1
|
Safarzadeh S, Ostovar P, Yasrebi J, Ronaghi A, Eshghi S, Hamidian M. Evaluating phytoremediation potential and nutrients status of Bassia indica (Wight) A. J. Scott (Indian Bassia) in a cadmium-contaminated saline soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:48742-48757. [PMID: 39037621 DOI: 10.1007/s11356-024-34187-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 06/26/2024] [Indexed: 07/23/2024]
Abstract
Bassia indica (Wight) A. J. Scott is a fast-growing halophyte suitable for the remediation of saline lands on a large scale. However, no information is available regarding its phytoremediation potential for cadmium (Cd) alone or in combination with salinity. Besides evaluating phytoremediation, assessing micronutrient hemostasis as a crucial physiological insight into the mechanism involved in the tolerance of B. indica under saline soil contaminated with Cd was subjected. Under salinity stress, a considerable amount of sodium accumulates in the plant. Moreover, the accumulation of sodium increased by Cd stress levels. The increase in the exchangeable form of Cd in the rhizosphere in the presence of NaCl ions further elevated the Cd content in the plant tissues. For instance, compared to non-saline conditions, applying 2.5 and 5 g NaCl kg-1 to soil treated with 60 mg Cd kg-1 increased exchangeable Cd by 28.4 and 49.5% in rhizosphere soil, which led to increased cadmium content by 16.1 and 29.6% in the root (as a main part of Cd accumulation), respectively. Under most stress conditions, potassium homeostasis in the shoot remained undisturbed. It was observed that this plant could transfer an optimal level of potassium from the roots to the shoots at a moderate salinity level. Changes and the distribution of Cu and Zn levels followed a similar pattern in the plant, indicating a common regulation mechanism for these nutrients. Generally, the plant could maintain an appropriate level of Fe, Zn, and Cu ions under most stressed conditions. However, the level of Mn decreased significantly under severe stress levels. Growth parameters, tolerance index, and the values of translocation factor < 1 and shoot bioconcentration factor > 1 under 5 mg Cd kg-1 soil treatment at different salinity levels indicated that B. indica could mitigate the detrimental effect of Cd toxicity and tolerate the NaCl stress via a phytostabilizer mechanism. However, the shoot bioconcentration factor values were very close to one at other Cd levels. Therefore, considering the obtained evidence and the innate ability of B. indica to remediation salinity, this plant is still recommended, even for higher Cd levels (even until 30 mg kg-1), in the presence of salinity.
Collapse
Affiliation(s)
- Sedigheh Safarzadeh
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Pouya Ostovar
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Jafar Yasrebi
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Abdolmajid Ronaghi
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Saeid Eshghi
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Mohammad Hamidian
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| |
Collapse
|
2
|
Zhang W, Wang D, Cao D, Chen J, Wei X. Exploring the potentials of Sesuvium portulacastrum L. for edibility and bioremediation of saline soils. FRONTIERS IN PLANT SCIENCE 2024; 15:1387102. [PMID: 38916037 PMCID: PMC11194377 DOI: 10.3389/fpls.2024.1387102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/21/2024] [Indexed: 06/26/2024]
Abstract
Sesuvium portulacastrum L. is a flowering succulent halophyte in the ice plant family Aizoaceae. There are various ecotypes distributed in sandy coastlines and salty marshlands in tropical and subtropical regions with the common name of sea purslane. These plants are tolerant to salt, drought, and flooding stresses and have been used for the stabilization of sand dunes and the restoration of coastal areas. With the increased salinization of agricultural soils and the widespread pollution of toxic metals in the environment, as well as excessive nutrients in waterbodies, S. portulacastrum has been explored for the desalination of saline soils and the phytoremediation of metals from contaminated soils and nitrogen and phosphorus from eutrophic water. In addition, sea purslane has nutraceutical and pharmaceutical value. Tissue analysis indicates that many ecotypes are rich in carbohydrates, proteins, vitamins, and mineral nutrients. Native Americans in Florida eat it raw, pickled, or cooked. In the Philippines, it is known as atchara after being pickled. S. portulacastrum contains high levels of ecdysteroids, which possess antidiabetic, anticancer, and anti-inflammatory activities in mammals. In this review article, we present the botanical information, the physiological and molecular mechanisms underlying the tolerance of sea purslane to different stresses, its nutritional and pharmaceutical value, and the methods for its propagation and production in saline soils and waterbodies. Its adaptability to a wide range of stressful environments and its role in the production of valuable bioactive compounds suggest that S. portulacastrum can be produced in saline soils as a leafy vegetable and is a valuable genetic resource that can be used for the bioremediation of soil salinity and eutrophic water.
Collapse
Affiliation(s)
- Wenbin Zhang
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
- Fuzhou Institute of Oceanography, Fuzhou, China
| | - Dan Wang
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
- Fuzhou Institute of Oceanography, Fuzhou, China
| | - Dingding Cao
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
- Fuzhou Institute of Oceanography, Fuzhou, China
| | - Jianjun Chen
- Mid-Florida Research and Education Center, Department of Environmental Horticulture, Institute of Food and Agricultural Sciences, University of Florida, Apopka, FL, United States
| | - Xiangying Wei
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
- Fuzhou Institute of Oceanography, Fuzhou, China
| |
Collapse
|
3
|
Modarresi M, Karimi N, Chaichi M, Chahardoli A, Najafi-Kakavand S. Salicylic acid and jasmonic acid-mediated different fate of nickel phytoremediation in two populations of Alyssum inflatum Nyár. Sci Rep 2024; 14:13259. [PMID: 38858574 PMCID: PMC11164946 DOI: 10.1038/s41598-024-64336-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024] Open
Abstract
This study investigates Ni phytoremediation and accumulation potential in the presence of salicylic acid (SA) (0, 50 and 200 μM) and jasmonic acid (JA) (0, 5 and 10 μM) in two populations of Alyssum inflatum under various nickel (Ni) doses (0, 100 and 400 μM). By measuring Ni levels in the shoots and roots, values of bioaccumulation coefficient (BAC), biological concentration factor (BCF) and translocation factor (TF) were calculated to quantify Ni accumulation and translocation between plant organs. Additionally, the amounts of histidine (His), citric acid (CA) and malic acid (MA) were explored. The results showed that plant dry weight (DW) [in shoot (29.8%, 8.74%) and in root (21.6%, 24.4%)] and chlorophyll [a (17.1%, 32.5%), b (10.1%, 30.9%)] declined in M and NM populations respectively, when exposed to Ni (400 μM). Conversely, the levels of MA [in shoot (37.0%, 32.0%) and in root (25.5%, 21.2%)], CA [in shoot (17.0%, 10.0%) and in root (47.9%, 37.2%)] and His [in shoot (by 1.59- and 1.34-fold) and in root (by 1.24- and 1.18-fold)] increased. Also, in the presence 400 μM Ni, the highest accumulation of Ni was observed in shoots of M (1392 μg/g DW) and NM (1382 μg/g DW). However, the application of SA and JA (especially in Ni 400 μM + SA 200 μM + JA 5 and 10 μM treatments) mitigated the harmful impact of Ni on physiological parameters. Also, a decreasing trend was observed in the contents of MA, CA, and His. The reduction of these compounds as important chelators of Ni caused a decrease in root-to-shoot Ni transfer and reducing accumulation in the shoots of both populations. The values of phytoremediation indices in both populations exposed to Ni (400 μM) were above one. In presence of the SA and JA, these indices showed a decreasing trend, although the values remained above one (BAC, BCF and TF > 1). Overall, the results indicated that SA and JA can reduce phytoremediation potential of the two populations through different mechanisms.
Collapse
Grants
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Laboratory of Plant Physiology, Department of Biology, School of Science, Razi University, Kermanshah, Iran
- Seed and Plant Improvement Research Department, Hamedan Agricultural and Natural Resources Research and Education Center, Hamedan, Iran
Collapse
Affiliation(s)
- Masoud Modarresi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Naser Karimi
- Laboratory of Plant Physiology, Department of Biology, School of Science, Razi University, Kermanshah, Iran
| | - Mehrdad Chaichi
- Seed and Plant Improvement Research Department, Hamedan Agricultural and Natural Resources Research and Education Center, Hamedan, Iran
| | - Azam Chahardoli
- Laboratory of Plant Physiology, Department of Biology, School of Science, Razi University, Kermanshah, Iran
| | - Shiva Najafi-Kakavand
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Laboratory of Plant Physiology, Department of Biology, School of Science, Razi University, Kermanshah, Iran.
| |
Collapse
|
4
|
Yang L, Kang Y, Li N, Wang Y, Mou H, Sun H, Ao T, Chen L, Chen W. Unlocking hormesis and toxic effects induced by cadmium in Polygonatum cyrtonema Hua based on morphology, physiology and metabolomics. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133447. [PMID: 38219579 DOI: 10.1016/j.jhazmat.2024.133447] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/16/2024]
Abstract
Traditional Chinese medicine materials (TCMMs) are widely planted and used, while cadmium (Cd) is a widespread pollutant that poses a potential risk to plant growth and human health. However, studies on the influences of Cd on TCMMs have been limited. Our study aims to reveal the antioxidation-related detoxification mechanism of Polygonatum cyrtonema Hua under Cd stress based on physiology and metabolomics. The results showed that Cd0.5 (total Cd: 0.91 mg/kg; effective Cd: 0.45 mg/kg) induced hormesis on the biomass of roots, tubers and aboveground parts with increases of 22.88%, 27.12% and 17.02%, respectively, and significantly increased the flavonoids content by 57.45%. Additionally, the metabolism of caffeine, glutamine, arginine and purine was upregulated to induce hormesis in Cd0.5, which enhanced the synthesis of resistant substances such as spermidine, choline, IAA and saponins. Under Cd2 stress, choline and IAA decreased, and fatty acid metabolites (such as peanut acid and linoleic acid) and 8-hydroxyguanosine increased in response to oxidative damage, resulting in a significant biomass decrease. Our findings further reveal the metabolic process of detoxification by antioxidants and excessive Cd damage in TCMMs, deepen the understanding of detoxification mechanisms related to antioxidation, and enrich the relevant theories of hormesis induced by Cd.
Collapse
Affiliation(s)
- Li Yang
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources, Ministry of Education, Sichuan Normal University, Chengdu 610068, China; College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Yuchen Kang
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu 610207, China; College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Na Li
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Yuhao Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Haiyan Mou
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu 610207, China
| | - Hui Sun
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Tianqi Ao
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Li Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| | - Wenqing Chen
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu 610207, China; College of Architecture and Environment, Sichuan University, Chengdu 610065, China; State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
5
|
Jin W, Cheng L, Liu C, Liu H, Jiao Q, Wang H, Deng Z, Seth CS, Guo H, Shi Y. Cadmium negatively affects the growth and physiological status and the alleviation effects by exogenous selenium in silage maize (Zea mays L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:21646-21658. [PMID: 38396179 DOI: 10.1007/s11356-024-32557-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
Increasing soil cadmium (Cd) contamination is a serious threat to human food health and safety. In order to reduce Cd uptake and Cd toxicity in silage maize, hydroponic tests were conducted to investigate the effect of exogenous Cd on the toxicity of silage maize in this study. In the study, a combination of Cd (5, 20, 50, 80, and 10 μM) treatments was applied in a hydroponic system. With increasing Cd concentration, Cd significantly inhibited the total root length (RL), root surface area (SA), root volume (RV), root tip number (RT), and branching number (RF) of maize seedlings, which were reduced by 28.1 to 71.3%, 20.2 to 64.9%, 11.2 to 56.5%, 43.7 to 63.4%, and 38.2 to 72.6%, respectively. The excessive Cd accumulation inhibited biomass accumulation and reduced silage maize growth, photosynthesis, and chlorophyll content and activated the antioxidant systems, including increasing lipid peroxidation and stimulating catalase (CAT) and peroxidase (POD), but reduced the activity of superoxide dismutase (SOD) and ascorbate peroxidase (APX) in the root. Besides, selenium (Se) significantly decreased the Cd concentration of the shoot and root by 27.1% and 35.1% under Cd50, respectively. Our results reveal that exogenously applied Cd reduced silage maize growth and impaired photosynthesis. Whereas silage maize can tolerate Cd by increasing the concentration of ascorbate and glutathione and activating the antioxidant defense system, the application of exogenous selenium significantly reduced the content of Cd in silage maize.
