1
|
Lu C, Liu Y, Ren F, Zhang H, Hou Y, Zhang H, Chen Z, Du X. HO-1: An emerging target in fibrosis. J Cell Physiol 2024:e31465. [PMID: 39420552 DOI: 10.1002/jcp.31465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/08/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
Fibrosis, an aberrant reparative response to tissue injury, involves a disruption in the equilibrium between the synthesis and degradation of the extracellular matrix, leading to its excessive accumulation within normal tissues, and culminating in organ dysfunction. Manifesting in the terminal stages of nearly all chronic ailments, fibrosis carries a high mortality rate and poses a significant threat to human health. Heme oxygenase-1 (HO-1) emerges as an endogenous protective agent, mitigating tissue damage through its antioxidant, anti-inflammatory, and antiapoptotic properties. Numerous studies have corroborated HO-1's potential as a therapeutic target in anti-fibrosis treatment. This review delves into the structural and functional attributes, and the upstream and downstream pathways of HO-1. Additionally, the regulatory networks and mechanisms of HO-1 in cells associated with fibrosis are elucidated. The role of HO-1 in various fibrosis-related diseases is also explored. Collectively, this comprehensive information serves as a foundation for future research and augments the viability of HO-1 as a therapeutic target for fibrosis.
Collapse
Affiliation(s)
- Chenxi Lu
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, China
| | - Yuan Liu
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, China
| | - Feifei Ren
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, China
| | - Haoran Zhang
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, China
| | - Yafang Hou
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, China
| | - Hong Zhang
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, China
| | - Zhiyong Chen
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, China
| | - Xia Du
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, China
| |
Collapse
|
2
|
Vilas-Boas V, Chatterjee N, Carvalho A, Alfaro-Moreno E. Particulate matter-induced oxidative stress - Mechanistic insights and antioxidant approaches reported in in vitro studies. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 110:104529. [PMID: 39127435 DOI: 10.1016/j.etap.2024.104529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Inhaled particulate matter (PM) is a key factor in millions of yearly air pollution-related deaths worldwide. The oxidative potential of PM indicates its ability to promote an oxidative environment. Excessive reactive oxygen species (ROS) can cause cell damage via oxidative stress, leading to inflammation, endoplasmic reticulum stress, airway remodeling, and various cell death modes (apoptosis, ferroptosis, pyroptosis). ROS can also interact with macromolecules, inducing DNA damage and epigenetic modifications, disrupting homeostasis. These effects have been studied extensively in vitro and confirmed in vivo. This review explores the oxidative potential of airborne particles and PM-induced ROS-mediated cellular damage observed in vitro, highlighting the link between oxidative stress, inflammation, and cell death modes described in the latest literature. The review also analyzes the effects of ROS on DNA damage, repair, carcinogenicity, and epigenetics. Additionally, the latest developments on the potential of antioxidants to prevent ROS's harmful effects are described, providing future perspectives on the topic.
Collapse
Affiliation(s)
- Vânia Vilas-Boas
- Nanosafety Group, International Iberian Nanotechnology Laboratory, Braga, Portugal.
| | - Nivedita Chatterjee
- Nanosafety Group, International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Andreia Carvalho
- Nanosafety Group, International Iberian Nanotechnology Laboratory, Braga, Portugal
| | | |
Collapse
|
3
|
Zheng S, Jiang L, Qiu L. The effects of fine particulate matter on the blood-testis barrier and its potential mechanisms. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:233-249. [PMID: 36863426 DOI: 10.1515/reveh-2022-0204] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/13/2022] [Indexed: 02/17/2024]
Abstract
With the rapid expansion of industrial scale, an increasing number of fine particulate matter (PM2.5) has bringing health concerns. Although exposure to PM2.5 has been clearly associated with male reproductive toxicity, the exact mechanisms are still unclear. Recent studies demonstrated that exposure to PM2.5 can disturb spermatogenesis through destroying the blood-testis barrier (BTB), consisting of different junction types, containing tight junctions (TJs), gap junctions (GJs), ectoplasmic specialization (ES) and desmosomes. The BTB is one of the tightest blood-tissue barriers among mammals, which isolating germ cells from hazardous substances and immune cell infiltration during spermatogenesis. Therefore, once the BTB is destroyed, hazardous substances and immune cells will enter seminiferous tubule and cause adversely reproductive effects. In addition, PM2.5 also has shown to cause cells and tissues injury via inducing autophagy, inflammation, sex hormones disorder, and oxidative stress. However, the exact mechanisms of the disruption of the BTB, induced by PM2.5, are still unclear. It is suggested that more research is required to identify the potential mechanisms. In this review, we aim to understand the adverse effects on the BTB after exposure to PM2.5 and explore its potential mechanisms, which provides novel insight into accounting for PM2.5-induced BTB injury.
Collapse
Affiliation(s)
- Shaokai Zheng
- School of Public Health, Nantong University, Nantong, P. R. China
| | - Lianlian Jiang
- School of Public Health, Nantong University, Nantong, P. R. China
| | - Lianglin Qiu
- School of Public Health, Nantong University, Nantong, P. R. China
| |
Collapse
|
4
|
Ma Z, Du X, Sun Y, Sun K, Zhang X, Wang L, Zhu Y, Basang W, Gao Y. RGS2 attenuates alveolar macrophage damage by inhibiting the Gq/11-Ca 2+ pathway during cowshed PM2.5 exposure, and aberrant RGS2 expression is associated with TLR2/4 activation. Toxicol Appl Pharmacol 2024; 487:116976. [PMID: 38777097 DOI: 10.1016/j.taap.2024.116976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/07/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
Staff and animals in livestock buildings are constantly exposed to fine particulate matter (PM2.5), which affects their respiratory health. However, its exact pathogenic mechanism remains unclear. Regulator of G-protein signaling 2 (RGS2) has been reported to play a regulatory role in pneumonia. The aim of this study was to explore the therapeutic potential of RGS2 in cowshed PM2.5-induced respiratory damage. PM2.5 was collected from a cattle farm, and the alveolar macrophages (NR8383) of the model animal rat were stimulated with different treatment conditions of cowshed PM2.5. The RGS2 overexpression vector was constructed and transfected it into cells. Compared with the control group, cowshed PM2.5 significantly induced a decrease in cell viability and increased the levels of apoptosis and proinflammatory factor expression. Overexpression of RGS2 ameliorated the above-mentioned cellular changes induced by cowshed PM2.5. In addition, PM2.5 has significantly induced intracellular Ca2+ dysregulation. Affinity inhibition of Gq/11 by RGS2 attenuated the cytosolic calcium signaling pathway mediated by PLCβ/IP3R. To further investigate the causes and mechanisms of action of differential RGS2 expression, the possible effects of oxidative stress and TLR2/4 activation were investigated. The results have shown that RGS2 expression was not only regulated by oxidative stress-induced nitric oxide during cowshed PM2.5 cells stimulation but the activation of TLR2/4 had also an important inhibitory effect on its protein expression. The present study demonstrates the intracellular Ca2+ regulatory role of RGS2 during cellular injury, which could be a potential target for the prevention and treatment of PM2.5-induced respiratory injury.
Collapse
Affiliation(s)
- Zhenhua Ma
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850009, China
| | - Xiaohui Du
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yize Sun
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Ke Sun
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Xiqing Zhang
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Lixia Wang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yanbin Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850009, China
| | - Wangdui Basang
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850009, China.
| | - Yunhang Gao
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
5
|
Chivé C, Martίn-Faivre L, Eon-Bertho A, Alwardini C, Degrouard J, Albinet A, Noyalet G, Chevaillier S, Maisonneuve F, Sallenave JM, Devineau S, Michoud V, Garcia-Verdugo I, Baeza-Squiban A. Exposure to PM 2.5 modulate the pro-inflammatory and interferon responses against influenza virus infection in a human 3D bronchial epithelium model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123781. [PMID: 38492752 DOI: 10.1016/j.envpol.2024.123781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/29/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Epidemiological studies showed a positive association between exposure to PM2.5 and the severity of influenza virus infection. However, the mechanisms by which PM2.5 can disrupt antiviral defence are still unclear. From this perspective, the objective of this study was to evaluate the effects of PM2.5 on antiviral signalling in the respiratory epithelium using the bronchial Calu-3 cell line grown at the air-liquid interface. Pre-exposure to PM2.5 before infection with the influenza virus was investigated, as well as a co-exposure. Although a physical interaction between the virus and the particles seems possible, no effect of PM2.5 on viral replication was observed during co-exposure, although a downregulation of IFN-β release was associated to PM2.5 exposure. However, pre-exposure slightly increased the viral nucleoprotein production and the pro-inflammatory response. Conversely, the level of the myxovirus resistance protein A (MxA), an interferon-stimulated gene (ISG) induced by IFN-β, was reduced. Therefore, these results suggest that pre-exposure to PM2.5 could alter the antiviral response of bronchial epithelial cells, increasing their susceptibility to viral infection.
Collapse
Affiliation(s)
- Chloé Chivé
- Université Paris Cité, Functional and Adaptive Biology Unit, UMR8251-CNRS, Paris, France; French Environment and Energy Management Agency 20, Avenue Du Grésillé - BP, 90406 49004, Angers, France
| | - Lydie Martίn-Faivre
- Université Paris Cité, Inflamex Excellence Laboratory, INSERM UMR-1152-PHERE, F-75018, Paris, France
| | - Alice Eon-Bertho
- Université Paris Cité, Functional and Adaptive Biology Unit, UMR8251-CNRS, Paris, France
| | - Christelle Alwardini
- Université Paris Cité, Functional and Adaptive Biology Unit, UMR8251-CNRS, Paris, France
| | - Jéril Degrouard
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405, Orsay, France
| | - Alexandre Albinet
- Institut National de L'Environnement Industriel et des Risques (INERIS), Parc Technologique Alata BP2, 60550, Verneuil en Halatte, France
| | - Gael Noyalet
- Université Paris Cité and Université Paris Est Créteil, CNRS, LISA, F-75013, Paris, France
| | - Servanne Chevaillier
- Université Paris Cité and Université Paris Est Créteil, CNRS, LISA, F-75013, Paris, France
| | - Franck Maisonneuve
- Université Paris Est Créteil and Université Paris Cité, CNRS, LISA, F-94010, Créteil, France
| | - Jean-Michel Sallenave
- Université Paris Cité, Inflamex Excellence Laboratory, INSERM UMR-1152-PHERE, F-75018, Paris, France
| | - Stéphanie Devineau
- Université Paris Cité, Functional and Adaptive Biology Unit, UMR8251-CNRS, Paris, France
| | - Vincent Michoud
- Université Paris Cité and Université Paris Est Créteil, CNRS, LISA, F-75013, Paris, France
| | - Ignacio Garcia-Verdugo
- Université Paris Cité, Inflamex Excellence Laboratory, INSERM UMR-1152-PHERE, F-75018, Paris, France.
| | - Armelle Baeza-Squiban
- Université Paris Cité, Functional and Adaptive Biology Unit, UMR8251-CNRS, Paris, France
| |
Collapse
|
6
|
Xiong A, He X, Liu S, Ran Q, Zhang L, Wang J, Jiang M, Niu B, Xiong Y, Li G. Oxidative stress-mediated activation of FTO exacerbates impairment of the epithelial barrier by up-regulating IKBKB via N6-methyladenosine-dependent mRNA stability in asthmatic mice exposed to PM2.5. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116067. [PMID: 38325270 DOI: 10.1016/j.ecoenv.2024.116067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
In order to comprehend the underlying mechanisms contributing to the development and exacerbation of asthma resulting from exposure to fine particulate matter (PM2.5), we established an asthmatic model in fat mass and obesity-associated gene knockdown mice subjected to PM2.5 exposure. Histological analyses using hematoxylin-eosin (HE) and Periodic Acid-Schiff (PAS) staining revealed that the down-regulation of the fat mass and obesity-associated gene (Fto) expression significantly ameliorated the pathophysiological alterations observed in asthmatic mice exposed to PM2.5. Furthermore, the down-regulation of Fto gene expression effectively attenuated damage to the airway epithelial barrier. Additionally, employing in vivo and in vitro models, we elucidated that PM2.5 modulated FTO expression by inducing oxidative stress. Asthmatic mice exposed to PM2.5 exhibited elevated Fto expression, which correlated with increased levels of reactive oxygen species. Similarly, when cells were exposed to PM2.5, FTO expression was up-regulated in a ROS-dependent manner. Notably, the administration of N-acetyl cysteine successfully reversed the PM2.5-induced elevation in FTO expression. Concurrently, we performed transcriptome-wide Methylated RNA immunoprecipitation Sequencing (MeRIP-seq) analysis subsequent to PM2.5 exposure. Through the implementation of Gene Set Enrichment Analysis and m6A-IP-qPCR, we successfully identified inhibitor of nuclear factor kappa B kinase subunit beta (IKBKB) as a target gene regulated by FTO. Interestingly, exposure to PM2.5 led to increased expression of IKBKB, while m6A modification on IKBKB mRNA was reduced. Furthermore, our investigation revealed that PM2.5 also regulated IKBKB through oxidative stress. Significantly, the down-regulation of IKBKB effectively mitigated epithelial barrier damage in cells exposed to PM2.5 by modulating nuclear factor-kappa B (NF-κB) signaling. Importantly, we discovered that decreased m6A modification on IKBKB mRNA facilitated by FTO enhanced its stability, consequently resulting in up-regulation of IKBKB expression. Collectively, our findings propose a novel role for FTO in the regulation of IKBKB through m6A-dependent mRNA stability in the context of PM2.5-induced oxidative stress. Therefore, it is conceivable that the utilization of antioxidants or inhibition of FTO could represent potential therapeutic strategies for the management of asthma exacerbated by PM2.5 exposure.
