1
|
Ran S, Li H, Yu Y, Zhu T, Dao J, Long S, Cai J, Liu TY, Xu Y. Ecological characteristics of tall fescue and spatially organized communities: Their contribution to mitigating cadmium damage. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135953. [PMID: 39332258 DOI: 10.1016/j.jhazmat.2024.135953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
The threat of cadmium (Cd) stress to agricultural soil environments, as well as their productivity attracting growing global interest. Tall fescue (Festuca arundinacea Schreb.) is a strong candidate for the remediation of heavy metals in soil. However, the joint analysis of Cd tolerance, physiological responses, and multifaceted plant microbiomes in tall fescue fields has not been extensively researched. Therefore, this study employed microbial sequencing (i.e., 16S and ITS sequencing) to investigate the differences in microbial community structure among various plant compartments of Cd-resistant tall fescue (cv. 'Arid3') and Cd-sensitive tall fescue (cv. 'Barrington'). Furthermore, we examined the mechanism of resistance to Cd by introducing three different bacteria and a fungus that were isolated from the 'Arid3' rhizosheath soil. It highlighted the potential application of enriched taxa such as Delftia, Novosphingobium, Cupriavidus and Torula in enhancing the activity of antioxidant defense systems, increasing the production of osmotic regulatory substances, and stimulating the expression of Cd-resistance genes. This ultimately promoted plant growth and enhanced phytoremediation efficiency. This study shed light on the response mechanism of the tall fescue microbiome to Cd stress and underscored the potential of tall fescue-microbe co-culture in the remediation of heavy metal-contaminated areas.
Collapse
Affiliation(s)
- Shuqi Ran
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Hanyu Li
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Yize Yu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Tianqi Zhu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Jicao Dao
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Si Long
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Junhao Cai
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Tie-Yuan Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| | - Yuefei Xu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| |
Collapse
|
2
|
Shen X, Sun T, Dai M, Aslam MMA, Peng C. Performance and mechanistic study of biochar and magnesium-enhanced phytoremediation in cadmium-contaminated soil by alfalfa. CHEMOSPHERE 2024; 362:142737. [PMID: 38950747 DOI: 10.1016/j.chemosphere.2024.142737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024]
Abstract
Recently, phytoremediation has been regarded as a green and environment friendly technique to treat metals contaminated soils. Thus, in this study, pot experiments were designed to investigate the combine effects of biochar and magnesium (MPs) to purify cadmium (Cd)-contaminated soils by Medicago sativa L. (alfalfa). The results showed that the combined use of biochar and Mg significantly increased the accumulation of Cd and promoted the transport of Cd from root to shoot in alfalfa, simultaneously. Importantly, the combined use of biochar and Mg could increase the accumulation of Cd in shoot and whole plant (shoot + root) of alfalfa up-to 59.1% and 23.1%, respectively. Moreover, the enhancement mechanism can be analyzed from several aspects. Firstly, the photosynthesis was enhanced, which was beneficial to plant growth. The product of photosynthesis provided energy for uptake and transport of Cd. Meanwhile, its transport in phloem could promote the transport of Cd. Secondly, the enhancement of antioxidant capacity of alfalfa effectively protected the membrane structure of alfalfa, which indicated that Cd could enter alfalfa from the channel on the cell membrane. Lastly, the chemical form of Cd and microbial community structure in soil were changed. Overall, these changes reduced the Cd toxicity in soil, enhanced the resistance capability of alfalfa, increased the Cd uptake by alfalfa and promoted the growth of alfalfa. Thus, the obtained results suggested that the combined use of biochar and Mg is an effective approach to enhance phytoremediation performance for purifying Cd-contaminated soils.
