1
|
He L, Geng K, Li B, Li S, Gustave W, Wang J, Jeyakumar P, Zhang X, Wang H. Enhancement of nutrient use efficiency with biochar and wood vinegar: A promising strategy for improving soil productivity. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39210561 DOI: 10.1002/jsfa.13844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/08/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND The co-application of biochar and wood vinegar has demonstrated the potential to enhance premium crop production. The present study reveals the effects of co-applying rice husk biochar and wood vinegar (both foliar and soil application) on soil properties and the growth of Chinese cabbage (Brassica chinensis L.) in a two-season pot experiment. RESULTS The soil pH, electrical conductivity and dissolved organic carbon contents in combination treatments of wood vinegar and biochar were increased more when wood vinegar was applied to soils rather than to leaves, and the parameters were observed to surpass those for chemical fertilizer treatments. The biomass of Chinese cabbage shoots was significantly increased by 60.8- and 27.3-fold in the combined treatments compared to the control when 1% wood vinegar was sprayed to the leaves (WF1) in 2022 and 2023, respectively. Higher contents of vitamin C, soluble protein and soluble sugar were also observed in the combined wood vinegar and biochar treatments compared to chemical fertilizer treatments and the control; for example, the vitamin C content of plant shoot in WF1 was 21.3 times that of the control. The yield and quality of plants were decreased across all treatments in 2023 compared to 2022 but the combination treatments still displayed superiority. CONCLUSION The co-application of wood vinegar and biochar enhances the growth and improve the quality of Chinese cabbage through improving the soil properties and plant photosynthesis. Moreover, the foliage application of wood vinegar is more preferable compared to soil application. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lizhi He
- College of Environment and Resources, College of Carbon Neutrality, Zhejiang A & F University, Lin'an, China
| | - Kun Geng
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi, China
| | - Boling Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Song Li
- College of Landscape Architecture, Jiangsu Vocational College of Agriculture and Forestry, Jurong, China
| | - Williamson Gustave
- School of Chemistry, Environmental & Life Sciences, University of the Bahamas, Nassau, Bahamas
| | - Jie Wang
- College of Environment and Resources, College of Carbon Neutrality, Zhejiang A & F University, Lin'an, China
| | - Paramsothy Jeyakumar
- Environmental Sciences Group, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Xiaokai Zhang
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi, China
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, China
- Guangdong Provincial Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
2
|
Khare S, Singhal A, Rallapalli S, Mishra A. Bio-chelate assisted leaching for enhanced heavy metal remediation in municipal solid waste compost. Sci Rep 2024; 14:14238. [PMID: 38902389 PMCID: PMC11190260 DOI: 10.1038/s41598-024-65280-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/18/2024] [Indexed: 06/22/2024] Open
Abstract
Municipal solid waste compost, the circular economy's closed-loop product often contains excessive amounts of toxic heavy metals, leading to market rejection and disposal as waste material. To address this issue, the study develops a novel approach based on: (i) utilizing plant-based biodegradable chelating agent, L-glutamic acid, N,N-diacetic acid (GLDA) to remediate heavy metals from contaminated MSW compost, (ii) comparative assessment of GLDA removal efficiency at optimal conditions with conventional nonbiodegradable chelator EDTA, and (iii) enhanced pre- and post-leaching to evaluate the mobility, toxicity, and bioavailability of heavy metals. The impact of treatment variables, such as GLDA concentration, pH, and retention time, on the removal of heavy metals was investigated. The process was optimized using response surface methodology to achieve the highest removal effectiveness. The findings indicated that under optimal conditions (GLDA concentration of 150 mM, pH of 2.9, retention time for 120 min), the maximum removal efficiencies were as follows: Cd-90.32%, Cu-81.96%, Pb-91.62%, and Zn-80.34%. This process followed a pseudo-second-order kinetic equation. Following GLDA-assisted leaching, the geochemical fractions were studied and the distribution highlighted Cd, Cu, and Pb's potential remobilization in exchangeable fractions, while Zn displayed integration with the compost matrix. GLDA-assisted leaching and subsequent fractions illustrated transformation and stability. Therefore, this process could be a sustainable alternative for industrial applications (agricultural fertilizers and bioenergy) and social benefits (waste reduction, urban landscaping, and carbon sequestration) as it has controlled environmental footprints. Hence, the proposed remediation strategy, chemically assisted leaching, could be a practical option for extracting heavy metals from MSW compost, thereby boosting circular economy.
Collapse
Affiliation(s)
- Srishti Khare
- Department of Civil Engineering, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Anupam Singhal
- Department of Civil Engineering, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Srinivas Rallapalli
- Department of Civil Engineering, Birla Institute of Technology and Science, Pilani, Rajasthan, India.
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, Twin Cities, USA.
| | - Anant Mishra
- Department of Civil Engineering, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| |
Collapse
|
3
|
Ofoe R, Mousavi SMN, Thomas RH, Abbey L. Foliar application of pyroligneous acid acts synergistically with fertilizer to improve the productivity and phytochemical properties of greenhouse-grown tomato. Sci Rep 2024; 14:1934. [PMID: 38253671 PMCID: PMC10803764 DOI: 10.1038/s41598-024-52026-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Pyroligneous acid (PA) is rich in bioactive compounds and known to have the potential to improve crop productivity and phytochemical content. However, the synergistic effect of PA and fertilizer has not been thoroughly studied. In this study, we assessed the biostimulatory effect of different rates of foliar PA application (i.e., 0, 0.25, 0.5, 1, and 2% PA/ddH2O (v/v)) combined with full rate (i.e., 0.63, 0.28, 1.03 g) and half rate of nitrogen-phosphorus-potassium (NPK) fertilizer on the yield and nutritional quality of greenhouse-grown tomato (Solanum lycopersicum 'Scotia'). Plants treated with 0.25% and 0.5% PA showed a significantly (p < 0.001) higher maximum quantum efficiency of photosystem II (Fv/Fm) and increased potential photosynthetic capacity (Fv/Fo), especially when combined with the full NPK rate. Leaf chlorophyll was significantly (p < 0.001) increased by approximately 0.60 and 0.49 folds in plants treated with 2% PA and full NPK rate compared to no spray and water, respectively. Total number of fruits was significantly (p < 0.001) increased by approximately 0.56 folds with the 2% PA irrespective of the NPK rate. The combined 2% PA and full NPK rate enhanced total fruit weight and the number of marketable fruits. Similarly, fruit protein, sugar and 2,2-diphenyl-1-picrylhydrazyl (DPPH) activity were significantly (p < 0.001) enhanced by the combined 2% PA and full NPK rate. In contrast, the 0.5% PA combined with half NPK rate increased fruit carotenoid and phenolic contents while the 2% PA plus half NPK rate enhanced fruit flavonoid content. Generally, the synergistic effect of PA and NPK fertilizer increased fruit elemental composition. These showed that foliar application of 2% PA with full NPK rate is the best treatment combination that can be adopted as a novel strategy to increase the productivity and quality of tomato fruits. However, further study is required to investigate the molecular basis of PA biostimulatory effect on plants.
Collapse
Affiliation(s)
- Raphael Ofoe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, 50 Pictou Road, Bible Hill, NS, B2N 5E3, Canada.
| | - Seyed Mohammad Nasir Mousavi
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, 50 Pictou Road, Bible Hill, NS, B2N 5E3, Canada
| | - Raymond H Thomas
- Department of Biology, Faculty of Science, Western University 2025E Biological and Geological Sciences Building, 1151 Richmond Street, London, ON, N6A 5B7, Canada
| | - Lord Abbey
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, 50 Pictou Road, Bible Hill, NS, B2N 5E3, Canada.
| |
Collapse
|
4
|
Xuehan F, Xiaojun G, Weiguo X, Ling Z. Effect of the addition of biochar and wood vinegar on the morphology of heavy metals in composts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:118928-118941. [PMID: 37922076 DOI: 10.1007/s11356-023-30645-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/19/2023] [Indexed: 11/05/2023]
Abstract
In the experiment, the morphology of heavy metals (Pb, Cr, Cd, and Ni, HMs) was characterized using flame atomic absorption spectroscopy. In addition, Fourier transform infrared spectroscopy (FTIR) and three-dimensional excitation-emission matrix fluorescence spectroscopy (3D-EEM) were used to characterize the correlation between environmental factors and metal morphology in the rotting compost from several angles. The results showed that the humus treated with wood vinegar solution had a high degree of humification and rich aromatic structure. FTIR spectroscopy confirmed that the degree of humus aromatization gradually increased during the composting process, which enhanced the complexation of humus (HS) with HMs but had less effect on Ni. In addition, the optimum concentration of wood vinegar (WV) was determined to be 1.75%. The results of the study showed that in the Pb passivation treatment group, the proportion of soluble (Red) and exchangeable states (Exc) converted to oxidized (Oxi) and residual states (Res) was 8%, 14%, 6%, 1%, and 12% in the CK, T1, T2, T3, and T4 treatment groups, respectively; in the Cr passivation treatment group, the proportion of Cr-Red and Cr-Exc converted to oxidized and residual states was 31%, 33%, 25%, 29%, and 25%; in the Cd passivation treatment group, the proportions of Cd-Red and Cd-Exc converted to oxidized and residual states were 5%, 15%, 4%, 9%, and 11%, respectively; whereas the Ni treatment group did not show any significant passivation effect. The proportion of Pb-Oxi was relatively stable, Cr-Oxi was converted to Cr-Res, whereas Cd showed the conversion of Cd-Oxi to Cd-Exc. SUVA254 and SUVA280 showed significant positive correlations with Pb-Res, Cr-Res and Ni-Res, and significant positive correlations with moisture content (MC); whereas MC was significantly negatively correlated with each form of HMs. Total potassium (TK), total nitrogen (TN), and both carbon (TOC) were negatively correlated with Pb-Res and Pb-Exc. Structural equation modeling verified the relationship between environmental factors and HMs, and the composting results showed that the addition of biochar (BC) and a higher percentage of WV could increase compost decomposition and passivate HMs to improve its agronomic function.