Collapse
Affiliation(s)
- Anying Xiong
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China; Department of Pulmonary and Critical Care Medicine, Chengdu third people's hospital branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu 610031, China
| | - Xiang He
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China; Department of Pulmonary and Critical Care Medicine, Chengdu third people's hospital branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu 610031, China; National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China.
| | - Shengbin Liu
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China; Department of Pulmonary and Critical Care Medicine, Chengdu third people's hospital branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu 610031, China
| | - Qin Ran
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China; Department of Pulmonary and Critical Care Medicine, Chengdu third people's hospital branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu 610031, China
| | - Lei Zhang
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China; Department of Pulmonary and Critical Care Medicine, Chengdu third people's hospital branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu 610031, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Junyi Wang
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China; Department of Pulmonary and Critical Care Medicine, Chengdu third people's hospital branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu 610031, China
| | - Manling Jiang
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China; Department of Pulmonary and Critical Care Medicine, Chengdu third people's hospital branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu 610031, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Bin Niu
- Department of Pulmonary and Critical Care Medicine, Chengdu third people's hospital branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu 610031, China
| | - Ying Xiong
- Department of Pulmonary and Critical Care Medicine, Sichuan friendship hospital, Chengdu 610000, China.
| | - Guoping Li
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China; Department of Pulmonary and Critical Care Medicine, Chengdu third people's hospital branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu 610031, China.
| |
Collapse
|
7
|
Yin B, Ren J, Cui Q, Liu X, Wang Z, Pei H, Zuo J, Zhang Y, Wen R, Sun X, Zhang W, Ma Y. Astaxanthin alleviates fine particulate matter (PM 2.5)-induced lung injury in rats by suppressing ferroptosis and apoptosis. Food Funct 2023; 14:10841-10854. [PMID: 37982854 DOI: 10.1039/d3fo03641c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Objectives: Fine particulate matter (PM2.5), a small molecule particulate pollutant, can reach the lungs via respiration and cause lung damage. Currently, effective strategies and measures are lacking to prevent and treat the pulmonary toxicity of PM2.5. Astaxanthin (ASX), a natural xanthophyll carotenoid, has attracted attention due to its unique biological activity. Our research aims to probe into the prevention and treatment of ASX on PM2.5-induced lung injury and clarify its potential mechanism. Methods: Sprague-Dawley (SD) rats were given olive oil and different concentrations of ASX orally daily for 21 days. PM2.5 suspension was instilled into the trachea of rats every two days for one week to successfully develop the PM2.5 exposure model in the PM2.5-exposed and ASX-treated groups of rats. The bronchoalveolar lavage fluid (BALF) was collected, and the content of lung injury-related markers was detected. Histomorphological changes and expression of markers associated with oxidative stress, inflammation, iron death, and apoptosis were detected in lung tissue. Results: PM2.5 exposure can cause changes in lung histochemistry and increase the expression levels of TP, AKP, ALB, and LDH in the BALF. Simultaneously, inflammatory responses and oxidative stress were promoted in rat lung tissue after exposure to particulate matter. Additionally, ASX preconditioning can alleviate histomorphological changes, oxidative stress, and inflammation caused by PM2.5 and reduce PM2.5-related ferroptosis and apoptosis. Conclusion: ASX preconditioning can alleviate lung injury after PM2.5 exposure by inhibiting ferroptosis and apoptosis.
Collapse
Affiliation(s)
- Bowen Yin
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
| | - Jingyi Ren
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
| | - Qiqi Cui
- Undergraduate of College of Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xuanyi Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
| | - Ziyi Wang
- Undergraduate of College of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Huanting Pei
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
| | - Jinshi Zuo
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
| | - Yadong Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
| | - Rui Wen
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
| | - Xiaoya Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
| | - Weican Zhang
- Undergraduate of College of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yuxia Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
| |
Collapse
|
8
|
Hong J, Tan Y, Wang Y, Wang H, Li C, Jin W, Wu Y, Ni D, Peng X. Mechanism of Interaction between hsa_circ_0002854 and MAPK1 Protein in PM 2.5-Induced Apoptosis of Human Bronchial Epithelial Cells. TOXICS 2023; 11:906. [PMID: 37999558 PMCID: PMC10674430 DOI: 10.3390/toxics11110906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/25/2023]
Abstract
Fine particulate matter (PM2.5) pollution increases the risk of respiratory diseases and death, and apoptosis is an important factor in the occurrence of respiratory diseases caused by PM2.5 exposure. In addition, circular RNAs (circRNAs) can interact with proteins and widely participate in physiological and pathological processes in the body. The aim of this study was to investigate the mechanism of circRNA and protein interaction on PM2.5-induced apoptosis of human bronchial epithelial cells (16HBE) in vitro. In this study, we exposed human bronchial epithelial cells to a PM2.5 suspension with different concentration gradients for 24 h. The results showed that apoptosis of 16HBE cells after PM2.5 treatment was accompanied by cell proliferation. After exposure of PM2.5 to 16HBE cells, circRNAs related to apoptosis were abnormally expressed. We further found that the expression of hsa_circ_0002854 increased with the increase in exposure concentration. Functional analysis showed that knocking down the expression of hsa_circ_0002854 could inhibit apoptosis induced by PM2.5 exposure. We then found that hsa_circ_0002854 could interact with MAPK1 protein and inhibit MAPK1 phosphorylation, thus promoting apoptosis. Our results suggest that hsa_circ_0002854 can promote 16HBE apoptosis due to PM2.5 exposure, which may provide a gene therapy target and scientific basis for PM2.5-induced respiratory diseases.
Collapse
Affiliation(s)
- Jinchang Hong
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China; (J.H.); (Y.T.); (Y.W.)
- School of Public Health, China Medical University, Shenyang 110122, China
| | - Yi Tan
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China; (J.H.); (Y.T.); (Y.W.)
| | - Yuyu Wang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China; (J.H.); (Y.T.); (Y.W.)
| | - Hongjie Wang
- School of Public Health, China Medical University, Shenyang 110122, China
| | - Caixia Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China; (J.H.); (Y.T.); (Y.W.)
| | - Wenjia Jin
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China; (J.H.); (Y.T.); (Y.W.)
| | - Yi Wu
- School of Public Health, China Medical University, Shenyang 110122, China
| | - Dechun Ni
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China; (J.H.); (Y.T.); (Y.W.)
| | - Xiaowu Peng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China; (J.H.); (Y.T.); (Y.W.)
| |
Collapse
|
9
|
Huang D, Shen Z, Zhao S, Pei C, Jia N, Wang Y, Wu Y, Wang X, Shi S, He Y, Wang Z, Wang F. Sipeimine attenuates PM2.5-induced lung toxicity via suppression of NLRP3 inflammasome-mediated pyroptosis through activation of the PI3K/AKT pathway. Chem Biol Interact 2023; 376:110448. [PMID: 36898572 DOI: 10.1016/j.cbi.2023.110448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/26/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Exposure to fine particulate matter (PM2.5), an environmental pollutant, significantly contributes to the incidence of and risk of mortality associated with respiratory diseases. Sipeimine (Sip) is a steroidal alkaloid in fritillaries that exerts antioxidative and anti-inflammatory effects. However, protective effect of Sip for lung toxicity and its mechanism to date remains poorly understood. In the present study, we investigated the lung-protective effect of Sip via establishing the lung toxicity model of rats with orotracheal instillation of PM2.5 (7.5 mg/kg) suspension. Sprague-Dawley rats were intraperitoneally administered with Sip (15 mg/kg or 30 mg/kg) or vehicle daily for 3 days before instillation of PM2.5 suspension to establish the model of lung toxicity. The results found that Sip significantly improved pathological damage of lung tissue, mitigated inflammatory response, and inhibited lung tissue pyroptosis. We also found that PM2.5 activated the NLRP3 inflammasome as evidenced by the upregulation levels of NLRP3, cleaved-caspase-1, and ASC proteins. Importantly, PM2.5 could trigger pyroptosis by increased levels of pyroptosis-related proteins, including IL-1β, cleaved IL-1β, and GSDMD-N, membrane pore formation, and mitochondrial swelling. As expected, all these deleterious alterations were reversed by Sip pretreatment. These effects of Sip were blocked by the NLRP3 activator nigericin. Moreover, network pharmacology analysis showed that Sip may function via the PI3K/AKT signaling pathway and animal experiment validate the results, which revealed that Sip inhibited NLRP3 inflammasome-mediated pyroptosis by suppressing the phosphorylation of PI3K and AKT. Our findings demonstrated that Sip inhibited NLRP3-mediated cell pyroptosis through activation of the PI3K/AKT pathway in PM2.5-induced lung toxicity, which has a promising application value and development prospect against lung injury in the future.
Collapse
Affiliation(s)
- Demei Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Zherui Shen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Sijing Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Caixia Pei
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Nan Jia
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Yilan Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Yongcan Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Xiaomin Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Shihua Shi
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Yacong He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Zhenxing Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - Fei Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| |
Collapse
|
10
|
Gauthier AG, Lin M, Zefi S, Kulkarni A, Thakur GA, Ashby CR, Mantell LL. GAT107-mediated α7 nicotinic acetylcholine receptor signaling attenuates inflammatory lung injury and mortality in a mouse model of ventilator-associated pneumonia by alleviating macrophage mitochondrial oxidative stress via reducing MnSOD-S-glutathionylation. Redox Biol 2023; 60:102614. [PMID: 36717349 PMCID: PMC9950665 DOI: 10.1016/j.redox.2023.102614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/09/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Supraphysiological concentrations of oxygen (hyperoxia) can compromise host defense and increase susceptibility to bacterial and viral infections, causing ventilator-associated pneumonia (VAP). Compromised host defense and inflammatory lung injury are mediated, in part, by high extracellular concentrations of HMGB1, which can be decreased by GTS-21, a partial agonist of α7 nicotinic acetylcholine receptor (α7nAChR). Here, we report that a novel α7nAChR agonistic positive allosteric modulator (ago-PAM), GAT107, at 3.3 mg/kg, i.p., significantly decreased animal mortality and markers of inflammatory injury in mice exposed to hyperoxia and subsequently infected with Pseudomonas aeruginosa. The incubation of macrophages with 3.3 μM of GAT107 significantly decreased hyperoxia-induced extracellular HMGB1 accumulation and HMGB1-induced macrophage phagocytic dysfunction. Hyperoxia-compromised macrophage function was correlated with impaired mitochondrial membrane integrity, increased superoxide levels, and decreased manganese superoxide dismutase (MnSOD) activity. This compromised MnSOD activity is due to a significant increase in its level of glutathionylation. The incubation of hyperoxic macrophages with 3.3 μM of GAT107 significantly decreases the levels of glutathionylated MnSOD, and restores MnSOD activity and mitochondrial membrane integrity. Thus, GAT107 restored hyperoxia-compromised phagocytic functions by decreasing HMGB1 release, most likely via a mitochondrial-directed pathway. Overall, our results suggest that GAT107 may be a potential treatment to decrease acute inflammatory lung injury by increasing host defense in patients with VAP.