Collapse
Affiliation(s)
- Xing Shen
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Taotao Sun
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, China; Observation and Research Station of Seawater Intrusion and Soil Salinization, Laizhou Bay, Ministry of Natural Resources, Qingdao, Shandong Province, 266061, China
| | - Min Dai
- Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Zhaoqing University, Zhaoqing, 526061, China
| | - Mian M Ahson Aslam
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, China; Observation and Research Station of Seawater Intrusion and Soil Salinization, Laizhou Bay, Ministry of Natural Resources, Qingdao, Shandong Province, 266061, China
| | - Changsheng Peng
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, China; Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Zhaoqing University, Zhaoqing, 526061, China.
| |
Collapse
|
3
|
Chowardhara B, Saha B, Awasthi JP, Deori BB, Nath R, Roy S, Sarkar S, Santra SC, Hossain A, Moulick D. An assessment of nanotechnology-based interventions for cleaning up toxic heavy metal/metalloid-contaminated agroecosystems: Potentials and issues. CHEMOSPHERE 2024; 359:142178. [PMID: 38704049 DOI: 10.1016/j.chemosphere.2024.142178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 03/22/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Heavy metals (HMs) are among the most dangerous environmental variables for a variety of life forms, including crops. Accumulation of HMs in consumables and their subsequent transmission to the food web are serious concerns for scientific communities and policy makers. The function of essential plant cellular macromolecules is substantially hampered by HMs, which eventually have a detrimental effect on agricultural yield. Among these HMs, three were considered, i.e., arsenic, cadmium, and chromium, in this review, from agro-ecosystem perspective. Compared with conventional plant growth regulators, the use of nanoparticles (NPs) is a relatively recent, successful, and promising method among the many methods employed to address or alleviate the toxicity of HMs. The ability of NPs to reduce HM mobility in soil, reduce HM availability, enhance the ability of the apoplastic barrier to prevent HM translocation inside the plant, strengthen the plant's antioxidant system by significantly enhancing the activities of many enzymatic and nonenzymatic antioxidants, and increase the generation of specialized metabolites together support the effectiveness of NPs as stress relievers. In this review article, to assess the efficacy of various NP types in ameliorating HM toxicity in plants, we adopted a 'fusion approach', in which a machine learning-based analysis was used to systematically highlight current research trends based on which an extensive literature survey is planned. A holistic assessment of HMs and NMs was subsequently carried out to highlight the future course of action(s).
Collapse
Affiliation(s)
- Bhaben Chowardhara
- Department of Botany, Faculty of Science and Technology, Arunachal University of Studies, Namsai, Arunachal Pradesh-792103, India.
| | - Bedabrata Saha
- Plant Pathology and Weed Research Department, Newe Ya'ar Research Centre, Agricultural Research Organization, Ramat Yishay-3009500, Israel.
| | - Jay Prakash Awasthi
- Department of Botany, Government College Lamta, Balaghat, Madhya Pradesh 481551, India.
| | - Biswajit Bikom Deori
- Department of Environmental Science, Faculty of Science and Technology, Arunachal University of Studies, Namsai, Arunachal Pradesh 792103, India.
| | - Ratul Nath
- Department of Life-Science, Dibrugarh University, Dibrugarh, Assam-786004, India.
| | - Swarnendu Roy
- Department of Botany, University of North Bengal, P.O.- NBU, Dist- Darjeeling, West Bengal, 734013, India.
| | - Sukamal Sarkar
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur Campus, Kolkata, India.
| | - Subhas Chandra Santra
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal, 741235, India.
| | - Akbar Hossain
- Division of Soil Science, Bangladesh Wheat and Maize Research Institute, Dinajpur 5200, Bangladesh.
| | - Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal, 741235, India.