Collapse
Affiliation(s)
- Weihuan Jin
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450046, China
| | - Lan Cheng
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450046, China
| | - Chunyan Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450046, China
| | - Haitao Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Qiujuan Jiao
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, China
| | - Haoyang Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450046, China
| | - Zhaolong Deng
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450046, China
| | | | - Hongxiang Guo
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yong Shi
- College of Agronomy, Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, 450046, China
| |
Collapse
|
6
|
Yang L, Kang Y, Li N, Wang Y, Sun H, Ao T, Chen L, Chen W. Safe utilization evaluation of two typical traditional Chinese medicinal materials in Cd-contaminated soil based on the analysis of Cd transfer and AHP model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169741. [PMID: 38160833 DOI: 10.1016/j.scitotenv.2023.169741] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/24/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Due to the increasing scarcity of wild resources, most traditional Chinese medicinal materials (TCMMs) in the market are produced via artificial cultivation. The widespread pollution of cadmium (Cd) in soil limits the safe cultivation and use of TCMMs. This study investigated Cd accumulation, distribution, and the medicinal component content under simulated field conditions to clarify the differences in the Cd absorption, transfer and detoxification mechanisms of Polygonatum cyrtonema Hua and Bletilla striata, and provide the preliminary safe utilization conditions of TCMMs based on the analytic hierarchy process (AHP). The results showed that the Cd content of P. cyrtonema Hua was lower than the safety threshold under a high soil Cd concentration of 0.91 mg/kg (Cd-L), while B. striata was safe only at a low Cd concentration of 0.25 mg/kg (CK). Cd at 0.91 mg/kg induced hormesis affecting the net increase in biomass and medicinal component content for both TCMMs, while P. cyrtonema Hua showed better potential for safe utilization. Additionally, P. cyrtonema Hua had stronger resistance to Cd stress, exhibiting superior characteristics for synergistic absorption of Cd with mineral elements, transfer to nonmedical part and safer fixation forms in subcellular components. In contrast, B. striata showed insufficient Cd tolerance, and Cd was easily accumulated in organelles to inhibit plant growth. Our findings may attract more attention to the safe cultivation of TCMMs and provide insight into guidance for the safe utilization of slightly Cd-contaminated soil.
Collapse
Affiliation(s)
- Li Yang
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources, Ministry of Education, Sichuan Normal University, Chengdu 610068, China; College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Yuchen Kang
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu 610207, China
| | - Na Li
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Yuhao Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Hui Sun
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Tianqi Ao
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China; College of Water Resource and Hydropower, Sichuan University, Chengdu 610065, China
| | - Li Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| | - Wenqing Chen
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu 610207, China; College of Architecture and Environment, Sichuan University, Chengdu 610065, China; College of Water Resource and Hydropower, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
7
|
Ricardo F, Veríssimo AC, Maciel E, Domingues MR, Calado R. Fatty Acid Profiling as a Tool for Fostering the Traceability of the Halophyte Plant Salicornia ramosissima and Contributing to Its Nutritional Valorization. PLANTS (BASEL, SWITZERLAND) 2024; 13:545. [PMID: 38498533 PMCID: PMC10891689 DOI: 10.3390/plants13040545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/09/2024] [Accepted: 02/10/2024] [Indexed: 03/20/2024]
Abstract
Salicornia ramosissima, commonly known as glasswort or sea asparagus, is a halophyte plant cultivated for human consumption that is often referred to as a sea vegetable rich in health-promoting n-3 fatty acids (FAs). Yet, the effect of abiotic conditions, such as salinity and temperature, on the FA profile of S. ramosissima remains largely unknown. These factors can potentially shape its nutritional composition and yield unique fatty acid signatures that can reveal its geographical origin. In this context, samples of S. ramosissima were collected from four different locations along the coastline of mainland Portugal and their FAs were profiled through gas chromatography-mass spectrometry. The lipid extracts displayed a high content of essential FAs, such as 18:2n-6 and 18:3n-3. In addition to an epoxide fatty acid exclusively identified in samples from the Mondego estuary, the relative abundance of FAs varied between origin sites, revealing that FA profiles can be used as site-specific lipid fingerprints. This study highlights the role of abiotic conditions on the nutritional profile of S. ramosissima and establishes FA profiling as a potential avenue to trace the geographic origin of this halophyte plant. Overall, the present approach can make origin certification possible, safeguard quality, and enhance consumers' trust in novel foods.
Collapse
Affiliation(s)
- Fernando Ricardo
- Laboratório para a Inovação e Sustentabilidade dos Recursos Biológicos Marinhos (ECOMARE), Centro de Estudos do Ambiente e do Mar (CESAM), Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ana Carolina Veríssimo
- Centro de Estudos do Ambiente e do Mar (CESAM), Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (A.C.V.); (E.M.)
- Laboratório Associado para a Química Verde (LAQV-REQUIMTE), Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Elisabete Maciel
- Centro de Estudos do Ambiente e do Mar (CESAM), Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (A.C.V.); (E.M.)
| | - Maria Rosário Domingues
- Centro de Estudos do Ambiente e do Mar (CESAM), Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (A.C.V.); (E.M.)
- Centro de Espetrometria de Massa, Laboratório Associado para a Química Verde (LAQV-REQUIMTE), Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ricardo Calado
- Laboratório para a Inovação e Sustentabilidade dos Recursos Biológicos Marinhos (ECOMARE), Centro de Estudos do Ambiente e do Mar (CESAM), Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
8
|
Yu L, Chen S, Wang J, Qin L, Sun X, Zhang X, Wang M. Environmental risk thresholds and prediction models of Cd in Chinese agricultural soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167773. [PMID: 37839484 DOI: 10.1016/j.scitotenv.2023.167773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
Soil environmental risk threshold of cadmium (Cd) is an important index in formulating soil protection policy. Environmental risk threshold refers to the maximal allowable critical concentration of hazardous substances in the environment. Although there is less study on how to determine soil Cd environmental risk threshold, it is a crucial indicator in formulating soil conservation policies and a key factor in assessing soil environmental quality. The main research content of the study is deducing the environmental risk threshold, aiming to provide scientific basis for the study of environmental quality standards of agricultural land and provide technical support for the protection of Cd pollution of agricultural land. The hazard concentration of 5 % species (HC5, which protects 95 % of species) was determined here using different toxicological data of Cd from 23 test endpoints, interspecific extrapolation using the species sensitivity distribution (SSD) method, and a prediction model was created on the basis of several soil parameters. According to the findings, Cd effective concentration (EC10) (Cd concentration which blocks 10 % of an endpoint's bioactivity) varied from 0.109 to 221 mg·kg-1, and the hormetic response induced by Cd reached 118 % displaying in the dose-response curve of Lolium perenne L.. Toxicology data was rectified by the aging factor considering biogeochemical processes of the newly added pollutants prior to SSD curves fitting. After that, the prediction model was created with the equation of LogHC5 = 0.147 pH + 0.067 OC -1.616. The field test properly validated the prediction model, demonstrating its ability to forecast Cd toxicity levels for various soil conditions. This study offers a scientifically sound methodology for determining the environmental risk limitation for Cd and identifies critical paths for the preservation of environmental species.
Collapse
Affiliation(s)
- Lei Yu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shibao Chen
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Jing Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Luyao Qin
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoyi Sun
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xing Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Meng Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
9
|
Jia Y, Yin X, Zhao J, Pan Y, Jiang B, Liu Q, Li Y, Li Z. Effects of 24-Epibrassinolide, melatonin and their combined effect on cadmium tolerance in Primula forbesii Franch. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115217. [PMID: 37406607 DOI: 10.1016/j.ecoenv.2023.115217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/13/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2023]
Abstract
This study aimed to investigate the interaction between 24-Epibrassinolide (EBR) and melatonin (MT) and their effects on cadmium (Cd)-stressed Primula forbesii Franch. P. forbesii seedlings were hydroponically acclimatized at 6-7 weeks, then treated with Cd (200 μmol L-1), 24-EBR (0.1 μmol L-1), and MT (100 μmol L-1) after two weeks. Cd stress significantly reduced crown width, shoot, root length, shoot fresh weight, and fresh and dry root weights. Herein, 24-EBR, MT, and 24-EBR+MT treatments attenuated the growth inhibition caused by Cd stress and improved the morphology, growth indexes, and ornamental characteristics of P. forbesii under Cd stress. 24-EBR had the best effect by effectively alleviating Cd stress and promoting plant growth and development. 24-EBR significantly increased all growth parameters compared to Cd treatment. In addition, 24-EBR significantly improved the gas exchange parameters, activities of antioxidant enzymes, and the cycle efficiency of AsA-GSH. Furthermore, 24-EBR increased the activities of ascorbate peroxidase (APX), glutathione reductase (GR), dehydroascorbate reductase (DHAR), and monodehydroascorbate reductase (MDHAR) by 127.29%, 61.31%, 61.22%, and 51.04%, respectively, compared with the Cd treatment. Therefore, 24-EBR removed the reactive oxygen species produced by stress, thus protecting plants against stress damage. These results indicate that 24-EBR can effectively enhance the tolerance of P. forbesii to Cd stress.
Collapse
Affiliation(s)
- Yin Jia
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xiancai Yin
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Jian Zhao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuanzhi Pan
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Beibei Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Qinglin Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yifeng Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhuolin Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
10
|
Jia Y, Yin X, Zhao J, Pan Y, Jiang B, Liu Q, Li Y. Differential physiological responses and tolerance to potentially toxic elements in Primula forbesii Franch. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:67200-67216. [PMID: 37106307 DOI: 10.1007/s11356-023-27259-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 04/23/2023] [Indexed: 05/25/2023]
Abstract
Environmental pollution caused by potentially toxic elements (PTEs) has become a global problem that endangers environmental sustainability due to industrial, agricultural, and urban pollution. Primula forbesii Franch. (a synonym of Primula filipes G. Watt.) is a biennial flower native to China with excellent stress resistance and ornamental value. In this study, we examined the phenotypic traits, growth indexes, and physiological properties of P. forbesii in response to five representative PTEs (Cd, Ni, Cr(III), Cu, and Zn) under hydroponic culture conditions. High concentrations of Zn and Cr had little effect on the growth and physiological properties of P. forbesii, indicating that the species has strong tolerance to Zn and Cr stress. Alternatively, high concentrations of Cd, Ni, and Cu seriously affected plant growth and development, resulting in leaf chlorosis and even death, and therefore may have a serious negative impact on the growth of P. forbesii. However, activity levels of some antioxidant enzymes and osmotic regulatory substances remained high, indicating that P. forbesii resisted PTE stress by regulating physiological and biochemical metabolism to a certain extent. Furthermore, principal component analysis and membership function were used to comprehensively evaluate P. forbesii resistance to PTEs. These analyses revealed that P. forbesii exhibits distinct sensitivities and physiological responses to different PTEs and suggested that the resistance to five PTEs in decreasing order is Zn > Cr > Cd > Cu > Ni. These results provide a theoretical basis for the future application of P. forbesii in environments with PTE pollution and may expand its practical utilization.