Collapse
Affiliation(s)
- Alex G. Gauthier
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Mosi Lin
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Sidorela Zefi
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | | | | | - Charles R. Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Lin L. Mantell
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA,Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, USA,Corresponding author. Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, 128 St. Albert Hall, 8000 Utopia Parkway, Queens, NY, 11439, USA.
| |
Collapse
|
11
|
Chen Q, Wang Y, Yang L, Sun L, Wen Y, Huang Y, Gao K, Yang W, Bai F, Ling L, Zhou Z, Zhang X, Xiong J, Zhai R. PM2.5 promotes NSCLC carcinogenesis through translationally and transcriptionally activating DLAT-mediated glycolysis reprograming. J Exp Clin Cancer Res 2022; 41:229. [PMID: 35869499 PMCID: PMC9308224 DOI: 10.1186/s13046-022-02437-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/11/2022] [Indexed: 12/27/2022] Open
Abstract
Background Airborne fine particulate matter (PM2.5) has been associated with lung cancer development and progression in never smokers. However, the molecular mechanisms underlying PM2.5-induced lung cancer remain largely unknown. The aim of this study was to explore the mechanisms by which PM2.5 regulated the carcinogenesis of non-small cell lung cancer (NSCLC). Methods Paralleled ribosome sequencing (Ribo-seq) and RNA sequencing (RNA-seq) were performed to identify PM2.5-associated genes for further study. Quantitative real time-PCR (qRT-PCR), Western blot, and immunohistochemistry (IHC) were used to determine mRNA and protein expression levels in tissues and cells. The biological roles of PM2.5 and PM2.5-dysregulated gene were assessed by gain- and loss-of-function experiments, biochemical analyses, and Seahorse XF glycolysis stress assays. Human tissue microarray analysis and 18F-FDG PET/CT scans in patients with NSCLC were used to verify the experimental findings. Polysome fractionation experiments, chromatin immunoprecipitation (ChIP), and dual-luciferase reporter assay were implemented to explore the molecular mechanisms. Results We found that PM2.5 induced a translation shift towards glycolysis pathway genes and increased glycolysis metabolism, as evidenced by increased L-lactate and pyruvate concentrations or higher extracellular acidification rate (ECAR) in vitro and in vivo. Particularly, PM2.5 enhanced the expression of glycolytic gene DLAT, which promoted glycolysis but suppressed acetyl-CoA production and enhanced the malignancy of NSCLC cells. Clinically, high expression of DLAT was positively associated with tumor size, poorer prognosis, and SUVmax values of 18F-FDG-PET/CT scans in patients with NSCLC. Mechanistically, PM2.5 activated eIF4E, consequently up-regulating the expression level of DLAT in polysomes. PM2.5 also stimulated transcription factor Sp1, which further augmented transcription activity of DLAT promoter. Conclusions This study demonstrated that PM2.5-activated overexpression of DLAT and enhancement in glycolysis metabolism contributed to the tumorigenesis of NSCLC, suggesting that DLAT-associated pathway may be a therapeutic target for NSCLC. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02437-8.
Collapse
|
12
|
Ren J, Li X, Zhu S, Yin B, Guo Z, Cui Q, Song J, Pei H, Ma Y. Sesamin Ameliorates Fine Particulate Matter (PM 2.5)-Induced Lung Injury via Suppression of Apoptosis and Autophagy in Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9489-9498. [PMID: 35881548 DOI: 10.1021/acs.jafc.2c02470] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lung damage can be caused by fine particulate matter (PM2.5). Thus, effective prevention strategies for PM2.5-induced lung injury are urgently required. Sesamin (Ses) is a natural polyphenolic compound that has attracted considerable attention of researchers because of its wide range of pharmacological activities. The present study aims to elucidate whether Ses pretreatment could alleviate PM2.5-induced lung damage and identify its possible mechanisms. Sprague-Dawley rats were orally dosed with 0.5% carboxymethylcellulose (CMC) and different concentrations of Ses once a day for 21 days. Then, the rats of the PM2.5 exposure group and Ses-treated group were exposed to PM2.5 by intratracheal instillation every 2 days for 1 week. Biomarkers associated with lung injury were detected in bronchoalveolar lavage fluid (BALF). Lung tissue was collected for histology, inflammation, oxidative stress, immunohistochemistry, and Western blot. Our results showed that PM2.5 exposure could cause pathological changes in lung tissue and increase levels of TP, AKP, and ALB in BALF. Meanwhile, exposure to PM2.5 can cause oxidative stress and inflammation in the lungs. In addition, Ses pretreatment could ameliorate histopathological injury, oxidative stress, and inflammation caused by PM2.5 exposure. It could also inhibit PM2.5-induced apoptosis and upregulation of autophagy-associated proteins. Collectively, our study indicated that Ses pretreatment could ameliorate PM2.5-induced lung damage via inhibiting apoptosis and autophagy in rats.
Collapse
Affiliation(s)
- Jingyi Ren
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Xiang Li
- Undergraduate of College of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Siqi Zhu
- Undergraduate of College of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Bowen Yin
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Zihao Guo
- Undergraduate of College of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Qiqi Cui
- Undergraduate of College of Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jianshi Song
- Undergraduate of College of Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, China
| | - Huanting Pei
- Undergraduate of College of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yuxia Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| |
Collapse
|
13
|
Macedo GE, Vieira PDB, Rodrigues NR, Gomes KK, Rodrigues JF, Franco JL, Posser T. Effect of fungal indoor air pollutant 1-octen-3-ol on levels of reactive oxygen species and nitric oxide as well as dehydrogenases activities in drosophila melanogaster males. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:573-585. [PMID: 35354383 DOI: 10.1080/15287394.2022.2054887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fungal pollution of indoor environments contributes to several allergic symptoms and represents a public health problem. It is well-established that 1-octen-3-ol, also known as mushroom alcohol, is a fungal volatile organic compound (VOC) commonly found in damp indoor spaces and responsible for the typical musty odor. Previously it was reported that exposure to 1-octen-3-ol induced inflammations and disrupted mitochondrial morphology and bioenergetic rate in Drosophila melanogaster. The aim of this study was to examine the influence of 1-octen-3-ol on dehydrogenase activity, apoptotic biomarkers, levels of nitric oxide (NO) and reactive oxygen species (ROS), as well as antioxidant enzymes activities. D. melanogaster flies were exposed to an atmosphere containing 1-octen-3-ol (2.5 or ∞l/L) for 24 hr. Data demonstrated that 1-octen-3-ol decreased dehydrogenases activity and NO levels but increased ROS levels accompanied by stimulation of glutathione-S-transferase (GST) and superoxide dismutase (SOD) activities without altering caspase 3/7 activation. These findings indicate that adverse mitochondrial activity effects following exposure of D. melanogaster to 1-octen-3-ol, a fungal VOC, may be attributed to oxidant stress. The underlying mechanisms involved in adverse consequences of indoor fungal exposure appear to be related to necrotic but not apoptotic mechanisms. The adverse consequences were sex-dependent with males displaying higher sensitivity to 1-octen-3-ol. Based upon on the fact that the fly genome shares nearly 75% of disease-related genes to human exposure to this fungus may explain the adverse human responses to mold especially for males.
Collapse
Affiliation(s)
- Giulianna Echeverria Macedo
- Oxidative Stress and Cell Signaling Research Group, Centro Interdisciplinar em Biotecnologia - CIPBIOTEC, Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, Brazil
| | - Patrícia de Brum Vieira
- Oxidative Stress and Cell Signaling Research Group, Centro Interdisciplinar em Biotecnologia - CIPBIOTEC, Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, Brazil
| | - Nathane Rosa Rodrigues
- Oxidative Stress and Cell Signaling Research Group, Centro Interdisciplinar em Biotecnologia - CIPBIOTEC, Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, Brazil
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Karen Kich Gomes
- Oxidative Stress and Cell Signaling Research Group, Centro Interdisciplinar em Biotecnologia - CIPBIOTEC, Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, Brazil
| | - Jéssica Ferreira Rodrigues
- Oxidative Stress and Cell Signaling Research Group, Centro Interdisciplinar em Biotecnologia - CIPBIOTEC, Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, Brazil
| | - Jeferson Luis Franco
- Oxidative Stress and Cell Signaling Research Group, Centro Interdisciplinar em Biotecnologia - CIPBIOTEC, Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, Brazil
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Thaís Posser
- Oxidative Stress and Cell Signaling Research Group, Centro Interdisciplinar em Biotecnologia - CIPBIOTEC, Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, Brazil
| |
Collapse
|
14
|
Huang D, Shi S, Wang Y, Wang X, Shen Z, Wang M, Pei C, Wu Y, He Y, Wang Z. Astragaloside IV alleviates PM2.5-caused lung toxicity by inhibiting inflammasome-mediated pyroptosis via NLRP3/caspase-1 axis inhibition in mice. Biomed Pharmacother 2022; 150:112978. [PMID: 35462332 DOI: 10.1016/j.biopha.2022.112978] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/07/2022] [Accepted: 04/13/2022] [Indexed: 11/18/2022] Open
Abstract
Exposure to particulate matter (PM)2.5 in air pollution is a serious health issue worldwide. At present, effective prevention measures and modalities of treatment for PM2.5-caused lung toxicity are lacking. This study elucidated the protective effect of astragaloside IV (Ast), a natural product from Astragalus membranaceous Bunge, against PM2.5-caused lung toxicity and its possible molecular mechanisms. The mice model of lung toxicity was performed by intratracheal instillation of PM2.5 dust suspension. The investigation was performed with Ast or in combination with nigericin, which is a NOD-like receptor protein 3 (NLRP3) activator. The results revealed that PM2.5 lead significant lung inflammation and promoted the pyroptosis pattern of cell death by upregulating pro-inflammatory cytokines and causing oxidative stress related to the NLRP3 inflammasome-mediated pyroptosis pathway. Ast protected against PM2.5 resulted lung toxicity via suppressing NLRP3 inflammasome-mediated pyroptosis via NLRP3/caspase-1 axis inhibition, thereby protecting the lung against PM2.5-induced lung inflammation and oxidative damage, eventually resulting in prolonged survival in mice. Nigericin partially reversed the protective effects of Ast. The present research provides new insights into the therapeutic potential of Ast, demonstrating that it might be a possible candidate for the prevention of PM2.5-caused respiratory diseases. Targeting the NLRP3 inflammasome might be a novel therapeutic tactic for PM2.5-caused respiratory diseases.
Collapse
Affiliation(s)
- Demei Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Shihua Shi
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yilan Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Xiaomin Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Zherui Shen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Mingjie Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Caixia Pei
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yongcan Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yacong He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Zhenxing Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| |
Collapse
|
15
|
Yu Y, Sun Q, Li T, Ren X, Lin L, Sun M, Duan J, Sun Z. Adverse outcome pathway of fine particulate matter leading to increased cardiovascular morbidity and mortality: An integrated perspective from toxicology and epidemiology. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128368. [PMID: 35149491 DOI: 10.1016/j.jhazmat.2022.128368] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/12/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Fine particulate matter (PM2.5) exposure is a major threat to public health, and is listed as one of the leading factors associated with global premature mortality. Among the adverse health effects on multiple organs or tissues, the influence of PM2.5 exposure on cardiovascular system has drawn more and more attention. Although numerous studies have investigated the mechanisms responsible for the cardiovascular toxicity of PM2.5, the various mechanisms have not been integrated due to the variety of the study models, different levels of toxicity assessment endpoints, etc. Adverse Outcome Pathway (AOP) framework is a useful tool to achieve this goal so as to facilitate comprehensive understanding of toxicity assessment of PM2.5 on cardiovascular system. This review aims to illustrate the causal mechanistic relationships of PM2.5-triggered cardiovascular toxicity from different levels (from molecular/cellular/organ to individual/population) by using AOP framework. Based on the AOP Wiki and published literature, we propose an AOP framework focusing on the cardiovascular toxicity induced by PM2.5 exposure. The molecular initiating event (MIE) is identified as reactive oxygen species generation, followed by the key events (KEs) of oxidative damage and mitochondria dysfunction, which induces vascular endothelial dysfunction via vascular endothelial cell autophagy dysfunction, vascular fibrosis via vascular smooth muscle cell activation, cardiac dysregulation via myocardial apoptosis, and cardiac fibrosis via fibroblast proliferation and myofibroblast differentiation, respectively; all of the above cardiovascular injuries ultimately elevate cardiovascular morbidity and mortality in the general population. As far as we know, this is the first work on PM2.5-related cardiovascular AOP construction. In the future, more work needs to be done to explore new markers in the safety assessment of cardiovascular toxicity induced by PM2.5.