| |
Collapse
|
4
|
Zainab N, Glick BR, Bose A, Amna, Ali J, Rehman FU, Paker NP, Rengasamy K, Kamran MA, Hayat K, Munis MFH, Sultan T, Imran M, Chaudhary HJ. Deciphering the mechanistic role of Bacillus paramycoides (PM51) and Bacillus tequilensis (PM52) in bio-sorption and phyto-assimilation of Cadmium via Linum usitatissimum L. Seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108652. [PMID: 38723488 DOI: 10.1016/j.plaphy.2024.108652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 05/26/2024]
Abstract
Three Cd2+ resistant bacterium's minimal inhibition concentrations were assessed and their percentages of Cd2+ accumulation were determined by measurements using an atomic absorption spectrophotometer (AAS). The results revealed that two isolates Bacillus paramycoides (PM51) and Bacillus tequilensis (PM52), identified by 16S rDNA gene sequencing, showed a higher percentage of Cd2+ accumulation i.e., 83.78% and 81.79%, respectively. Moreover, both novel strains can tolerate Cd2+ levels up to 2000 mg/L isolated from district Chakwal. Amplification of the czcD, nifH, and acdS genes was also performed. Batch bio-sorption studies revealed that at pH 7.0, 1 g/L of biomass, and an initial 150 mg/L Cd2+ concentration were the ideal bio-sorption conditions for Bacillus paramycoides (PM51) and Bacillus tequilensis (PM52). The experimental data were fit to Langmuir isotherm measurements and Freundlich isotherm model R2 values of 0.999 for each of these strains. Bio sorption processes showed pseudo-second-order kinetics. The intra-diffusion model showed Xi values for Bacillus paramycoides (PM51) and Bacillus tequilensis (PM52) of 2.26 and 2.23, respectively. Different surface ligands, was investigated through Fourier-transformation infrared spectroscopy (FTIR). The scanning electron microscope SEM images revealed that after Cd2+ adsorption, the cells of both strains became thick, adherent, and deformed. Additionally, both enhanced Linum usitatissimum plant seed germination under varied concentrations of Cd2+ (0 mg/L, 250 mg/L,350 mg/L, and 500 mg/L). Current findings suggest that the selected strains can be used as a sustainable part of bioremediation techniques.
Collapse
Affiliation(s)
- Nida Zainab
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Bernard R Glick
- Department of Biology, University of Water Loo, Ontario, Canada
| | - Arpita Bose
- Department of Biology Washington University in St. Louis (WUSTL), United States
| | - Amna
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan; Department of Botany, Rawalpindi Women University, 6th Road Sattellite Town, Rawalpindi, Pakistan
| | - Javed Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Fazal Ur Rehman
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan; Tasmanian Institute of Agriculture, New Town Research Laboratories, University of Tasmania, Tasmania, Australia
| | - Najeeba Parre Paker
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | | | - Muhammad Aqeel Kamran
- College of Environmental and Resource Sciences, Zhejiang University Hangzhou China, China
| | - Kashif Hayat
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | | | - Tariq Sultan
- Land Resource Research Institute, NARC, Islamabad, Pakistan
| | - Muhammad Imran
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan; Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | | |
Collapse
|
5
|
Su Y, Shi Q, Li Z, Deng H, Zhou Q, Li L, Zhao L, Yuan S, Liu Q, Chen Y. Rhodopseudomonas palustris shapes bacterial community, reduces Cd bioavailability in Cd contaminated flooding paddy soil, and improves rice performance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171824. [PMID: 38521273 DOI: 10.1016/j.scitotenv.2024.171824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/14/2024] [Accepted: 03/17/2024] [Indexed: 03/25/2024]
Abstract
Photosynthetic bacteria (PSB) are suitable to live and remediate cadmium (Cd) in the slightly oxygenated or anaerobic flooding paddy field. However, there is currently limited study on the inhibition of Cd accumulation in rice by PSB, and the relevant mechanisms has yet to be elucidated. In the current study, we firstly used Rhodopseudomonas palustris SC06 (a typical PSB) as research target and combined physiology, biochemistry, microbiome and metabolome to evaluate the mechanisms of remeding Cd pollution in paddy field and inhibiting Cd accumulation in rice. Microbiome analysis results revealed that intensive inoculation with R. palustris SC06 successfully survived and multiplied in flooding paddy soil, and significantly increased the relatively abundance of anaerobic bacteria including Desulfobacterota, Anaerolineaceae, Geobacteraceae, and Gemmatimonadaceae by 46.40 %, 45.00 %, 50.12 %, and 21.30 %, respectively. Simultaneously, the structure of microbial community was regulated to maintain relative stability in the rhizosphere soil of rice under Cd stress. In turn, these bacteria communities reduced bioavailable Cd and enhanced residual Cd in soil, and induced the upregulation of sugar and organic acids in the rice roots, which further inhibited Cd uptake in rice seedlings, and dramatically improved the photosynthetic efficiency in the leaves and the activities of antioxidative enzymes in the roots. Finally, Cd content of the roots, stems, leaves, and grains significantly decreased by 38.14 %, 69.10 %, 83.40 %, and 37.24 % comparing with the control, respectively. This study provides a new strategy for the remediation of Cd-contaminated flooding paddy fields and the safe production of rice.