Collapse
Affiliation(s)
- Yin Jia
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xiancai Yin
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jian Zhao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuanzhi Pan
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Beibei Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qinglin Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yifeng Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
11
|
Li Y, Shi S, Zhang Y, Zhang A, Wang Z, Yang Y. Copper stress-induced phytotoxicity associated with photosynthetic characteristics and lignin metabolism in wheat seedlings. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114739. [PMID: 36893694 DOI: 10.1016/j.ecoenv.2023.114739] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Copper (Cu) pollution is one of environmental problems that adversely affects the growth and development of plants. However, knowledge of lignin metabolism associated with Cu-induced phytotoxicity mechanism is insufficient. The objective of this study was to reveal the mechanisms underlying Cu-induced phytotoxicity by evaluating changes in the photosynthetic characteristics and lignin metabolism in the seedlings of wheat cultivar 'Longchun 30'. Treatment with varying concentrations of Cu clearly retarded seedling growth, as demonstrated by a reduction in the growth parameters. Cu exposure reduced the photosynthetic pigment content, gas exchange parameters, and chlorophyll fluorescence parameters, including the maximum photosynthetic efficiency, potential efficiency of photosystem II (PS II), photochemical efficiency of PS II in light, photochemical quenching, actual photochemical efficiency, quantum yield of PS II electron transport, and electron transport rate, but notably increased the nonphotochemical quenching and quantum yield of regulatory energy dissipation. Additionally, a significant increase was observed in the amount of cell wall lignin in wheat leaves and roots under Cu exposure. This increase was positively associated with the up-regulation of enzymes related to lignin synthesis, such as phenylalanine ammonia-lyase, 4-coumarate:CoA ligase, cinnamyl alcohol dehydrogenase, laccase, cell wall bound (CW-bound) guaiacol peroxidase, and CW-bound conifer alcohol peroxidase, and TaPAL, Ta4CL, TaCAD, and TaLAC expression. Correlation analysis revealed that lignin levels in the cell wall were negatively correlated with the growth of wheat leaves and roots. Taken together, Cu exposure inhibited photosynthesis in wheat seedlings, resulting from a reduction in photosynthetic pigment content, light energy conversion, and photosynthetic electron transport in the leaves of Cu-stressed seedlings, and the Cu-inhibitory effect on seedling growth was related to the inhibition of photosynthesis and an increase in cell wall lignification.
Collapse
Affiliation(s)
- Yaping Li
- College of Life Science, Northwest Normal University, Lanzhou 730070, PR China
| | - Shuqian Shi
- College of Life Science, Northwest Normal University, Lanzhou 730070, PR China
| | - Ya Zhang
- College of Life Science, Northwest Normal University, Lanzhou 730070, PR China
| | - Aimei Zhang
- College of Life Science, Northwest Normal University, Lanzhou 730070, PR China
| | - Zhaofeng Wang
- College of Bioengineering and Technology, Tianshui Normal University, Tianshui 741000, PR China
| | - Yingli Yang
- College of Life Science, Northwest Normal University, Lanzhou 730070, PR China.
| |
Collapse
|
12
|
Liang F, Hu J, Liu B, Li L, Yang X, Bai C, Tan X. New Evidence of Semi-Mangrove Plant Barringtonia racemosa in Soil Clean-Up: Tolerance and Absorption of Lead and Cadmium. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12947. [PMID: 36232247 PMCID: PMC9566725 DOI: 10.3390/ijerph191912947] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Mangrove plants play an important role in the remediation of heavy-metal-contaminated estuarine and coastal areas; Barringtonia racemosa is a typical semi-mangrove plant. However, the effect of heavy metal stress on this plant has not been explored. In this study, tolerance characteristics and the accumulation profile of cadmium (Cd) and lead (Pb) in B. racemosa were evaluated. The results indicated that B. racemosa exhibited a high tolerance in single Cd/Pb and Cd + Pb stress, with a significant increase in biomass yield in all treatment groups, a significant increase in plant height, leaf area, chlorophyll and carotenoid content in most treatment groups and without significant reduction of SOD, POD, MDA, proline content, Chl a, Chl b, Chl a + b, Car, ratio of Chl a:b and ratio of Car:Chl (a + b). Cd and Pb mainly accumulated in the root (≥93.43%) and the content of Cd and Pb in B. racemosa was root > stem > leaf. Pb showed antagonistic effects on the Cd accumulation in the roots and Cd showed antagonistic or synergistic effects on the Pb accumulation in the roots, which depended on the concentration of Cd and Pb. There was a significant synergistic effect of Cd and Pb enrichment under a low Cd and Pb concentration treatment. Thus, phytoremediation could potentially use B. racemosa for Cd and Pb.
Collapse
Affiliation(s)
- Fang Liang
- College of Biology and Pharmacy, Yulin Normal University, Yulin 537000, China
- Key Laboratory for Conservation and Utilization of Subtropical Bio-Resources, Education Department of Guangxi Zhuang Autonomous Region, Yulin Normal University, Yulin 537000, China
| | - Ju Hu
- College of Biology and Pharmacy, Yulin Normal University, Yulin 537000, China
- Key Laboratory for Conservation and Utilization of Subtropical Bio-Resources, Education Department of Guangxi Zhuang Autonomous Region, Yulin Normal University, Yulin 537000, China
| | - Bing Liu
- Forestry of College, Guangxi University, Nanning 530001, China
| | - Lin Li
- College of Biology and Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Xiuling Yang
- College of Biology and Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Caihong Bai
- College of Biology and Pharmacy, Yulin Normal University, Yulin 537000, China
- Key Laboratory for Conservation and Utilization of Subtropical Bio-Resources, Education Department of Guangxi Zhuang Autonomous Region, Yulin Normal University, Yulin 537000, China
| | - Xiaohui Tan
- Guangxi Subtropical Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530001, China
| |
Collapse
|
13
|
Chen L, Yang W, Yang Y, Tu P, Hu S, Zeng Q. Three-season rotation of chicory-tobacco-peanut with high biomass and bioconcentration factors effectively remediates cadmium-contaminated farmland. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:64822-64831. [PMID: 35478394 DOI: 10.1007/s11356-022-20400-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Traditional phytoremediation is one approach to remediate heavy metal pollution. In developing countries, the key factor in promoting practical application of phytoremediation in polluted soils is selecting suitable plants that are tolerant to heavy metals and also produce products with economic value. Therefore, a field experiment was conducted with a three-season chicory-tobacco-peanut rotation to determine effects on remediation of cadmium (Cd)-contaminated farmland in China. All crops had strong Cd accumulation capacity, with bioconcentration factors of 6.61 to 11.97 in chicory, 3.85 to 21.61 in tobacco, and 1.36 to 7.0 in peanut. Yield of total dry biomass reached 32.4 t ha-1, and the Cd phytoextraction efficiency was 10.3% per year. Aboveground tissues of the three crops accounted for 83.9 to 91.2% of total biomass in the rotation experiment. Cd content in peanut grain and oil met the National Food Safety Standard of China (0.5 mg kg-1, GB 2762-2017) and the Food Contaminant Limit of the European Union (0.1 mg kg-1, 18,812,006). Therefore, in addition to phytoremediation of Cd-contaminated soils, the chicory-tobacco-peanut rotation system can also produce economic benefits for local farmers.
Collapse
Affiliation(s)
- Linhan Chen
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Wenjun Yang
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Yang Yang
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Pengfei Tu
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Shengnan Hu
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Qingru Zeng
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| |
Collapse
|
14
|
Gibilisco PE, Negrin VL, Idaszkin YL. Assessing the use of two halophytes species and seaweed composting in Cu-pollution remediation strategies. MARINE POLLUTION BULLETIN 2022; 176:113413. [PMID: 35168070 DOI: 10.1016/j.marpolbul.2022.113413] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/07/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
In order to evaluate suitable remediation strategies for Cu-polluted soils, the growth, tolerance, and Cu accumulation of Sarcocornia perennis and Limonium brasiliense were studied in hydroponic culture using different Cu concentrations, with and without Undaria pinnatifida compost. Most measured variables (e.g., water content, aboveground dry weight, malondialdehyde, pigments concentrations, tolerance index) showed a negative effect of high Cu levels in plants without compost but not in plants with compost. Plants accumulated high Cu levels in belowground tissues (bioaccumulation factor > 1) showing low translocation to aboveground parts. Based on the results, we suggest two remediation strategies: a short-term strategy: root absorption of Cu by halophytes, and a long-term strategy: using halophytes and U. pinnatifida compost, involving absorption of Cu by the plants together with metal immobilization in the substrate. This last strategy offers an additional advantage: it provides a use for seaweed waste, considered a problem for several coastal cities.
Collapse
Affiliation(s)
- Pablo E Gibilisco
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales (IPEEC-CONICET), Boulevard Brown, 2915, U9120ACD Puerto Madryn, Chubut, Argentina; Universidad Nacional de la Patagonia San Juan Bosco, Boulevard Brown, 3051, U9120ACD Puerto Madryn, Chubut, Argentina
| | - Vanesa L Negrin
- Instituto Argentino de Oceanografía (IADO-CONICET-UNS), Camino La Carrindanga km 7.5, Edificio E-1 CC 804, (8000), Bahía Blanca, Buenos Aires, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, (8000), Bahía Blanca, Buenos Aires, Argentina
| | - Yanina L Idaszkin
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales (IPEEC-CONICET), Boulevard Brown, 2915, U9120ACD Puerto Madryn, Chubut, Argentina; Universidad Nacional de la Patagonia San Juan Bosco, Boulevard Brown, 3051, U9120ACD Puerto Madryn, Chubut, Argentina.
| |
Collapse
|
15
|
Zhang C, Wang D, He W, Liu H, Chen J, Wei X, Mu J. Sesuvium portulacastrum-Mediated Removal of Nitrogen and Phosphorus Affected by Sulfadiazine in Aquaculture Wastewater. Antibiotics (Basel) 2022; 11:antibiotics11010068. [PMID: 35052945 PMCID: PMC8773351 DOI: 10.3390/antibiotics11010068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 02/04/2023] Open
Abstract
Plant-based removal of nitrogen (N) and phosphorus (P) from water bodies is an important method for remediation of aquaculture wastewater. In order to acquire knowledge as to how antibiotic residues in wastewater might affect the microbial community and plant uptake of N and P, this study investigated N and P removal by a coastal plant Sesuvium portulacastrum L. grown in aquaculture wastewater treated with 0, 1, 5, or 50 mg/L sulfonamide antibiotics (sulfadiazine, SD) for 28 days and compared the microbial community structure between the water and rhizosphere. Results showed that SD significantly decreased N removal rates from 87.5% to 22.1% and total P removal rates from 99.6% to 85.5%. Plant fresh weights, root numbers, and moisture contents as well as activities of some enzymes in leaves were also reduced. SD changed the microbial community structure in water, but the microbial community structure in the rhizosphere was less affected by SD. The microbial diversity in water was higher than that in the rhizosphere, indicating microbial community differences. Our results showed that the commonly used antibiotic, SD, in aquaculture can inhibit plant growth, change the structure of microbial community, and reduce the capacity of S. portulacastrum plants to remove N and P from wastewater, and also raised alarm about detrimental effects of antibiotic residues in phytoremediation of wastewater.