Collapse
Affiliation(s)
- Fu Xuehan
- College of Mechanical and Electrical Engineering, Tarim University, Arar, 843300, Xinjiang, China
- Department of Education, Key Laboratory of Modern Agricultural Engineering in General Universities, Xinjiang Uygur Autonomous Region, Alar, 843300, Xinjiang, China
| | - Guo Xiaojun
- College of Mechanical and Electrical Engineering, Tarim University, Arar, 843300, Xinjiang, China
- Department of Education, Key Laboratory of Modern Agricultural Engineering in General Universities, Xinjiang Uygur Autonomous Region, Alar, 843300, Xinjiang, China
| | - Xu Weiguo
- College of Mechanical and Electrical Engineering, Tarim University, Arar, 843300, Xinjiang, China
- Department of Education, Key Laboratory of Modern Agricultural Engineering in General Universities, Xinjiang Uygur Autonomous Region, Alar, 843300, Xinjiang, China
| | - Zhou Ling
- College of Mechanical and Electrical Engineering, Tarim University, Arar, 843300, Xinjiang, China.
- Department of Education, Key Laboratory of Modern Agricultural Engineering in General Universities, Xinjiang Uygur Autonomous Region, Alar, 843300, Xinjiang, China.
| |
Collapse
|
5
|
Din SU, Murtaza Awan J, Imran M, Ahmad P, Haq S, Shakil S, Al-mugren K, Alotibi S, Alharthi AI, Khan MS, Khandaker MU. Qualitative and Quantitative Investigation of Biochar-Cu 0 Composite for Nickel Adsorption. ACS OMEGA 2023; 8:39186-39193. [PMID: 37901509 PMCID: PMC10600888 DOI: 10.1021/acsomega.3c04456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/28/2023] [Indexed: 10/31/2023]
Abstract
The current investigation deals with the treatment of water pollution that is caused by the leaching of nickel ions from the metallurgical industry and new-energy batteries. Therefore, an eco-friendly treatment of nickel through the use of a composite of cotton stalk biochar with nanozerovalent copper has been presented in this investigation signifying the impact of zerovalent copper in enhancing the adsorption capacity of biochar for nickel adsorption. Thermogravimetric analysis data showed the adsorbent to be significantly stable in the higher thermal range, whereas transmission electron microscopy analysis confirmed the particles to be 27 nm and also showed the cubic geometry of the particles. A much closer scanning electron microscopy analysis shows the morphology of particles to be cubic in shape. Batch adsorption indicated a positive influence of pH increase on adsorption due to the electrostatic attraction between positive nickel ions and post point of zero charge (pHPZC) negative surface of copper biochar composite (pH > 5.5). A high adsorption rate was observed in the first 60 min, whereas adsorption increased with the increase in temperature from 303 to 318 K. Kinetic modeling confirmed the pseudo-first-order to fit best to the data. The apparent activation energy (11.96 kJ mol-1) is indicative of the chemical nature of the process. The adsorption data fitted well to the Langmuir adsorption model. The negative values of apparent ΔG° and the positive values of apparent ΔH° indicate the spontaneity and endothermicity of the process, respectively, whereas the positive values of apparent ΔS° point toward increased randomness during the process. Postadsorption XPS suggests the adsorption of nickel on the surface of biochar composites in the form of Ni(OH)2 and NiO(OH).
Collapse
Affiliation(s)
- Salah Ud Din
- Department
of Chemistry, University of Azad Jammu and
Kashmir, Muzaffarabad 13100, Azad Kashmir, Pakistan
| | - Junaid Murtaza Awan
- Department
of Chemistry, University of Azad Jammu and
Kashmir, Muzaffarabad 13100, Azad Kashmir, Pakistan
| | - Muhammad Imran
- Department
of Environmental Sciences, COMSATS University
Islamabad, Vehari Campus, Vehari 61100, Pakistan
| | - Pervaiz Ahmad
- Department
of Physics, University of Azad Jammu and
Kashmir, 13100 Muzaffarabad, Pakistan
| | - Sirajul Haq
- Department
of Chemistry, University of Azad Jammu and
Kashmir, Muzaffarabad 13100, Azad Kashmir, Pakistan
| | - Sana Shakil
- Department
of Chemistry, University of Azad Jammu and
Kashmir, Muzaffarabad 13100, Azad Kashmir, Pakistan
| | - Kholoud Al-mugren
- Department
of Physics, College of Sciences, Princess
Nourah Bint Abdulrahman University, Riyadh 11144, Saudi Arabia
| | - Satam Alotibi
- Department
of Physics, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Abdulrahman I. Alharthi
- Department
of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Muhammad Sarfraz Khan
- Department
of Chemistry, University of Azad Jammu and
Kashmir, Muzaffarabad 13100, Azad Kashmir, Pakistan
| | - Mayeen Uddin Khandaker
- Centre
for Applied Physics and Radiation Technologies, School of Engineering
and Technology, Sunway University, Bandar Sunway 47500, Selangor, Malaysia
- Department
of General Educational Development, Faculty of Science and Information
Technology, Daffodil International University, DIU Rd, Dhaka 1341, Bangladesh
| |
Collapse
|
6
|
Li P, Zhu F, Weiping W, Zhou Y, Yao Y, Hong L, Zhu W, Hong C, Liu X, Chen H, Yu Y. Physicochemical properties and risk assessment of perishable waste primary products. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 337:117549. [PMID: 36934502 DOI: 10.1016/j.jenvman.2023.117549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/29/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Fertilization has become one of the most important ways to recycle perishable waste. In order to reveal the effect of the nutrient of the perishable waste primary products on the market and the possible impact of their application, 136 perishable waste primary products were sampled in nine cities in Zhejiang province, China. The result shows that these products have high nutrient content (average nutrient content was 5.00%). However, the conductivity (7.19 mS/cm) total soluble salt content (12.07%), and grease content (5.99%) were too high. The excessive salt and grease may cause harm to soil and crops, and become the main limiting factors for the fertilizer utilization of perishable waste. Heavy metal content of most of the samples met current commercial organic fertilizer standards, except that lead and chromium content of some samples exceeded the limit standard. Toluene, ethylbenzene, m & p-xylene were generally detected in the samples. These toxic and harmful substances have brought risks to the safe use of perishable waste into fertilizers.
Collapse
Affiliation(s)
- Penghao Li
- Zhejiang University of Technology, Hangzhou 310014 China; Institute of Environment, Resource, Soil & Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021 China
| | - Fengxiang Zhu
- Institute of Environment, Resource, Soil & Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021 China
| | - Wang Weiping
- Institute of Environment, Resource, Soil & Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021 China
| | - Ying Zhou
- Zhejiang University of Technology, Hangzhou 310014 China
| | - Yanlai Yao
- Institute of Environment, Resource, Soil & Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021 China
| | - Leidong Hong
- Institute of Environment, Resource, Soil & Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021 China
| | - Weijing Zhu
- Institute of Environment, Resource, Soil & Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021 China
| | - Chunlai Hong
- Institute of Environment, Resource, Soil & Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021 China.
| | - Xiaoxia Liu
- Zhejiang Cultivated Land Quality and Fertilizer Administration Station, Hangzhou 310019, China
| | - Hongjin Chen
- Zhejiang Cultivated Land Quality and Fertilizer Administration Station, Hangzhou 310019, China
| | - Yijun Yu
- Zhejiang Cultivated Land Quality and Fertilizer Administration Station, Hangzhou 310019, China
| |
Collapse
|
7
|
Lv T, Xu X, Lv G, Xu C, Wang G, Zhang S, Yang Z, Cheng Z, Cai J, Li T, Pu Y, Gan W, Pu Z, Xiao G. Green remediation of Ni, Zn, and Cu in an electroplating contaminated site by wood vinegar with optimization and risk assessment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 261:115108. [PMID: 37285674 DOI: 10.1016/j.ecoenv.2023.115108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/29/2023] [Accepted: 06/03/2023] [Indexed: 06/09/2023]
Abstract
Wood vinegar (WV) is a renewable organic compound, possessing characteristics such as high oxygenated compound content and low negative impact on soil. Based on its weak acid properties and complexing ability to potentially toxic elements (PTEs), WV was used to leach Ni, Zn, and Cu contaminated soil in electroplating sites. In addition, the response surface methodology (RSM) based on the Box-Behnken design (BBD) was established to clarify the interaction between each single factor, and finally completed the risk assessment of the soil. The amounts of PTEs leached from the soil climbed with the increase of WV concentration, liquid-solid ratio, and leaching time, while they surged with the decrease of pH. Under optimal leaching circumstances (the concentration of WV= 100 %; washing time= 919 min; pH= 1.00), the removal rates of Ni, Zn, and Cu could reach 91.7 %, 57.8 %, and 65.0 %, respectively, and the WV-extracted PTEs were mainly from the Fe-Mn oxides fraction. After leaching, the Nemerow integrated pollution index (NIPI) decreased from an initial value of 7.08 (indicating severe pollution) to 0.450 (indicating no pollution). The potential ecological risk index (RI) dropped from 274 (medium level) to 39.1 (low level). Additionally, the potential carcinogenic risk (CR) values reduced by 93.9 % for both adults and children. The results revealed that the washing process significantly reduced the pollution level, potential ecological risk, and health risk. Coupled with FTIR and SEM-EDS analysis, the mechanism of WV removal of PTEs could be explained from three aspects: acid activation, H+ ion exchange, and functional group complexation. In summary, WV is an eco-friendly and high-efficiency leaching material for the remediation of PTEs polluted sites, which will maintain soil function and protect human health.