Collapse
Affiliation(s)
- Yanqiu Su
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal University), Ministry of Education, Chengdu 610101, China; College of Life Science, Sichuan Normal University, Chengdu 610101, China.
| | - Qiuyun Shi
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625014, China
| | - Ziyuan Li
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Hongmei Deng
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Qian Zhou
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Lihuan Li
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Lanyin Zhao
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Shu Yuan
- College of Resources Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Qi Liu
- Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Guangzhou, Guangdong 510640, China
| | - Yanger Chen
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625014, China.
| |
Collapse
|
6
|
Guo J, Yang H, Wang C, Liu Z, Huang Y, Zhang C, Huang Q, Xue W, Sun Y. Inhibitory effects of Pseudomonas sp. W112 on cadmium accumulation in wheat grains: Reduced the bioavailability in soil and enhanced the interception by plant organs. CHEMOSPHERE 2024; 355:141828. [PMID: 38552800 DOI: 10.1016/j.chemosphere.2024.141828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/07/2024] [Accepted: 03/26/2024] [Indexed: 04/01/2024]
Abstract
Microorganisms play an important role in heavy metal bioremediation and soil fertility. The effects of soil inoculation with Pseudomonas sp. W112 on Cd accumulation in wheat were investigated by analyzing the transport, subcellular distribution and speciation of Cd in the soil and plants. Pseudomonas sp. W112 application significantly decreased Cd content in the roots, internode and grains by 10.2%, 29.5% and 33.0%, respectively, and decreased Cd transfer from the basal nodes to internodes by 63.5%. Treatment with strain W112 decreased the inorganic and water-soluble Cd content in the roots and increased the proportion of residual Cd in both the roots and basal nodes. At the subcellular level, the Cd content in the root cell wall and basal node cytosol increased by 19.6% and 61.8%, respectively, indicating that strain W112 improved the ability of the root cell wall and basal node cytosol to fix Cd. In the rhizosphere soil, strain W112 effectively colonized and significantly decreased the exchangeable Cd, carbonate-bound Cd and iron-manganese oxide-bound Cd content by 43.5%, 27.3% and 17.6%, respectively, while it increased the proportion of residual Cd by up to 65.2%. Moreover, a 3.1% and 23.5% increase in the pH and inorganic nitrogen content in the rhizosphere soil, respectively, was recorded. Similarly, soil bacterial community sequencing revealed that inoculating with strain W112 increased the abundance of Pseudomonas, Thauera and Azoarcus, which are associated with inorganic nitrogen metabolism, and decreased that of Acidobacteria, which is indicative of soil alkalinization. Hence, root application of Pseudomonas sp. W112 improved soil nitrogen availability and inhibited Cd accumulation in the wheat grains in a two-stage process: by reducing the Cd availability in the rhizosphere soil and by improving Cd interception and fixation in the wheat roots and basal nodes. Pseudomonas sp. W112 may be a suitable bioremediation agent for restoring Cd-contaminated wheat fields.