Collapse
Affiliation(s)
- Chaoyue Zhang
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China; (C.Z.); (D.W.); (W.H.)
- College Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Dan Wang
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China; (C.Z.); (D.W.); (W.H.)
| | - Weihong He
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China; (C.Z.); (D.W.); (W.H.)
| | - Hong Liu
- College Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Jianjun Chen
- Environmental Horticulture Department, Mid-Florida Research and Education Center, Institute of Food and Agricultural Science, University of Florida, 2725 Binion Road, Apopka, FL 32703, USA;
| | - Xiangying Wei
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China; (C.Z.); (D.W.); (W.H.)
- Correspondence: (X.W.); (J.M.)
| | - Jingli Mu
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China; (C.Z.); (D.W.); (W.H.)
- Correspondence: (X.W.); (J.M.)
| |
Collapse
|
16
|
Alsherif EA, Al-Shaikh TM, Almaghrabi O, AbdElgawad H. High Redox Status as the Basis for Heavy Metal Tolerance of Sesuvium portulacastrum L. Inhabiting Contaminated Soil in Jeddah, Saudi Arabia. Antioxidants (Basel) 2021; 11:antiox11010019. [PMID: 35052523 PMCID: PMC8773048 DOI: 10.3390/antiox11010019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 12/19/2022] Open
Abstract
Because sewage sludge is contaminated with heavy metals, its disposal in the soil may pose risks to the ecosystem. Thus, heavy metal remediation is necessary to reduce the associated risks. The goal of this research is to introduce a heavy metal resistant species and to assess its phytoremediation, oxidative damage markers and stress tolerance mechanisms. To this end, field research was done to compare the vegetation of polluted sites to that of a healthy site. We found 42 plant species identified in the study, Sesuvium portulacastrum L. was chosen because of its high relative density (10.3) and maximum frequency (100 percent) in the most contaminated areas. In particular, S. portulacastrum plants were characterized by strong Cu, Ni, and As uptake. At the organ level, to control growth reduction and oxidase damage, particularly in roots, increased detoxification (e.g., metallothionein, phytochelatins) and antioxidants mechanisms (e.g., tocopherols, glutathione, peroxidases). On the other hand, flavonoids content and the activity of glutathione-S transferase, glutathione reductase and dehydroascorbate reductase were increased manly in the shoots. These biochemical markers can be applied to select tolerance plant species grown under complex heavy metal contamination. Our findings also introduced S. portulacastrum to reduce soil contamination0associated risks, making the land resource available for agricultural production.
Collapse
Affiliation(s)
- Emad A. Alsherif
- Biology Department, College of Science and Arts at Khulis, University of Jeddah, Jeddah 21959, Saudi Arabia;
- Correspondence:
| | - Turki M. Al-Shaikh
- Biology Department, College of Science and Arts at Khulis, University of Jeddah, Jeddah 21959, Saudi Arabia;
| | - Omar Almaghrabi
- Department of Biology, College of Science, University of Jeddah, Jeddah 21959, Saudi Arabia;
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2020 Antwerp, Belgium;
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni Suef 62511, Egypt
| |
Collapse
|
17
|
Mengdi X, Wenqing C, Haibo D, Xiaoqing W, Li Y, Yuchen K, Hui S, Lei W. Cadmium-induced hormesis effect in medicinal herbs improves the efficiency of safe utilization for low cadmium-contaminated farmland soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112724. [PMID: 34509162 DOI: 10.1016/j.ecoenv.2021.112724] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
Compared to other soil remediation technologies, Cd-contaminated farmland soil with low cadmium accumulation (LCA) plant-based safe utilization is more catered to developing countries with food in high demand. Hormesis, which describes the fortification of plant growth performance by a low level of environmental stress, can be innovatively used to achieve increases in crop yield and plant functional components, thus amplifying the safe utilization efficiency of low Cd-contaminated soil by LCA plants. In the present study, the growth and physiological responses of Polygonatum sibiricum, a traditional Chinese medicinal herb, were investigated under laboratory conditions of gradient Cd dosage concentrations and times. As a result, the growth performance of P. sibiricum reached the peak of an inverse U-shaped curve of hormesis under e0 mg kg-1 and 9 months of Cd stress, with elevations in tuber biomass (medicinal part), plant height and polysaccharide content (medicinal components) of 143%, 25% and 90%, respectively. Meanwhile, trace Cd accumulation (0.41 mg kg-1) in the tuber guaranteed medicinal edible safety. In addition, Cd-induced hormesis in P. sibiricum was verified to be overcompensated by antioxidation systems. In conclusion, such 'win-win' results, including low Cd accumulation and enhancement of plant pharmaceutical value, provided medicinal herbs with a possibility for safe soil utilization.
Collapse
Affiliation(s)
- Xie Mengdi
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Chen Wenqing
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China; State Key Lab. of Hydraulics and Mountain River Eng., Sichuan University, Chengdu 610065, China
| | - Dai Haibo
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China
| | - Wang Xiaoqing
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China
| | - Yang Li
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China
| | - Kang Yuchen
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China
| | - Sun Hui
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China
| | - Wang Lei
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
18
|
Accumulation and Effect of Heavy Metals on the Germination and Growth of Salsola vermiculata L. Seedlings. DIVERSITY 2021. [DOI: 10.3390/d13110539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The influence of different concentrations of heavy metals (Cu, Mn, Ni, Zn) was analyzed in the Salsola vermiculata germination pattern, seedling development, and accumulation in seedlings. The responses to different metals were dissimilar. Germination was only significantly reduced at Cu and Zn 4000 μM but Zn induced radicle growth at lower concentrations. Without damage, the species acted as a good accumulator and tolerant for Mn, Ni, and Cu. In seedlings, accumulation increased following two patterns: Mn and Ni, induced an arithmetic increase in content in tissue, to the point where the content reached a maximum; with Cu and Ni, the pattern was linear, in which the accumulation in tissue was directly related to the metal concentration in the medium. Compared to other Chenopodiaceae halophyte species, S. vermiculata seems to be more tolerant of metals and is proposed for the phytoremediation of soils contaminated by heavy metals.
Collapse
|
19
|
Wan H, Yang F, Zhuang X, Cao Y, He J, Li H, Qin S, Lyu D. Malus rootstocks affect copper accumulation and tolerance in trees by regulating copper mobility, physiological responses, and gene expression patterns. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117610. [PMID: 34174667 DOI: 10.1016/j.envpol.2021.117610] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/05/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
We investigated the roles of rootstocks in Cu accumulation and tolerance in Malus plants by grafting 'Hanfu' (HF) scions onto M. baccata (Mb) and M. prunifolia (Mp) rootstocks, which have different Cu tolerances. The grafts were exposed to basal or excess Cu for 20 d. Excess Cu-treated HF/Mb had less biomass, and pronounced root architecture deformation and leaf ultrastructure damage than excess Cu-challenged HF/Mp. Root Cu concentrations and bio-concentration factor (BCF) were higher in HF/Mp than HF/Mb, whereas HF/Mb had higher stem and leaf Cu concentrations than HF/Mp. Excess Cu lowered root and aerial tissue BCF and translocation factor (Tf) in all plants; however, Tf was markedly higher in HF/Mb than in HF/Mp. The subcellular distribution of Cu in the roots and leaves indicated that excess Cu treatments increased Cu fixation in the root cell walls, which decreased Cu mobility. Compared to HF/Mb, HF/Mp sequestered more Cu in its root cell walls and less Cu in leaf plastids, nuclei, and mitochondria. Moreover, HF/Mp roots and leaves had higher concentrations of water-insoluble Cu compounds than HF/Mb, which reduced Cu mobility and toxicity. Fourier transform infrared spectroscopy analysis showed that the carboxyl, hydroxyl and acylamino groups of the cellulose, hemicellulose, pectin and proteins were the main Cu binding sites in the root cell walls. Excess Cu-induced superoxide anion and malondialdehyde were 28.6% and 5.1% lower, but soluble phenolics, ascorbate and glutathione were 10.5%, 41.9% and 17.7% higher in HF/Mp than HF/Mb leaves. Compared with HF/Mb, certain genes involved in Cu transport were downregulated, while other genes involved in detoxification were upregulated in HF/Mp roots and leaves. Our results show that Mp inhibited Cu translocation and mitigated Cu toxicity in Malus scions by regulating Cu mobility, antioxidant defense mechanisms, and transcription of key genes involved in Cu translocation and detoxification.
Collapse
Affiliation(s)
- Huixue Wan
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China; Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang, Liaoning, 110866, People's Republic of China
| | - Fengying Yang
- Dalian Institute of Agricultural Sciences, Dalian, Liaoning, 116036, People's Republic of China
| | - Xiaolei Zhuang
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China; Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang, Liaoning, 110866, People's Republic of China
| | - Yanhong Cao
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China; Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang, Liaoning, 110866, People's Republic of China
| | - Jiali He
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China; Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang, Liaoning, 110866, People's Republic of China.
| | - Huifeng Li
- Institute of Pomology, Shandong Academy of Agricultural Sciences, Tai'an, Shandong, 271000, People's Republic of China
| | - Sijun Qin
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China; Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang, Liaoning, 110866, People's Republic of China
| | - Deguo Lyu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China; Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang, Liaoning, 110866, People's Republic of China
| |
Collapse
|
20
|
Leonardi C, Toscano V, Genovese C, Mosselmans JFW, Ngwenya BT, Raccuia SA. Evaluation of cadmium and arsenic effects on wild and cultivated cardoon genotypes selected for metal phytoremediation and bioenergy purposes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:55102-55115. [PMID: 34128170 PMCID: PMC8494702 DOI: 10.1007/s11356-021-14705-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
Cynara cardunculus L. is a multipurpose crop, characterized by high production of biomass suitable for energy purposes and green chemistry. Taking advantage of its already demonstrated ability to grow in polluted environments that characterize many world marginal lands, the aim of this work was to investigate the response of different cardoon genotypes to exposure to cadmium (Cd) and arsenic (As) pollution, in order to use this crop for rehabilitation of contaminated sites and its biomass for energy production. In this study, seeds of two wild cardoon accessions harvested in rural and industrial Sicilian areas and of a selected line of domestic cardoon were used, and the grown plants were spiked with As and Cd, alone or in combination, at two different concentrations (500 and 2000 μM) and monitored for 45 days. The growth parameters showed that all the plants survived until the end of experiment, with growth stimulation in the presence of low concentrations of As and Cd, relative to metal-free controls. Biomass production was mostly allocated in the roots in As treatment and in the shoots in Cd treatment. Cd EXAFS analysis showed that tolerance to high concentrations of both metals was likely linked to complexation of Cd with oxygen-containing ligands, possibly organic acids, in both root and leaf biomass with differences in behaviour among genotypes. Under As+Cd contamination, the ability of the plants to translocate As to aboveground system increased also showing that, for both metal(loid)s, there were significant differences between genotypes studied. Moreover, the results showed that Cynara cardunculus var. sylvestris collected in an industrial area is the genotype that, among those studied, had the best phytoextraction capability for each metal(loid).
Collapse
Affiliation(s)
- Chiara Leonardi
- Department of Biological, Geological and Environmental Sciences, University of Catania, via Androne, 81, 95124, Catania, Italy.
