1
|
Radziemska M, Gusiatin MZ, Cydzik-Kwiatkowska A, Blazejczyk A, Holatko J, Brtnicky M. Does biochar in combination with compost effectively promote phytostabilization of heavy metals in soil under different temperature regimes? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163634. [PMID: 37088391 DOI: 10.1016/j.scitotenv.2023.163634] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
The article presents the effect of a combined amendment, i.e., biochar+compost (BC), on the process of Cd, Cu, Ni, Pb and Zn immobilization in soil cultivated with L. perenne under freezing and thawing conditions (FTC). In particular, the speciation analysis of the examined elements in phytostabilized soils based on their response using the sequential extraction, and the variability of the soil microbiome using 16S rRNA gene amplicon sequencing were systematically assessed. Metal stability in soils was evaluated by the reduced distribution index (Ir). Plants were grown in pots for 52 days under greenhouse conditions. After termination, phytostabilization was continued in a temperature chamber for 64 days to provide FTC. As a result, it was noted that biomass yield of L. perenne was promoted by BC (39 % higher than in the control pots) and reduced by FTC (45 % lower than in the BC-enriched soil not exposed to FTC). An efficacious level of phytostabilization, i.e., higher content of heavy metals in plant roots, was found in the BC-enriched soil, regardless of the changes in soil temperature conditions. BC improved soil pH before applying FTC more than after applying FTC. BC had the greatest impact on increasing Cu stability by redistributing it from the F1 and F2 fractions to the F3 and F4 fractions. For most metals, phytostabilization under FTC resulted in an increase in the proportion of the F1 fraction and a decrease in its stability. Only for Pb and Zn, FTC had greater impact on their stability than BC addition. In all soil samples, the core genera with about 2-3 % abundances were Sphingomonas sp. and Mycobacterium sp. FTC favored the growth of Bacteroidetes and Proteobacteria in soil. Microbial taxa that coped well with FTC but only in the absence of BC were Rhodococcus, Alkanindiges sp., Flavobacterium sp., Williamsia sp. Thermomonas sp.
Collapse
Affiliation(s)
- Maja Radziemska
- Institute of Environmental Engineering, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Mariusz Z Gusiatin
- Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Słoneczna St. 45G, 10-719 Olsztyn, Poland
| | - Agnieszka Cydzik-Kwiatkowska
- Institute of Environmental Engineering, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Aurelia Blazejczyk
- Institute of Civil Engineering, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Jiri Holatko
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 61300 Brno, Czech Republic; Agrovyzkum Rapotin, Ltd., Vyzkumniku 267, 788 13 Rapotin, Czech Republic
| | - Martin Brtnicky
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 61300 Brno, Czech Republic
| |
Collapse
|
2
|
Klik B, Holatko J, Jaskulska I, Gusiatin MZ, Hammerschmiedt T, Brtnicky M, Liniauskienė E, Baltazar T, Jaskulski D, Kintl A, Radziemska M. Bentonite as a Functional Material Enhancing Phytostabilization of Post-Industrial Contaminated Soils with Heavy Metals. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8331. [PMID: 36499826 PMCID: PMC9735557 DOI: 10.3390/ma15238331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Growing awareness of the risks posed by pollution of the soil environment is leading to the development of new remediation strategies. The technique of aided phytostabilization, which involves the evaluation of new heavy-metal (HM)-immobilizing amendments, together with appropriately selected plant species, is a challenge for environmental protection and remediation of the soil environment, and seems to be promising. In this study, the suitability of bentonite for the technique of aided phytostabilization of soils contaminated with high HM concentrations was determined, using a mixture of two grass species. The HM contents in the tested plants and in the soil were determined by flame atomic absorption spectrometry. The application of bentonite had a positive effect on the biomass of the tested plants, and resulted in an increase in soil pH. The concentrations of copper, nickel, cadmium, lead and chromium were higher in the roots than in the above-ground parts of the plants, especially when bentonite was applied to the soil. The addition of the analyzed soil additive contributed significantly to a decrease in the levels of zinc, copper, cadmium and nickel in the soil at the end of the experiment. In view of the above, it can be concluded that the use of bentonite in the aided phytostabilization of soils polluted with HMs, is appropriate.