Collapse
Affiliation(s)
- Yang Yu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Qinglin Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Tianyu Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Xiaoke Ren
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Lisen Lin
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Mengqi Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
16
|
Shan H, Li X, Ouyang C, Ke H, Yu X, Tan J, Chen J, Wang C, Zhang L, Tang Y, Yu L, Li W. Salidroside prevents PM2.5-induced BEAS-2B cell apoptosis via SIRT1-dependent regulation of ROS and mitochondrial function. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 231:113170. [PMID: 35026589 DOI: 10.1016/j.ecoenv.2022.113170] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/28/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
PM2.5 is a harmful air pollutant currently threatening public health. It has been closely linked to increased morbidity of bronchial asthma and lung cancer worldwide. Salidroside (Sal), an active component extracted from Rhodiola rosea, has been reported to ameliorate the progression of asthma. However, there are few studies on the protective effect of salidroside on PM2.5-induced bronchial epithelial cell injury, and the related molecular mechanism is not clear. Here, we aimed to explore the protective effect and related mechanism of Sal on PM2.5 bronchial injury. We chose 50 μg/mL PM2.5 for 24 h as a PM2.5-induced cell damage model. After that BEAS-2B cells were pretreated with 40, 80, 160 µM Sal for 24 h and then exposed to 50 μg/mL PM2.5 for 24 h. We found that Sal pretreatment significantly inhibited the decrease of cell viability induced by PM2.5. Sal was effective in preventing PM2.5-induced apoptotic features, including Ca2+ overload, the cleavages of caspase 3, and the increases in levels of caspase 9 and Bcl-2-associated X protein (Bax), ultimately, Sal significantly inhibited PM2.5-induced apoptosis. Sal improved mitochondrial membrane potential, inhibited the release of cytochrome c from the mitochondria to cytoplasm. Sal alleviated ROS production, decreased the level of MDA, prevented the reduction of CAT, SOD and GSH-Px and increased the expression of NF-E2-related factor 2 (Nrf2), HO-1 and superoxide dismutase 1 (SOD1) in cells exposed to PM2.5. Furthermore, Sal improved the decrease of SIRT1 and PGC-1 α expression levels caused by PM2.5. In addition, inhibition of SIRT1 by EX527 (SIRT1 inhibitor) reversed the protective effects of Sal, including the decrease of ROS level, the increase of membrane potential level and the decrease of apoptosis level. Thus, Sal may be regarded as a potential drug to prevent PM2.5-induced apoptosis of bronchial epithelial cells and other diseases with similar pathological mechanisms.
Collapse
Affiliation(s)
- Hui Shan
- Department of Environmental Hygiene, School of Public Health, Weifang Medical College, Weifang, China
| | - Xiaohong Li
- Public Health Demonstration Center, School of Public Health, Weifang Medical College, Weifang, China; Department of Nutrition and Food Hygiene, School of Public Health, Weifang Medical College, Weifang, China
| | - Chuan Ouyang
- Department of Environmental Hygiene, School of Public Health, Weifang Medical College, Weifang, China
| | - Hongyang Ke
- Department of Environmental Hygiene, School of Public Health, Weifang Medical College, Weifang, China
| | - Xiaoli Yu
- Key Laboratory of health inspection and quarantine, Weifang, China; Public Health Demonstration Center, School of Public Health, Weifang Medical College, Weifang, China
| | - Jinfeng Tan
- Weifang environmental monitoring station, Weifang, China
| | - Junhao Chen
- Key Laboratory of health inspection and quarantine, Weifang, China; Public Health Demonstration Center, School of Public Health, Weifang Medical College, Weifang, China
| | - Chunping Wang
- Department of Environmental Hygiene, School of Public Health, Weifang Medical College, Weifang, China; Public Health Demonstration Center, School of Public Health, Weifang Medical College, Weifang, China
| | - Liping Zhang
- Department of Environmental Hygiene, School of Public Health, Weifang Medical College, Weifang, China; Public Health Demonstration Center, School of Public Health, Weifang Medical College, Weifang, China
| | - Yunfeng Tang
- Department of Environmental Hygiene, School of Public Health, Weifang Medical College, Weifang, China; Public Health Demonstration Center, School of Public Health, Weifang Medical College, Weifang, China
| | - Li Yu
- School of basic medicine, Weifang Medical University, Weifang, China
| | - Wanwei Li
- Department of Environmental Hygiene, School of Public Health, Weifang Medical College, Weifang, China; Public Health Demonstration Center, School of Public Health, Weifang Medical College, Weifang, China.
| |
Collapse
|
17
|
Lee HJ, Lee JH, Lee SM, Kim NH, Moon YG, Tak TK, Hyun M, Heo JD. Cadmium induces cytotoxicity in normal mouse renal MM55.K cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:131-140. [PMID: 32191530 DOI: 10.1080/09603123.2020.1739236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
The toxicity of cadmium (Cd) occurs through accumulation in the environment. The precise mechanism underlying Cd toxicity remains unclear. Therefore, in the present study, we studied the effects of Cd on MM55.K cells and investigated the mechanisms underlying Cd-induced cell death. CdCl2 significantly elevated apoptotic cell death, mitochondrial membrane potential (ΔΨm) loss, and caspase-dependent cell death. Moreover, immunoblotting results revealed that CdCl2 down-regulated the inhibitor of apoptotic protein such as survivin and Bcl-2 which led to the activation of caspase-3 and the cleavage of PARP in MM55.K cells. Besides, CdCl2 caused the up-regulation of ROS-related proteins such as HO-1 and ER stress-related proteins such as GRP78 and CHOP in MM55.K cells. CdCl2 toxicity resulted in the down-regulation of the AKT pathway that leads to the up-regulation of phosphorylated JNK and p38 in MM55.K cells. Thus, CdCl2 induce toxicity by AKT/MAPK regulation and causing ROS production, ER stress, ΔΨm loss, and apoptotic cell death in normal mouse renal cells.
Collapse
Affiliation(s)
- Ho Jeong Lee
- Biological Resources Research Group, Bioenvironmental Science & Toxicology Division, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju, Republic of Korea
| | - Ju Hong Lee
- Biological Resources Research Group, Bioenvironmental Science & Toxicology Division, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju, Republic of Korea
| | - Seon Min Lee
- Biological Resources Research Group, Bioenvironmental Science & Toxicology Division, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju, Republic of Korea
| | - Na Hyun Kim
- Biological Resources Research Group, Bioenvironmental Science & Toxicology Division, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju, Republic of Korea
| | - Yeon Gyu Moon
- Biological Resources Research Group, Bioenvironmental Science & Toxicology Division, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju, Republic of Korea
| | - Tae Kil Tak
- Biological Resources Research Group, Bioenvironmental Science & Toxicology Division, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju, Republic of Korea
| | - Moonjung Hyun
- Biological Resources Research Group, Bioenvironmental Science & Toxicology Division, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju, Republic of Korea
| | - Jeong Doo Heo
- Biological Resources Research Group, Bioenvironmental Science & Toxicology Division, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju, Republic of Korea
| |
Collapse
|
18
|
Yang L, Song Z, Pan Y, Zhao T, Shi Y, Xing J, Ju A, Zhou L, Ye L. PM 2.5 promoted lipid accumulation in macrophage via inhibiting JAK2/STAT3 signaling pathways and aggravating the inflammatory reaction. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112872. [PMID: 34624536 DOI: 10.1016/j.ecoenv.2021.112872] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Abnormal lipid accumulation in macrophages may lead to macrophages foaming, which is the most important pathological process of atherosclerosis. Atmospheric PM2.5 could enter the blood circulation and further affect the lipid metabolism of macrophages. But the underlying mechanism is not unclear. This study was undertaken to clarify the effect of PM2.5 on lipid metabolism in macrophages, and to explore the role of inflammatory reaction and JAK2/STAT3 signaling pathway in this process. METHOD Macrophages derived from THP-1 cells were exposed to PM2.5 (0,100,200,400 μg/mL) for 6 h and 12 h. STAT3 agonist ColivelinTFA is used to specifically excite STAT3. The survival rate of macrophages was detected by CCK-8. The lipid levels in macrophages were detected by colorimetry. The levels of inflammatory factors secreted by macrophages were detected by ELISA. Q-PCR was used to detect the mRNA expression levels, and Western Blot was used to detect the protein expression levels of JAK2/STAT3 pathway genes. RESULT The survival rate of macrophages was reduced by PM2.5, and the levels of TG, T-CHO and LDL-C of macrophages exposed to PM2.5 were increased. PM2.5 led to the increasing level of IL-6 and the decreasing level of IL-4, and the JAK2/STAT3 signaling pathway was inhibited by PM2.5. Colivelin TFA significantly decreased the increasing levels of TG, T-CHO and LDL-C levels, and increased the decreasing mRNA levels of IL-4, and LPL induced by PM2.5 (p < 0.05). DISCUSSION PM2.5 could cause the lipid accumulation of macrophages by inhibiting the JAK2/STAT3 signaling pathway, and inflammatory responses may be involved in this process.
Collapse
Affiliation(s)
- Liwei Yang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China.
| | - Zikai Song
- Department of Cardiology, the First Hospital of Jilin University, Changchun, China.
| | - Yang Pan
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China; The Provincial Center for Disease Control and Prevention (Jilin Provincial Institute of Public Health), Changchun, China.
| | - Tianyang Zhao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China.
| | - Yanbin Shi
- Jilin Cancer Hospital, Changchun, China.
| | - Jiqiang Xing
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China.
| | - Aipeng Ju
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China.
| | - Liting Zhou
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China.
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China.
| |
Collapse
|
19
|
Li R, Peng X, Wu Y, Lv W, Xie H, Ishii Y, Zhang C. Exposure to PM 2.5 during pregnancy causes lung inflammation in the offspring: Mechanism of action of mogrosides. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:112955. [PMID: 34781127 DOI: 10.1016/j.ecoenv.2021.112955] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/16/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
Epidemiological and toxicological studies have demonstrated that exposure to fine particulate matter (PM2.5) during pregnancy is harmful to the tissues of the offspring. However, the mechanism by which PM2.5 exposure causes lung damage in the offspring or potential dietary therapy for this condition remains unclear. Mogrosides (MGs) are derived from the traditional plant Siraitia grosvenorii and are used medicinally, where they can moisten the lungs and relieve coughing. In this study, pregnant rats were exposed to PM2.5 by intratracheal instillation and treated with MGs by gavage to model the effect of PM2.5 in the offspring and the interventional effect of MGs on lung tissue. We then used transcriptomics, metabolomics, and RT-qPCR as tools to look for metabolite and genetic changes in the offspring. We found that when compared to the control group, the mRNA levels of the inflammatory mediator Pla2g2d and the metabolites lysophosphatidylcholines (LysoPCs) and arachidonic acid (AA) were up-regulated in the lung tissues of PM2.5 group. In contrast, these inflammatory changes were restored after treatment with MGs during pregnancy. In addition, the levels of AA, LPC 15:0 and LPC 18:0 were elevated in the PM2.5 group compared with control group. This increase was inhibited by co-administration of MGs. The change of PGA1 was adverse. In conclusion, even a relatively low exposure to PM2.5 in rats during pregnancy produces inflammation in the lungs of the male offspring, and an intervention with MGs could significantly alleviate this effect. Furthermore, Pla2g2d may represent a potential target for MGs resulting in the improvement of PM2.5-induced lung injury.
Collapse
Affiliation(s)
- Renshi Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xuewei Peng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yanliang Wu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Weichao Lv
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Haifeng Xie
- Research and Development Department, Chengdu Biopurify Phytochemicals Ltd., Chengdu 611130, China
| | - Yuji Ishii
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Chaofeng Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
20
|
Li Y, Batibawa JW, Du Z, Liang S, Duan J, Sun Z. Acute exposure to PM 2.5 triggers lung inflammatory response and apoptosis in rat. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112526. [PMID: 34303042 DOI: 10.1016/j.ecoenv.2021.112526] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/06/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Severe haze events, especially with high concentration of fine particulate matter (PM2.5), are frequent in China, which have gained increasing attention among public. The purpose of our study was explored the toxic effects and potential damage mechanisms about PM2.5 acute exposure. Here, the diverse dosages of PM2.5 were used to treat SD rats and human bronchial epithelial cell (BEAS-2B) for 24 h, and then the bioassays were performed at the end of exposure. The results show that acute exposure to diverse dosages of PM2.5 could trigger the inflammatory response and apoptosis. The severely oxidative stress may contribute to the apoptosis. Also, the activation of Nrf2-ARE pathway was an important compensatory process of antioxidant damage during the early stage of acute exposure to PM2.5. Furthermore, the HO-1 was suppression by siRNA that promoted cell apoptosis triggered by PM2.5. In other words, enhancing the expression of HO-1 may mitigate the cell apoptosis caused by acute exposure to PM2.5. In summary, our findings present the first time that prevent or mitigate the damage triggered by PM2.5 through antioxidant approaches was a promising strategy.