- National Research Council, Institute for Agricultural and Forest Systems in the Mediterranean, Via Empedocle, 58, 95128, Catania, Italy.
| | - Valeria Toscano
- National Research Council, Institute for Agricultural and Forest Systems in the Mediterranean, Via Empedocle, 58, 95128, Catania, Italy
| | - Claudia Genovese
- National Research Council, Institute for Agricultural and Forest Systems in the Mediterranean, Via Empedocle, 58, 95128, Catania, Italy
| | | | | | - Salvatore Antonino Raccuia
- National Research Council, Institute for Agricultural and Forest Systems in the Mediterranean, Via Empedocle, 58, 95128, Catania, Italy
| |
Collapse
|
21
|
Uddin MM, Chen Z, Huang L. Cadmium accumulation, subcellular distribution and chemical fractionation in hydroponically grown Sesuvium portulacastrum [Aizoaceae]. PLoS One 2020; 15:e0244085. [PMID: 33370774 PMCID: PMC7769616 DOI: 10.1371/journal.pone.0244085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 12/02/2020] [Indexed: 11/18/2022] Open
Abstract
Sesuvium portulacastrum is a well-known halophyte with considerable Cd accumulation and tolerance under high Cd stress. This species is also considered as a good candidate of Cd phytoremediation in the polluted soils. However, the mechanism of Cd accumulation, distribution and fractionation in different body parts still remain unknown. Seedlings of Sesuvium portulacastrum were studied hydroponically under exposure to a range of Cd concentrations (50 μM or μmol/L to 600 μM or μmol/L) for 28 days to investigate the potential accumulation capability and tolerance mechanisms of this species. Cd accumulation in roots showed that the bio-concentration factor was > 10, suggesting a strong ability to absorb and accumulate Cd. Cd fractionation in the aboveground parts showed the following order of distribution: soluble fraction > cell wall > organelle > cell membrane. In roots, soluble fraction was mostly predominant than other fractions. Cd speciation in leaves and stems was mainly contained of sodium chloride and deionised water extracted forms, suggesting a strong binding ability with pectin and protein as well as with organic acids. In the roots, inorganic form of Cd was dominant than other forms of Cd. It could be suggested that sodium chloride, deionised water and inorganic contained form of Cd are mainly responsible for the adaption of this plant in the Cd stress environment and alleviating Cd toxicity.
Collapse
Affiliation(s)
- Mohammad Mazbah Uddin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Zhenfang Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Lingfeng Huang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
- * E-mail:
| |
Collapse
|
22
|
Adamakis IDS, Sperdouli I, Hanć A, Dobrikova A, Apostolova E, Moustakas M. Rapid Hormetic Responses of Photosystem II Photochemistry of Clary Sage to Cadmium Exposure. Int J Mol Sci 2020; 22:E41. [PMID: 33375193 PMCID: PMC7793146 DOI: 10.3390/ijms22010041] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022] Open
Abstract
Five-day exposure of clary sage (Salvia sclarea L.) to 100 μM cadmium (Cd) in hydroponics was sufficient to increase Cd concentrations significantly in roots and aboveground parts and affect negatively whole plant levels of calcium (Ca) and magnesium (Mg), since Cd competes for Ca channels, while reduced Mg concentrations are associated with increased Cd tolerance. Total zinc (Zn), copper (Cu), and iron (Fe) uptake increased but their translocation to the aboveground parts decreased. Despite the substantial levels of Cd in leaves, without any observed defects on chloroplast ultrastructure, an enhanced photosystem II (PSII) efficiency was observed, with a higher fraction of absorbed light energy to be directed to photochemistry (ΦPSΙΙ). The concomitant increase in the photoprotective mechanism of non-photochemical quenching of photosynthesis (NPQ) resulted in an important decrease in the dissipated non-regulated energy (ΦNO), modifying the homeostasis of reactive oxygen species (ROS), through a decreased singlet oxygen (1O2) formation. A basal ROS level was detected in control plant leaves for optimal growth, while a low increased level of ROS under 5 days Cd exposure seemed to be beneficial for triggering defense responses, and a high level of ROS out of the boundaries (8 days Cd exposure), was harmful to plants. Thus, when clary sage was exposed to Cd for a short period, tolerance mechanisms were triggered. However, exposure to a combination of Cd and high light or to Cd alone (8 days) resulted in an inhibition of PSII functionality, indicating Cd toxicity. Thus, the rapid activation of PSII functionality at short time exposure and the inhibition at longer duration suggests a hormetic response and describes these effects in terms of "adaptive response" and "toxicity", respectively.
Collapse
Affiliation(s)
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization—Demeter, Thermi, 57001 Thessaloniki, Greece;
| | - Anetta Hanć
- Department of Trace Analysis, Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznań, Poland;
| | - Anelia Dobrikova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (A.D.); (E.A.)
| | - Emilia Apostolova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (A.D.); (E.A.)
| | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
23
|
An Q, He X, Zheng N, Hou S, Sun S, Wang S, Li P, Li X, Song X. Physiological and genetic effects of cadmium and copper mixtures on carrot under greenhouse cultivation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111363. [PMID: 32977082 DOI: 10.1016/j.ecoenv.2020.111363] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/09/2020] [Accepted: 09/13/2020] [Indexed: 06/11/2023]
Abstract
The exposure to combinations of heavy metals can affect the genes of vegetables and heavy metals would accumulate in vegetables and thereby indirectly affecting human health. Exploring the links between genetic changes and phenotypic changes of carrot under the combined pollution of Cd and Cu is of great significance for studying the mechanism of heavy metal pollution. Therefore, this study examined the effects of mixtures of cadmium (Cd) and copper (Cu) on physiological measures (malondialdehyde (MDA), proline, and antioxidant enzyme) and expression of growth-related genes (gibberellin gene, carotene gene, and glycogene) in carrot under greenhouse cultivation. The results showed in the additions with mixtures of Cd and Cu at higher concentration, the MDA content increased significantly (p < 0.05), whereas the proline content was not significantly different from those in the control. In the mixed treatments with high Cd concentrations, the activity of superoxide dismutase (SOD) was significantly lower than that in the control (p < 0.05); whereas the activity of peroxidase (POD) increased to different degrees compared to the control. In the additions with mixtures of Cd and Cu, compared with the control, the expression of the gibberellin gene was downregulated from 1.97 to 20.35 times (not including the 0.2 mg kg-1 Cd and 20 mg kg-1 Cu mixture, the expression of gibberellin gene in this treatment was upregulated 1.29 times), which lead to decreases in the length and dry weight of carrots. The expression of the carotene gene in mixed treatments downregulated more than that in single treatments, which could reduce the ability of carrots to resist oxidative damage, as suggested by the significant increase in the MDA content. In the addition with mixtures of Cd and Cu, compared with the control, the expression of the glycogene was downregulated by 1.42-59.40 times, which can cause a significant reduction in the sugar content in carrots and possibly further reduce their ability to resist heavy metal damage. A cluster analysis showed that in the additions with mixtures of Cd and Cu, the plant phenotype was affected first, and then with increases in the added concentration, the expression of genes was also affected. In summary, in the additions with mixtures of Cd and Cu, plants were damaged as Cd and Cu concentrations increased.
Collapse
Affiliation(s)
- Qirui An
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| | - Xiaolan He
- Soil and Fertilizer Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
| | - Na Zheng
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China; Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Changchun, Jilin, China.
| | - Shengnan Hou
- Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Siyu Sun
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| | - Sujing Wang
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| | - Penyang Li
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| | - Xiaoqian Li
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| | - Xue Song
- Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Changchun, Jilin, China
| |
Collapse
|
24
|
Zhang Y, Song B, Zhu L, Zhou Z. Evaluation of the metal(loid)s phytoextraction potential of wild plants grown in three antimony mines in southern China. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 23:781-790. [PMID: 33307730 DOI: 10.1080/15226514.2020.1857685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Wild plant species from three deserted antimony (Sb) mine areas in southern China were collected to measure eight metal(loid)s. Antimony, As (arsenic), Cd (cadmium), Cr (chromium), Cu (copper), Ni (nickel), Pb (lead), and Zn (zinc) concentrations in plants and soil were analyzed. The soils of the mining area was weakly alkaline and contained toxic levels of Sb, As, Pb, Cd, and Zn. Many plant species in the area (40 species and 19 families) have no clear signs of toxicity. The plants were divided into three categories (high, moderate, and low tendency to accumulate metals) based on their (ratio [RT], bioaccumulation factor [BCF], translocation factor [TF]) values. The plants with a high accumulation tendency exhibited the high potential to absorb Sb from contaminated soil; therefore, they can be used for the remediation or phytoremediation of Sb-contaminated soil.
Collapse
Affiliation(s)
- Yunxia Zhang
- Colleges of Environmental Science and Engineering, Guilin University of Technology, Guilin, China
| | - Bo Song
- Colleges of Environmental Science and Engineering, Guilin University of Technology, Guilin, China
| | - Liangliang Zhu
- Colleges of Environmental Science and Engineering, Guilin University of Technology, Guilin, China
| | - Ziyang Zhou
- Colleges of Environmental Science and Engineering, Guilin University of Technology, Guilin, China
| |
Collapse
|
25
|
Francisco AP, Aride PHR, de Souza AB, Polese MF, Lavander HD, Gomes LC. Toxicity of Copper in Epinephelus marginatus (Perciformes; Serranidae) After Ingestion of Contaminated Food. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 105:711-714. [PMID: 33001235 DOI: 10.1007/s00128-020-03012-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
The dusky grouper Epinephelus marginatus is predator fish subjected to be impacted due to the contamination of their habitats. A viable source of metal contamination, i.e., copper (Cu), in this species is the ingestion of contaminated food. The objective of this work was to verify the toxic effects of Cu contaminated feed in dusky grouper. A 15 days trial was conducted with three treatments: control, 1 g and 2 g Cu/kg of fish feed. After the trial, the gut was analyzed for Cu concentration and the liver for SOD and GST activity. The Cu concentration in the intestinal tract was significantly greater in fish from contaminated treatments when compared with control. The SOD was significantly lower in contaminated fish, and the GST did not show differences among treatments. Copper showed to be toxic for the species, as evidenced by gut accumulation and suggested by SOD response.
Collapse
Affiliation(s)
- Aline Priscila Francisco
- Universidade Vila Velha, Av. Comissário José Dantas de Melo 21, Boa Vista, Vila Velha, ES, 29102-920, Brazil
| | | | - André Batista de Souza
- Instituto Federal do Espírito Santo, Campus Piúma, Rua Augusto Costa de Oliveira, 660, Piúma, ES, 29285-000, Brazil
| | - Marcelo Fantini Polese
- Instituto Federal do Espírito Santo, Campus Piúma, Rua Augusto Costa de Oliveira, 660, Piúma, ES, 29285-000, Brazil
| | - Henrique David Lavander
- Instituto Federal do Espírito Santo, Campus Piúma, Rua Augusto Costa de Oliveira, 660, Piúma, ES, 29285-000, Brazil
| | - Levy Carvalho Gomes
- Universidade Vila Velha, Av. Comissário José Dantas de Melo 21, Boa Vista, Vila Velha, ES, 29102-920, Brazil.
| |
Collapse
|
26
|
Guo H, Jiang J, Gao J, Zhang J, Zeng L, Cai M, Zhang J. Evaluation of cadmium hyperaccumulation and tolerance potential of Myriophyllum aquaticum. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 195:110502. [PMID: 32203771 DOI: 10.1016/j.ecoenv.2020.110502] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 06/10/2023]
Abstract
Enrichment of the hyperaccumulator bank is important for phytoremediation, and studying new hyperaccumulators has become a research hotspot. In this study, cadmium (Cd), the main representative factor of heavy-metal-polluted water, was the research object, and the Cd bioenrichment ability and tolerance of Myriophyllum aquaticum were studied for the first time. The experiment was conducted for 28 days by establishing experimental groups with different Cd concentrations (0, 10, 20, 40, 80, and 160 mg/L). The results show that M. aquaticum is a new Cd hyperaccumulator. There was no notable damage in the 40 mg/L Cd treatment group, and the Cd enrichment ability of M. aquaticum reached 17,970 ± 1020.01 mg/kg, while the bioconcentration factor (BCF) reached 449.25. At the same time, the antioxidant system (superoxide dismutase (SOD) and peroxidase (POD)) and proline (Pro) levels of M. aquaticum maintained normal plant physiology, but there were physiological anomalies in M. aquaticum at high concentrations and under long-term treatment. The results show that M. aquaticum has a high Cd bioenrichment ability and tolerance in water and can be used for phytoremediation of river water polluted by Cd.