Collapse
Affiliation(s)
- Tianying Lv
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoxun Xu
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Soil Environment Protection of Sichuan Province, Chengdu 611130, China.
| | - Guochun Lv
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China
| | - Changlian Xu
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China
| | - Guiyin Wang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Soil Environment Protection of Sichuan Province, Chengdu 611130, China
| | - Shirong Zhang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Soil Environment Protection of Sichuan Province, Chengdu 611130, China
| | - Zhanbiao Yang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Soil Environment Protection of Sichuan Province, Chengdu 611130, China
| | - Zhang Cheng
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China
| | - Junzhuo Cai
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China
| | - Ting Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Yulin Pu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Wenzhi Gan
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhien Pu
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Guangli Xiao
- Sichuan Keyuan Engineering Technology Testing Center Co., LTD, Chengdu 611130, China
| |
Collapse
|
8
|
Bayuo J, Rwiza MJ, Sillanpää M, Mtei KM. Removal of heavy metals from binary and multicomponent adsorption systems using various adsorbents - a systematic review. RSC Adv 2023; 13:13052-13093. [PMID: 37124024 PMCID: PMC10140672 DOI: 10.1039/d3ra01660a] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/19/2023] [Indexed: 05/02/2023] Open
Abstract
The ecosystem and human health are both significantly affected by the occurrence of potentially harmful heavy metals in the aquatic environment. In general, wastewater comprises an array of heavy metals, and the existence of other competing heavy metal ions might affect the adsorptive elimination of one heavy metal ion. Therefore, to fully comprehend the adsorbent's efficiency and practical applications, the abatement of heavy metals in multicomponent systems is important. In the current study, the multicomponent adsorption of heavy metals from different complex mixtures, such as binary, ternary, quaternary, and quinary solutions, utilizing various adsorbents are reviewed in detail. According to the systematic review, the adsorbents made from locally and naturally occurring materials, such as biomass, feedstocks, and industrial and agricultural waste, are effective and promising in removing heavy metals from complex water systems. The systematic study further discovered that numerous studies evaluate the adsorption characteristics of an adsorbent in a multicomponent system using various important independent adsorption parameters. These independent adsorption parameters include reaction time, solution pH, agitation speed, adsorbent dosage, initial metal ion concentration, ionic strength as well as reaction temperature, which were found to significantly affect the multicomponent sorption of heavy metals. Furthermore, through the application of the multicomponent adsorption isotherms, the competitive heavy metals sorption mechanisms were identified and characterized by three primary kinds of interactive effects including synergism, antagonism, and non-interaction. Despite the enormous amount of research and extensive data on the capability of different adsorbents, several significant drawbacks hinder adsorbents from being used practically and economically to remove heavy metal ions from multicomponent systems. As a result, the current systematic review provides insights and perspectives for further studies through the thorough and reliable analysis of the relevant literature on heavy metals removal from multicomponent systems.
Collapse
Affiliation(s)
- Jonas Bayuo
- School of Materials, Energy, Water, and Environmental Sciences (MEWES), The Nelson Mandela African Institution of Science and Technology (NM-AIST) P.O. Box 447 Arusha Tanzania
- Department of Science Education, School of Science, Mathematics, and Technology Education (SoSMTE), C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS) Postal Box 24 Navrongo Upper East Region Ghana
| | - Mwemezi J Rwiza
- School of Materials, Energy, Water, and Environmental Sciences (MEWES), The Nelson Mandela African Institution of Science and Technology (NM-AIST) P.O. Box 447 Arusha Tanzania
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg P. O. Box 17011 Doornfontein 2028 South Africa
| | - Kelvin Mark Mtei
- School of Materials, Energy, Water, and Environmental Sciences (MEWES), The Nelson Mandela African Institution of Science and Technology (NM-AIST) P.O. Box 447 Arusha Tanzania
| |
Collapse
|
9
|
Gao W, He W, Zhang J, Chen Y, Zhang Z, Yang Y, He Z. Effects of biochar-based materials on nickel adsorption and bioavailability in soil. Sci Rep 2023; 13:5880. [PMID: 37041179 PMCID: PMC10090136 DOI: 10.1038/s41598-023-32502-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/28/2023] [Indexed: 04/13/2023] Open
Abstract
The potential for toxic elements to contaminate soil has been extensively studied. Therefore, the development of cost-effective methods and materials to prevent toxic element residues in the soil from entering the food chain is of great significance. Industrial and agricultural wastes such as wood vinegar (WV), sodium humate (NaHA) and biochar (BC) were used as raw materials in this study. HA was obtained by acidizing NaHA with WV and then loaded onto BC, which successfully prepared a highly efficient modification agent for nickel-contaminated soil, namely biochar-humic acid material (BC-HA). The characteristics and parameters of BC-HA were obtained by FTIR, SEM, EDS, BET and XPS. The chemisorption of Ni(II) ions by BC-HA conforms to the quasi-second-order kinetic model. Ni(II) ions are distributed on the heterogeneous surface of BC-HA by multimolecular layer adsorption, which accords with the Freundlich isotherm model. WV promotes better binding of HA and BC by introducing more active sites, thus increasing the adsorption capacity of Ni(II) ions on BC-HA. Ni(II) ions in soil are anchored to BC-HA by physical and chemical adsorption, electrostatic interaction, ion exchange and synergy.
Collapse
Affiliation(s)
- Weichun Gao
- Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, 710075, China.
| | - Wei He
- Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, 710075, China
- School of Water Resources and Hydropower, Xi'an University of Technology, Xi'an, 710048, China
| | - Jun Zhang
- Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, 710075, China
| | - Yifei Chen
- Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, 710075, China
| | - Zhaoxin Zhang
- Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, 710075, China
| | - Yuxiao Yang
- College of Chemistry and Chemical Engineering, Shaanxi Key Research Laboratory of Chemical Additives, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Zhenjia He
- Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, 710075, China
| |
Collapse
|
10
|
Yu Y, Ding Y, Zhou C, Ge S. Aging of polylactic acid microplastics during hydrothermal treatment of sewage sludge and its effects on heavy metals adsorption. ENVIRONMENTAL RESEARCH 2023; 216:114532. [PMID: 36243048 DOI: 10.1016/j.envres.2022.114532] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/29/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Microplastics' (MPs) aging process and environmental behavior have attracted extensive attention due to the potential long-term ecological impact. MPs enriched in sludge may accelerate aging during sludge treatment and the affecting environmental behavior, i.e., adsorption performance for pollutants. However, the related studies have not been well researched, especially for the biodegradable MPs. This study revealed the influences of hydrothermal treatment on the characteristics of polylactic acid microplastics (PLA-MPs) and the consequences on heavy metals adsorption. The changes in PLA-MPs' physiochemical properties were characterized and compared. PLA-MPs' surface became irregular, and the oxygen-containing functional groups increased through FTIR and XPS analysis. Meanwhile, the molecular weight and crystallinity of PLA-MPs decreased significantly with the rising in hydrothermal temperature. Accordingly, the adsorption capacity of PLA-MPs for Pb2+ increased from 93.97 μg g-1 for the raw PLA-MPs to 1058.03 μg g-1 for the aged PLA-MPs. Multiple adsorption kinetics and isotherms were discussed for the Pb2+ adsorption onto PLA-MPs with different aging of the PLA-MPs. The adsorption mechanisms of Pb2+ relate to electrostatic interaction and complexation. The main difference is that the adsorption for raw PLA-MPs is dominated by physical and chemical adsorption, whereas the adsorption for the aged PLA-MPs prefers chemical adsorption. In addition, we carefully evaluated the influences of pH, dissolved organic matter, and ionic strength on the PLA-MPs adsorption. The present study highlighted the significance of hydrothermal treatment on the MPs aging and the adsorption performance.