Collapse
Affiliation(s)
- Yang Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Josevata Werelagi Batibawa
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Zhou Du
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Shuang Liang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
21
|
Xu L, Zhao Q, Li D, Luo J, Ma W, Jin Y, Li C, Chen J, Zhao K, Zheng Y, Yu D. MicroRNA-760 resists ambient PM 2.5-induced apoptosis in human bronchial epithelial cells through elevating heme-oxygenase 1 expression. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117213. [PMID: 33933780 DOI: 10.1016/j.envpol.2021.117213] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/31/2021] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
PM2.5 (particles matter smaller aerodynamic diameter of 2.5 μm) exposure, a major environmental risk factor for the global burden of diseases, is associated with high risks of respiratory diseases. Heme-oxygenase 1 (HMOX1) is one of the major molecular antioxidant defenses to mediate cytoprotective effects against diverse stressors, including PM2.5-induced toxicity; however, the regulatory mechanism of HMOX1 expression still needs to be elucidated. In this study, using PM2.5 as a typical stressor, we explored whether microRNAs (miRNAs) might modulate HMOX1 expression in lung cells. Systematic bioinformatics analysis showed that seven miRNAs have the potentials to target HMOX1 gene. Among these, hsa-miR-760 was identified as the most responsive miRNA to PM2.5 exposure. More importantly, we revealed a "non-conventional" miRNA function in hsa-miR-760 upregulating HMOX1 expression, by targeting the coding region and interacting with YBX1 protein. In addition, we observed that exogenous hsa-miR-760 effectively elevated HMOX1 expression, reduced the reactive oxygen agents (ROS) levels, and rescued the lung cells from PM2.5-induced apoptosis. Our results revealed that hsa-miR-760 might play an important role in protecting lung cells against PM2.5-induced toxicity, by elevating HMOX1 expression, and offered new clues to elucidate the diverse functions of miRNAs.
Collapse
Affiliation(s)
- Lin Xu
- School of Public Health, Qingdao University, Qingdao, China
| | - Qianwen Zhao
- School of Public Health, Qingdao University, Qingdao, China
| | - Daochuan Li
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jiao Luo
- School of Public Health, Qingdao University, Qingdao, China
| | - Wanli Ma
- School of Public Health, Qingdao University, Qingdao, China
| | - Yuan Jin
- School of Public Health, Qingdao University, Qingdao, China
| | - Chuanhai Li
- School of Public Health, Qingdao University, Qingdao, China
| | - Jing Chen
- School of Public Health, Qingdao University, Qingdao, China
| | - Kunming Zhao
- School of Public Health, Qingdao University, Qingdao, China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, China
| | - Dianke Yu
- School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
22
|
Ke S, Liu Q, Zhang X, Yao Y, Yang X, Sui G. Cytotoxicity analysis of biomass combustion particles in human pulmonary alveolar epithelial cells on an air-liquid interface/dynamic culture platform. Part Fibre Toxicol 2021; 18:31. [PMID: 34419099 PMCID: PMC8379799 DOI: 10.1186/s12989-021-00426-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 08/05/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Exposure to indoor air pollution from solid fuel combustion is associated with lung diseases and cancer. This study investigated the cytotoxicity and molecular mechanisms of biomass combustion-derived particles in human pulmonary alveolar epithelial cells (HPAEpiC) using a platform that combines air-liquid interface (ALI) and dynamic culture (DC) systems. METHODS HPAEpiC were cultured on the surface of polycarbonate (PC) membranes on the ALI-DC platform. The cells were sprayed with an aerosolized solution of biomass combustion soluble constituents (BCSCs) and simultaneously nourished with culture medium flowing beneath the permeable PC membranes. The ALI-DC method was compared with the traditional submerged culture approach. BCSC particle morphology and dosages deposited on the chip were determined for particle characterization. Flow cytometry, scanning electron microscopy, and transmission electron microscopy were used to investigate the apoptosis rate of HPAEpiC and changes in the cell ultrastructure induced by BCSCs. Additionally, the underlying apoptotic pathway was examined by determining the protein expression levels by western blotting. RESULTS Scanning electron microscope images demonstrated that the sample processing and delivering approach of the ALI-DC platform were suitable for pollutant exposure. Compared with the submerged culture method, a significant decline in cell viability and increase in apoptosis rate was observed after BCSC exposure on the ALI-DC platform, indicating that the ALI-DC platform is a more sensitive system for investigating cytotoxicity of indoor air pollutants in lung cells. The morphology and ultrastructure of the cells were damaged after exposure to BCSCs, and the p53 pathway was activated. The Bcl-2/Bax ratio was reduced, upregulating caspase-9 and caspase-3 expression and subsequently inducing apoptosis of HPAEpiC. The addition of N-acetyl cysteine antioxidant significantly alleviated the cytotoxicity induced by BCSCs. CONCLUSION A novel ALI-DC platform was developed to study the cytotoxicity of air pollutants on lung cells. Using the platform, we demonstrated that BCSCs could damage the mitochondria, produce reactive oxygen species, and activate p53 in HPAEpiC, ultimately inducing apoptosis.
Collapse
Affiliation(s)
- Shaorui Ke
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046 People’s Republic of China
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433 People’s Republic of China
| | - Qi Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433 People’s Republic of China
| | - Xinlian Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433 People’s Republic of China
| | - Yuhan Yao
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433 People’s Republic of China
| | - Xudong Yang
- Department of Building Science, Tsinghua University, Beijing, 100084 People’s Republic of China
| | - Guodong Sui
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433 People’s Republic of China
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science & Technology, Nanjing, 210044 People’s Republic of China
| |
Collapse
|
23
|
Shan X, Liu L, Li G, Xu K, Liu B, Jiang W. PM 2.5 and the typical components cause organelle damage, apoptosis and necrosis: Role of reactive oxygen species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 782:146785. [PMID: 33838376 DOI: 10.1016/j.scitotenv.2021.146785] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
In this research, the organelle damage, apoptosis and necrosis induced by PM2.5, BC and Kaolin were studied using human bronchial epithelial (16HBE) cells. PM2.5, BC and Kaolin all induce cell death, LDH release and excess intracellular ROS generation. For the organelle injuries, Kaolin and high-dose PM2.5 (240 μg/mL) cause lysosomal acidification, but BC causes lysosomal alkalization (lysosomal membrane permeabilization, LMP). BC and Kaolin cause the loss of mitochondrial membrane potential (MMP), while PM2.5 does not. For the cell death mode, PM2.5 causes both apoptosis and necrosis. However only necrosis has been detected in the BC and Kaolin treated groups, indicating the more severe cellular insult. Excess ROS generation is involved in the organelle damage and cell death. ROS contributes to the BC-induced LMP and necrosis, but does not significantly affect the Kaolin-induced MMP loss and necrosis. Therefore, the BC component in PM2.5 may cause cytotoxicity via ROS-dependent pathways, the Kaolin component may damage cells via ROS-independent mechanisms such as strong interaction. The PM2.5-induced apoptosis and necrosis can be partially mitigated after the removal of ROS, indicating the existence of both the ROS-dependent and ROS-independent mechanisms due to the complicated PM2.5 components. BC represents the anthropogenic source component in PM2.5, while Kaolin represents the natural source component. Our results provide knowledge on the toxic mechanisms of typical PM2.5 components at the cellular and subcellular levels.
Collapse
Affiliation(s)
- Xifeng Shan
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Ling Liu
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Gang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Kexin Xu
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Bingyan Liu
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Wei Jiang
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| |
Collapse
|
24
|
Qiu LZ, Zhou W, Yue LX, Wang YH, Hao FR, Li PY, Gao Y. Repeated Aconitine Treatment Induced the Remodeling of Mitochondrial Function via AMPK-OPA1-ATP5A1 Pathway. Front Pharmacol 2021; 12:646121. [PMID: 34177570 PMCID: PMC8224173 DOI: 10.3389/fphar.2021.646121] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 03/08/2021] [Indexed: 12/19/2022] Open
Abstract
Aconitine is attracting increasing attention for its unique positive inotropic effect on the cardiovascular system, but underlying molecular mechanisms are still not fully understood. The cardiotonic effect always requires abundant energy supplement, which is mainly related to mitochondrial function. And OPA1 has been documented to play a critical role in mitochondrial morphology and energy metabolism in cardiomyocytes. Hence, this study was designed to investigate the potential role of OPA1-mediated regulation of energy metabolism in the positive inotropic effect caused by repeated aconitine treatment and the possible mechanism involved. Our results showed that repeated treatment with low-doses (0-10 μM) of aconitine for 7 days did not induce detectable cytotoxicity and enhanced myocardial contraction in Neonatal Rat Ventricular Myocytes (NRVMs). Also, we first identified that no more than 5 μM of aconitine triggered an obvious perturbation of mitochondrial homeostasis in cardiomyocytes by accelerating mitochondrial fusion, biogenesis, and Parkin-mediated mitophagy, followed by the increase in mitochondrial function and the cellular ATP content, both of which were identified to be related to the upregulation of ATP synthase α-subunit (ATP5A1). Besides, with compound C (CC), an inhibitor of AMPK, could reverse aconitine-increased the content of phosphor-AMPK, OPA1, and ATP5A1, and the following mitochondrial function. In conclusion, this study first demonstrated that repeated aconitine treatment could cause the remodeling of mitochondrial function via the AMPK-OPA1-ATP5A1 pathway and provide a possible explanation for the energy metabolism associated with cardiotonic effect induced by medicinal plants containing aconitine.
Collapse
Affiliation(s)
- Li-Zhen Qiu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Wei Zhou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Lan-Xin Yue
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yi-Hao Wang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Fei-Ran Hao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Peng-Yan Li
- The Fifth Medical Center, General Hospital of PLA, Beijing, China
| | - Yue Gao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
25
|
Wang YL, Lee YH, Hsu YH, Chiu IJ, Huang CCY, Huang CC, Chia ZC, Lee CP, Lin YF, Chiu HW. The Kidney-Related Effects of Polystyrene Microplastics on Human Kidney Proximal Tubular Epithelial Cells HK-2 and Male C57BL/6 Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:57003. [PMID: 33956507 PMCID: PMC8101928 DOI: 10.1289/ehp7612] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 03/19/2021] [Accepted: 04/12/2021] [Indexed: 05/19/2023]
Abstract
BACKGROUND Understanding the epidemic of chronic kidney disease of uncertain etiology may be critical for health policies and public health responses. Recent studies have shown that microplastics (MPs) contaminate our food chain and accumulate in the gut, liver, kidney, muscle, and so on. Humans manufacture many plastics-related products. Previous studies have indicated that particles of these products have several effects on the gut and liver. Polystyrene (PS)-MPs (PS-MPs) induce several responses, such as oxidative stress, and affect living organisms. OBJECTIVES The aim of this study was to investigate the effects of PS-MPs in kidney cells in vitro and in vivo. METHODS PS-MPs were evaluated in human kidney proximal tubular epithelial cells (HK-2 cells) and male C57BL/6 mice. Mitochondrial reactive oxygen species (ROS), endoplasmic reticulum (ER) stress, inflammation, and autophagy were analyzed in kidney cells. In vivo, we evaluated biomarkers of kidney function, kidney ultrastructure, muscle mass, and grip strength, and urine protein levels, as well as the accumulation of PS-MPs in the kidney tissue. RESULTS Uptake of PS-MPs at different concentrations by HK-2 cells resulted in higher levels of mitochondrial ROS and the mitochondrial protein Bad. Cells exposed to PS-MPs had higher ER stress and markers of inflammation. MitoTEMPO, which is a mitochondrial ROS antioxidant, mitigated the higher levels of mitochondrial ROS, Bad, ER stress, and specific autophagy-related proteins seen with PS-MP exposure. Furthermore, cells exposed to PS-MPs had higher protein levels of LC3 and Beclin 1. PS-MPs also had changes in phosphorylation of mitogen-activated protein kinase (MAPK) and protein kinase B (AKT)/mitogen-activated protein kinase (mTOR) signaling pathways. In an in vivo study, PS-MPs accumulated and the treated mice had more histopathological lesions in the kidneys and higher levels of ER stress, inflammatory markers, and autophagy-related proteins in the kidneys after PS-MPs treatment by oral gavage. CONCLUSIONS The results suggest that PS-MPs caused mitochondrial dysfunction, ER stress, inflammation, and autophagy in kidney cells and accumulated in HK-2 cells and in the kidneys of mice. These results suggest that long-term PS-MPs exposure may be a risk factor for kidney health. https://doi.org/10.1289/EHP7612.