Collapse
Affiliation(s)
- Han Guo
- School of Water Conservancy and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Jiwei Jiang
- School of Water Conservancy and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Jingqing Gao
- School of Water Conservancy and Engineering, Zhengzhou University, Zhengzhou, 450001, China.
| | - Jingshen Zhang
- School of Water Conservancy and Engineering, Zhengzhou University, Zhengzhou, 450001, China; Zhengzhou Yuanzhihe Environmental Protection Technology Co., Ltd., Zhengzhou, 450001, China
| | - Leiyuan Zeng
- School of Water Conservancy and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Ming Cai
- Yellow River Engineering Consulting Co., Ltd., Zhengzhou, 450001, China
| | - Jingliang Zhang
- Yellow River Engineering Consulting Co., Ltd., Zhengzhou, 450001, China
| |
Collapse
|
27
|
Zhang K, Cui H, Li M, Xu Y, Cao S, Long R, Kang J, Wang K, Hu Q, Sun Y. Comparative time-course transcriptome analysis in contrasting Carex rigescens genotypes in response to high environmental salinity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 194:110435. [PMID: 32169728 DOI: 10.1016/j.ecoenv.2020.110435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/11/2020] [Accepted: 03/03/2020] [Indexed: 05/20/2023]
Abstract
Soil salinization is one of most crucial environmental problems around the world and negatively affects plant growth and production. Carex rigescens is a turfgrass with favorable stress tolerance and great application prospect in salinity soil remediation and utilization; however, the molecular mechanisms behind its salt stress response are unknown. We performed a time-course transcriptome analysis between salt tolerant 'Huanghua' (HH) and salt sensitive 'Beijing' (BJ) genotypes. Physiological changes within 24 h were observed, with the HH genotype exhibiting increased salt tolerance compared to BJ. 5764 and 10752 differentially expressed genes were approved by transcriptome in BJ and HH genotype, respectively, and dynamic analysis showed a discrepant profile between two genotypes. In the BJ genotype, genes related to carbohydrate metabolism and stress response were more active and ABA signal transduction pathway might play a more important role in salt stress tolerance than in HH genotype. In the HH genotype, unique increases in the regulatory network of transcription factors, hormone signal transduction, and oxidation-reduction processes were observed. Moreover, trehalose and pectin biosynthesis and chitin catabolic related genes were specifically involved in the HH genotype, which may have contributed to salt tolerance. Moreover, some candidate genes like mannan endo-1,4-beta-mannosidase and EG45-like domain-containing protein are highlighted for future research about salt stress resistance in C. rigescens and other plant species. Our study revealed unique salt adaptation and resistance characteristics of two C. rigescens genotypes and these findings could help to enrich the currently available knowledge and clarify the detailed salt stress regulatory mechanisms in C. rigescens and other plants.
Collapse
Affiliation(s)
- Kun Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, PR China.
| | - Huiting Cui
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, PR China.
| | - Mingna Li
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, PR China; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| | - Yi Xu
- Texas AgriLife Research and Extension Center, Texas A&M University, Dallas, 75252, USA.
| | - Shihao Cao
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, PR China.
| | - Ruicai Long
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| | - Junmei Kang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| | - Kehua Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, PR China.
| | - Qiannan Hu
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, PR China.
| | - Yan Sun
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, PR China.
| |
Collapse
|
28
|
Li Q, Wang H, Wang H, Wang Z, Li Y, Ran J, Zhang C. Re-investigation of cadmium accumulation in Mirabilis jalapa L.: evidences from field and laboratory. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:12065-12079. [PMID: 31983000 DOI: 10.1007/s11356-020-07785-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Mirabilis jalapa L. was identified as a cadmium (Cd) hyperaccumulator, but data were mainly from laboratory conditions. The main aim of the present study was to confirm whether M. jalapa is a Cd hyperaccumulator by field survey and laboratory experiment. The field survey was conducted at 3 sites and 66 samples were collected, and the results showed that although M. jalapa did not exhibit any visible damage when growing on soil containing 139 mg Cd kg-1, a low concentration of Cd (11.85 ± 3.45 mg kg-1) in its leaves was observed. Although the translocation factor (TF) was up to 3.24 ± 0.42, the bioconcentration factor (BCF) was only 0.13 ± 0.07. The Cd accumulation in leaves of Lanping (LP, contaminated site) and Kunming (KM, clean site) populations reached 93.88 and 81.76 mg kg-1 when artificially spiked soil Cd was 175 mg kg-1, respectively. The BCFs of LP and KM populations were 0.55 and 0.48, and the TFs of the two populations were 3.98 and 4.15, respectively. Under hydroponic condition, the Cd concentration in young leaves of LP and KM populations was 78.5 ± 0.8 and 46.3 ± 1.2 mg kg-1 at 5 mg L-1 Cd treatment, respectively. Furthermore, a significantly positive correlation between tissue Cd concentration and total Cd, CaCl2-extractable Cd, and TCLP-Cd (toxicity characteristic leaching procedure) in soil was established. Therefore, M. jalapa had constitutional characteristics for Cd tolerance and accumulation, but it was not a Cd hyperaccumulator.
Collapse
Affiliation(s)
- Qinchun Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
- Yunnan Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming, 650500, Yunnan, China
| | - Hongbin Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China.
- Yunnan Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming, 650500, Yunnan, China.
| | - Haijuan Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
- Yunnan Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming, 650500, Yunnan, China
| | - Zhongzhen Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
- Yunnan Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming, 650500, Yunnan, China
| | - Yang Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
- Yunnan Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming, 650500, Yunnan, China
| | - Jiakang Ran
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
- Yunnan Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming, 650500, Yunnan, China
| | - Chunyu Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
- Yunnan Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming, 650500, Yunnan, China
| |
Collapse
|
29
|
Carvalho MEA, Castro PRC, Azevedo RA. Hormesis in plants under Cd exposure: From toxic to beneficial element? JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121434. [PMID: 31812481 DOI: 10.1016/j.jhazmat.2019.121434] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/24/2019] [Accepted: 10/07/2019] [Indexed: 05/17/2023]
Abstract
Tolerance level to cadmium (Cd) toxicity is generally associated with reductions of the internal Cd accumulation in living organisms. In plants, Cd exposure frequently triggers negative effects on their growth and productivity. However, an increased number of studies has reported the improved performance of some plant species (or their accessions/genotypes/varieties/cultivars/clones) to Cd exposure, despite Cd accumulation in their roots and shoots. These results indicate that plants have developed protective strategies to neutralize the side-effects from Cd toxicity or, more controversially, mechanisms that employ Cd as beneficial element. Here, we gathered information about Cd-induced hormetic effects on plants, and explored the potential mechanisms that allow them to have a better performance under Cd exposure. The promotion of plant development depends on both direct and indirect Cd-induced alterations in the metabolism of plants and their surround environment. In addition, the mechanisms behind the positive Cd-induced transgenerational effects were also discussed in the present paper.
Collapse
Affiliation(s)
- Marcia E A Carvalho
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz"/Universidade de São Paulo (ESALQ/USP), Avenida Pádua Dias, 11, Piracicaba, SP, 13418-900, Brazil
| | - Paulo R C Castro
- Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo (Esalq/USP), Avenida Pádua Dias, 11, Piracicaba, SP, 13418-900, Brazil
| | - Ricardo A Azevedo
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz"/Universidade de São Paulo (ESALQ/USP), Avenida Pádua Dias, 11, Piracicaba, SP, 13418-900, Brazil.
| |
Collapse
|
30
|
Zeng P, Guo Z, Xiao X, Peng C, Liu L, Yan D, He Y. Physiological stress responses, mineral element uptake and phytoremediation potential of Morus alba L. in cadmium-contaminated soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 189:109973. [PMID: 31761549 DOI: 10.1016/j.ecoenv.2019.109973] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/10/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
Fast growing woody plants are proposed for potential application for phytoremediation of contaminated soil. In this study, the plant growth, physiological responses, mineral element uptake, and phytoremediation potential of the woody plant Morus alba L. were studied in different levels of Cd-contaminated soil through dynamic sampling (30, 60, 120, and 180 d). The results indicated that M. alba L. had strong physiological coordination, tolerance and detoxification capacity in response to Cd in contaminated soil. Compared with the control, the photosynthetic pigment content in M. alba L. leaves was significantly suppressed during initial cultivation (30-60 d) and the malonaldehyde (MDA) content and electrolyte leakage (EL) were increased from 30 to 120 d of cultivation. Furthermore, the uptake of Cu, Mn, and Zn in plant tissues was imbalanced throughout cultivation (30-180 d) under 55 mg·kg-1 Cd stress. However, the chlorophyll a, chlorophyll b, carotenoid, soluble protein, and soluble sugar contents and the peroxidase (POD) and ascorbate peroxidase (APX) activities in plant leaves, as well as the uptake of macronutrients (K, Ca, and Mg) in plant stems and leaves were maintained at normal levels. Furthermore, the catalase (CAT) activities in plant leaves and the Ca and Mg contents in plant roots were significantly (p < 0.05) enhanced in response to Cd stress after 180 d of cultivation. Furthermore, the biomass of M. alba L. was significantly increased with cultivation time in Cd-contaminated soil. Therefore, normal photosynthesis, antioxidant protection, and macronutrient regulation contribute to M. alba L. with high tolerance to Cd. Moreover, the uptake and total extraction amount of Cd in aboveground M. alba L. were significantly (p < 0.05) increased with both the plant growth period and soil Cd level, and the maximum amount of Cd reached up to 340.5 μg·plant-1. Thus, M. alba L. can be regarded as a potential candidate for phytoremediation in Cd-contaminated sites.
Collapse
Affiliation(s)
- Peng Zeng
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China.
| | - Zhaohui Guo
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China.
| | - Xiyuan Xiao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China.
| | - Chi Peng
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China.
| | - Lingqing Liu
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Demei Yan
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Yalei He
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| |
Collapse
|
31
|
Yang Y, Shen Q. Phytoremediation of cadmium-contaminated wetland soil with Typha latifolia L. and the underlying mechanisms involved in the heavy-metal uptake and removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:4905-4916. [PMID: 31845259 DOI: 10.1007/s11356-019-07256-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 12/02/2019] [Indexed: 06/10/2023]
Abstract
The effects of Typha latifolia L. on the remediation of cadmium (Cd) in wetland soil were studied using greenhouse pot culture, with soil Cd concentrations of 0, 1, and 30 mg/kg. The T. latifolia showed excellent tolerance to the low and high concentrations of Cd in soil. A higher bioaccumulation of Cd was observed in roots, with bioconcentration factor values of 51.6 and 9.30 at 1 and 30 mg/kg of Cd stress, respectively; Cd concentration in T. latifolia was 77.0 and 410.7 mg/kg, and Cd content was 0.11 and 0.22 mg/plant at the end of the test period. The soil enzyme activities (urease, alkaline phosphatase, and dehydrogenase) exposed to 0, 1, and 30 mg/kg Cd were measured after 0-, 30-, 60-, and 90-day cultivation period and showed an increasing trend with exposure time. Metabolite changes were analyzed using liquid chromatography-mass spectrometry, combined with principal component analysis and orthogonal partial least squares discrimination analysis. Among 102 metabolites, 21 compounds were found and identified, in response to treatment of T. latifolia with different Cd concentrations. The results showed that T. latifolia had a good remedial effect on Cd-contaminated soil. The metabolites of T. latifolia changed with different Cd concentration exposures, as a result of metabolic response of plants to Cd-contaminated soils. Analysis of metabolites could better reveal the pollution remediation mechanism involved in different Cd uptake and accumulate properties.