Collapse
Affiliation(s)
- Yang Yu
- School of Energy and Environment, MOE Key Laboratory of Environmental Medicine Engineering, Southeast University, Nanjing, 210096, PR China.
| | - Yindi Ding
- School of Energy and Environment, MOE Key Laboratory of Environmental Medicine Engineering, Southeast University, Nanjing, 210096, PR China
| | - Cailing Zhou
- School of Energy and Environment, MOE Key Laboratory of Environmental Medicine Engineering, Southeast University, Nanjing, 210096, PR China
| | - Shifu Ge
- School of Energy and Environment, MOE Key Laboratory of Environmental Medicine Engineering, Southeast University, Nanjing, 210096, PR China
| |
Collapse
|
11
|
Benzothiophene Adsorptive Desulfurization onto trihexYl(tetradecyl)phosphonium Dicyanamide Ionic-Liquid-Modified Renewable Carbon: Kinetic, Equilibrium and UV Spectroscopy Investigations. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010298. [PMID: 36615492 PMCID: PMC9821798 DOI: 10.3390/molecules28010298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022]
Abstract
The negative environmental and industrial impacts of the presence of sulfur compounds such as benzothiophene in fuels have led to a greater interest in desulfurization research. In this work, carbon from palm waste sources was modified with trihexYl(tetradecyl)phosphonium dicyanamide-ionic liquid and characterized by SEM, EDS, XRD and FTIR to assess surface properties. Then, the prepared carbon and carbon modified with ionic liquid were evaluated for the adsorption of benzothiophene by investigating the effects of time. The equilibrium occurred after 120 min, recording adsorption capacities of 192 and 238 mg/g for carbon and carbon modified with ionic liquid, respectively. The effect of the adsorbent dose on the adsorption of benzothiophene was evaluated, indicating that the maximum adsorption capacities were obtained using a dose of 1 g/L for both carbon and carbon modified with ionic liquid. The kinetic investigation for the adsorption of benzothiophene onto carbon and carbon modified with ionic liquid indicated that the second-order kinetic model is well fitted with the adsorption data rather than the first-order kinetic model. The equilibrium investigations for the adsorption of benzothiophene onto carbon and carbon modified with ionic liquid with Langmuir and Freundlich isotherm models reveals that the Freundlich model is the most suitable for describing the adsorption process, suggesting a multilayer adsorption mechanism. The desulfurization process showed a high impact on environmental safety due to the possibility of regenerating and reusing the prepared adsorbents with promising results up to five cycles.
Collapse
|
12
|
Wang X, Liu X, Wang Z, Sun G, Li J. Greenhouse gas reduction and nitrogen conservation during manure composting by combining biochar with wood vinegar. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116349. [PMID: 36179479 DOI: 10.1016/j.jenvman.2022.116349] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
The constant greenhouse gases (GHGs) and ammonia emissions during pig manure (PM) composting have made large contributions to air pollution and global temperature rise. This study aimed to evaluate the addition of biochar (B) and wood vinegar (WV) to reduce GHGs emissions and improve nitrogen retention and microbial activities during PM composting. Different treatments, carried out under a 1:2 ratio (dry weight) of PM and sawdust mixture with the addition of B (5%) and various proportions of WV, include a control treatment (CT) without the addition of B and WV and, B, B+0.5%WV, B+1.0%WV, B+1.5%WV, and B+2.0%WV treatments. The results indicated that the addition of B could accelerate the composting process in contrast to CT. In addition, various amounts of WV with B decreased NH3, CO2, CH4 and N2O emissions by 18.82-35.88%, 1.38-15.39%, 16.98-62.73%, and 4.47-19.91%, respectively. Furthermore, in contrast to the B treatment, WV addition was more effective in decreasing GHGs and NH3 emissions, and the B+1.0% WV treatment displayed the lowest nitrogen loss (2.12%) and GHGs emissions (11.62 g/kg). The bacterial community analysis demonstrated that synergistic application of WV and B can increase the relative abundance of Proteobacteria which can contribute to nitrogen fixation and reduction of nitrogen loss. The results proved that combining B with WV can be a feasible strategy to effectively reduce GHGs emissions and improve nitrogen conservation in the composting industry.
Collapse
Affiliation(s)
- Xiuzhang Wang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China; Western Scientific Observing and Research Station for Development and Utilization of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, PR China
| | - Xiao Liu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China; Western Scientific Observing and Research Station for Development and Utilization of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, PR China
| | - Ziqi Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Guotao Sun
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China; Western Scientific Observing and Research Station for Development and Utilization of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, PR China.
| | - Jianming Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
13
|
Yousif Abdellah YA, Shi ZJ, Luo YS, Hou WT, Yang X, Wang RL. Effects of different additives and aerobic composting factors on heavy metal bioavailability reduction and compost parameters: A meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119549. [PMID: 35644429 DOI: 10.1016/j.envpol.2022.119549] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Additives are considered a promising approach to accelerate the composting process and alleviate the dissemination of pollutants to the environment. However, nearly all previous articles have focused on the impact of additive amounts on the reduction of HMs, which may not fully represent the main factor shaping HMs bioavailability status during composting. Simultaneously, previous reviews only explored the impacts, speciation, and toxicity mechanism of HMs during composting. Hence, a global-scale meta-analysis was conducted to investigate the response patterns of HMs bioavailability and compost parameters to different additives, composting duration, and composting factors (additive types, feedstock, bulking agents, and composting methods) by measuring the weighted mean values of the response ratio "[ln (RR)]" and size effect (%). The results revealed that additives significantly lessened HMs bioavailability by ≥ 40% in the final compost products than controls. The bioavailability decline rates were -40%, -60%, -57%, -55%, -42%, and -44% for Zn, Pb, Ni, Cu, Cr, and Cd. Simultaneously, additives significantly improved the total nitrogen (TN) (+16%), pH (+5%), and temperature (+5%), and decreased total organic carbon (TOC) (-17%), moisture content (MC) (-18%), and C/N ratio (-19%). Furthermore, we found that the prolongation of composting time significantly promoted the effect of additives on declining HMs bioavailability (p < 0.05). Nevertheless, increasing additive amounts revealed an insignificant impact on decreasing the HMs bioavailability (p > 0.05). Eventually, using zeolite as an additive, chicken manure as feedstock, sawdust as a bulking agent, and a reactor as composting method had the most significant reduction effect on HMs bioavailability (p < 0.05). The findings of this meta-analysis may contribute to the selection, modification, and application of additives and composting factors to manage the level of bioavailable HMs in the compost products.
Collapse
Affiliation(s)
| | - Zhao-Ji Shi
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Yu-Sen Luo
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou, 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
| | - Wen-Tao Hou
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou, 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
| | - Xi Yang
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou, 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
| | - Rui-Long Wang
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou, 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan, 517000, China.
| |
Collapse
|
14
|
Zhang T, Wu X, Shaheen SM, Abdelrahman H, Ali EF, Bolan NS, Ok YS, Li G, Tsang DCW, Rinklebe J. Improving the humification and phosphorus flow during swine manure composting: A trial for enhancing the beneficial applications of hazardous biowastes. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127906. [PMID: 34891020 DOI: 10.1016/j.jhazmat.2021.127906] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/14/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
Improving the recovery of organic matter and phosphorus (P) from hazardous biowastes such as swine manure using acidic substrates (ASs) in conjunction with aerobic composting is of great interest. This work aimed to investigate the effects of ASs on the humification and/or P migration as well as on microbial succession during the swine manure composting, employing multivariate and multiscale approaches. Adding ASs, derived from wood vinegar and humic acid, increased the degree of humification and thermal stability of the compost. The 31P nuclear magnetic resonance spectroscopy and X-ray absorption near-edge structure analyses demonstrated compost P was in the form of struvite crystals, Ca/Al-P phases, and Poly-P (all inorganic P species) as well as inositol hexakisphosphate and Mono-P (organophosphorus species). However, the efficiency of P recovery could be improved by generating more struvite by adding the ASs. The flows among nutrient pools resulted from the diversity in the dominant microbial communities in different composting phases after introducing the ASs and appearance of Bacillus spp. in all phases. These results demonstrate the potential value of ASs for regulating and/or improving nutrients flow during the composting of hazardous biowastes for producing higher quality compost, which may maximize their beneficial benefits and applications.
Collapse
Affiliation(s)
- Tao Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| | - Xiaosha Wu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516 Kafr El-Sheikh, Egypt.
| | - Hamada Abdelrahman
- Cairo University, Faculty of Agriculture, Soil Science Department, Giza 12613, Egypt
| | - Esmat F Ali
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Nanthi S Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI), Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Energy, and Geoinformatics, Sejong University, Seoul 05006, Republic of Korea.
| |
Collapse
|
15
|
Zhu J, Gao W, Ge L, Zhao W, Zhang G, Niu Y. Immobilization properties and adsorption mechanism of nickel(II) in soil by biochar combined with humic acid-wood vinegar. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 215:112159. [PMID: 33799133 DOI: 10.1016/j.ecoenv.2021.112159] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 03/05/2021] [Accepted: 03/14/2021] [Indexed: 06/12/2023]
Abstract
Biochar (BC) combined with humic acid (HA) and wood vinegar (WV) was designed and prepared as an inexpensive, effective, and environmentally friendly immobilization material (BHW) for metal-polluted soil. The influences of the wood vinegar and humic acid on the immobilization properties and adsorption mechanism of this new material were also investigated. The remediation performance was evaluated using a laboratory-made, nickel-contaminated soil with a Ni2+ concentration of 200 mg per kg surface soil (top 20 cm from agricultural land). The results indicated that the immobilization ratio sequence of nickel (II) in the soil was BC< BH< BHW. The maximum adsorption capacity increased in the same order: BC< BH< BHW. All three adsorption isotherms were better fitted by the Freundlich model, which were consistent with the surface heterogeneity of the remediation materials. The cause of this surface heterogeneous migration may be due to the increase in oxygen-containing groups in the BC introduced by the HA and WV. The WV can increase the number of the oxygen-containing groups in the BC combined with HA, which enhanced the adsorption and immobilization of Ni2+ ions. The results suggested that BHW is recommended for the remediation of metal-contaminated soils, because of its high efficacy, economic feasibility, environmental and food safety.