Collapse
Affiliation(s)
- Barbara Klik
- Institute of Environmental Engineering, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Jiri Holatko
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Iwona Jaskulska
- Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, 85-796 Bydgoszcz, Poland
| | - Mariusz Z. Gusiatin
- Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Tereza Hammerschmiedt
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Martin Brtnicky
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Ernesta Liniauskienė
- Hydrotechnical Construction Department, Kaunas University of Applied Sciences, Liepu Str. 1, Girionys, LT-53101 Šlienava, Lithuania
| | - Tivadar Baltazar
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Dariusz Jaskulski
- Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, 85-796 Bydgoszcz, Poland
| | - Antonin Kintl
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
- Agricultural Research, Ltd., Zahradni 1, 664 41 Troubsko, Czech Republic
| | - Maja Radziemska
- Institute of Environmental Engineering, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| |
Collapse
|
3
|
Gharib FA, Mansour KH, Ahmed EZ, Galal TM. Heavy metals concentration, and antioxidant activity of the essential oil of the wild mint ( Mentha longifolia L.) in the Egyptian watercourses. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 23:641-651. [PMID: 33232173 DOI: 10.1080/15226514.2020.1847035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In the present study, we assessed seasonal variation in the accumulation potential of wild mint (Mentha longifolia) to heavy metals as well as the chemical composition and antioxidant activity of the essential oil of mint in polluted and unpolluted watercourses. The results indicated that the wild mint showed seasonal fluctuations in accumulation potential for heavy metals proved by bioaccumulation factor (BF) and translocation factor (TF). The all measured heavy metals, except Pb were retained in the underground parts. Summer plants accumulated the highest concentrations of Al, Cd, Cr and Fe in their root, while the lowest concentration of Ni in their shoot. The bioaccumulation factor for Cd, Cu, Mn, Ni, Zn and Co was greater than one, while the translocation factor of the investigated metals (except Pb) did not exceed one, indicating the potential of wild mint for phytostabilization of these metals in contaminated wetlands. The yield and composition of mint essential oil (MEO) were affected by harvesting season and heavy metals pollution. GC/MS showed that isomenthone, cis-piperitenone oxide, menthone and pulegone, were the main oil constituents. Mint essential oil show promising antioxidant activity by 2,2'-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay under pollution stress. The maximum reducing power of MEO were obtained during autumn and summer seasons (polluted canals).In conclusion, summer is the ideal season for harvesting wild mint plants for the maximum plant biomass, oil yield, high radical scavenging activity of MEO and to monitor pollution in contaminated wetlands.
Collapse
Affiliation(s)
- Fatma A Gharib
- Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Khaled H Mansour
- Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Eman Z Ahmed
- Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Tarek M Galal
- Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo, Egypt
- Biology Department, College of Sciences, Taif University, Taif, Saudi Arabia
| |
Collapse
|
4
|
Gamrat R, Tomaszewicz T, Wróbel M, Miller T, Chudecka J, Stankowski S. Impact of Different Reclamation Modes of Fly Ash Deposits on Species Richness of Spontaneous Flora. POLISH JOURNAL OF ECOLOGY 2020. [DOI: 10.3161/15052249pje2019.67.4.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Renata Gamrat
- Department of Ecology, Environmental Protection and Management, West Pomeranian University of Technology in Szczecin, Słowackiego 17, 71-434 Szczecin, Poland
| | - Tomasz Tomaszewicz
- Department of Soil Science, Grassland and Environmental Chemistry, West Pomeranian University of Technology in Szczecin, Słowackiego 17, 71-434 Szczecin, Poland
| | - Mariola Wróbel
- Department of Botany and Nature Protection, West Pomeranian University of Technology in Szczecin, Słowackiego 17, 71-434 Szczecin, Poland
| | - Tymoteusz Miller
- University of Szczecin, Institute of Marine and Environmental Sciences, Wąska 13, 71-412 Szczecin, Poland
| | - Justyna Chudecka
- Department of Soil Science, Grassland and Environmental Chemistry, West Pomeranian University of Technology in Szczecin, Słowackiego 17, 71-434 Szczecin, Poland
| | - Sławomir Stankowski
- Department of Agronomy, West Pomeranian University of Technology in Szczecin, Papieża Pawła VI 3, 71-459 Szczecin, Poland
| |
Collapse
|
5
|
Application of Floating Aquatic Plants in Phytoremediation of Heavy Metals Polluted Water: A Review. SUSTAINABILITY 2020. [DOI: 10.3390/su12051927] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Heavy-metal (HM) pollution is considered a leading source of environmental contamination. Heavy-metal pollution in ground water poses a serious threat to human health and the aquatic ecosystem. Conventional treatment technologies to remove the pollutants from wastewater are usually costly, time-consuming, environmentally destructive, and mostly inefficient. Phytoremediation is a cost-effective green emerging technology with long-lasting applicability. The selection of plant species is the most significant aspect for successful phytoremediation. Aquatic plants hold steep efficiency for the removal of organic and inorganic pollutants. Water hyacinth (Eichhornia crassipes), water lettuce (Pistia stratiotes) and Duck weed (Lemna minor) along with some other aquatic plants are prominent metal accumulator plants for the remediation of heavy-metal polluted water. The phytoremediation potential of the aquatic plant can be further enhanced by the application of innovative approaches in phytoremediation. A summarizing review regarding the use of aquatic plants in phytoremediation is gathered in order to present the broad applicability of phytoremediation.