Collapse
Affiliation(s)
- Yung-Li Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Hsuan Lee
- Department of Cosmeceutics, China Medical University, Taichung, Taiwan
| | - Yung-Ho Hsu
- Division of Nephrology, Department of Internal Medicine, Hsin Kuo Min Hospital, Taipei Medical University, Taoyuan City, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan
| | - I-Jen Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Cathy Chia-Yu Huang
- Department of Life Sciences, National Central University, Taoyuan City, Taiwan
| | - Chih-Chia Huang
- Department of Photonics, Center of Applied Nanomedicine, National Cheng Kung University, Tainan, Taiwan
| | - Zi-Chun Chia
- Department of Photonics, Center of Applied Nanomedicine, National Cheng Kung University, Tainan, Taiwan
| | - Chung-Pei Lee
- School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Yuh-Feng Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Internal Medicine, School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Hui-Wen Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| |
Collapse
|
26
|
Liu J, Liu B, Yuan P, Cheng L, Sun H, Gui J, Pan Y, Huang D, Chen H, Jiang L. Role of PKA/CREB/BDNF signaling in PM2.5-induced neurodevelopmental damage to the hippocampal neurons of rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 214:112005. [PMID: 33640725 DOI: 10.1016/j.ecoenv.2021.112005] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/23/2021] [Accepted: 01/27/2021] [Indexed: 05/20/2023]
Abstract
Exposure to fine particulate matter (PM2.5) is implicated in neurodevelopmental disorders including cognitive decline, attention-deficit/hyperactivity disorder, and autism spectrum disorder. However, the specific molecular mechanisms by which PM2.5 impacts neurodevelopment are poorly understood. Accordingly, in the present study, the role of protein kinase A (PKA)/cAMP response element binding protein (CREB)/brain-derived neurotrophic factor (BDNF) signaling in PM2.5-induced neurodevelopmental damage was investigated using primary cultured hippocampal neurons. When hippocampal neurons cultured for 3 days in vitro (DIV3) were exposed to PM2.5 for 24 h and 96 h, neuronal viability decreased by 18.8% and 32.7% respectively, percentage of TUNEL-positive neurons increased by 78.5% and 64.0% separately, caspase-9 expression increased, lower postsynaptic density and shorter active zones were observed by transmission electron microscopy, expression of synapse-related proteins including postsynaptic density-95 (PSD95), growth associated protein-43 (GAP43), and synaptophysin (SYP) were decreased, and the phosphorylation levels of PKA, CREB, and BDNF expression also decreased. However, the PM2.5-induced neuronal damage could be ameliorated or aggravated to varying degrees by up- or down-regulation of the PKA/CREB/BDNF signaling pathway, respectively. Our results indicate that PM2.5 exposure exerts neurodevelopmental toxicity as indicated by lower viability, apoptosis, and synaptic damage in primary cultured hippocampal neurons, and that the PKA/CREB/BDNF pathways could play a vital role in PM2.5-mediated neurodevelopmental toxicity.
Collapse
Affiliation(s)
- Jie Liu
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, 136# Zhongshan 2nd Road, Chongqing 400014, China
| | - Benke Liu
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, 136# Zhongshan 2nd Road, Chongqing 400014, China
| | - Ping Yuan
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, 136# Zhongshan 2nd Road, Chongqing 400014, China
| | - Li Cheng
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, 136# Zhongshan 2nd Road, Chongqing 400014, China
| | - Hong Sun
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, 136# Zhongshan 2nd Road, Chongqing 400014, China
| | - Jianxiong Gui
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, 136# Zhongshan 2nd Road, Chongqing 400014, China
| | - Yanan Pan
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, 136# Zhongshan 2nd Road, Chongqing 400014, China
| | - Dishu Huang
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, 136# Zhongshan 2nd Road, Chongqing 400014, China
| | - Hengsheng Chen
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, 136# Zhongshan 2nd Road, Chongqing 400014, China
| | - Li Jiang
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, 136# Zhongshan 2nd Road, Chongqing 400014, China.
| |
Collapse
|
27
|
Wang Y, Zhong Y, Liao J, Wang G. PM2.5-related cell death patterns. Int J Med Sci 2021; 18:1024-1029. [PMID: 33456360 PMCID: PMC7807185 DOI: 10.7150/ijms.46421] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 12/19/2020] [Indexed: 12/19/2022] Open
Abstract
With the increasingly serious problem of environmental pollution, the health problems caused by PM2.5 are gradually coming into our line of sight. Previous researches have indicated that air pollution is nearly related to various diseases, but few studies have focused on the exact function mediated by particulate matter less than 2.5 (PM2.5) in these diseases. PM2.5 is known to induce multiple ways of cell death, including autophagy, necrosis, apoptosis, pyroptosis and ferroptosis. Therefore, it is of much importance to understand the different ways of cell death caused by PM2.5 in the pathogenesis and treatment of PM2.5-related diseases. This present review is an insight of multiple ways of PM2.5‑induced cell death in different diseases.
Collapse
Affiliation(s)
- Yunxia Wang
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Yijue Zhong
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiping Liao
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Guangfa Wang
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China
| |
Collapse
|
28
|
Jiang N, Wen H, Zhou M, Lei T, Shen J, Zhang D, Wang R, Wu H, Jiang S, Li W. Low-dose combined exposure of carboxylated black carbon and heavy metal lead induced potentiation of oxidative stress, DNA damage, inflammation, and apoptosis in BEAS-2B cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111388. [PMID: 33007543 DOI: 10.1016/j.ecoenv.2020.111388] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/14/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Black carbon (BC) and heavy metal lead (Pb), as typical components of atmospheric PM2.5, have been shown to cause a variety of adverse health effects. However, co-exposure to BC and Pb may induce pulmonary damage by aggravating toxicity via an unknown mechanism. This study aimed to investigate the combined toxicity of carboxylated black carbon (c-BC) and lead acetate (Pb) on human bronchial epithelial cells (BEAS-2B) at the no-observed-adverse-effect level (NOAEL). Cells were exposed to c-BC (6.25 μg/mL) and Pb (4 μg/mL) alone or their combination, and their combined toxicity was investigated by focusing on cell viability, oxidative stress, DNA damage, mitochondrial membrane potential (MMP), apoptosis, and cellular inflammation. Factorial analyses were also used to determine the potential interactions between c-BC and Pb. The results suggested that the combination of c-BC and Pb could significantly increase the production of reactive oxygen species (ROS), malondialdehyde (MDA), and lactate dehydrogenase leakage (LDH) and decrease the activities of glutathione (GSH) and superoxide dismutase (SOD). The excessive oxidative stress could increase the levels of inflammatory cytokine IL-6 and TNF-α, and induce oxidative DNA damage and dissipation of MMP. Moreover, the results also suggested that the combined group could enhance the cellular apoptotic rate and the activation of apoptotic markers like caspase-3, caspase-8, and caspase-9. The factorial analysis further demonstrated that synergistic interaction was responsible for the combined toxicity of c-BC and Pb co-exposure. Most noticeably, the co-exposure of c-BC and Pb could induce some unexpected toxicity, even beyond the known toxicities of the individual compounds in BEAS-2B cells at the NOAEL.
Collapse
Affiliation(s)
- Nan Jiang
- Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, Anhui, 236037, PR China; School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui, 236037, PR China
| | - Haiyan Wen
- Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, Anhui, 236037, PR China; School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui, 236037, PR China
| | - Meng Zhou
- Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, Anhui, 236037, PR China; School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui, 236037, PR China
| | - Tiantian Lei
- Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, Anhui, 236037, PR China; School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui, 236037, PR China
| | - Jianyun Shen
- Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, Anhui, 236037, PR China; School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui, 236037, PR China
| | - Di Zhang
- Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, Anhui, 236037, PR China; School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui, 236037, PR China
| | - Rong Wang
- Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, Anhui, 236037, PR China; School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui, 236037, PR China
| | - Hai Wu
- Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, Anhui, 236037, PR China; School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui, 236037, PR China
| | - Shuanglin Jiang
- Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, Anhui, 236037, PR China; School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui, 236037, PR China.
| | - Wenyong Li
- Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, Anhui, 236037, PR China; School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui, 236037, PR China.
| |
Collapse
|
29
|
Liu X, Zhao X, Li X, Lv S, Ma R, Qi Y, Abulikemu A, Duan H, Guo C, Li Y, Sun Z. PM 2.5 triggered apoptosis in lung epithelial cells through the mitochondrial apoptotic way mediated by a ROS-DRP1-mitochondrial fission axis. JOURNAL OF HAZARDOUS MATERIALS 2020; 397:122608. [PMID: 32387827 DOI: 10.1016/j.jhazmat.2020.122608] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/24/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
Epidemiological studies revealed a sharp increase in respiratory diseases attributed to PM2.5. However, the underlying mechanisms remain unclear. Evidence suggested mitochondrion as a sensitive target upon the stimulus of PM2.5, and the centrality in the pathological processes and clinical characterization of lung diseases. To investigate cell fate and related mechanisms caused by PM2.5, we exposed human lung epithelial cells (BEAS-2B) to PM2.5 (0-100 μg/mL). Consequently, PM2.5 components were found in cytoplasm, and morphological and functional alterations in mitochondria occurred, as evidenced by loss of cristae, vacuolization and even the outer mitochondrial membrane rupture, mitochondrial membrane potential collapse, enhanced reactive oxygen species (ROS)/mtROS level, calcium overload, suppressed cellular respiration and ATP production in PM2.5-treated cells. Further, disturbed dynamics toward fission was clearly observed in PM2.5-treated mitochondria, associated with DRP1 mitochondrial translocation and phosphorylation. Besides, PM2.5 induced mitochondria-mediated apoptosis. More importantly, mechanistic results revealed ROS- and DRP1-mediated mitochondrial fission in a reciprocal way, and DRP1 inhibitor (Mdivi-1) significantly alleviated the pro-apoptotic effect of PM2.5 through reversing the activated mitochondrial apoptotic pathway. In summary, our results firstly revealed PM2.5 induced apoptosis in lung epithelial cells through a ROS-DRP1-mitochodrial fission axis-mediated mitochondrial apoptotic pathway, ultimately contributing to the onset and development of pulmonary diseases.
Collapse
Affiliation(s)
- Xiaoying Liu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Xinying Zhao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Xueyan Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Songqing Lv
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Ru Ma
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Yi Qi
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Alimire Abulikemu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Huawei Duan
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Caixia Guo
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China.
| | - Yanbo Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| |
Collapse
|
30
|
Duan S, Zhang M, Sun Y, Fang Z, Wang H, Li S, Peng Y, Li J, Li J, Tian J, Yin H, Yao S, Zhang L. Mechanism of PM 2.5-induced human bronchial epithelial cell toxicity in central China. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122747. [PMID: 32339879 DOI: 10.1016/j.jhazmat.2020.122747] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/31/2020] [Accepted: 04/13/2020] [Indexed: 05/05/2023]
Abstract
Exposure to PM2.5 has been linked to respiratory disorders, yet knowledge of the molecular mechanism is limited. Here, PM2.5 was monitored and collected in central China, and its cytotoxicity mechanism on human bronchial epithelial cells (BEAS-2B) was investigated. With the average concentration of 109 ± 69 μg/m3, PM2.5 was rich in heavy metals and organic pollutants. After exposure to PM2.5, the viability of BEAS-2B cells decreased, where 510 dysregulated genes were predicted to induce necroptosis via inhibiting ATP synthesis through the oxidative phosphorylation signaling pathway. Cellular experiments demonstrated that the content of ATP was downregulated, while the expression of RIP3, a necroptosis indicator, was upregulated. Besides, four enzymes in charge of ATP synthesis were downregulated, including ATP5F, NDUF, COX7A, and UQCR, while two genes of RELA and CAPN1 responsible for necroptosis were upregulated. Furthermore, N-acetylcysteine was applied as an enhancer for ATP synthesis, which reversed the downregulation of ATP5F, NDUF, and COX7A, and consequently alleviated the elevation of RELA, CAPN1, and RIP3. In conclusion, PM2.5 exposure downregulates ATP5F, NDUF, COX7A, and UQCR, and that inhibits ATP synthesis via the oxidative phosphorylation signaling pathway, which subsequently upregulates RELA and CAPN1 and ultimately leads to necroptosis of BEAS-2B cells.
