoid insecticide imidacloprid (IMI) in aquatic ecosystems in concentrations up to 320.0 µg L-1. In the present study, we evaluated the effects of the highest IMI concentration detected in surface water (320.0 µg L-1) on the survival of Chironomus sancticaroli, Daphnia similis, and Danio rerio in three different scenarios of water contamination. The enzymatic activities of glutathione S-transferase (GST), catalase (CAT), and ascorbate peroxidase (APX) in D. rerio also were determined. For this evaluation, we have simulated a lotic environment using an indoor system of artificial channels developed for the present study. In this system, three scenarios of contamination by IMI (320.0 µg L-1) were reproduced: one using reconstituted water (RW) and the other two using water samples collected in unpolluted (UW) and polluted (DW) areas of a river. The results indicated that the tested concentration was not able to cause mortality in D. similis and D. rerio in any proposed treatment (RW, UW, and DW). However, C. sancticaroli showed 100% of mortality in the presence of IMI in the three proposed treatments, demonstrating its potential to impact the community of aquatic nontarget insects negatively. Low IMI concentrations did not offer risks to D. rerio survival. However, we observed alterations in GST, CAT, and APX activities in treatments that used IMI and water with no evidence of pollution (i.e., RW and UW). These last results demonstrated that fish are more susceptible to the effects of IMI in unpolluted environments.
Collapse
Affiliation(s)
- Lucas Gonçalves Queiroz
- Department of Biotechnology, School of Engineering of Lorena, University of São Paulo, Lorena, SP, Brazil.
| | | | - Éryka Costa de Almeida
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Felipe Augusto Dörr
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Ernani Pinto
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Flávio Teixeira da Silva
- Department of Biotechnology, School of Engineering of Lorena, University of São Paulo, Lorena, SP, Brazil
| | - Teresa Cristina Brazil de Paiva
- Department of Basic and Environmental Sciences, School of Engineering of Lorena, University of São Paulo, Lorena, SP, Brazil
| |
Collapse
|
20
|
Takeshita KM, Hayashi TI, Yokomizo H. Evaluation of interregional consistency in associations between neonicotinoid insecticides and functions of benthic invertebrate communities in rivers in urban rice-paddy areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140627. [PMID: 32653707 DOI: 10.1016/j.scitotenv.2020.140627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/15/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
Neonicotinoid insecticides pose risks that need to be managed for conservation of aquatic ecosystems. In this study, we evaluated the associations between the estimated environmental concentrations of two neonicotinoid insecticides (imidacloprid and dinotefuran) and the total abundances of seven functional feeding groups (FFGs) of benthic invertebrate communities in rivers in urban rice-paddy areas in four Japanese regions. Regional datasets of benthic invertebrate communities and environmental variables available for Japan were analyzed. The associations between neonicotinoid exposure and benthic functional groups in each region were evaluated by applying a partial redundancy analysis to each regional dataset. We then examined whether there was an interregionally consistent pattern in the observed associations to ascertain the general applicability of the associations. In two of the four regions, the associations of the total abundances of the seven FFGs with neonicotinoid concentrations were significant, suggesting negative effects of imidacloprid and dinotefuran on river ecosystem functions in these two Japanese regions. Moreover, although the associations in the remaining two regions were not significant, the pattern of associations of the total abundances of six of the FFGs (shredders, filter feeders, collectors, grazers, predators, and scavengers) with imidacloprid concentrations seemed to be consistent among the four regions. This implies broad-scale negative effects of imidacloprid on river ecosystem functions in urban rice-paddy areas. We did not, however, find any interregionally consistent patterns in the associations with dinotefuran concentrations. This may be related to the multicollinearity with the imidacloprid concentrations and/or the low maximum dinotefuran concentration relative to the toxicity values of this neonicotinoid. Therefore, the association between dinotefuran and river ecosystem functions requires additional investigation. We believe that this type of hypotheses-generating research using country-wide biomonitoring and exposure databases can be a great aid in future ecological risk assessment studies.
Collapse
Affiliation(s)
- Kazutaka M Takeshita
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan.
| | - Takehiko I Hayashi
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Hiroyuki Yokomizo
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| |
Collapse
|
21
|
Singh A, Leppanen C. Known Target and Nontarget Effects of the Novel Neonicotinoid Cycloxaprid to Arthropods: A Systematic Review. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2020; 16:831-840. [PMID: 32592520 DOI: 10.1002/ieam.4305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 05/05/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
Neonicotinoids are the most widely used insecticide class worldwide, and unfortunately, the widely used neonicotinoid imidacloprid is problematic for pollinators and other nontarget organisms. These nontarget impacts and the development of resistance prompt the ongoing development and testing of new neonicotinoids. The novel neonicotinoid cycloxaprid was described in 2011 and registered in China in 2015. Studies investigating its use and effect on target and nontarget species are recent and ongoing, and empirical evidence has not yet been collectively considered. Therefore, a systematic review was performed to identify and summarize data associated with target and nontarget, lethal and sublethal impacts of cycloxaprid for its use as a new insecticide. We performed keyword literature searches in Web of Science, PubMed, Academic Search Complete, and Google Scholar and explored citations used in identified articles. The search strategy yielded 66 citations; 25 citations fulfilled eligibility criteria and were included in the review. Under experimental conditions, cycloxaprid reduced populations of plant-feeding insect pests, suppressed populations of sucking and biting insect pests, and affected reproduction, development time, longevity, growth, gene regulation and expression, and phloem-feeding behavior of various life stages of certain insects. Studies focus on pest control efficacy and comparison with imidacloprid. Five nontarget organisms have been evaluated: Apis mellifera, Chrysoperla sinica, Harmonia axyridis, Daphnia magna, and Eisenia fetida. Variation in study design, to date, precludes a metaanalysis. However, these results provide valuable insight into possible effects to target and nontarget arthropods. Because cycloxaprid is a new insecticide, additional research is needed to clarify the mechanism of action of cycloxaprid and its metabolites, and to determine if it harms natural enemies or other nontarget organisms, if resistance develops, and if it exhibits cross-resistance with other insecticides. Although research on target arthropods will inform some effects on nontarget organisms, studies focusing explicitly on impacts to nontarget organisms are needed. Integr Environ Assess Manag 2020;16:831-840. © 2020 SETAC.