Collapse
Affiliation(s)
- Junfeng Zhu
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, the Ministry of Natural Resources of the People's Republic of China, 710075, China; Shaanxi Key Research Laboratory of Chemical Additives, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China.
| | - Weichun Gao
- Shaanxi Key Research Laboratory of Chemical Additives, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Lei Ge
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, the Ministry of Natural Resources of the People's Republic of China, 710075, China
| | - Wentian Zhao
- Shaanxi Key Research Laboratory of Chemical Additives, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Guanghua Zhang
- Shaanxi Key Research Laboratory of Chemical Additives, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Yuhua Niu
- Shaanxi Key Research Laboratory of Chemical Additives, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|
16
|
Zhu J, Gao W, Zhao W, Ge L, Zhu T, Zhang G, Niu Y. Wood vinegar enhances humic acid-based remediation material to solidify Pb(II) for metal-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:12648-12658. [PMID: 33089460 DOI: 10.1007/s11356-020-11202-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
Heavy metal lead is a typical widespread potentially toxic element (PET) contamination due to their extensive and wide applications in industrial processes. The development of cost-effective methods for preventing potentially toxic element lead residues from soil into food is thus highly desirable. A new type of humic acid-based remediation material (HA/WV) incorporating humic acid salt (HA), biochar powder (BC), and wood vinegar (WV), which is a cheap and environmentally friendly industrial by-product from charcoal processing, was prepared and evaluated. The results showed that 0.10 g remediation material HA/WV with a mass ratio of 1:1 was added to 1 kg surface soil of 0-20 cm from agricultural land contaminated by 300 mg Pb2+, the reduction ratio of available Pb in soil can reach 61.4%. Especially, wood vinegar can enhance the reduction ratio of available Pb by at least 14.7% over without wood vinegar. Furthermore, according to the analysis of adsorption interaction and the electrostatic attraction between Pb(II) and oxygen-containing functional groups on HA/WV are the dominant mechanisms responsible for Pb(II) sorption. The wood vinegar liquid can improve the oxygen-containing group in HA/WV, which can enhance the complexation of remediation materials and Pb(II) ion.
Collapse
Affiliation(s)
- Junfeng Zhu
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, The Ministry of Natural Resources, Xi'an, 710075, China.
- College of Chemistry and Chemical Engineering, Shaanxi Key Research Laboratory of Chemical Additives, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Weichun Gao
- College of Chemistry and Chemical Engineering, Shaanxi Key Research Laboratory of Chemical Additives, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Wentian Zhao
- College of Chemistry and Chemical Engineering, Shaanxi Key Research Laboratory of Chemical Additives, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Lei Ge
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, The Ministry of Natural Resources, Xi'an, 710075, China
| | - Ting Zhu
- College of Chemistry and Chemical Engineering, Shaanxi Key Research Laboratory of Chemical Additives, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Guanghua Zhang
- College of Chemistry and Chemical Engineering, Shaanxi Key Research Laboratory of Chemical Additives, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Yuhua Niu
- College of Chemistry and Chemical Engineering, Shaanxi Key Research Laboratory of Chemical Additives, Shaanxi University of Science & Technology, Xi'an, 710021, China
| |
Collapse
|
17
|
Maliang H, Wang P, Chen A, Liu H, Lin H, Ma J. Bamboo Tar as a Novel Fungicide: Its Chemical Components, Laboratory Evaluation, and Field Efficacy Against False Smut and Sheath Blight of Rice and Powdery Mildew and Fusarium Wilt of Cucumber. PLANT DISEASE 2021; 105:331-338. [PMID: 32772833 DOI: 10.1094/pdis-06-20-1157-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The application of agricultural and forest residues can benefit the environment and the economy; however, they also generate a large amount of byproducts. In this study, bamboo tar (BT), a waste product of bamboo charcoal production, was dissolved in natural ethanol and the surfactant alkyl glucoside to manufacture a 50% (wt/wt) BT emulsifiable concentrate (BTEC) biopesticide. BTEC was screened for fungicidal activity against pathogens. The greatest activity was seen against Ustilaginoidea virens with a half-maximal effective concentration (EC50) value of 6 mg/liter. Four phytopathogenic fungi, Podosphaera xanthii, Rhizoctonia solani, Fusarium oxysporum, and Botrytis cinerea, showed EC50 values of <60 mg/liter. Greenhouse tests in vivo showed 2,000 mg/liter BTEC had a 78.4% protective effect against U. virens, and replicated treatments had an 80.6% protective effect. In addition, replicated 2-year field trials were conducted in two geographic locations with four plant diseases: false smut (U. virens), rice sheath blight (Thanatephorus cucumeris [Frank] Donk), cucumber powdery mildew (P. xanthii), and cucumber Fusarium wilt (F. oxysporum). Results showed that 1,000 to 2,000 mg/liter BTEC significantly inhibited these diseases. Gas chromatography-mass spectrometry analysis showed that the total phenolic mass fractions of two BT samples were 45.39 and 48.26%. Eleven components were detected, and their percentage content was as follows (from high to low): 2,6-dimethoxyphenol > 2- or 4-ethylphenol > 2- or 4-methylphenol > phenol > 4-ethylguaiacol > dimethoxyphenol > 4-methylguaiacol > 4-propenyl-2,6-dimethoxyphenol > 2,4-dimethylphenol. Some of the phenolic compounds identified from the tar might be fungicidally active components. BT is a biochar waste, which has potential as a biofungicide and has promise in organic agriculture. The value of this tar may not be because of any fundamental physical differences from other synthetic fungicides but rather caused by reduced production expenses and more efficient use of waste products.
Collapse
Affiliation(s)
- Huidong Maliang
- School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an 311300, P.R. China
| | - Pinwei Wang
- School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an 311300, P.R. China
| | - Anliang Chen
- School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an 311300, P.R. China
| | - Hongbo Liu
- School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an 311300, P.R. China
| | - Haiping Lin
- School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an 311300, P.R. China
| | - Jianyi Ma
- School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an 311300, P.R. China
| |
Collapse
|
18
|
Kang C, Li Q, Yi H, Deng H, Mo W, Meng M, Huang S. EDTAD-modified cassava stalks loaded with Fe 3O 4: highly efficient removal of Pb 2+ and Zn 2+ from aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:6733-6745. [PMID: 33006734 DOI: 10.1007/s11356-020-10858-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
In this study, a novel magnetic cassava stalk composite (M-EMCS) was prepared through modification with ethylenediamine tetraacetic anhydride (EDTAD) and loading of Fe3O4. The surface morphology, molecular structure, and magnetic characteristics of the composite were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), vibrating-sample magnetometer (VSM), and X-ray diffraction (XRD). It was shown that EDTAD and Fe3O4 were successfully modified and loaded in cassava straw (CS), respectively. The capacity of M-EMCS to absorb heavy metals under different influencing factors was tested by atomic absorption spectroscopy. The adsorption processes of both Pb2+ and Zn2+ were suitably described by second-order kinetic models and Langmuir models, indicating monolayer chemisorption. M-EMCS had high adsorption rates and adsorption capacities for these two metal ions. The adsorption of Pb2+ and Zn2+ reached a plateau after 10 min, and the adsorption capacity of Pb2+ (163.93 mg/g) was higher than that of Zn2+ (84.74 mg/g). Thermodynamic analysis showed that the adsorption of two metals by M-EMCS was spontaneous, endothermic, and irreversible. XPS analysis showed that M-EMCS mainly removes Pb2+ and Zn2+ through ion exchange, chelation, and redox. Graphical abstract.
Collapse
Affiliation(s)
- Caiyan Kang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin, 541004, China.
- Department of Education, Key Laboratory of Karst Ecology and Environment Change of Guangxi, Guangxi Normal University, Guilin, 541004, China.
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin, 541004, China.
- College of Environment and Resources, Guangxi Normal University, Guilin, 541004, China.
| | - Qiuyan Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin, 541004, China
- College of Environment and Resources, Guangxi Normal University, Guilin, 541004, China
| | - Hui Yi
- College of Environment and Resources, Guangxi Normal University, Guilin, 541004, China
| | - Hua Deng
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin, 541004, China.
- Department of Education, Key Laboratory of Karst Ecology and Environment Change of Guangxi, Guangxi Normal University, Guilin, 541004, China.
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin, 541004, China.