Collapse
Affiliation(s)
- Jiajia Guo
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China; Centre for Green Agricultural Inputs and MicroEcological Farming, Jinhe Jiannong (Beijing) Agricultural Biotechnology Co., Ltd., Chinese Academy of Agricultural Sciences, Beijing, 100020, People's Republic of China.
| | - Hao Yang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China; College of Resources and Environment, Northeast Agricultural University, Harbin, 1500302, People's Republic of China.
| | - Changrong Wang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China.
| | - Zhongqi Liu
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China.
| | - Yongchun Huang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China.
| | - Changbo Zhang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China.
| | - Qingqing Huang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China.
| | - Weijie Xue
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China.
| | - Yuebing Sun
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China.
| |
Collapse
|
7
|
Xiao Y, Ma J, Chen R, Xiang S, Yang B, Chen L, Fang J, Liu S. Two microbes assisting Miscanthus floridulus in remediating multi-metal(loid)s-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:28922-28938. [PMID: 38565816 DOI: 10.1007/s11356-024-33032-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
Miscanthus has good tolerance to multi-metal(loid)s and has received increasing attention in remediated studies of metal(loid)s-contaminated soil. In this study, we conducted phytoextraction techniques to investigate the synergic effects of remediation of multi-metal(loid)s-contaminated soil by Miscanthus floridulus (Lab.) and two plant growth-promoting bacteria (PGPB), TS8 and MR2, affiliated to Enterobacteriaceae. The results exhibited a decrease of arsenic (15.27-21.50%), cadmium (8.64-15.52%), plumbum (5.92-12.76%), and zinc (12.84-24.20%) except for copper contents in the soil in bacterial inoculation groups, indicating that MR2 and TS8 could enhance the remediation of metal(loid)s. Moreover, increased fresh/dry weight and height indicated that inoculated bacteria could promote Miscanthus growth. Although the activities of antioxidant enzymes and the content of chlorophyll in the overground tissues showed no significant increase or even decrease, the activities of antioxidant enzymes in the underground tissues and soil were elevated by 48.95-354.17%, available P by 19.07-23.02%, and available K by 15.34-17.79% (p < 0.05). Bacterial inoculants could also decrease the soil pH. High-throughput sequencing analysis showed that the bacterial inoculant affected the rhizosphere bacterial community and reduced community diversity, but the relative abundance of some PGPB was found to increase. Phylogenetic molecular ecological networks indicated that bacterial inoculants reduced interactions between rhizosphere bacteria and thereby led to a simpler network structure but increased the proportion of positive-correlation links and enhanced the metabiosis and symbiosis of those bacteria. Spearman's test showed that OTUs affiliated with Enterobacteriaceae and soil nutrients were critical for metal(loid) remediation and Miscanthus growth. The results of this study provide a basis for the synergic remediation of multi-metal(loid)s-contaminated soils by Miscanthus and PGPB and provide a reference for the subsequent regulation of Miscanthus remediation efficiency by the other PGPB or critical bacteria.
Collapse
Affiliation(s)
- Yunhua Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Jingjing Ma
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Rui Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Sha Xiang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Bo Yang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Liang Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Shuming Liu
- School of Resources and Environment, Yili Normal University, Yining, 835000, China.
- Key Laboratory of Pollutant Chemistry and Environmental Treatment, Yili Normal University, Yining, 835000, China.