Collapse
Affiliation(s)
- Anisha Singh
- Department of Public Health, University of Tennessee, Knoxville, Tennessee, USA
| | - Christy Leppanen
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
22
|
Hasan F, Mahboob S, Al-Ghanim KA, Al-Misned F, Dhillon MK, Manzoor U. Ecotoxicity of neonicotinoids and diamides on population growth performance of Zygogramma bicolorata (Coleoptera: Chrysomelidae). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 203:110998. [PMID: 32778532 DOI: 10.1016/j.ecoenv.2020.110998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
Relative ecotoxicity of approved neonicotinoids (i.e. imidacloprid, clothianidin, acetamiprid, thiacloprid, thiamethoxam and dinotefuran) and diamides (i.e. chlorantraniliprole, cyantraniliprole and flubendiamide) was examined on population growth parameters of Zygogramma bicolorata Pallister on parthenium under laboratory conditions at 27 ± 1 °C, 65 ± 5% relative humidity and 10 L : 14D photoperiod. The dose of all tested insecticides in the bioassay procedure was within a minimum range of their recommended field rate. In acute toxicity trial, imidacloprid caused highest rate of mortality in treated adults of Z. bicolorata, however, it was lowest in flubendiamide treatment followed by cyantraniliprole and chlorantraniliprole. Further, based on toxicity coefficient (E) value in acute toxicity trial, all were classified as harmful (H) and diamides were classified as moderately harmful (MH) as per IOBC classification. Moreover, chronic toxicity trials were carried out through life table response experiments (LTREs) in the F1 progeny of acute toxicity experienced group. Prolonged development with the highest mortality was evident in as compared to diamides. Furthermore, population growth parameters i.e. potential fecundity (Pf), natality rate (mx), intrinsic rate of increase (rm), net reproductive rate (R0) and finite rate of increase (λ) was greatly reduced in Z. bicolorata treated with neonicotinoids as compared with diamides. However, mean generation time (Tc), corrected generation time (τ) and the doubling time (DT) was prolonged in neonicotinoids followed by diamides. Furthermore, proportion of females was greatly reduced (0.43-0.48 females) in neonicotinoids as comparison to diamides (0.53-0.55 females) and control (0.67 females). On the basis of ecotoxicity trials, the tested neonicotinoids were highly toxic to Z. bicolorata than diamides. Therefore, diamide insecticides could be used with Z. bicolorata, however, for validation experimentation need to be done under natural field conditions.
Collapse
Affiliation(s)
- Fazil Hasan
- Department of Plant Protection, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, India; Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Shahid Mahboob
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Khalid A Al-Ghanim
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Fahad Al-Misned
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mukesh K Dhillon
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Uzma Manzoor
- School of Agricultural Sciences, Sharda University, GN, Delhi, India
| |
Collapse
|
23
|
Hinz FO, van Santen E, Fisher PR, Wilson PC. Losses of selected pesticides in drainage water from containerized ornamental plants. JOURNAL OF ENVIRONMENTAL QUALITY 2020; 49:1334-1346. [PMID: 33016454 DOI: 10.1002/jeq2.20115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/20/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Limited research has focused on factors affecting pesticide losses from ornamental plant production nurseries. This project evaluated the effects of overhead irrigation or simulated rainfall intensity and formulation and application methods on the losses of acephate, bifenthrin, and imidacloprid in drainage water. The liquid formulation of each respective pesticide was applied to individual replicates (potted Ilex cornuta Lindl. & Paxton plant on a drainage collection saucer) as substrate-applied drenches or foliar sprays (acephate and bifenthrin only). Granular formulations of acephate and imidacloprid were spread across the tops of media in pots. After application of treatments, irrigation or simulated rainfall was applied daily for 19 consecutive days at rates of 42.3 ± 4.57, 56.7 ± 7.92, and 95.4 ± 19.47 ml min-1 , and drainage water from individual replicates was collected for analysis. Irrigation or simulated rainfall intensity had no effects on losses of the pesticides under the conditions tested. Concentrations in drainage of all three pesticides were highest from the drench applications, whereas respective foliar spray applications resulted in the lowest active ingredient concentrations in drainage. The percentage of active ingredient lost in drainage water ranged from a minimum of 0.2 ± 0.05% (mean ± SE) for granular acephate to a maximum of 19.5 ± 3.14% (mean ± SE) for the imidacloprid drench. Most pesticide losses occurred within the first 2 d after application of drenches or sprays. Granular formulations had a longer period of release, indicating a risk of loss from overirrigation during an extended period. Results emphasize the need for careful water management after applications.