- College of Environment and Resources, Guangxi Normal University, Guilin, 541004, China.
| | - Weiming Mo
- School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, China
| | - Mianwu Meng
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin, 541004, China
- Department of Education, Key Laboratory of Karst Ecology and Environment Change of Guangxi, Guangxi Normal University, Guilin, 541004, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin, 541004, China
- College of Environment and Resources, Guangxi Normal University, Guilin, 541004, China
| | - Siyu Huang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin, 541004, China
- Department of Education, Key Laboratory of Karst Ecology and Environment Change of Guangxi, Guangxi Normal University, Guilin, 541004, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin, 541004, China
- College of Environment and Resources, Guangxi Normal University, Guilin, 541004, China
| |
Collapse
|
19
|
Exogenous bamboo pyroligneous acid improves antioxidant capacity and primes defense responses of harvested apple fruit. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Zheng H, Wang R, Zhang Q, Zhao J, Li F, Luo X, Xing B. Pyroligneous acid mitigated dissemination of antibiotic resistance genes in soil. ENVIRONMENT INTERNATIONAL 2020; 145:106158. [PMID: 33038622 DOI: 10.1016/j.envint.2020.106158] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
Strategies to mitigate the spread of antibiotic resistance genes (ARGs) in soils are urgently needed. Therefore, a pristine pyroligneous acid (PA) from pyrolyzing blended woody waste at 450 °C and its three fractions distilled at 98, 130, and 220 °C (F1, F2, and F3) were used to evaluate their feasibility of reducing ARGs in soil. Application of PA, F2, and F3 effectively decreased the relative ARG abundance by 22.4-75.4% and 39.7-66.7% in the rhizosphere and bulk soil relative to control, respectively, and the removal efficiency followed an order of F3 > PA > F2. Contrarily, F1 increased the abundance of ARGs. The decreased abundance of two mobile genetic elements and impaired conjugative transfer of RP4 plasmid in the presence of PA, F2 and F3 demonstrated that the weakened horizontal gene transfer (HGT) contributed to the reduced ARG level. Variation partitioning analysis and structural equation models confirmed that ARG reduction was primarily driven by the weakened HGT, followed by the decreased co-selection of heavy metals and shifted bacterial community (e.g., reduced potential host bacteria of ARGs). Our findings provide practical and technical support for developing PA-based technology in remediating ARG-contaminated soil to ensure food safety and protect human health.
Collapse
Affiliation(s)
- Hao Zheng
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100 China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Ruirui Wang
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100 China
| | - Qian Zhang
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100 China
| | - Jian Zhao
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100 China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Fengmin Li
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100 China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Xianxiang Luo
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100 China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
21
|
Xue C, Zhang Q, Owens G, Chen Z. A cellulose degrading bacterial strain used to modify rice straw can enhance Cu(II) removal from aqueous solution. CHEMOSPHERE 2020; 256:127142. [PMID: 32464362 DOI: 10.1016/j.chemosphere.2020.127142] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 03/26/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
The development of lignocellulose-based adsorbents for the removal of heavy metals from wastewater has attracted much recent attention. In this work, a high-yield cellulose bacterial strain Comamonas testosteroni FJ17 was evaluated for its capacity to modify rice straw towards increased Cu(II) removal. For optimum modification time (45.5 h), inoculum concentration (1.25%), and rice straw dose (12.6 g L-1) the optimized adsorption capacity was 28.4 mg g-1. After strain FJ17 modification the equilibrium adsorption percentage of rice straw for Cu(II) increased from 6.6 to 27.4% at an initial concentration of 100 mg L-1. This increase was attributed to an increase in rice straw surface modification, leading to improved adsorption ability. SEM-EDS indicated that, following strain FJ17 treatment, the surface of the rice straw became more disintegrated and the specific surface area consequentially increased from 1.9 to 3.7 m2 g-1. FTIR analysis also showed new functional groups (carbonyl) appearing, and CC and CH3CR functionality being enhanced after biomodification. Functional groups associated with the benzene ring, silicified polymer and carbohydrates were all involved in the adsorption process. Adsorption of Cu was well described by the Freundlich isotherm model (R2 > 0.98) where adsorption was endothermic with potential for both chemical and physical interactions to coexist. Reusability experiments showed that the removal efficiency of Cu(II) decreased from 96.9 to 73.2% after five cycles. Overall C.testosteroni-treated rice straw had significant potential as a heavy metal biosorbent.
Collapse
Affiliation(s)
- Chao Xue
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, Fujian Province, China
| | - Qu Zhang
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, Fujian Province, China
| | - Gary Owens
- Environmental Contaminants Group, Future Industries Institute, University of South Australian, Mawson Lakes, SA 5095, Australia
| | - Zuliang Chen
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, Fujian Province, China.
| |
Collapse
|
22
|
Hua D, Fan Q, Zhao Y, Xu H, Chen L, Si H, Li Y. Continuous Anaerobic Digestion of Wood Vinegar Wastewater From Pyrolysis: Microbial Diversity and Functional Genes Prediction. Front Bioeng Biotechnol 2020; 8:923. [PMID: 32850755 PMCID: PMC7422680 DOI: 10.3389/fbioe.2020.00923] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/17/2020] [Indexed: 01/21/2023] Open
Abstract
Wood vinegar wastewater (WVWW) is the main by-product of biomass pyrolysis process, which is more suitable to use anaerobic digestion (AD) to achieve energy recovery due to its large amount of organic matter. In this study, the up-flow anaerobic sludge bed (UASB) reactor was used to investigate the continuous anaerobic transformation of WVWW with gradient concentrations (0.3, 0.675, 1, 2, 3, 4, 5, 6, and 7 g COD/L). Then, the changes of microbial community, diversity index and functional gene were analyzed in detail. The results revealed that WVWW showed good AD performance in continuous fermentation. WVWW of organic loading rate (OLR) of >8.58 g COD/L⋅d showed severe inhibition on biodegradability and methane production, which is mainly due to the toxic substances as compared with the control group. The bacterial communities were dominated by phyla of Chloroflexi, Firmicutes, Proteobacteria, Acidobacteria, Synergistetes, and Actinobacteria. The gene abundances related to energy production, carbohydrate transport and metabolism were relatively high, which are mainly responsible for carbon forms conversion and carbohydrate degradation. This study will provide a basis for the screening and enrichment of functional bacteria and genes.
Collapse
Affiliation(s)
- Dongliang Hua
- Shandong Provincial Key Laboratory of Biomass Gasification Technology, Shandong Academy of Sciences, Energy Research Institute, Qilu University of Technology, Jinan, China
| | - Qingwen Fan
- Shandong Provincial Key Laboratory of Biomass Gasification Technology, Shandong Academy of Sciences, Energy Research Institute, Qilu University of Technology, Jinan, China
| | - Yuxiao Zhao
- Shandong Provincial Key Laboratory of Biomass Gasification Technology, Shandong Academy of Sciences, Energy Research Institute, Qilu University of Technology, Jinan, China
| | - Haipeng Xu
- Shandong Provincial Key Laboratory of Biomass Gasification Technology, Shandong Academy of Sciences, Energy Research Institute, Qilu University of Technology, Jinan, China
| | - Lei Chen
- Shandong Provincial Key Laboratory of Biomass Gasification Technology, Shandong Academy of Sciences, Energy Research Institute, Qilu University of Technology, Jinan, China
| | - Hongyu Si
- Shandong Provincial Key Laboratory of Biomass Gasification Technology, Shandong Academy of Sciences, Energy Research Institute, Qilu University of Technology, Jinan, China
| | - Yan Li
- Shandong Provincial Key Laboratory of Biomass Gasification Technology, Shandong Academy of Sciences, Energy Research Institute, Qilu University of Technology, Jinan, China.,State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
23
|
Mao R, Lang M, Yu X, Wu R, Yang X, Guo X. Aging mechanism of microplastics with UV irradiation and its effects on the adsorption of heavy metals. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:122515. [PMID: 32197203 DOI: 10.1016/j.jhazmat.2020.122515] [Citation(s) in RCA: 389] [Impact Index Per Article: 97.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/20/2020] [Accepted: 03/09/2020] [Indexed: 05/22/2023]
Abstract
Microplastics are formed by the degradation of plastic wastes under the action of physicochemical mechanisms in environment, and they are becoming a new type of pollutant that is attractings global attention. However, research on the aging characteristics and mechanism of microplastics is limited. The aging mechanism of Polystyrene (PS) with UV irradiation under different conditions (air, pure water and seawater) and the effect of aging on heavy metal adsorption were studied. The results show that PS have different characteristics with UV irradiation under different conditions, and the aging of PS is the most obvious in air. Based on the 2D-COS analysis, different aging mechanisms were identified under different aging conditions, aging sequence of aged PS functional groups in air and water were clearly definited. An isothermal adsorption model shows that aging can significantly increase the adsorption of heavy metals by PS. The adsorption of heavy metals is also affected by different aging methods. Over all, a 2D-COS analysis was an effective method for understanding the aging process of PS. These results further clarify the aging mechanism of PS, and provides a theoretical basis for the assessment of environmental behavior and ecological risk when microplastics and heavy metals coexist.