Collapse
Affiliation(s)
- Yan Yang
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution, Guangdong University of Technology, Guangzhou, 510006, China.
- Synergy Innovation Institute of GDUT, Shantou, 515041, China.
| | - Qianyong Shen
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution, Guangdong University of Technology, Guangzhou, 510006, China
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, China
| |
Collapse
|
32
|
Salas-Moreno M, Marrugo-Negrete J. Phytoremediation potential of Cd and Pb-contaminated soils by Paspalum fasciculatum Willd. ex Flüggé. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 22:87-97. [PMID: 31359781 DOI: 10.1080/15226514.2019.1644291] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The phytoremediation capacity of Paspalum fasciculatum Willd. ex Flüggé, was evaluated in soils from a gold mine contaminated with cadmium (Cd) and lead (Pb), using three concentration levels of each metal (15, 30, and 50 mg kg-1). Their ability to assimilate Cd and Pb in its different tissues was evaluated during 90 days of exposure. Plant growth behavior, accumulation of Cd and Pb, and translocation (TF) and bioaccumulation (BAF) factors were also determined. During the first 60 days of exposure, Cd had an inductive effect on the growth of P. fasciculatum; however, after 90 days, this metal had begun to show toxic effects. Plants showed a similar pattern of accumulating Cd and Pb in their tissues with concentrations decreasing in the order roots > leaves > stem. However, the accumulated concentrations of Cd were generally higher than those of Pb with the highest metal uptakes being observed during the first 30 days of exposure. P. fasciculatum was shown to have a phytostabilization effect with regard to Cd, high concentrations of metals in tissues and little translocation, whereas it showed phytoextraction capacity for Pb. In addition, it can increase pH and organic matter in the soil rhizosphere.
Collapse
Affiliation(s)
- Manuel Salas-Moreno
- Biology Department, Faculty of Naturals Sciences, Biosystematic Research Group, Technological University of Chocó, Quibdó, Colombia
| | | |
Collapse
|
33
|
Wan H, Du J, He J, Lyu D, Li H. Copper accumulation, subcellular partitioning and physiological and molecular responses in relation to different copper tolerance in apple rootstocks. TREE PHYSIOLOGY 2019; 39:1215-1234. [PMID: 30977826 DOI: 10.1093/treephys/tpz042] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 04/01/2019] [Indexed: 05/15/2023]
Abstract
To unravel the physiological and molecular regulation mechanisms underlying the variation in copper (Cu)accumulation, translocation and tolerance among five apple rootstocks, seedlings were exposed to either basal or excess Cu. Excess Cu suppressed plant biomass and root architecture, which was less pronounced in Malus prunifolia Borkh., indicating its relatively higher Cu tolerance. Among the five apple rootstocks, M. prunifolia exhibited the highest Cu concentration and bio-concentration factor in roots but the lowest translocation factor, indicating its greater ability to immobilize Cu and restrict translocation to the aerial parts. Higher Cu concentration in cell wall fraction but lower Cu proportion in membrane-containing and organelle-rich fractions were found in M. prunifolia. Compared with the other four apple rootstocks under excess Cu conditions, M. prunifolia had a lower increment of hydrogen peroxide in roots and leaves and malondialdehyde in roots, but higher concentrations of carbohydrates and enhanced antioxidants. Transcript levels of genes involved in Cu uptake, transport and detoxification revealed species-specific differences that are probably related to alterations in Cu tolerance. M. prunifolia had relatively higher gene transcript levels including copper transporters 2 (COPT2), COPT6 and zinc/iron-regulated transporter-related protein 2 (ZIP2), which probably took part in Cu uptake, and C-type ATP-binding cassette transporter 2 (ABCC2), copper chaperone for Cu/Zn superoxide dismutase (CCS), Cu/Zn superoxide dismutase 1 (CSD1) and metallothionein 2 (MT2) probably implicated in Cu detoxification, and relatively lower mRNA levels of yellow stripe-like transporter 3 (YSL3) and heavy metal ATPase 5 (HMA5) involved in transport of Cu to aerial parts. These results suggest that M. prunifolia is more tolerant to excess Cu than the other four apple rootstocks under the current experimental conditions, which is probably attributed to more Cu retention in roots, subcellular partitioning, well-coordinated antioxidant defense mechanisms and transcriptional expression of genes involved in Cu uptake, translocation and detoxification.
Collapse
Affiliation(s)
- Huixue Wan
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
- Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang, Liaoning, People's Republic of China
| | - Jiayi Du
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
- Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang, Liaoning, People's Republic of China
| | - Jiali He
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
- Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang, Liaoning, People's Republic of China
| | - Deguo Lyu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
- Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang, Liaoning, People's Republic of China
| | - Huifeng Li
- Institute of Pomology, Shandong Academy of Agricultural Sciences, Tai'an, People's Republic of China
| |
Collapse
|
34
|
Adamczyk-Szabela D, Lisowska K, Romanowska-Duda Z, Wolf WM. Associated Effects of Cadmium and Copper Alter the Heavy Metals Uptake by Melissa Officinalis. Molecules 2019; 24:E2458. [PMID: 31277450 PMCID: PMC6652130 DOI: 10.3390/molecules24132458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 01/12/2023] Open
Abstract
Lemon balm (Melissa officinalis) is a popular herb widely used in medicine. It is often cultivated in soils with substantial heavy metal content. Here we investigate the associated effects of cadmium and copper on the plant growth parameters augmented by the manganese, zinc, and lead uptake indicators. The concentration of all elements in soil and plants was determined by the HR-CS FAAS with the ContrAA 300 Analytik Jena spectrometer. Bioavailable and total forms calculated for all examined metals were augmented by the soil analyses. The index of chlorophyll content in leaves, the activity of net photosynthesis, stomatal conductance, transpiration rate, and intercellular concentration of CO2 were also investigated. Either Cd or Cu acting alone at high concentrations in soil are toxic to plants as indicated by chlorophyll indices and gas exchange parameters. Surprisingly, this effect was not observed when both metals were administered together. The sole cadmium or copper supplementations hampered the plant's growth, lowered the leaf area, and altered the plant's stem elongation. Analysis of variance showed that cadmium and copper treatments of lemon balm significantly influenced manganese, lead, and zinc concentration in roots and above ground parts.
Collapse
Affiliation(s)
- Dorota Adamczyk-Szabela
- Institute of General and Ecological Chemistry, Lodz University of Technology, 90-924 Lodz, Zeromskiego 116, Poland.
| | - Katarzyna Lisowska
- Institute of General and Ecological Chemistry, Lodz University of Technology, 90-924 Lodz, Zeromskiego 116, Poland
| | - Zdzisława Romanowska-Duda
- Department of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Banacha 12/16, Poland
| | - Wojciech M Wolf
- Institute of General and Ecological Chemistry, Lodz University of Technology, 90-924 Lodz, Zeromskiego 116, Poland
| |
Collapse
|
35
|
Sruthi P, Puthur JT. Characterization of physiochemical and anatomical features associated with enhanced phytostabilization of copper in Bruguiera cylindrica (L.) Blume. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 21:1423-1441. [PMID: 31244328 DOI: 10.1080/15226514.2019.1633263] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Copper is an essential micronutrient for normal plant metabolism and it is involved in number of physiological processes in plants but at the same time, at concentrations above threshold level, it acts as a potential stress factor. In this study, the phytoremediation potential of Bruguiera cylindrica (L.) Blume with respect to Cu was evaluated for the first time. Various physiochemical and anatomical parameters were analyzed in three-month-old healthy plantlets of B. cylindrica on exposure to different concentrations of CuSO4 (0, 0.05, 0.15, and 0.25 mM)for 20 d. Higher uptake and accumulation of Cu in the roots indicates that the roots are the primary site of Cu accumulation and thus the plant perform as an excluder. Tolerance index values (TI > 60) reveals the phytoremediation potential of this plant. Metabolites are accumulated in plants to cope up with the oxidative damage due to Cu stress. Increased rate of proline and free amino acids content and soluble sugar content especially in leaves of B. cylindrica subjected to CuSO4 contributes toward higher osmolality so as to counter the reduced water transport from roots. Nonenzymatic antioxidants like ascorbic acid, glutathione, and phenolics are the ROS scavenging compounds in the Defense system of B. cylindrica toward higher concentrations of CuSO4, and of these, phenolics accumulation plays greater role in the antioxidative function in B. cylindrica in response to Cu stress. The histochemistry of B. cylindrica revealed the prominent occurrence of star-shaped calcium oxalate crystals when exposed to 0.25 mM CuSO4, and it seems to be a prominent defense mechanism under Cu stress. Also a remarkable finding was the accumulation of Cu in the xylem vessels of plants on exposure of 0.25 mM CuSO4 as compared to control. The infrared spectra were analyzed to compare the functional groups in the phenolics and carbohydrate constituents of control and CuSO4-treated B. cylindrica plantlets and it indicated that carboxyl and hydroxyl groups are involved in the Cu binding so as to achieve tolerance to Cu. Thus this study revealed the potential role of B. cylindrica as a promising candidate for phytostabilization of copper.
Collapse
Affiliation(s)
- Palliyath Sruthi
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, Calicut, Kerala, India
| | - Jos T Puthur
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, Calicut, Kerala, India
| |
Collapse
|
36
|
Pepi S, Chicca M, Piroddi G, Tassinari R, Vaccaro C. Geographical origin of Vitis vinifera cv. Cannonau established by the index of bioaccumulation and translocation coefficients. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:436. [PMID: 31203461 DOI: 10.1007/s10661-019-7544-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 05/08/2019] [Accepted: 05/21/2019] [Indexed: 06/09/2023]
Abstract
Geochemical fingerprints in grape require an identification of major and trace elements that show correlations between concentrations in soil and in plant tissues: these correlations are relevant to discriminate grapes according to geographical origin. The Vitis vinifera cultivar Cannonau is used to produce the renowned Italian controlled designation of origin (DOC) wine "Cannonau" from Sardinia. Two Cannonau vineyards located in Sardinia Region were studied to establish the relationship between geochemical features of vineyard soil and chemical composition of leaves and grape berries. Major and trace elements were determined by X-ray fluorescence and inductively coupled plasma-mass spectrometry in soil, leaf, and grape berry samples. The index of bioaccumulation and the translocation coefficients were also calculated for all elements. Data from the two study areas were compared by a non-parametric test and multivariate statistics (principal component analysis). The results showed a specific assimilation of these elements in leaf and grape berry from vine in two different soils. Moreover, geochemical characterization and statistical analysis enabled to discriminate the cultivar "Cannonau" according to geographical origin. The results showed that the elements that could establish a reliable correlation between the soil vineyard and leaves and grape berries from the two study areas were B, Sr, and Zr. These elements may therefore be used as geochemical fingerprints to identify the geographic origin of V. vinifera cv. Cannonau in the two study areas.