Collapse
Affiliation(s)
- Francisca Ordonez Hinz
- Soil and Water Science Dep., Univ. of Florida/IFAS, PO Box 110290, Gainesville, FL, 32611-0290, USA
| | - Edzard van Santen
- Agronomy Dep. and IFAS Statistical Consulting Unit, Univ. of Florida/IFAS, 404 McCarty Hall C, Gainesville, FL, 32611-0500, USA
| | - Paul R Fisher
- Environmental Horticulture Dep., Univ. of Florida/IFAS, PO Box 110670, Gainesville, FL, 32611-0670, USA
| | - P Chris Wilson
- Soil and Water Science Dep., Univ. of Florida/IFAS, PO Box 110290, Gainesville, FL, 32611-0290, USA
| |
Collapse
|
24
|
Tian X, Hong X, Yan S, Li X, Wu H, Lin A, Yang W. Neonicotinoids caused oxidative stress and DNA damage in juvenile Chinese rare minnows (Gobiocypris rarus). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 197:110566. [PMID: 32283408 DOI: 10.1016/j.ecoenv.2020.110566] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/23/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
To assess the effects of neonicotinoid insecticides on fish, juvenile Chinese rare minnows (Gobiocypris rarus) were exposed to 0.1, 0.5, or 2.0 mg/L neonicotinoid insecticides (imidacloprid, nitenpyram, and dinotefuran) for 60 days. The endpoints, including oxidative stress and DNA damage, were determined. The results of oxidative stress assays showed that SOD activities were significantly increased in the 2.0 mg/L imidacloprid and 0.5 mg/L nitenpyram and dinotefuran treatments (p < 0.05). CAT activity was significantly increased with 0.1 mg/L nitenpyram (p < 0.05), whereas it was significantly decreased in the 0.1 and 2.0 mg/L dinotefuran treatment groups (p < 0.05). Moreover, MDA content was significantly decreased in all imidacloprid treatments and in the 0.5 and 2.0 mg/L dinotefuran treatments (p < 0.05); however, it was significantly increased in the 0.1 mg/L nitenpyram treatment (p < 0.05). GSH content was significantly increased at all treatments except for the 0.5 mg/L dinotefuran treatment (p < 0.05). The transcript expression results showed that gstm mRNA expression was significantly inhibited by 0.5 and 2.0 mg/L imidacloprid, and gstp1 mRNA expression was significantly inhibited by all nitenpyram treatments (p < 0.05). In addition, ugt1a mRNA expression was significantly inhibited in the 0.5 mg/L nitenpyram treatment (p < 0.05). The results of the DNA damage assay showed that tail moments were significantly increased by the 2.0 mg/L imidacloprid treatment (p < 0.01), while tail DNA was significantly increased by 0.5 and 2.0 mg/L imidacloprid, 2.0 mg/L nitenpyram and all dinotefuran treatments (p < 0.01). Moreover, olive tail moments were significantly increased by the 0.5 and 2.0 mg/L imidacloprid and 2.0 mg/L dinotefuran treatments (p < 0.01). Therefore, our oxidative stress and DNA damage findings demonstrated that imidacloprid and nitenpyram could cause adverse effects on juvenile rare minnows.
Collapse
Affiliation(s)
- Xue Tian
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China; Chinese Academy for Environmental Planning, Beijing, 100012, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xiangsheng Hong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Saihong Yan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xiaoliang Li
- Chinese Academy for Environmental Planning, Beijing, 100012, China
| | - Huihui Wu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Aijun Lin
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Wenjie Yang
- Chinese Academy for Environmental Planning, Beijing, 100012, China; College of Renewable Energy, North China Electric Power University, Beijing, 102206, China.
| |
Collapse
|
25
|
Huang Z, Li H, Wei Y, Xiong J, You J. Distribution and ecological risk of neonicotinoid insecticides in sediment in South China: Impact of regional characteristics and chemical properties. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 714:136878. [PMID: 32018995 DOI: 10.1016/j.scitotenv.2020.136878] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Neonicotinoid insecticides have been frequently detected in surface water due to extensive use worldwide, however, little information is available for the regional characteristics and ecological risk of neonicotinoids in sediment. In the current study, six neonicotinoids were analyzed in 58 sediment samples from agricultural (vegetable and rice planting) and urban areas in South China. Neonicotinoids were ubiquitous in the sediments, with maximum, mean and median concentrations of 23.8, 4.21 and 2.73 ng·g-1 dry weight, respectively. Neonicotinoids were detected more often and at higher concentrations in vegetable planting and urban areas while clothianidin and imidacloprid dominated neonicotinoid composition in the rice-planting area. Multiple correspondence analysis showed the distribution of sediment-bound neonicotinoids were significantly affected by crop type, distance to the source, and physicochemical properties of neonicotinoids. While more hydrophilic neonicotinoids tended to migrate to the streams, those with log Kow > 0 are usually retained in the ditches near the treated fields. Neonicotinoids with shorter half-lives (acetamiprid and thiacloprid) were detected more frequently in vegetable planting areas, yet more persistent imidacloprid and clothianidin were more likely to be detected in rice planting areas. It was in accordance with application patterns of neonicotinoids in different crops. Environmental exposure distributions indicated that sediment-bound neonicotinoids, except for thiacloprid, posed considerable risk to aquatic invertebrates, which are important for ecological functioning of aquatic ecosystems, calling for better measures to control and manage of neonicotinoid risks.
Collapse
Affiliation(s)
- Zhoubing Huang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Huizhen Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Yanli Wei
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Jingjing Xiong
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Jing You
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
26
|
Yamamuro M, Komuro T, Kamiya H, Kato T, Hasegawa H, Kameda Y. Neonicotinoids disrupt aquatic food webs and decrease fishery yields. Science 2019; 366:620-623. [DOI: 10.1126/science.aax3442] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 09/17/2019] [Indexed: 12/28/2022]
Abstract
Invertebrate declines are widespread in terrestrial ecosystems, and pesticide use is often cited as a causal factor. Here, we report that aquatic systems are threatened by the high toxicity and persistence of neonicotinoid insecticides. These effects cascade to higher trophic levels by altering food web structure and dynamics, affecting higher-level consumers. Using data on zooplankton, water quality, and annual fishery yields of eel and smelt, we show that neonicotinoid application to watersheds since 1993 coincided with an 83% decrease in average zooplankton biomass in spring, causing the smelt harvest to collapse from 240 to 22 tons in Lake Shinji, Shimane Prefecture, Japan. This disruption likely also occurs elsewhere, as neonicotinoids are currently the most widely used class of insecticides globally.