Collapse
|
6
|
Immobilization of Potentially Toxic Elements (PTE) by Mineral-Based Amendments: Remediation of Contaminated Soils in Post-Industrial Sites. MINERALS 2020. [DOI: 10.3390/min10020087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In many post-industrial sites, the high contents and high mobility of different potentially toxic elements (PTEs) make the soils unsuitable for effective management and use. Therefore, immobilization of PTE seems to be the best remediation option for such areas. In the present study, soil samples were collected in post-industrial areas in Northeastern Poland. The analyzed soil was characterized by especially high contents of Cd (22 mg·kg−1), Pb (13 540 mg·kg−1), and Zn (8433 mg·kg−1). Yellow lupine (Lupinus luteus L.) and two types of mineral-based amendments were used to determine their combined remediation effect on PTE immobilization. A greenhouse pot experiment was conducted to evaluate the influence of chalcedonite and halloysite on plant growth, chlorophyll a fluorescence, the leaf greenness index (SPAD), PTE uptake, and the physicochemical properties and toxicity of soil. The application of chalcedonite resulted in the greatest increase in soil pH, whereas halloysite contributed to the greatest reduction in the contents of Ni, Pb, Zn, and Cr in soil, compared with the control treatment. The addition of halloysite significantly increased plant biomass. The application of mineral-based amendments increased the ratio of variable fluorescence to maximum chlorophyll fluorescence (Fv/Fm) in yellow lupine leaves. The leaf greenness index was highest in plants growing in soil amended with chalcedonite. The results of this study suggest that mineral-based amendments combined with yellow lupine could potentially be used for aided phytostabilization of multi-PTE contaminated soil in a post-industrial area.
Collapse
|
7
|
Wang Y, Wang L, Ma C, Wang K, Hao Y, Chen Q, Mo Y, Rui Y. Effects of cerium oxide on rice seedlings as affected by co-exposure of cadmium and salt. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:1087-1096. [PMID: 31252106 DOI: 10.1016/j.envpol.2019.06.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 06/02/2019] [Accepted: 06/02/2019] [Indexed: 06/09/2023]
Abstract
Effects of CeO2 NPs (200 mg.L-1) on rice (Oryza sativa L.) alone or co-exposure with cadmium (Cd) and salt (sodium chloride, NaCl) were investigated in hydroponic systems for two weeks. Physiological results show that rice biomass was significantly inhibited when NaCl or CdCl2 added alone or in co-exposure treatment. CeO2 NPs significantly relieve the chlorophyll damage under CdCl2 environmental stress. The presence of CeO2 NPs alleviated both stressors induced damages to rice as indicated by the reduced proline level. Additionally, CeO2 NPs triggered the antioxidant defense systems to counteract the oxidative stress caused by NaCl and CdCl2. The level of 8-OHdG, one of the most important indicators for genotoxicity, in rice suggest that the presence of CeO2 NPs reduced the DNA damage in NaCl treated rice. Elemental analysis indicated that co-exposure to NaCl and CdCl2 slightly decreased the Cd content as compared to the one in the CdCl2 alone treatment, and this co-exposure also significantly reduced the Na content when comparing with the NaCl alone treatment. Taken together, our findings suggest that CeO2 NPs could alleviate the CdCl2 and NaCl stresses, but could not completely change the phenotype of both contaminants treated rice.