Collapse
Affiliation(s)
- Salvatore Pepi
- Department of Physics and Earth Sciences, University of Ferrara, via Saragat 1, 44121, Ferrara, Italy.
| | - Milvia Chicca
- Department of Life Science and Biotechnologies, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Giulia Piroddi
- Department of Physics and Earth Sciences, University of Ferrara, via Saragat 1, 44121, Ferrara, Italy
| | - Renzo Tassinari
- Department of Physics and Earth Sciences, University of Ferrara, via Saragat 1, 44121, Ferrara, Italy
| | - Carmela Vaccaro
- Department of Physics and Earth Sciences, University of Ferrara, via Saragat 1, 44121, Ferrara, Italy
| |
Collapse
|
37
|
Huang Y, Xi Y, Gan L, Johnson D, Wu Y, Ren D, Liu H. Effects of lead and cadmium on photosynthesis in Amaranthus spinosus and assessment of phytoremediation potential. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 21:1041-1049. [PMID: 31020865 DOI: 10.1080/15226514.2019.1594686] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
This study assessed the effects of Pb (0, 200, 500, 1000 mg kg-1) and Cd (0, 5, 15, 30, 50 mg kg-1) on photosynthesis in Amaranthus spinosus (A. spinosus), as well as the potential for phytoremediation by pot-culture experiment. Exposure to Pb/Cd produced a concentration-dependent decrease in biomass and all photosynthesis parameters, except for non-photochemical quenching, which increased with the metal concentration. The metals accumulated more in roots compared to shoots. The bioconcentration factor (BCF) of Pb was <1 in shoots at all Pb levels, whereas the BCF was <1 in roots at all but the lowest concentration of Pb. Roots extracted Cd from soil at all treatments. The translocation factor of Cd was larger than that of Pb suggesting that Cd is more mobile than Pb in A. spinosus. Amaranthus spinosus displays a high tolerance for both Pb and Cd with regards to growth and photochemical efficiency, but it is more sensitive to Cd than Pb. Amaranthus spinosus accumulates Pb and Cd primarily in the roots and Cd is more bioconcentrated and translocated in comparison to Pb. This investigation shows that A. spinosus has good potential for phytoremediation of soils contaminated by low levels of Cd and Pb.
Collapse
Affiliation(s)
- Yingping Huang
- a College of Hydraulic and Environmental Engineering, China Three Gorges University , Hubei , Yichang P R China
- b Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University , Hubei , Yichang , P R China
- c Farmland Environment Monitoring Engineering Technology Center in Hubei, China Three Gorges University , Hubei , Yichang , P R China
| | - Ying Xi
- a College of Hydraulic and Environmental Engineering, China Three Gorges University , Hubei , Yichang P R China
- b Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University , Hubei , Yichang , P R China
- c Farmland Environment Monitoring Engineering Technology Center in Hubei, China Three Gorges University , Hubei , Yichang , P R China
| | - Long Gan
- b Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University , Hubei , Yichang , P R China
- c Farmland Environment Monitoring Engineering Technology Center in Hubei, China Three Gorges University , Hubei , Yichang , P R China
| | - David Johnson
- a College of Hydraulic and Environmental Engineering, China Three Gorges University , Hubei , Yichang P R China
- b Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University , Hubei , Yichang , P R China
- c Farmland Environment Monitoring Engineering Technology Center in Hubei, China Three Gorges University , Hubei , Yichang , P R China
| | - Yonghong Wu
- a College of Hydraulic and Environmental Engineering, China Three Gorges University , Hubei , Yichang P R China
- b Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University , Hubei , Yichang , P R China
| | - Dong Ren
- b Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University , Hubei , Yichang , P R China
- c Farmland Environment Monitoring Engineering Technology Center in Hubei, China Three Gorges University , Hubei , Yichang , P R China
| | - Huigang Liu
- b Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University , Hubei , Yichang , P R China
- c Farmland Environment Monitoring Engineering Technology Center in Hubei, China Three Gorges University , Hubei , Yichang , P R China
| |
Collapse
|
38
|
Liu Q, Tang J, Wang W, Zhang Y, Yuan H, Huang S. Transcriptome analysis reveals complex response of the medicinal/ornamental halophyte Iris halophila Pall. to high environmental salinity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 165:250-260. [PMID: 30199796 DOI: 10.1016/j.ecoenv.2018.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/28/2018] [Accepted: 09/01/2018] [Indexed: 05/25/2023]
Abstract
The remediation and subsequent use of saline-alkaline land are of great significance to ecological environment construction and sustainable agricultural development. Iris halophila Pall. is a salt-tolerant medicinal and ornamental plant, which has good application prospects in the ecological construction of saline-alkaline land; therefore, study of the molecular mechanisms of salt tolerance in I. halophila has important theoretical and practical value. To evaluate the molecular mechanism of the response of I. halophila to salt toxicity, I. halophila seedlings were treated with salt (300 mM NaCl) and subjected to deep RNA sequencing. The clean reads were obtained and assembled into 297,188 unigenes. Among them, 1120 and 100 salt-responsive genes were identified in I. halophila shoots and roots, respectively. Among them, the key flavonoid and lignin biosynthetic genes, hormone signaling genes, sodium/potassium ion transporter genes, and transcription factors were analyzed and summarized. Quantitative reverse-transcription PCR analysis strengthened the reliability of the RNA sequencing results. This work provides an overview of the transcriptomic responses to salt toxicity in I. halophila and identifies the responsive genes that may contribute to its reduced salt toxicity. These results lay an important foundation for further study of the molecular mechanisms of salt tolerance in I. halophila and related species.
Collapse
Affiliation(s)
- Qingquan Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Jun Tang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China; Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Weilin Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Yongxia Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Haiyan Yuan
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Suzhen Huang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China.
| |
Collapse
|
39
|
Wu M, Luo Q, Liu S, Zhao Y, Long Y, Pan Y. Screening ornamental plants to identify potential Cd hyperaccumulators for bioremediation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 162:35-41. [PMID: 29960120 DOI: 10.1016/j.ecoenv.2018.06.049] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/18/2018] [Accepted: 06/14/2018] [Indexed: 05/27/2023]
Abstract
To identify possible cadmium (Cd) accumulators or hyperaccumulators among ornamental plants, a pot experiment involving increasing Cd concentration (0, 5, 15, 30, 60, and 100 mg kg-1) was conducted among seven species. The principal objective was to screen for ornamental plants with an exceptional ability to accumulate and translocate Cd ions as well as sufficient biomass for harvesting. Regarding shoot biomass, root biomass, plant height and tolerance index (TI), Malva rotundifolia showed high tolerance to Cd and Malva crispa, Sida rhombifolia, Celosia argentea and Celosia cristata medium tolerance; Althaea rosea and Abutilon theophrasti were more sensitive to Cd than the other plants. A hormetic response was induced by Cd in M. crispa, C. argentea, C. cristata and M. rotundifolia. Based on its capacity for Cd accumulation, bioaccumulation coefficients (BCFs) and translocation factors (TFs), M. rotundifolia was selected from candidate plants after 60 days of exposure to Cd-contaminated soil and found to have accumulated more than 200 mg kg-1 Cd in its roots and 900 mg kg-1 in its shoots. Moreover, M. rotundifolia BCFs and TFs were higher than 1.0, with the former ranging from 1.41 to 3.31 and the latter from 1.03 to 7.37. Taken together, these results indicate that M. rotundifolia can be classified as a model hyperaccumulator.
Collapse
Affiliation(s)
- Mengxi Wu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Qiao Luo
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Shiliang Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yin Zhao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yue Long
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yuanzhi Pan
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, PR China.
| |
Collapse
|
40
|
Feng J, Lin Y, Yang Y, Shen Q, Huang J, Wang S, Zhu X, Li Z. Tolerance and bioaccumulation of combined copper, zinc, and cadmium in Sesuvium portulacastrum. MARINE POLLUTION BULLETIN 2018; 131:416-421. [PMID: 29886966 DOI: 10.1016/j.marpolbul.2018.04.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 04/16/2018] [Accepted: 04/18/2018] [Indexed: 06/08/2023]
Abstract
Sesuvium portulacastrum was treated with mixture of copper, zinc, and cadmium for 60 days, with the concentration of each metal ranging from 0 to 20 mg/L. The tolerance of plants and bioaccumulation of heavy metals were then investigated. The height of S. portulacastrum decreased significantly with increasing heavy metal concentrations from 1 to 20 mg/L. The biomass was adversely impacted when the concentration exceeded 5 mg/L. There were no significant differences in malondialdehyde (MDA) concentration among different treatment groups, while the soluble protein content and superoxide dismutase (SOD) activity decreased with increasing heavy metal concentration. However, the BCF values of the three metals were all higher than 10 and the tolerance in root was up to 1000 mg/kg without causing significant growth inhibition, suggesting that S. portulacastrum should be a potential candidate for phytostabilization for the phytoremediation of polymetallic contaminations in coastal environments.
Collapse
Affiliation(s)
- Jianxiang Feng
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Yanyan Lin
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Yao Yang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Qianqian Shen
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Jianrong Huang
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Shugong Wang
- School of Earth Sciences and Engineering, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Xiaoshan Zhu
- Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, People's Republic of China.
| | - Zufu Li
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China.
| |
Collapse
|
41
|
Zeng P, Guo Z, Xiao X, Cao X, Peng C. Response to cadmium and phytostabilization potential of Platycladus orientalis in contaminated soil. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2018; 20:1337-1345. [PMID: 30666894 DOI: 10.1080/15226514.2018.1501338] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/18/2018] [Accepted: 07/03/2018] [Indexed: 06/09/2023]
Abstract
The tolerance characteristics and phytostabilization potential of Platycladus orientalis grown in soil contaminated by cadmium (Cd) were studied using a greenhouse experiment. The results showed that the ornamental plant P. orientalis had high tolerance for Cd in contaminated soil at 24.6 mg·kg-1 and its physiological activities were slightly affected after 203 days (d) of cultivation. Moreover, Cd in soil at 9.6 mg·kg-1 was beneficial for P. orientalis growth, and the total biomass after 203 d cultivation was significantly (p < 0.05) increased by 35.03%, while the contents of chlorophyl a, chlorophyl b and carotenoid in leaves also increased by 20.84%, 44.06% and 28.25% compared to the control, respectively. Meanwhile, the Cd content in the tissues of P. orientalis was increased with both plant growth and the Cd content in the soil. The uptake of Cd in P. orientalis roots was greater than in shoots, with the Cd content in roots reaching 41.45 mg·kg-1. P. orientalis, an ornamental plant, that accumulates Cd predominantly in its roots, can be suggested as a promising plant for phytostabilization in Cd-contaminated soil.
Collapse
Affiliation(s)
- Peng Zeng
- a Institute of Environmental Engineering, School of Metallurgy and Environment , Central South University , Changsha , China
| | - Zhaohui Guo
- a Institute of Environmental Engineering, School of Metallurgy and Environment , Central South University , Changsha , China
| | - Xiyuan Xiao
- a Institute of Environmental Engineering, School of Metallurgy and Environment , Central South University , Changsha , China
| | - Xia Cao
- a Institute of Environmental Engineering, School of Metallurgy and Environment , Central South University , Changsha , China
| | - Chi Peng
- a Institute of Environmental Engineering, School of Metallurgy and Environment , Central South University , Changsha , China
| |
Collapse
|