Collapse
Affiliation(s)
- Masumi Yamamuro
- Institute of Geology and Geoinformation, Geological Survey of Japan (GSJ), AIST, Central 7, Higashi 1-1-1, Tsukuba, Ibaraki 305-8567, Japan
- Graduate School of Frontier Science, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8563, Japan
| | - Takashi Komuro
- Graduate School of Frontier Science, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8563, Japan
| | - Hiroshi Kamiya
- Shimane Prefectural Institute of Public Health and Environmental Science, Nishihamasadacho, Matsue 690-0012, Japan
| | - Toshikuni Kato
- Shimane Prefectural Institute of Public Health and Environmental Science, Nishihamasadacho, Matsue 690-0012, Japan
| | - Hitomi Hasegawa
- Nagoya City Institute for Environmental Sciences, 5-16-8 Toyota, Minami-ku, Nagoya, Aichi 457-0841, Japan
| | - Yutaka Kameda
- Creative Engineering Department of Civil and Environment Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| |
Collapse
|
27
|
Ewere EE, Reichelt-Brushett A, Benkendorff K. Imidacloprid and formulated product impacts the fatty acids and enzymatic activities in tissues of Sydney rock oysters, Saccostrea glomerata. MARINE ENVIRONMENTAL RESEARCH 2019; 151:104765. [PMID: 31353171 DOI: 10.1016/j.marenvres.2019.104765] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/19/2019] [Accepted: 07/21/2019] [Indexed: 06/10/2023]
Abstract
The use of imidacloprid (IMI) and its formulated products in agriculture is a risk to aquatic organisms due to deposition into waterways from runoff and aerial spraying. However, there is limited information on the potential effects of this pesticide on commercially important shellfish, such as oysters. We investigated the impacts of IMI and Spectrum 200SC (IMI formulation) on the activity of the enzymes Glutathione-S-transferase (GST), Catalase (CAT) and Acetylcholinesterase (AChE), in different oyster tissues including the gill, adductor muscle and digestive gland. We also investigated the condition index and fatty acid composition of the flesh of oysters after 2 weeks exposure. The concentrations of IMI in the different tissues was assessed using Liquid Chromatography-Mass Spectrometry (LC-MS) after QuEChERS extraction. Higher concentrations of IMI residues were detected in the adductor muscle of the oysters, followed by the gills and with the lowest amounts recovered from the digestive gland across all the concentrations tested. IMI and Spectrum 200SC significantly affected the gill AChE activity at 2 mg/L, but digestive gland CAT, and gill and digestive gland GST were impacted at environmentally relevant concentrations (0.01 and 0.05 mg/L). In the whole oyster, 2 weeks exposure to IMI (≥0.01 mg/L) resulted in a proportional increase in saturated fatty acids (SFA), altered the polyunsaturated fatty acid (PUFA) to SFA ratio and altered the omega 3 fatty acids (n-3) to omega 6 fatty acids (n-6) ratio, but there were no effects on the condition index of the oyster. Although the oysters responded differently to the formulated product, there was no consistent difference in the sublethal effects of analytical IMI and Spectrum 200SC. This study showed that exposure to IMI and Spectrum 200SC can significantly affect the biochemical processes and metabolites in oysters, with implications for food quality and safety.
Collapse
Affiliation(s)
- Endurance E Ewere
- Marine Ecology Research Centre, Southern Cross University, PO Box 157, Lismore, NSW, 2480, Australia; Department of Animal and Environmental Biology, Faculty of Life Sciences, University of Benin, Benin City, Nigeria
| | - Amanda Reichelt-Brushett
- Marine Ecology Research Centre, Southern Cross University, PO Box 157, Lismore, NSW, 2480, Australia
| | - Kirsten Benkendorff
- Marine Ecology Research Centre, Southern Cross University, PO Box 157, Lismore, NSW, 2480, Australia.
| |
Collapse
|
28
|
Hashimoto K, Eguchi Y, Oishi H, Tazunoki Y, Tokuda M, Sánchez-Bayo F, Goka K, Hayasaka D. Effects of a herbicide on paddy predatory insects depend on their microhabitat use and an insecticide application. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2019; 29:e01945. [PMID: 31173418 DOI: 10.1002/eap.1945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 04/01/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
Indirect effects of agrochemicals on organisms via biotic interactions are less studied than direct chemical toxicity despite their potential relevance in agricultural landscapes. In particular, the role of species traits in characterizing indirect effects of pesticides has been largely overlooked. Moreover, it is still unclear whether such indirect effects on organisms are prevalent even when the organisms are exposed to direct toxicity. We conducted a mesocosm experiment to examine indirect effects of a herbicide (pentoxazone) on aquatic predatory insects of rice paddies. Because the herbicide selectively controls photosynthetic organisms, we assumed that the effects of the herbicide on predatory insects would be indirect. We hypothesized that phytophilous predators such as some Odonata larvae, which cling to aquatic macrophytes, would be more subject to negative indirect effects of the herbicide through a decrease in abundance of aquatic macrophytes than benthic, nektonic, and neustonic predators. Also, we crossed-applied an insecticide (fipronil) with herbicide application to examine whether the indirect effects of the herbicide on the assembling predators act additively with direct adverse effects of the insecticide. The herbicide application did not decrease the abundance of phytoplankton constitutively, and there were no clear negative impacts of the herbicide on zooplankton and prey insects (detritivores and herbivores). However, the abundance of aquatic macrophytes was significantly decreased by the herbicide application. Although indirect effects of the herbicide were not so strong on most predators, their magnitude and sign differed markedly among predator species. In particular, the abundance of phytophilous predators was more likely to decrease than that of benthic, nektonic, and neustonic predators when the herbicide was applied. However, these indirect effects of the herbicide could not be detected when the insecticide was also applied, seemingly due to fipronil's high lethal toxicity. Our study highlights the importance of species traits such as microhabitat use, which characterize biotic interactions, for predicting indirect effects of agrochemicals. Given that indirect effects of the chemicals vary in response to species traits and direct toxicity of other chemicals, efforts to explain this variation are needed to predict the realistic risks of indirect effects of agrochemicals in nature.