| |
Collapse
|
8
|
Yang J, Jiang L, Guo Z, Sarkodie EK, Li K, Shi J, Peng Y, Liu H, Liu X. The Cd immobilization mechanisms in paddy soil through ureolysis-based microbial induced carbonate precipitation: Emphasis on the coexisting cations and metatranscriptome analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133174. [PMID: 38086299 DOI: 10.1016/j.jhazmat.2023.133174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 02/08/2024]
Abstract
Microbial induced carbonate precipitation (MICP) can immobilize metals and reduce their bioavailability. However, little is known about the immobilization mechanism of Cd in the presence of soil cations and the triggered gene expression and metabolic pathways in paddy soil. Thus, microcosmic experiments were conducted to study the fractionation transformation of Cd and metatranscriptome analysis. Results showed that bioavailable Cd decreased from 0.62 to 0.29 mg/kg after 330 d due to the MICP immobilization. This was ascribed to the increase in carbonate bound, Fe-Mn oxides bound, and residual Cd. The underlying immobilization mechanisms could be attributed to the formation of insoluble Cd-containing precipitates, the complexation and lattice substitution with carbonate and Fe, Mn and Al (hydr)oxides, and the adsorption on functional group on extracellular polymers of cell. During the MICP immobilization process, up-regulated differential expression urease genes were significantly enriched in the paddy soil, corresponding to the arginine biosynthesis, purine metabolism and atrazine degradation. The metabolic pathway of bacterial chemotaxis, flagellum assembly, and peptidoglycan biosynthesis and the expression of cadA gene related to Cd excretion enhanced Cd resistance of soil microbiome. Therefore, this study provided new insights into the immobilization mechanisms of Cd in paddy soils through ureolysis-based MICP process.
Collapse
Affiliation(s)
- Jiejie Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Luhua Jiang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China.
| | - Ziwen Guo
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Emmanuel Konadu Sarkodie
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Kewei Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Jiaxin Shi
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Yulong Peng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Hongwei Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| |
Collapse
|
9
|
Yang W, Sun T, Sun Y. Adsorption mechanism of Cd 2+ on microbial inoculant and its potential for remediation Cd-polluted farmland soils. CHEMOSPHERE 2024; 352:141349. [PMID: 38307335 DOI: 10.1016/j.chemosphere.2024.141349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024]
Abstract
The adsorption characteristics and mechanism of Cd2+ on microbial inoculant (MI) mainly composed of Bacillus subtilis, Bacillus thuringiensis and Bacillus amyloliquefaciens, and its potential for remediation Cd polluted soils through batch adsorption and soil incubation experiments. It was found that the Freundlich isotherm model and the pseudo-second-order kinetics were more in line with the adsorption processes of Cd2+. The maximum adsorption capacity predicted by Langmuir isotherm model suggested that of MI was 57.38 mg g-1. Scanning electron microscopy and energy dispersive spectroscopy (SEM-EDS) images exhibited the surface structure of MI was damaged to varying degrees after adsorption, and Cd element was distributed on the surface of MI through ion exchange. X-ray diffraction (XRD) results showed that CdCO3 was formed on the surface of MI. Moreover, the functional groups (-OH, C-H, and -NH) involved in the adsorption of Cd2+ through fourier transform infrared spectroscopy (FTIR). After applying MI to Cd-contaminated soil, it was found that soil pH, conductivity (EC) and soil organic matter (SOM) increased by 0.84 %-2.43 %, 31.6 %-241.48 %, and 8.11 %-24.1 %, respectively, when compared with the control treatments. The content of DTPA-Cd in the soils was significantly (P < 0.05) reduced by 15.48 %-29.68 % in contrast with CK, and the Cd speciation was transformed into a more stable residual fraction. The activities of urease, phosphatase and sucrose were increased by 3.5 %-45.18 %, 57.00 %-134.18 % and 52.51 %-70.52 %, respectively, compared with CK. Therefore, MI could be used as an ecofriendly and sustainable material for bioremediation of Cd-contaminated soils.