Collapse
Affiliation(s)
- Shuyin Duan
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China; Department of Occupational and Environmental Hygiene, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Meihua Zhang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China
| | - Yaqiong Sun
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China
| | - Zhenya Fang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China
| | - Hefeng Wang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China
| | - Shuxian Li
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China
| | - Yanze Peng
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China
| | - Juan Li
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Junxia Li
- Department of Occupational and Environmental Hygiene, School of Public Health and Management, Weifang Medical University, Weifang 261042, China
| | - Jiaqi Tian
- Department of Occupational and Environmental Hygiene, School of Public Health and Management, Weifang Medical University, Weifang 261042, China
| | - Haoyu Yin
- Department of Occupational and Environmental Hygiene, School of Public Health and Management, Weifang Medical University, Weifang 261042, China
| | - Sanqiao Yao
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Lin Zhang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China.
| |
Collapse
|
31
|
Notch1-mediated histone demethylation of HCN4 contributes to aconitine-induced ventricular myocardial dysrhythmia. Toxicol Lett 2020; 327:19-31. [DOI: 10.1016/j.toxlet.2020.03.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/12/2020] [Accepted: 03/23/2020] [Indexed: 12/15/2022]
|
32
|
Nguyen NH, Ta QTH, Pham QT, Luong TNH, Phung VT, Duong TH, Vo VG. Anticancer Activity of Novel Plant Extracts and Compounds from Adenosma bracteosum (Bonati) in Human Lung and Liver Cancer Cells. Molecules 2020; 25:E2912. [PMID: 32599892 PMCID: PMC7356985 DOI: 10.3390/molecules25122912] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/29/2022] Open
Abstract
Cancer is the second leading cause of death globally, and despite the advances in drug development, it is still necessary to develop new plant-derived medicines. Compared with using conventional chemical drugs to decrease the side effects induced by chemotherapy, natural herbal medicines have many advantages. The present study aimed to discover the potential cytotoxicity of ethanol extract and its derived fractions (chloroform, ethyl acetate, butanol, and aqueous) of Adenosma bracteosum Bonati. (A. bracteosum) on human large cell lung carcinoma (NCI-H460) and hepatocellular carcinoma (HepG2). Among these fractions, the chloroform showed significant activity in the inhibition of proliferation of both cancerous cells because of the presence of bioactive compounds including xanthomicrol, 5,4'-dihydroxy-6,7,8,3'-tetramethoxyflavone, and ursolic acid which were clearly revealed by nuclear magnetic resonance spectroscopy (1H-NMR, 13C-NMR, Heteronuclear Multiple Bond Coherence, and Heteronuclear Single Quantum Coherence Spectroscopy) analyses. According to the radical scavenging capacity, the 5,4'-dihydroxy-6,7,8,3'-tetramethoxyflavone compound (AB2) exhibited the highest anticancer activity on both NCI-H460 and HepG2 with IC50 values of 4.57 ± 0.32 and 5.67 ± 0.09 µg/mL respectively, followed by the ursolic acid with the lower percent inhibition at 13.05 ± 0.55 and 10.00 ± 0.16 µg/mL, respectively (p < 0.05). Remarkably, the AB2 compound induced to significant increase in the production of reactive oxygen species accompanied by attenuation of mitochondrial membrane potential, thus inducing the activation of caspase-3 activity in both human lung and liver cancer cells. These results suggest that A. bracteosum is a promising source of useful natural products and AB2 offers opportunities to develop the novel anticancer drugs.
Collapse
Affiliation(s)
- Ngoc Hong Nguyen
- CirTech Institute, Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City 700000, Vietnam;
| | - Qui Thanh Hoai Ta
- Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam;
| | - Quang Thang Pham
- Institute of Applied Science, Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City 700000, Vietnam; (Q.T.P.); (T.N.H.L.)
| | - Thi Ngoc Han Luong
- Institute of Applied Science, Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City 700000, Vietnam; (Q.T.P.); (T.N.H.L.)
| | - Van Trung Phung
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam;
| | - Thuc-Huy Duong
- Department of Organic Chemistry, University of Education, Ho Chi Minh City 700000, Vietnam;
| | - Van Giau Vo
- Bionanotechnology Research Group, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
33
|
Yi W, Lan H, Wen Y, Wang Y, He D, Bai Z, Zhang Y, Jiang W, Liu B, Shen J, Hu Z. HO-1 overexpression alleviates senescence by inducing autophagy via the mitochondrial route in human nucleus pulposus cells. J Cell Physiol 2020; 235:8402-8415. [PMID: 32239675 DOI: 10.1002/jcp.29684] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 03/12/2020] [Indexed: 12/13/2022]
Abstract
Intervertebral disc degeneration (IDD) is closely associated with aging. Our previous studies have confirmed that heme oxygenase-1 (HO-1) can inhibit nucleus pulposus (NP) cell apoptosis. However, whether or not HO-1 is involved in NP cell senescence and autophagy is unclear. Our results indicated that HO-1 expression was reduced in IDD tissues and replicative senescent NP cells. HO-1 overexpression using a lentiviral vector reduced the NP cell senescence level, protected mitochondrial function, and promoted NP cell autophagy through the mitochondrial pathway. Autophagy inhibitor 3-MA pretreatment reversed the anti-senescent and protective effects on the mitochondrial function of HO-1, which promoted the degradation of the extracellular matrix (ECM) in the intervertebral disc. In vivo, HO-1 overexpression inhibited IDD and enhanced autophagy. In summary, these results suggested that HO-1 overexpression alleviates NP cell senescence by inducing autophagy via the mitochondrial route.
Collapse
Affiliation(s)
- Weiwei Yi
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haiyang Lan
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yafeng Wen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yiyang Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Danshuang He
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhibiao Bai
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ye Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Jiang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bo Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jieliang Shen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhenming Hu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
34
|
Suo D, Zeng S, Zhang J, Meng L, Weng L. PM2.5 induces apoptosis, oxidative stress injury and melanin metabolic disorder in human melanocytes. Exp Ther Med 2020; 19:3227-3238. [PMID: 32269607 PMCID: PMC7138919 DOI: 10.3892/etm.2020.8590] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/19/2019] [Indexed: 12/13/2022] Open
Abstract
Recent growing evidence suggested that particulate matter 2.5 (PM2.5) has strong toxic effects on skin systems. However, the possible effects and the mechanisms of PM2.5 on vitiligo remain poorly understood. Therefore, the present study aimed to further investigate the effects and possible mechanisms of PM2.5 on vitiligo. Human keratinocytes (HaCaT cells) and human melanocytes (PIG1 cells and PIG3V cells) were exposed to PM2.5 (0-200 µg/ml) for 24 h. The cell viability of the three cell lines was measured by a Cell Counting Kit-8 assay. The secretions of stem cell factor (SCF) and basic fibroblast growth factor (bFGF) in HaCaT cells were evaluated by ELISA. The melanin contents, cellular tyrosinase activity, apoptosis, cell migration, malondialdehyde (MDA) contents, superoxide dismutase (SOD) levels, glutathione peroxidase (GSH-Px) levels and related protein expressions in PIG1 cells and PIG3V cells were evaluated by a NaOH assay, DOPA assay, Annexin V-FITC/Propidium Iodide staining, MDA assay, SOD assay, GSH-Px assay and western blotting, respectively. It was demonstrated that PM2.5 exposure inhibited cell viability of all three cell lines (HaCaT, PIG1 and PIG3V cells). PM2.5 exposure attenuated the secretions of SCF and bFGF in HaCaT cells. Moreover, PM2.5 exposure attenuated the activation of tyrosinase and melanogenesis, inhibited cell migration, and induced apoptosis and oxidative stress injury in PIG1 cells and PIG3V cells. In addition, PM2.5 exposure caused upregulated cytosolic cytochrome C and activated caspase-3 in PIG1 cells and PIG3V cells. Furthermore, PM2.5 exposure activated the nuclear factor erythroid 2-related factor 2 and heme oxygenase-1 signaling pathway. The present results suggested that PM2.5 exposure could inhibit the secretions of SCF and bFGF in keratinocytes, and cause oxidative stress injury and melanin metabolic disorder in melanocytes. Therefore, PM2.5 could be a new risk factor for vitiligo.
Collapse
Affiliation(s)
- Danfeng Suo
- Department of Dermatology, Tianjin First Center Hospital, Tianjin 300192, P.R. China
| | - Sanwu Zeng
- Department of Dermatology, Tianjin First Center Hospital, Tianjin 300192, P.R. China
| | - Junling Zhang
- Department of Dermatology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin 300120, P.R. China
| | - Linghe Meng
- Department of Dermatology, Tianjin First Center Hospital, Tianjin 300192, P.R. China
| | - Lishuo Weng
- Department of Dermatology, Tianjin First Center Hospital, Tianjin 300192, P.R. China
| |
Collapse
|
35
|
Zhang D, Li M. Puerarin prevents cataract development and progression in diabetic rats through Nrf2/HO‑1 signaling. Mol Med Rep 2019; 20:1017-1024. [PMID: 31173182 PMCID: PMC6625395 DOI: 10.3892/mmr.2019.10320] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 04/17/2019] [Indexed: 12/30/2022] Open
Abstract
Puerarin is the major bioactive ingredient isolated from the dry root of Pueraria lobata, a plant used in traditional Chinese medicine. Puerarin has been used to treat diabetes and cataracts in China; however, its underlying mechanism of action remains unclear. The aim of the present study was to investigate the effectiveness and mechanism of puerarin in preventing cataracts in diabetic rats. Diabetes was induced by streptozocin (STZ) administration and rats were intraperitoneally injected with puerarin (25, 50 and 100 mg/kg). Blood glucose levels and cataract development were examined in the different experimental groups. In addition, the expression levels of markers associated with oxidative stress, including nuclear factor erythroid 2 like 2 (Nrf2) and heme oxygenase‑1 (HO‑1), were analyzed. The present results suggested that treatment with puerarin at 25, 50 and 100 mg/kg significantly reduced blood glucose levels and the incidence of cataract in STZ‑induced diabetic rats. Additionally, puerarin treatment reduced oxidative stress, restoring the levels of malondialdehyde and glutathione, and the activity of glutathione peroxidase. Furthermore, puerarin administration decreased the expression levels of retinal vascular endothelial growth factor and interleukin‑1β and increased the mRNA expression levels of Nrf2 and HO‑1, thus inhibiting oxidative stress. The present findings suggested that puerarin had hypoglycemic effects and that it prevented cataract development and progression in diabetic rats by reducing oxidative stress through the Nrf2/HO‑1 signaling pathway.
Collapse
Affiliation(s)
- Duzhen Zhang
- Department of Ophthalmology, Linyi Central Hospital, Linyi, Shandong 276400, P.R. China
| | - Man Li
- Department of Ophthalmology, Linyi Central Hospital, Linyi, Shandong 276400, P.R. China
| |
Collapse
|
36
|
Luo B, Shi H, Zhang K, Wei Q, Niu J, Wang J, Hammond SK, Liu S. Cold stress provokes lung injury in rats co-exposed to fine particulate matter and lipopolysaccharide. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 168:9-16. [PMID: 30384172 DOI: 10.1016/j.ecoenv.2018.10.064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 10/11/2018] [Accepted: 10/16/2018] [Indexed: 06/08/2023]
Abstract
Cold exposure aggravates respiratory diseases, which are also influenced by the exposures to particulate matter and endotoxin in the air. The aim of this study was to investigate the potential interactions among cold stress, fine particulate matter (PM2.5, particles with aerodynamic diameter of 2.5 µm or less) and lipopolysaccharide (LPS, pure chemical form of endotoxin) on rat lung and to explore the related possible mechanisms of the interactions. Wistar rats were randomly grouped to be exposed to, 1) normal saline (0.9% NaCl), 2) PM2.5, 3) LPS, and 4) PM2.5 and LPS (PM2.5 + LPS) through intratracheal instillation under cold stress (0 °C) and normal temperature (20 °C). Lung function, lung tissue histology, inflammatory response and oxidative stress levels were measured to examine the lung injury and to investigate the potential mechanisms. Exposure to PM2.5 or LPS substantially changed pulmonary function [indicated by peak inspiratory flow (PIF) and peak expiratory flow (PEF)], inflammatory cytokine levels [indicated by interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α)] and lung histology, compared to the non-exposed groups. Exposure to PM2.5 + LPS under cold stress induced the most significant changes, including the increases of IL-6, TNF-α and thiobarbituric acid-reactive substances (TBARS), the decreases of PIF and PEF and more severe lung injury, among all exposure scenarios. Glutathione peroxidase activity and, nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) were found to be suppressed under cold stress, whereas Nrf2 and HO-1 levels were observed to be upregulated by exposure to PM2.5 or LPS under normal temperature. In conclusion, cold stress may aggravate the lung injury in rats induced by simultaneous exposure to PM2.5 and LPS. The progress may involve the suppressing of Nrf2/HO-1 signal pathway.