Collapse
Affiliation(s)
- Koya Hashimoto
- Faculty of Agriculture, KINDAI University, Nakamachi 3327-204, Nara, 631-8505, Japan
| | - Yuji Eguchi
- Graduate School of Agriculture, KINDAI University, Nakamachi 3327-204, Nara, 631-8505, Japan
| | - Hiroki Oishi
- Faculty of Agriculture, Saga University, Honjo 1, Saga, 840-8502 , Japan
| | - Yuhei Tazunoki
- Faculty of Agriculture, Saga University, Honjo 1, Saga, 840-8502 , Japan
| | - Makoto Tokuda
- Faculty of Agriculture, Saga University, Honjo 1, Saga, 840-8502 , Japan
| | - Francisco Sánchez-Bayo
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Koichi Goka
- National Institute for Environmental Studies (NIES), Onogawa 16-2, Tsukuba, Ibaraki, 305-8506, Japan
| | - Daisuke Hayasaka
- Faculty of Agriculture, KINDAI University, Nakamachi 3327-204, Nara, 631-8505, Japan
| |
Collapse
|
29
|
Hayasaka D, Kobashi K, Hashimoto K. Community responses of aquatic insects in paddy mesocosms to repeated exposures of the neonicotinoids imidacloprid and dinotefuran. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 175:272-281. [PMID: 30904719 DOI: 10.1016/j.ecoenv.2019.03.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 03/07/2019] [Accepted: 03/12/2019] [Indexed: 06/09/2023]
Abstract
Pesticides are one of major threats to wetland environments and their communities, and thus the information about ecological impact assessment of agro-chemicals on ecosystems is essential for future effective pesticides management. Here, effects of the yearly application of two neonicotinoids, imidacloprid and dinotefuran on aquatic insect communities of experimental rice fields were assessed during two years of monitoring. Both neonicotinoid-treated fields and controls were monitored biweekly throughout the 5-month experimental period until harvest (late October) in each year. Maximum concentrations of imidacloprid (157.5 μg/l in 2014 and 138.0 μg/l in 2015) and dinotefuran (10.54 μg/l in 2014 and 54.05 μg/l in 2015) in water were relatively similar in both years, but maximum residues of imidacloprid (245.45 μg/kg) and dinotefuran (419.5 μg/kg) in the sediment in the second-year were 18 and 175 times higher than in the first year, respectively, with great variability of concentrations among sampling dates. In addition, remaining soil residues of both neonicotinoids were approximately 1 μg/kg (ppb) at the start of the second-year. A total of 6265 individuals of 18 aquatic species belonging to 7 orders were collected. No differences in the number of species between controls and the two neonicotinoids-treated paddies were found between years. However, clear differences in community structures of aquatic insects among the imidacloprid- and dinotefuran-treated mesocosms, and controls and between years were shown by PRC analysis. In particular, imidacloprid likely decreased Crocothemisia servilia mariannae nymphs, Chironominae spp. larvae, and Aedes albopictus larvae, whereas dinotefuran tended to decrease Guignotus japonicus, Orthetrum albistylum speciosum nymphs, and Tubiificidae spp. In addition, long-living species of Coleoptera and Odonata were most sensitive to both neonicotinoids. Changes in composition of feeding functional groups (FFGs) of aquatic insects were more prominent in the first year and became subtler in the second year. One of the possibilities of this phenomenon may be functional redundancy in which species that had low sensitivity to imidacloprid and dinotefuran replaced the vacant niche caused by decreases of other species with high susceptibility within the same feeding functions, although further studies are needed to verify this explanation. Thus, feeding functional traits can be a good indicator for evaluation of changes in ecosystem processes under pesticides exposures. Consequently, the current study emphasized that more realistic prediction of community properties after the repeated application of agrochemicals in successive years should consider for 1) long-term population monitoring, 2) cumulative effects at least over the years, and 3) species' functional traits.
Collapse
Affiliation(s)
- Daisuke Hayasaka
- Faculty of Agriculture, KINDAI University, Nakamachi, 3327-204, Nara, Nara, 631-8505, Japan.
| | - Koji Kobashi
- Graduate School of Agriculture, KINDAI University, Nakamachi, 3327-204, Nara, Nara, 631-8505, Japan
| | - Koya Hashimoto
- Faculty of Agriculture, KINDAI University, Nakamachi, 3327-204, Nara, Nara, 631-8505, Japan
| |
Collapse
|
30
|
Butcherine P, Benkendorff K, Kelaher B, Barkla BJ. The risk of neonicotinoid exposure to shrimp aquaculture. CHEMOSPHERE 2019; 217:329-348. [PMID: 30419387 DOI: 10.1016/j.chemosphere.2018.10.197] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 06/09/2023]
Abstract
Widespread agricultural use of systemic neonicotinoid insecticides has resulted in the unintended contamination of aquatic environments. Water quality surveys regularly detect neonicotinoids in rivers and waterways at concentrations that could impact aquaculture stock. The toxicity of neonicotinoids to non-target aquatic insect and crustacean species has been recognised, however, there is a paucity of information on their effect on commercial shrimp aquaculture. Here, we show that commercially produced shrimp are likely to be exposed to dietary, sediment and waterborne sources of neonicotinoids; increasing the risks of disease and accidental human consumption. This review examines indicators of sublethal neonicotinoid exposure in non-target species and analyses their potential usefulness for ecotoxicology assessment in shrimp. The identification of rapid, reliable responses to neonicotinoid exposure in shrimp will result in better decision making in aquaculture management.