Collapse
Affiliation(s)
- Wenhao Yang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA)/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin, 300191, China; College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Tong Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yuebing Sun
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA)/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin, 300191, China; College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
10
|
Li B, Zhu H, Zhu Q, Zhang Q, Xu C, Fang Z, Huang D, Xia W. Improving liming mode for remediation of Cd-contaminated acidic paddy soils: Identifying the optimal soil pH, model and efficacies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116038. [PMID: 38290313 DOI: 10.1016/j.ecoenv.2024.116038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/12/2024] [Accepted: 01/27/2024] [Indexed: 02/01/2024]
Abstract
Liming has been widely taken to remediate Cd-contaminated acidic paddy soils, whereas liming mode involving in the relevant optimal soil pH, model and efficacies remain unclear. Both soil and field liming experiments were conducted to improve liming mode for precise remediation of Cd-contaminated acidic paddy soils. Soil batch liming experiments indicated soil DTPA-Cd and CaCl2-Cd were piecewise linearly correlated to soil pH with nodes of 6.8-8.0, and decreased respectively by 15.3%37.7% and 80.7%93.8% (P < 0.05) when soil pH raised over the nodes, indicating an appropriate target soil pH 7.0 for liming. Stepwise linear regression revealed that liming ratio (LR, kg ha-1) could be estimated from soil basal pH (pH0) and the interval to the target soil pH (ΔpH), as [LR=exp(1.10 ×ΔpH+0.61 ×pH0-4.98), R2 = 0.97, n = 42, P < 0.01]. The model exhibited high prediction accuracy (95.2%), low mean estimation error (-0.02) and root mean square error (0.20). Field liming experiment indicated liming to target pH decreased respectively soil CaCl2-Cd by 95.2-98.0% and rice grain Cd by 59.8-80.6% (P < 0.01), whereas uninfluenced rice grain yield. Correlation analysis and structural equation models (SEM) demonstrated that great reduction in Cd phytoavailability was mainly attributed to the transformation of soil water-soluble and exchangeable Cd to carbonate-bound Cd and Fe/Mn oxides-bound Cd and reduced Cd in iron plaque as increasing soil pH. However, rice grain Cd of 50% samples met national food safety standards limit of China (0.2 mg kg-1) due to the high soil Cd level (0.8 mg kg-1). In conclusion, liming to target soil pH 7.0 could be considered as a precise and effective remediation mode for Cd-contaminated acidic paddy soils and complementary practices should be implemented for severe pollution. Our results could provide novel insights on precise liming remediation of Cd-contaminated acidic paddy soils.
Collapse
Affiliation(s)
- Bo Li
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Hanhua Zhu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.
| | - Qihong Zhu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Quan Zhang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Chao Xu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Zebo Fang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; School of Geographical Sciences, Hunan Normal University, Changsha 410081, China
| | - Daoyou Huang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Weisheng Xia
- School of Geographical Sciences, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
11
|
Wang Y, Long C, Yin L, Liu R, Liao Y, He G, Liu Z. Effects of simulated acid rain on hydrochemical factors and microbial community structure in red soil aquifers. RSC Adv 2024; 14:4482-4491. [PMID: 38312729 PMCID: PMC10835706 DOI: 10.1039/d3ra08820k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 01/18/2024] [Indexed: 02/06/2024] Open
Abstract
Acid rain can lower the pH of groundwater and affect its hydrogeochemistry and microbial ecology. However, the effects of acid rain on the hydrogeochemistry and microbial ecology of red soil groundwater systems in southern China are poorly understood. Previous research had mainly investigated the sources and patterns of groundwater acidification, but not the microbial mechanisms that contribute to this process and their associations with hydrochemical factors. To address this knowledge gap, we conducted a soil column experiment to simulate the infiltration of acid rain through various filter materials (coarse, medium, and fine sand) and to examine the hydrochemical and microbial features of the infiltrate, which can reveal how simulated acid rain (pH 3.5-7.0) alters the hydrochemistry and microbial community composition in red soil aquifers. The results showed that the pH of the leachate decreased due to simulated acid rain, and that the leaching efficiency of nitrogen and metal ions was influenced by the particle size of the filter media. Illumina 16S rRNA gene sequencing revealed that the leachate was dominated by Proteobacteria, Patescibacteria, Actinobacteria, and Acidobacteria, with Proteobacteria accounting for 67.04-74.69% of the bacterial community and containing a high proportion of nitrifying and denitrifying bacteria. Additionally, several genera with heavy metal tolerance, such as Burkholderia-Caballeronia-Paraburkholderia, Delftia, Methylversatilis, Aquicella, and Ralstonia, were widely distributed in the leachate, indicating the strong adaptive capacity of the microbial population. A correlation analysis between the hydrochemical factors and the microbial community structure revealed that pH was the most influential factor, followed by NO2--N, Fe, Al, Cu, Mn, and others. These results indicate that acidification modifies the hydrochemical conditions of the aquifer, creating an environment that is unfavorable for microbial growth and survival. However, some microorganisms may acquire resistance genes to cope with environmental changes.