Collapse
Affiliation(s)
- Ruofan Mao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mengfan Lang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoqin Yu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Renren Wu
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, MEE, Guangzhou 510655, PR China.
| | - Xiaomei Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
24
|
Mudhoo A, Ramasamy DL, Bhatnagar A, Usman M, Sillanpää M. An analysis of the versatility and effectiveness of composts for sequestering heavy metal ions, dyes and xenobiotics from soils and aqueous milieus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 197:110587. [PMID: 32325327 DOI: 10.1016/j.ecoenv.2020.110587] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/13/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
The persistence and bioaccumulation of environmental pollutants in water bodies, soils and living tissues remain alarmingly related to environmental protection and ecosystem restoration. Adsorption-based techniques appear highly competent in sequestering several environmental pollutants. In this review, the recent research findings reported on the assessments of composts and compost-amended soils as adsorbents of heavy metal ions, dye molecules and xenobiotics have been appraised. This review demonstrates clearly the high adsorption capacities of composts for umpteen environmental pollutants at the lab-scale. The main inferences from this review are that utilization of composts for the removal of heavy metal ions, dye molecules and xenobiotics from aqueous environments and soils is particularly worthwhile and efficient at the laboratory scale, and the adsorption behaviors and effectiveness of compost-type adsorbents for agrochemicals (e.g. herbicides and insecticides) vary considerably because of variabilities in structure, topology, bond connectivity, distribution of functional groups and interactions of xenobiotics with the active humic substances in composts. Compost-based field-scale remediation of environmental pollutants is still sparse and arguably much challenging to implement if, furthermore, real-world soil and water contamination issues are to be addressed effectively. Hence, significant research and process development efforts should be promptly geared and intensified in this direction by extrapolating the lab-scale findings in a cost-effective manner.
Collapse
Affiliation(s)
- Ackmez Mudhoo
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit, 80837, Mauritius.
| | - Deepika Lakshmi Ramasamy
- Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology, Sammonkatu 12, FI-50130, Mikkeli, Finland
| | - Amit Bhatnagar
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Muhammad Usman
- PEIE Research Chair for the Development of Industrial Estates and Free Zones, Center for Environmental Studies and Research, Sultan Qaboos University, Al-Khoud 123, Muscat, Oman
| | - Mika Sillanpää
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam; School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, 4350, QLD, Australia.
| |
Collapse
|
25
|
Zhang Y, Wang X, Liu B, Liu Q, Zheng H, You X, Sun K, Luo X, Li F. Comparative study of individual and Co-Application of biochar and wood vinegar on blueberry fruit yield and nutritional quality. CHEMOSPHERE 2020; 246:125699. [PMID: 31884234 DOI: 10.1016/j.chemosphere.2019.125699] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/06/2019] [Accepted: 12/16/2019] [Indexed: 06/10/2023]
Abstract
Biochar and its by-product, wood vinegar, have attracted extensive attention owing to their great potentials in improving degraded soil, which is a global concern because of the threats to soil productivity and food security. However, the effect of biochar or wood vinegar on blueberry production is unknown. Therefore, a field trial was conducted to investigate the effects of individual and co-application of biochar (BC450) and wood vinegar (WV450) derived from blended wood waste on the blueberry tree (Vaccinium corymbosum L.) growth, fruit yield, appearance, and nutritional quality as well as the soil properties and nutrient availability. Regardless of individual or co-application, all the amendments had little effect on tree growth. Although BC450 and WV450 increased the fruit yield, the differences between the amended treatments were non-significant. Both the amendments had little effect on the apparent fruit quality, but improved the nutritional quality has been improved (e.g., increased vitamin C and decreased titratable acidity). Additionally, the individual or co-application of BC450 and WV450 had little effect on soil properties (except for soil organic matter), but increased the soil nutrient availability (e.g., NH4+-N, NO3⁻-N, and Mg). The enhancement in the nutritional quality of the blueberry fruit can be mainly attributed to the increased nutrient availability. This is the first preliminary study that demonstrates that the individual or co-application of biochar and wood vinegar can be a potential strategy for reclaiming degraded soil and enhancing blueberry production.
Collapse
Affiliation(s)
- Yuchan Zhang
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Xiao Wang
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Bingjie Liu
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Qiang Liu
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Hao Zheng
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Xiangwei You
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Ke Sun
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Xianxiang Luo
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Fengmin Li
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| |
Collapse
|
26
|
Sun H, Feng Y, Xue L, Mandal S, Wang H, Shi W, Yang L. Responses of ammonia volatilization from rice paddy soil to application of wood vinegar alone or combined with biochar. CHEMOSPHERE 2020; 242:125247. [PMID: 31896173 DOI: 10.1016/j.chemosphere.2019.125247] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/11/2019] [Accepted: 10/25/2019] [Indexed: 06/10/2023]
Abstract
Wood vinegar (WV) was applied alone or combined with biochar (BC) to observe their efficiency on suppressing the ammonia (NH3) volatilization from rice paddy soil. Five treatments, i.e., control (240 kg N ha-1 applied in urea), WV-5 and WV-10 (240 kg N ha-1 plus 5 and 10 t WV ha-1, respectively), and their counterparts WV-5-BC and WV-10-BC (WV-5 and WV-10 plus 7 t BC ha-1), were evaluated by a soil columns experiment. The N fertilizer was split applied as basal and two supplementary fertilizations (named BF, SF1 and SF2, respectively). The results showed that WV-5 treatment increased rice grain yield up to 11.2% compared to the control. Compared with the control, four WV-amended treatments, exhibited lower pH values of the floodwater (7.94-8.18 vs 8.47 and 7.85-7.91 vs 7.98) and the topsoil (6.52-6.76 vs 6.82 and 6.82-6.92 vs 6.99) during the BF and SF1 periods. Both WV-5 and WV-10 increased the NH4+-N contents of topsoil by 10.9-17.8% and 16.1-36.2% after BF and SF1, respectively, than control treatment. Additionally, the floodwater of the WV-amended treatments had higher NH4+-N concentration than control during the first three days after N fertilization, which can be attributed to the stimulating effect of WV on soil urease enzyme activity. WV did not effectively reduce NH3 volatilization as hypothesized. Interestingly, four WV-amended had relatively reduced the yield-scale NH3 volatilization by 13.6% than the control. It is suggested that WV needs to be applied with BC at a moderate rate to achieve optimum rice yield and mitigate NH3 volatilization.
Collapse
Affiliation(s)
- Haijun Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
| | - Yanfang Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212001, China; Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA.
| | - Lihong Xue
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212001, China.
| | - Sanchita Mandal
- Future Industries Institute, Building X, University of South Australia, Mawson Lakes, SA, 5095, Australia; Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| | - Hailong Wang
- Zhejiang Province Key Laboratory of Soil Contamination and Bioremediation, Zhejiang A&F University, Hangzhou, 311300, China; Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China.
| | - Weiming Shi
- School of Food Science and Engineering, Foshan University, Foshan, Guangdong, 528000, China.
| | - Linzhang Yang
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| |
Collapse
|
27
|
Wang H, Wang Z, Yue R, Gao F, Ren R, Wei J, Wang X, Kong Z. Functional group-rich hyperbranched magnetic material for simultaneous efficient removal of heavy metal ions from aqueous solution. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121288. [PMID: 31581011 DOI: 10.1016/j.jhazmat.2019.121288] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/06/2019] [Accepted: 09/22/2019] [Indexed: 06/10/2023]
Abstract
In order to achieve the purpose of simultaneous removal of coexisting heavy metal ions, in this work, functionalized magnetic mesoprous nanomaterials (Fe3O4-HBPA-ASA) with high density and multiple adsorption sites were designed and prepared. The obtained Fe3O4-HBPA-ASA was characterized by SEM, FTIR, VSM, TGA and zeta potential. Cu(II), Pb(II) and Cd(II) were chosen as the model heavy metal ions, the adsorption experiments showed that Fe3O4-HBPA-ASA showed hightheoretical adsorption capacitiesin individual system, and the maximum adsorption capacity was 136.66 mg/g, 88.36 mg/g and 165.46 mg/g, respectively. In the binary and ternary systems, the competitive adsorption leads to a decrease in the adsorption capacity of Cu(II), Pb(II) and Cd(II). However, in the ternary system with a concentration lower than 15 mg/L, the simultaneous removal rate was still higher than 90%. The adsorption isotherms and kineticswere well fitted by Langmuir and pseudo-second-order models, respectively. The XPS and density functional theory (DFT) analysis have confirmed that the adsorption of metal ions was related to various types of functional groups on the surface of Fe3O4-HBPA-ASA, while the adsorption mechanisms of Cu(II), Cd(II) and Pb(II) were different.
Collapse
Affiliation(s)
- Huicai Wang
- School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387, China; State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China.
| | - Zhenwen Wang
- School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China; State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China
| | - Ruirui Yue
- School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387, China; State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China
| | - Feng Gao
- School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China; State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China
| | - Ruili Ren
- School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387, China; State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China
| | - Junfu Wei
- School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387, China; State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China
| | - Xiaolei Wang
- School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China; State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China
| | - Zhiyun Kong
- School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China; State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China
| |
Collapse
|
28
|
Wang Q, Zhang Y, Wangjin X, Wang Y, Meng G, Chen Y. The adsorption behavior of metals in aqueous solution by microplastics effected by UV radiation. J Environ Sci (China) 2020; 87:272-280. [PMID: 31791500 DOI: 10.1016/j.jes.2019.07.006] [Citation(s) in RCA: 208] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/08/2019] [Accepted: 07/10/2019] [Indexed: 05/23/2023]
Abstract
Microplastics are considered as the carrier to heavy metals in the environment. But the sorption ability of microplastics influenced by photo-aging is remaining unclear. In the present study, the sorption of two kinds of metal ions (Cu2+ and Zn2+) in the aqueous solution by both the virgin and aged microplastics was investigated. Polyethylene terephthalate (PET) debris, one of the typical kinds of microplastics was chosen in this study. Photo-aging of microplastics in environment was simulated using UV radiation in the laboratory. Date analysis indicated that the aged microplastics had higher adsorption capacity of heavy metals than original ones. This could be related to the increased surface area and oxygen containing function appeared in the surface of aged microplastics after UV radiation. When prolonging the time of radiation, the enhanced adsorption capacities of microplastics appeared for Cu2+ and Zn2+. These results showed a great interaction between the aging degree of plastics and sorption capacity to heavy metals. Meanwhile, external conditions including temperature and pH value were also showed great influence to the adsorption behavior.