Collapse
Affiliation(s)
- Peter Butcherine
- Marine Ecology Research Centre, Southern Cross University, PO Box 157, Lismore, NSW 2480, Australia.
| | - Kirsten Benkendorff
- Marine Ecology Research Centre, Southern Cross University, PO Box 157, Lismore, NSW 2480, Australia.
| | - Brendan Kelaher
- National Marine Science Centre, Southern Cross University, Coffs Harbour, NSW 2450, Australia.
| | - Bronwyn J Barkla
- Southern Cross Plant Science, Southern Cross University, PO Box 157, Lismore, NSW 2480, Australia.
| |
Collapse
|
31
|
Non-target toxicity of novel insecticides. Arh Hig Rada Toksikol 2018; 69:86-102. [PMID: 29990301 DOI: 10.2478/aiht-2018-69-3111] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/01/2018] [Indexed: 01/04/2023] Open
Abstract
Humans have used insecticides since ancient times. The spectrum and potency of available insecticidal substances has greatly expanded since the industrial revolution, resulting in widespread use and unforeseen levels of synthetic chemicals in the environment. Concerns about the toxic effects of these new chemicals on non-target species became public soon after their appearance, which eventually led to the restrictions of use. At the same time, new, more environmentally-friendly insecticides have been developed, based on naturally occurring chemicals, such as pyrethroids (derivatives of pyrethrin), neonicotinoids (derivatives of nicotine), and insecticides based on the neem tree vegetable oil (Azadirachta indica), predominantly azadirachtin. Although these new substances are more selective toward pest insects, they can still target other organisms. Neonicotinoids, for example, have been implicated in the decline of the bee population worldwide. This review summarises recent literature published on non-target toxicity of neonicotinoids, pyrethroids, and neem-based insecticidal substances, with a special emphasis on neonicotinoid toxicity in honeybees. We also touch upon the effects of pesticide combinations and documented human exposure to these substances.
Collapse
|
32
|
Nakanishi K, Yokomizo H, Hayashi TI. Were the sharp declines of dragonfly populations in the 1990s in Japan caused by fipronil and imidacloprid? An analysis of Hill's causality for the case of Sympetrum frequens. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:35352-35364. [PMID: 30343370 PMCID: PMC6280840 DOI: 10.1007/s11356-018-3440-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 10/10/2018] [Indexed: 05/27/2023]
Abstract
Neonicotinoids and fipronil are the most widely used insecticides in the world. Previous studies showed that these compounds have high toxicity to a wide taxonomic range of non-target invertebrates. In rice cultivation, they are frequently used for nursery-box treatment of rice seedlings. The use of fipronil and neonicotinoid imidacloprid is suspected to be the main cause of population declines of red dragonflies, in particular Sympetrum frequens, because they have high lethal toxicity to dragonfly nymphs and the timing of the insecticides' introduction in Japan (i.e., the late 1990s) overlapped with the sharp population declines. However, a causal link between application of these insecticides and population declines of the dragonflies remains unclear. Therefore, we estimated the amount of the insecticides applied for nursery-box treatment of rice seedlings and analyzed currently available information to evaluate the causality between fipronil and imidacloprid usage and population decline of S. frequens using Hill's causality criteria. Based on our scoring of Hill's nine criteria, the strongest lines of evidence were strength, plausibility, and coherence, whereas the weakest were temporality and biological gradient. We conclude that the use of these insecticides, particularly fipronil, was a major cause of the declines of S. frequens in Japan in the 1990s, with a high degree of certainty. The existing information and our analyses, however, do not allow us to exclude the possibility that some agronomic practices (e.g., midsummer drainage or crop rotation) that can severely limit the survival of aquatic nymphs also played a role in the dragonfly's decline.
Collapse
Affiliation(s)
- Kosuke Nakanishi
- National Institute for Environmental Studies, Onogawa 16-2, Tsukuba, Ibaraki, 305-8506, Japan.
| | - Hiroyuki Yokomizo
- National Institute for Environmental Studies, Onogawa 16-2, Tsukuba, Ibaraki, 305-8506, Japan
| | - Takehiko I Hayashi
- National Institute for Environmental Studies, Onogawa 16-2, Tsukuba, Ibaraki, 305-8506, Japan
| |
Collapse
|
33
|
Tian X, Yang W, Wang D, Zhao Y, Yao R, Ma L, Ge C, Li X, Huang Z, He L, Jiao W, Lin A. Chronic brain toxicity response of juvenile Chinese rare minnows (Gobiocypris rarus) to the neonicotinoid insecticides imidacloprid and nitenpyram. CHEMOSPHERE 2018; 210:1006-1012. [PMID: 30208524 DOI: 10.1016/j.chemosphere.2018.06.083] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/10/2018] [Accepted: 06/11/2018] [Indexed: 06/08/2023]
Abstract
Imidacloprid and nitenpyram are widely used neonicotinoid pesticides worldwide and were observed to adversely affect non-target aquatic organisms. In this study, the toxic effect of imidacloprid and nitenpyram on the brain of juvenile Chinese rare minnows (Gobiocypris rarus) was investigated by determining the oxidative stress, 8-hydroxy-2-deoxyguanosine (8-OHdG) content and acetylcholinesterase (AChE) activity. The superoxide dismutase (SOD) activities did not significantly change after long-term exposure to imidacloprid and nitenpyram. A noticeable increase of catalase (CAT) activities was observed on the brain tissues under 0.1 mg/L imidacloprid and under all nitenpyram treatments (p < 0.05). The malondialdehyde (MDA) content increased markedly under 2.0 mg/L imidacloprid and 0.1 mg/L nitenpyram treatments (p < 0.05). The glutathione (GSH) content in the brain significantly increased under 0.5 and 2.0 mg/L imidacloprid (p < 0.05). A significant decrease was observed in the mRNA levels of Cu/Zn-sod under 2.0 mg/L imidacloprid and those of cat under 0.1 and 0.5 mg/L nitenpyram (p < 0.05). The mRNA levels of gpx1 clearly decreased under 2.0 mg/L imidacloprid and under 0.1 mg/L nitenpyram (p < 0.05). The treatments of 0.1 and 0.5 mg/L nitenpyram decreased cat expression levels markedly (p < 0.05). 2.0 mg/L imidacloprid raised the 8-OHdG content. The AChE activities increased markedly under 0.5 and 2.0 mg/L imidacloprid while clearly decreasing under 2.0 mg/L nitenpyram (p < 0.05). Therefore, our results indicate that imidacloprid and nitenpyram might cause adverse effects on juvenile Chinese rare minnows brain. Notably, imidacloprid had greater impacts on juvenile rare minnows compared to nitenpyram.