Collapse
Affiliation(s)
- Bin Luo
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, China; Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley 94720, USA.
| | - Hongxia Shi
- Health Management Center, Lanzhou University the Second Hospital, Lanzhou 730030, China
| | - Kai Zhang
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qiaozhen Wei
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Jingping Niu
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Junling Wang
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Sally Katharine Hammond
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley 94720, USA
| | - Sa Liu
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley 94720, USA; Environmental & Occupational Health Sciences, School of Health Sciences, Purdue University, West Lafayette 47907, USA.
| |
Collapse
|
37
|
The critical role of microRNAs in stress response: Therapeutic prospect and limitation. Pharmacol Res 2018; 142:294-302. [PMID: 30553824 DOI: 10.1016/j.phrs.2018.12.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 12/22/2022]
Abstract
Stress response refers to the systemic nonspecific response upon exposure to strong stimulation or chronic stress, such as severe trauma, shock, infection, burn, major surgery or improper environment, which disturb organisms and damage their physical and psychological health. However, the pathogenesis of stress induced disorder remains complicated and diverse under different stress exposure. Recently, studies have revealed a specific role of microRNAs (miRNAs) in regulating cellular function under different types of stress, suggesting a significant role in the treatment and prevention of stress-related diseases, such as stress ulcer, posttraumatic stress disorder, stress-induced cardiomyopathy and so on. This paper have reviewed the literature on microRNA related stress diseases in different databases including PubMed, Web of Science, and the MiRbase. It considers only peer-reviewed papers published in English between 2004 and 2018. This review summarizes new advances in principles and mechanisms of miRNAs regulating stress signalling pathway and the role of miRNAs in human stress diseases. This comprehensive review is to provide an integrated account of how different stresses affect miRNAs and how stress-miRNA pathways may, in turn, be linked with disease, which offers some potential strategies for stress disorder treatment. Furthermore, the limitation of current studies and challenges for clinical use are discussed.
Collapse
|
38
|
Raudoniute J, Stasiulaitiene I, Kulvinskiene I, Bagdonas E, Garbaras A, Krugly E, Martuzevicius D, Bironaite D, Aldonyte R. Pro-inflammatory effects of extracted urban fine particulate matter on human bronchial epithelial cells BEAS-2B. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:32277-32291. [PMID: 30225694 DOI: 10.1007/s11356-018-3167-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 09/06/2018] [Indexed: 06/08/2023]
Abstract
Atmospheric particulate matter (PM) constitutes the major part of urban air pollution and is a heterogeneous mixture of solid and liquid particles of different origin, size, and chemistry. Human exposure to PM in urban areas poses considerable and significant adverse effects on the respiratory system and human health in general. Major contributors to PM content are combustion-related sources such as diesel vehicles, household, and industrial heating. PM is composed of thousands of different high molecular weight organic compounds, including poly-aromatic hydrocarbons (PAHs). The aim of this study was to clarify the cytotoxic effects of the extract of actual urban PM1 with high benzo[a]pyrene (BaP) content collected in Eastern European mid-sized city during winter heating season on human bronchial epithelial cells (BEAS-2B). Decreased cell viability, alteration of cell layer integrity, increased apoptosis, and oxidative stress were observed during the 3-day exposure to the PM extract. In addition, following PM exposure pro-inflammatory cytokine expression was upregulated at gene and protein levels. Morphology and motility changes, i.e., decreased cells' ability to cover scratch area, were also documented. We report here that the extract of urban PM1 may induce bronchial epithelium changes and render it pro-inflammatory and compromised within 3 days.
Collapse
Affiliation(s)
- Jovile Raudoniute
- Department of Regenerative Medicine, Center for Innovative Medicine, Santariskiu 5, LT-08406, Vilnius, Lithuania
| | - Inga Stasiulaitiene
- Department of Environmental Technology, Kaunas University of Technology, Radvilenu 19, LT-50264, Kaunas, Lithuania
| | - Ieva Kulvinskiene
- Department of Regenerative Medicine, Center for Innovative Medicine, Santariskiu 5, LT-08406, Vilnius, Lithuania
| | - Edvardas Bagdonas
- Department of Regenerative Medicine, Center for Innovative Medicine, Santariskiu 5, LT-08406, Vilnius, Lithuania
| | - Andrius Garbaras
- Center for Physical Sciences and Technology, Sauletekio av. 3, LT-10257, Vilnius, Lithuania
| | - Edvinas Krugly
- Department of Environmental Technology, Kaunas University of Technology, Radvilenu 19, LT-50264, Kaunas, Lithuania
| | - Dainius Martuzevicius
- Department of Environmental Technology, Kaunas University of Technology, Radvilenu 19, LT-50264, Kaunas, Lithuania
| | - Daiva Bironaite
- Department of Regenerative Medicine, Center for Innovative Medicine, Santariskiu 5, LT-08406, Vilnius, Lithuania
| | - Ruta Aldonyte
- Department of Regenerative Medicine, Center for Innovative Medicine, Santariskiu 5, LT-08406, Vilnius, Lithuania.
| |
Collapse
|
39
|
Apoptosis and autophagy induction of Seleno-β-lactoglobulin (Se-β-Lg) on hepatocellular carcinoma cells lines. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.09.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
40
|
Long F, Jiang H, Yi H, Su L, Sun J. Particulate matter 2.5 induced bronchial epithelial cell injury via activation of 5′‐adenosine monophosphate‐activated protein kinase‐mediated autophagy. J Cell Biochem 2018; 120:3294-3305. [PMID: 30203496 DOI: 10.1002/jcb.27597] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 08/07/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Fei Long
- Department of Respiratory Medicine Shandong Provincial Hospital Affiliated to Shandong University Jinan China
| | - Hong Jiang
- Department of Respiratory Medicine Yiyuan County People’s Hospital Yiyuan Shandong Province China
| | - Hongli Yi
- Department of Respiratory Medicine Shandong Provincial Hospital Affiliated to Shandong University Jinan China
| | - Lili Su
- Department of Respiratory Medicine Shandong Provincial Hospital Affiliated to Shandong University Jinan China
| | - Jian Sun
- Department of Respiratory Medicine Shandong Provincial Hospital Affiliated to Shandong University Jinan China
| |
Collapse
|
41
|
Flutamide Induces Hepatic Cell Death and Mitochondrial Dysfunction via Inhibition of Nrf2-Mediated Heme Oxygenase-1. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:8017073. [PMID: 30057686 PMCID: PMC6051009 DOI: 10.1155/2018/8017073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/22/2018] [Accepted: 05/10/2018] [Indexed: 01/08/2023]
Abstract
Flutamide is a widely used nonsteroidal antiandrogen for prostate cancer therapy, but its clinical application is restricted by the concurrent liver injury. Increasing evidence suggests that flutamide-induced liver injury is associated with oxidative stress, though the precise mechanism is poorly understood. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a master transcription factor regulating endogenous antioxidants including heme oxygenase-1 (HO-1). This study was designed to delineate the role of Nrf2/HO-1 in flutamide-induced hepatic cell injury. Our results showed that flutamide concentration dependently induced cytotoxicity, hydrogen peroxide accumulation, and mitochondrial dysfunction as indicated by mitochondrial membrane potential loss and ATP depletion. The protein expression of Nrf2 and HO-1 was induced by flutamide at 12.5 μM but was downregulated by higher concentrations of flutamide. Silencing either Nrf2 or HO-1 was found to aggravate flutamide-induced hydrogen peroxide accumulation and mitochondrial dysfunction as well as inhibition of the Nrf2 pathway. Moreover, preinduction of HO-1 by Copp significantly attenuated flutamide-induced oxidative stress and mitochondrial dysfunction, while inhibition of HO-1 by Snpp aggravated these deleterious effects. These findings suggest that flutamide-induced hepatic cell death and mitochondrial dysfunction is assoicated with inhibition of Nrf2-mediated HO-1. Pharmacologic intervention of Nrf2/HO-1 may provide a promising therapeutic approach in flutamide-induced liver injury.
Collapse
|
42
|
Pu XJ, Li J, Zhou QL, Pan W, Li YQ, Zhang Y, Wang J, Jiao Z. Rosiglitazone inhibits PM2.5-induced cytotoxicity in human lung epithelial A549 cells. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:152. [PMID: 29862241 DOI: 10.21037/atm.2018.04.13] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background Exposure to fine particulate matter <2.5 µm in diameter (PM2.5) leads to global adverse health effects, including increases in morbidity and mortality of respiratory diseases. PM2.5 increases production of reactive oxygen species (ROS) in the lung, which further lead to oxidative stress, cell apoptosis and cell death. According to results of previous studies, oxidative stress and subsequent cell apoptosis can be reduced by peroxisome proliferator-activated receptor gamma (PPARγ) in various cell types, however, its role in oxidative stress-related cell apoptosis caused by PM2.5 in respiratory systems is unclear. Methods Human lung alveolar epithelial A549 cells were exposed to PM2.5 with or without rosiglitazone (an agonist of PPARγ) treatment. Cellular apoptosis and intracellular oxidative stress were determined by flow cytometry based on FITC Annexin V and DCFH-DA fluorescence, respectively. Western blot was conducted to determine the expression of Bax, Bcl2, PPARγ, P-ERK1/2, ERK1/2, P-STAT3, and STAT3. Results PPARγ was downregulated in PM2.5-treated A549 cells, and application of rosiglitazone reduced PM2.5-mediated ROS generation and cell apoptosis. In addition, our results indicated that rosiglitazone treatment suppressed PM2.5-induced ERK1/2 and STAT3 activation. Conclusions Collectively, these data suggested that rosiglitazone protects against PM2.5-induced ROS production and cell apoptosis and represses activation of ERK1/2 and STAT3 signaling in A549 cells. Our results indicated that rosiglitazone is a potential therapeutic agent for PM2.5-induced lung diseases.
Collapse
Affiliation(s)
- Xian-Juan Pu
- Shanghai Applied Radiation Institute, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200072, China
| | - Jin Li
- Shanghai Applied Radiation Institute, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200072, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Qiu-Lian Zhou
- Shanghai Applied Radiation Institute, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200072, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Wen Pan
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Yong-Qin Li
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Yuhui Zhang
- State Key Laboratory of Cardiovascular Disease, Heart Failure Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jinhua Wang
- Shanghai Applied Radiation Institute, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200072, China
| | - Zheng Jiao
- Shanghai Applied Radiation Institute, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200072, China
| |
Collapse
|
43
|
Li S, Zhao H, Wang Y, Shao Y, Wang B, Wang Y, Xing M. Regulation of autophagy factors by oxidative stress and cardiac enzymes imbalance during arsenic or/and copper induced cardiotoxicity in Gallus gallus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 148:125-134. [PMID: 29035754 DOI: 10.1016/j.ecoenv.2017.10.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/05/2017] [Accepted: 10/05/2017] [Indexed: 06/07/2023]
Abstract
Basal autophagy has an indispensable role in the functioning and maintenance of cardiac geometry under physiological conditions. Recently, increasing evidence has demonstrated that arsenic (As)/copper (Cu) play important roles in the autophagy of the heart. The current study was to evaluate whether oxidative damage by As or/and Cu was correlated with autophagy through the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway in the heart of birds. Arsenic trioxide (30mg/kg) or/and cupric sulfate (300mg/kg) were administered in a basal diet to male Hy-line chickens (one-day-old) for 12 weeks. The results showed that heart weight/body weight ratio decreased in the As + Cu group only at 4, 8 and 12 weeks. Moreover, we observed that As or/and Cu decreased high-density lipoprotein cholesterol (HDL-C) concentrations, increased total cholesterol (T-CHO) concentrations and cardiac enzymes activities in the serum. On the other hand, As or/and Cu significantly reduced the activities of total antioxidant (T-AOC), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px)) along with decreased nonenzymic antioxidant (glutathione (GSH)) concentrations and increased malondialdehyde (MDA) concentrations in the heart. Furthermore, As or/and Cu could induce autophagy in the heart of chickens through decreased mRNA levels of TORC1, TORC2, microtubule associated light chains 3-I (LC3-I) and increased PI3K, AKT1, Beclin1, autophagy associated gene 4B (Atg4B), microtubule associated light chains 3-II (LC3-II), autophagy associated gene 5 (Atg5) and Dynein. Meanwhile, ultrastructural examinations showed that As/Cu could result in the appearance of autolygosomes, autophagic vacuoles and double-membrane structures in the heart. In conclusion, As or/and Cu induced cardiac damage and autophagy via elevating cardiac enzymes activities, inducing oxidative stress and activating the PI3K/AKT/mTORC pathway in heart of chickens. Moreover, As and Cu had a possible synergistic relationship in the heart of chickens.
Collapse
Affiliation(s)
- Siwen Li
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, People's Republic of China.
| | - Hongjing Zhao
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Yu Wang
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Yizhi Shao
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Bangyi Wang
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Yulong Wang
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, People's Republic of China.
| | - Mingwei Xing
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, People's Republic of China.
| |
Collapse
|