Collapse
Affiliation(s)
- Yaoyao Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Lingqing Wang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chuanxin Ma
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, 06504, CT, United States
| | - Kexiang Wang
- Qingdao Yuance Biotechnology Co, ltd, Qingdao, 266071, China; College of Management, Ocean University of China, Qingdao, 266100, China
| | - Yi Hao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Qing Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - You Mo
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
8
|
Xu X, Yang B, Qin G, Wang H, Zhu Y, Zhang K, Yang H. Growth, accumulation, and antioxidative responses of two Salix genotypes exposed to cadmium and lead in hydroponic culture. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:19770-19784. [PMID: 31090001 DOI: 10.1007/s11356-019-05331-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
Cd and Pb are a toxic environmental pollutant, and their elevated concentrations in the waters and soils could exert detriment effects on human health by food chain. In order to evaluate the capacity to heavy metal accumulation and the physiochemical responses of two Salix genotypes, a 35-day hydroponic seedling experiment was implemented with Salix matsudana Koidz. 'Shidi1' (A42) and Salix psammophila C. 'Huangpi1' (A94) under different concentrations of Cd (15 and 30 μM) or Pb (250 and 300 μM). The results showed that the biomass of A94 severely reduced more than that of A42. The accumulation ability of Cd in different plant organs followed the sequence of leaves > roots > stems. Pb primarily accumulated in the roots for both Salix genotypes (54.27 mg g-1 for A42 and 54.52 mg g-1 for A94). Translocation factors based on accumulation (TF') for Cd were more than 8.0, while TF's for Pb were less than 1.0 in both A42 and A94, implying they could be applied in the phytoremediation of Cd-contaminated sites due to their stronger ability to Cd phytoextraction. The stress of Cd or Pb significantly increased malondialdehyde (MDA) contents and increased photosynthetic rates in leaves of two Salix genotypes. Transpiration rates of willow were positively correlated with its Cd translocation. Both catalase (CAT) and peroxidase (POD) activities were suppressed, while the superoxide dismutase (SOD) was boosted with increasing Cd and Pb levels in the leaves and roots of the two willow genotypes, suggesting SOD plays an important role in the removal of ROS. The inconsistency of the changes in enzyme activity suggests that the integrated antioxidative mechanisms regulate the tolerance to Cd and Pb stress.
Collapse
Affiliation(s)
- Xiaohan Xu
- School of Water Conservancy and Environment, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan, 250022, Shandong Province, China
| | - Baoshan Yang
- School of Water Conservancy and Environment, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan, 250022, Shandong Province, China
| | - Guanghua Qin
- Shandong Academy of Forestry, No. 42, East Road of Wenhua Road, Jinan, 250014, Shandong Province, China.
| | - Hui Wang
- School of Water Conservancy and Environment, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan, 250022, Shandong Province, China.
| | - Yidan Zhu
- School of Water Conservancy and Environment, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan, 250022, Shandong Province, China
| | - Kaizhen Zhang
- School of Water Conservancy and Environment, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan, 250022, Shandong Province, China
| | - Hanqi Yang
- The Xiuwen International Academy at Jinan, Jinan, 250100, China
| |
Collapse
|
9
|
Radziemska M, Vaverková MD, Baryła A. Phytostabilization-Management Strategy for Stabilizing Trace Elements in Contaminated Soils. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14090958. [PMID: 28841169 PMCID: PMC5615495 DOI: 10.3390/ijerph14090958] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/21/2017] [Accepted: 08/23/2017] [Indexed: 12/13/2022]
Abstract
Contamination of soil by copper (Cu) has become a serious problem throughout the world, causing the reduction of agricultural yield and harmful effects on human health by entering the food chain. A glasshouse pot experiment was designed to evaluate the potential use of halloysite as an immobilizing agent in the aided phytostabilization of Cu-contaminated soil, using Festuca rubra L. The content of Cu in plants, i.e., total and extracted by 0.01 M CaCl2, was determined using the method of spectrophotometry. Cu content in the tested parts of F. rubra differed significantly when halloysite was applied to the soil, as well as with increasing concentrations of Cu. The addition of halloysite significantly increased plant biomass. Cu accumulated in the roots, thereby reducing its toxicity to the aerial parts of the plant. The obtained values of bioconcentration and translocation factors observed for halloysite treatment indicate the effectiveness of using F. rubra in phytostabilization techniques.
Collapse
Affiliation(s)
- Maja Radziemska
- Department of Environmental Improvement, Faculty of Civil and Environmental Engineering, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Magdalena D Vaverková
- Department of Applied and Landscape Ecology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic.
| | - Anna Baryła
- Department of Environmental Improvement, Faculty of Civil and Environmental Engineering, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland.
| |
Collapse
|