Collapse
Affiliation(s)
- Xue Tian
- Beijing City Environment Pollution Control and Resource Reuse Engineering Research Center, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Chinese Academy for Environmental Planning, Beijing, 100012, PR China
| | - Wenjie Yang
- Chinese Academy for Environmental Planning, Beijing, 100012, PR China
| | - Dong Wang
- Chinese Academy for Environmental Planning, Beijing, 100012, PR China
| | - Yue Zhao
- Chinese Academy for Environmental Planning, Beijing, 100012, PR China
| | - Ruihua Yao
- Chinese Academy for Environmental Planning, Beijing, 100012, PR China
| | - Lekuan Ma
- Chinese Academy for Environmental Planning, Beijing, 100012, PR China
| | - Chazhong Ge
- Chinese Academy for Environmental Planning, Beijing, 100012, PR China
| | - Xiaoliang Li
- Chinese Academy for Environmental Planning, Beijing, 100012, PR China
| | - Zeyu Huang
- School of International Education, Beijing University of Chemical Technology, Beijing 100029, China
| | - Li He
- College of Renewable Energy, North China Electric Power University, Beijing 102206, China
| | - Wentao Jiao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Aijun Lin
- Beijing City Environment Pollution Control and Resource Reuse Engineering Research Center, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
34
|
Rico A, Arenas-Sánchez A, Pasqualini J, García-Astillero A, Cherta L, Nozal L, Vighi M. Effects of imidacloprid and a neonicotinoid mixture on aquatic invertebrate communities under Mediterranean conditions. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 204:130-143. [PMID: 30245345 DOI: 10.1016/j.aquatox.2018.09.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 08/31/2018] [Accepted: 09/09/2018] [Indexed: 05/07/2023]
Abstract
Neonicotinoid insecticides are considered contaminants of concern due to their high toxicity potential to non-target terrestrial and aquatic organisms. In this study we evaluated the sensitivity of aquatic invertebrates to a single application of imidacloprid and an equimolar mixture of five neonicotinoids (imidacloprid, acetamiprid, thiacloprid, thiamethoxam, clothianidin) using mesocosms under Mediterranean conditions. Cyclopoida, Cloeon dipterum and Chironomini showed the highest sensitivity to neonicotinoids, with calculated NOECs below 0.2 μg/L. The sensitivity of these taxa was found to be higher than that reported in previous studies performed under less warm conditions, proving the high influence of temperature on neonicotinoid toxicity. The short-term responses of the zooplankton and the macroinvertebrate communities to similar imidacloprid and neonicotinoid mixture concentrations were very similar, suggesting that the concentration addition model can be used as a plausible hyphotesis to assess neonicotinoid mixture effects in aquatic ecosystems. Long-term mixture toxicity assessments, however, should consider the fate of the evaluated substances in the environment of concern. As part of this study, we also demonstrated that Species Sensitivity Distributions constructed with chronic laboratory toxicity data and calculated (multi-substance) Potentially Affected Fractions provide an accurate estimation to asssess the ecotoxicologial risks of imidacloprid and neonicotinoid mixtures to aquatic invertebrate species assemblages.
Collapse
Affiliation(s)
- Andreu Rico
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, 28805, Alcalá de Henares, Madrid, Spain.
| | - Alba Arenas-Sánchez
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, 28805, Alcalá de Henares, Madrid, Spain
| | - Julia Pasqualini
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Laboratory of Environmental Chemistry and Toxicology, Via La Masa 19, 20156 Milano, Italy
| | - Ariadna García-Astillero
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, 28805, Alcalá de Henares, Madrid, Spain
| | - Laura Cherta
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, 28805, Alcalá de Henares, Madrid, Spain
| | - Leonor Nozal
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, 28805, Alcalá de Henares, Madrid, Spain; Institute of Applied Chemistry and Biotechnology (CQAB), University of Alcalá, Ctra. N-II km 33, 28871, Alcalá de Henares, Madrid, Spain
| | - Marco Vighi
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, 28805, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
35
|
de Menezes Oliveira VB, de Oliveira Bianchi M, Espíndola ELG. Hazard assessment of the pesticides KRAFT 36 EC and SCORE in a tropical natural soil using an ecotoxicological test battery. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:2919-2924. [PMID: 29236312 DOI: 10.1002/etc.4056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 11/18/2017] [Accepted: 12/07/2017] [Indexed: 06/07/2023]
Abstract
Pesticides are widely used in agricultural fields to control plant diseases, weeds, and pests; however, the unforeseeable consequences of releasing these compounds into the soil and their effects on terrestrial invertebrates are matters of grave concern. The aim of the present study was to determine the direct impact of 2 pesticides, KRAFT® 36 EC (an insecticide; a.i. abamectin) and SCORE® (a fungicide; a.i. difenoconazole), on nontarget terrestrial invertebrates. Ecotoxicological tests were performed to evaluate the chronic and acute toxicity of these compounds to a potworm (Enchytraeus crypticus), a collembolan (Folsomia candida), and a mite (Hypoaspis aculeifer). The results showed that, for both pesticides, the collembolan F. candida was the most sensitive species, followed by the enchytraeid E. crypticus and the mite H. aculeifer. Effect concentrations at 50% of organisms' reproduction calculated for F. candida, E. crypticus, and H. aculeifer were 0.06, 2.8, and >32 mg of abamectin/kg dry weight soil and 28.9, 125, and 145.5 mg of difenoconazole/kg dry weight soil, respectively. Environmentally relevant concentrations of both pesticides significantly affected the collembolan species. The existence of a potential risk from abamectin and difenoconazole for soil invertebrates even at recommended doses could be identified. Environ Toxicol Chem 2018;37:2919-2924. © 2017 SETAC.