Collapse
Affiliation(s)
- Qiongjie Wang
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, China.
| | - Yong Zhang
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, China
| | - Xiaoxue Wangjin
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, China
| | - Yulai Wang
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, China
| | - Guanhua Meng
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, China
| | - Yihua Chen
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, China
| |
Collapse
|
29
|
Adsorption of Pb2+ and Cd2+ onto Spirulina platensis harvested by polyacrylamide in single and binary solution systems. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123926] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Zhang Z, He S, Zhang Y, Zhang K, Wang J, Jing R, Yang X, Hu Z, Lin X, Li Y. Spectroscopic investigation of Cu 2+, Pb 2+ and Cd 2+ adsorption behaviors by chitosan-coated argillaceous limestone: Competition and mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:112938. [PMID: 31404731 DOI: 10.1016/j.envpol.2019.07.106] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/07/2019] [Accepted: 07/20/2019] [Indexed: 06/10/2023]
Abstract
In the present study, the competitive adsorption of Cu2+, Pb2+, and Cd2+ by a novel natural adsorbent (i.e., argillaceous limestone) modified with chitosan (C-AL) was investigated. The results demonstrated that both intraparticle diffusion and chemisorption marked significant contributions to the Cu2+ adsorption process by both raw argillaceous limestone (R-AL) and C-AL in mono-metal adsorption systems. Antagonism was found to be the predominant competitive effect for Cu2+, Pb2+ and Cd2+ adsorptions by C-AL in the multi-metal adsorption system. The three-dimensional simulation and FTIR analysis revealed that the presence of Cu2+ suppressed Pb2+ and Cd2+ adsorptions, while the effect of Cd2+ on Cu2+ and Pb2+ adsorptions was insignificant. The spectroscopic analyses evidenced that amide groups in C-AL played a crucial role in metal adsorption. The preferential adsorptions of Pb2+ > Cu2+ > Cd2+ were likely due to the different affinities of the metals to the lone pair of electrons on the N atom from the amide groups and/or the O atoms from the -OH and -COO- groups on C-AL. The interactions between C-AL and metal ions and between various metal species influenced their competitive adsorption behaviors. C-AL exhibited a superior metal adsorption capacity in comparison with that the capacities of other natural adsorbents reported during the last decade, suggesting its potential practical applications.
Collapse
Affiliation(s)
- Zhen Zhang
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China
| | - Shuran He
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Yulong Zhang
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China
| | - Kun Zhang
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China
| | - Jinjin Wang
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China
| | - Ran Jing
- Department of Civil and Environmental Engineering, University of Maryland at College Park, MD 20742, USA
| | - Xingjian Yang
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China
| | - Zheng Hu
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China
| | - Xiaojing Lin
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China
| | - Yongtao Li
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China; Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, China.
| |
Collapse
|
31
|
Liu L, Guo X, Zhang C, Luo C, Xiao C, Li R. Adsorption behaviours and mechanisms of heavy metal ions' impact on municipal waste composts with different degree of maturity. ENVIRONMENTAL TECHNOLOGY 2019; 40:2962-2976. [PMID: 29584584 DOI: 10.1080/09593330.2018.1458908] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 03/26/2018] [Indexed: 06/08/2023]
Abstract
Composting may change the adsorption characteristics and mechanisms of organic materials due to their differences in organic chemical functional groups and surface structures. The adsorption properties of heavy metals onto the municipal solid waste compost (MSW-C) and its secondary fermentation form (MSW-SC) were comparatively investigated in single, binary and multiple solutions by batch experiments. In the single-metal system, the maximum adsorption capacities of Cu, Zn, Cd and Ni onto MSW-SC were 29.2, 26.3, 38.1 and 22.0 mg g-1, respectively, and showed higher than that of MSW-C. The adsorption fitted best with the pseudo-second-order kinetics and Langmuir isotherms. The competitive adsorption results indicated that the composts exhibited good selectivity in the adsorption of Cu over Cd, Zn and Ni; thus, for the quaternary-metal systems, the adsorption sequence was Cu > Zn > Cd > Ni. Humic acid content, cation exchange capacity and surface area were increased following the secondary composting. FTIR analysis indicated amine and aromatic compounds were main binding sites accounting for metal sorption. SEM-EDX analysis suggested that the MSW-SC had rough surfaces and stronger adsorption capacity. Decreasing percentage of exchangeable metals was found in the metal-loaded MSW-SC based on a speciation analysis. This study highlights the interactive impacts of different metals during adsorption by compost with different maturity, the secondary composting process was a multifunctional improvement of sorption characteristics and MSW-SC was developed to be a highly efficient biosorbent.
Collapse
Affiliation(s)
- Ling Liu
- a College of Soil and Water Conservation, Beijing Forestry University , Beijing , People's Republic of China
- b Key Lab of Soil and Water Conservation and Desertification Combating, Ministry of Education, Beijing Forestry University , Beijing , People's Republic of China
| | - Xiaoping Guo
- a College of Soil and Water Conservation, Beijing Forestry University , Beijing , People's Republic of China
- b Key Lab of Soil and Water Conservation and Desertification Combating, Ministry of Education, Beijing Forestry University , Beijing , People's Republic of China
| | - Chengliang Zhang
- c Beijing Key Laboratory of Industrial Land Contamination and Remediation, Environmental Protection Research Institute of Light Industry , Beijing , People's Republic of China
| | - Chao Luo
- a College of Soil and Water Conservation, Beijing Forestry University , Beijing , People's Republic of China
- b Key Lab of Soil and Water Conservation and Desertification Combating, Ministry of Education, Beijing Forestry University , Beijing , People's Republic of China
| | - Chaoqun Xiao
- a College of Soil and Water Conservation, Beijing Forestry University , Beijing , People's Republic of China
- b Key Lab of Soil and Water Conservation and Desertification Combating, Ministry of Education, Beijing Forestry University , Beijing , People's Republic of China
| | - Ruoyu Li
- a College of Soil and Water Conservation, Beijing Forestry University , Beijing , People's Republic of China
- b Key Lab of Soil and Water Conservation and Desertification Combating, Ministry of Education, Beijing Forestry University , Beijing , People's Republic of China
| |
Collapse
|
32
|
Li Z, Wu L, Sun S, Gao J, Zhang H, Zhang Z, Wang Z. Disinfection and removal performance for Escherichia coli, toxic heavy metals and arsenic by wood vinegar-modified zeolite. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 174:129-136. [PMID: 30825735 DOI: 10.1016/j.ecoenv.2019.01.124] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/18/2019] [Accepted: 01/21/2019] [Indexed: 06/09/2023]
Abstract
Zeolite has traditionally been used to remediate wastewater and soil. The present study shows a new method for natural zeolite (NZ) modification with wood vinegar (WV). The optimal conditions for NZ modification with WV were determined, and the adsorption capacities towards lead (Pb), cadmium (Cd) and arsenic (As), antimicrobial activities against Escherichia coli, heavy metal(loid) fraction and characterizations of selected modified zeolites (MZs) were also investigated. The results indicate that 50-fold dilution of WV, 5 g of NZ dosage, 105 °C of drying temperature, 4 h and 95 °C of water bath are preferred for NZ modification with WV. The WV+NaOH-MZ exhibited the best performance in heavy metal removal and the most powerful antimicrobial activity among all the zeolites. The sequence of WV+NaOH-MZ for the maximum single metal(loid) adsorption capacities was Pb (48.67 mg/g) >Cd (23.67 mg/g) > As (0.024 mg/g). The WV+NaOH and WV modifications also can increase the stabilities of heavy metals in the MZs. The residual fractions of single Pb and Cd in WV+NaOH-MZ and WV-MZ were 50%, 55%, 34% and 30%, respectively. The pore size of WV+NaOH-MZ (11.73 nm) was bigger than that of NZ or WV-MZ. Additionally, the proportion of clinoptilolite in WV+NaOH-MZ was also higher than other zeolites. The surfaces of WV+alkali-MZs were rougher than that of NZ. Considering the low cost and environmental risk of WV, this work provides some useful information for management of agricultural and industrial residues, environment and food safety.
Collapse
Affiliation(s)
- Zhanchao Li
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Lijie Wu
- College of Chinese Materia Media, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Shuang Sun
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Junli Gao
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Hanqi Zhang
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Zhiquan Zhang
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Ziming Wang
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| |
Collapse
|