Collapse
Affiliation(s)
- Vanessa Bezerra de Menezes Oliveira
- Programa de Pós-graduação em Ciências da Engenharia Ambiental/EESC/USP, São Carlos, Brazil
- Núcleo de Ecotoxicologia e Ecologia Aplicada, CRHEA/EESC/USP, São Carlos, Brazil
| | | | - Evaldo Luiz Gaeta Espíndola
- Programa de Pós-graduação em Ciências da Engenharia Ambiental/EESC/USP, São Carlos, Brazil
- Núcleo de Ecotoxicologia e Ecologia Aplicada, CRHEA/EESC/USP, São Carlos, Brazil
- Departamento de Hidraúlica e Saneamento/EESC/USP, São Carlos, Brazil
| |
Collapse
|
36
|
A novel molecularly imprinted sensor for imidacloprid pesticide based on poly(levodopa) electro-polymerized/TiO2 nanoparticles composite. Anal Bioanal Chem 2018; 410:7621-7633. [DOI: 10.1007/s00216-018-1372-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/01/2018] [Accepted: 09/11/2018] [Indexed: 12/18/2022]
|
37
|
Jinguji H, Ohtsu K, Ueda T, Goka K. Effects of short-term, sublethal fipronil and its metabolite on dragonfly feeding activity. PLoS One 2018; 13:e0200299. [PMID: 29995904 PMCID: PMC6040742 DOI: 10.1371/journal.pone.0200299] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 06/22/2018] [Indexed: 12/16/2022] Open
Abstract
Dragonflies, Sympetrum spp., are indispensable to agriculture and are a central element of culture in Japan. However, S. frequens populations in rice paddy fields have declined in recent decades. Dragonfly larvae are predatory aquatic insects that feed on other organisms found in habitats with slow-moving or standing water. The increasing use of fipronil and neonicotinoid insecticides in agriculture is also increasing exposure to Sympetrum spp. in larval stages through paddy soil and water. The role of fipronil insecticides in the decline of dragonflies is of concern, and we here examine the sublethal effects of this insecticide on the feeding behaviors of two Sympetrum spp. Based on the quantity of prey items consumed and the time to capture prey items, feeding inhibition was determined to be a potential mechanism of the decline of Sympetrum spp. following 48-h exposure to fipronil and fipronil sulfone. Prey consumption by S. infuscatum was significantly reduced for fipronil sulfone at all concentrations (0.01-1000 μg/L). S. frequens exposed to 1, 10, 100 and 1000 μg/L fipronil sulfone had significantly longer prey capture times. Fipronil sulfone was 2.8, 9.7 and 10.5 times more toxic to S. infuscatum than fipronil in terms of acute toxicity, feeding inhibition and delayed toxicity, respectively. In addition, fipronil sulfone was 6.6, 2.9 and 9.1 times more toxic, respectively, to S. frequens than fipronil. Our findings suggest that sublethal effects on feeding inhibition lead to severe mortality at realistic paddy soil and water concentrations. Our results provide the first demonstration that short-term exposure to fipronil and fipronil sulfone can consequently cause significant harm to dragonfly larvae survival due to feeding inhibition. These findings have implications for current pesticide risk assessment and dragonfly protection.
Collapse
Affiliation(s)
- Hiroshi Jinguji
- School of Food, Agricultural and Environmental Sciences, Miyagi University, Sendai, Miyagi, Japan
| | - Kazuhisa Ohtsu
- Division of Biodiversity, Chemical Substances Effect Assessment Unit, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Tetsuyuki Ueda
- Environmental Sciences, Ishikawa Prefectural College, Ishikawa, Japan
| | - Koichi Goka
- National Institute for Environmental Sciences, Tsukuba, Ibaraki, Japan
| |
Collapse
|
38
|
Sumon KA, Ritika AK, Peeters ETHM, Rashid H, Bosma RH, Rahman MS, Fatema MK, Van den Brink PJ. Effects of imidacloprid on the ecology of sub-tropical freshwater microcosms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 236:432-441. [PMID: 29414368 DOI: 10.1016/j.envpol.2018.01.102] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/29/2018] [Accepted: 01/29/2018] [Indexed: 06/08/2023]
Abstract
The neonicotinoid insecticide imidacloprid is used in Bangladesh for a variety of crop protection purposes. Imidacloprid may contaminate aquatic ecosystems via spray drift, surface runoff and ground water leaching. The present study aimed at assessing the fate and effects of imidacloprid on structural (phytoplankton, zooplankton, macroinvertebrates and periphyton) and functional (organic matter decomposition) endpoints of freshwater, sub-tropical ecosystems in Bangladesh. Imidacloprid was applied weekly to 16 freshwater microcosms (PVC tanks containing 400 L de-chlorinated tap water) at nominal concentrations of 0, 30, 300, 3000 ng/L over a period of 4 weeks. Results indicated that imidacloprid concentrations from the microcosm water column declined rapidly. Univariate and multivariate analysis showed significant effects of imidacloprid on the zooplankton and macroinvertebrate community, some individual phytoplankton taxa, and water quality variables (i.e. DO, alkalinity, ammonia and nitrate), with Cloeon sp., Diaptomus sp. and Keratella sp. being the most affected species, i.e. showing lower abundance values in all treatments compared to the control. The observed high sensitivity of Cloeon sp. and Diaptomus sp. was confirmed by the results of single species tests. No significant effects were observed on the species composition of the phytoplankton, periphyton biomass and organic matter decomposition for any of the sampling days. Our study indicates that (sub-)tropical aquatic ecosystems can be much more sensitive to imidacloprid compared to temperate ones.
Collapse
Affiliation(s)
- Kizar Ahmed Sumon
- Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, The Netherlands; Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Afifat Khanam Ritika
- Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Edwin T H M Peeters
- Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| | - Harunur Rashid
- Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; Science and Math Program, Asian University for Women, Chittagong 4000, Bangladesh
| | - Roel H Bosma
- Aquaculture and Fisheries Group, Wageningen University, P.O. Box 338, 6700 AH Wageningen, The Netherlands
| | - Md Shahidur Rahman
- Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Mst Kaniz Fatema
- Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Paul J Van den Brink
- Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, The Netherlands; Wageningen Environmental Research (Alterra), P.O. Box 47, 6700 AA Wageningen, The Netherlands.
| |
Collapse
|