Collapse
Affiliation(s)
- Yian Wang
- School of Life Science, Jinggangshan University Ji'an Jiangxi China
| | - Chao Long
- School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology Ganzhou Jiangxi China
| | - Li Yin
- School of Life Science, Jinggangshan University Ji'an Jiangxi China
| | - Renlu Liu
- School of Life Science, Jinggangshan University Ji'an Jiangxi China
| | - Yonghui Liao
- School of Life Science, Jinggangshan University Ji'an Jiangxi China
| | - Genhe He
- School of Life Science, Jinggangshan University Ji'an Jiangxi China
| | - Zuwen Liu
- School of Life Science, Jinggangshan University Ji'an Jiangxi China
- School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology Ganzhou Jiangxi China
- School of Hydraulic & Ecological Engineering, Nanchang Institute of Technology Nanchang China
| |
Collapse
|
12
|
Wang H, Wang S, He X, Xie M, Cai M, Zhu Y, Du S. A promising product: Abscisic acid-producing bacterial agents for restricting cadmium enrichment in field vegetable crops. Food Chem X 2023; 19:100795. [PMID: 37780261 PMCID: PMC10534097 DOI: 10.1016/j.fochx.2023.100795] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/01/2023] [Accepted: 07/13/2023] [Indexed: 10/02/2023] Open
Abstract
Soil heavy metal contamination and its enrichment in the edible parts of crops have gained global concern. In this study, a compound bacterial agent possessing the ability to produce the plant hormone, abscisic acid (ABA), was applied to contaminated farmland in Hunan province. Its application reduced the concentration of Cd in radish, cabbage, mustard, and lettuce by 15-144%. Accordingly, the Cd contents in these vegetables were found to be below the maximum limits set by GB 2762-2017. Meanwhile, bacteria agents also led to a significant increase in crops yield by 45-82%. Furthermore, the nutritional indices, including soluble sugar and soluble protein increased by 18-66%, as well as the antioxidant indices, including total phenolic, ascorbate content, and DPPH capacity, enhanced by 12-76%, 10-49% and 50-140%, respectively. In conclusion, the use of ABA-producing bacteria is anticipated to be a novel approach for the safe use of soil with moderate and low pollution.
Collapse
Affiliation(s)
- Hua Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Shengtao Wang
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Xiaolin He
- Jiangxi Province Agricultural Technology Extension Center, Nanchang 330045, China
| | - Minghui Xie
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Miaozhen Cai
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yaxin Zhu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Shaoting Du
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| |
Collapse
|
13
|
Feng Q, Zhang J, Ling W, Degen AA, Zhou Y, Ge C, Yang F, Zhou J. Ensiling hybrid Pennisetum with lactic acid bacteria or organic acids improved the fermentation quality and bacterial community. Front Microbiol 2023; 14:1216722. [PMID: 37455750 PMCID: PMC10340086 DOI: 10.3389/fmicb.2023.1216722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
The aim of this study was to compare the effect of different additives on nutritional quality, fermentation variables and microbial diversity of hybrid Pennisetum silages. A control (CK - no additives) and seven treatments were tested, namely, Lactiplantibacillus plantarum (LP), Lentilactobacillus buchneri (LB), propionic acid (PA), calcium propionate (CAP), LP + LB; LP + PA and LP + CAP. In comparison with CK, all treatments increased the contents of crude protein and lactic acid, decreased the content of butyric acid, and altered the bacterial communities of the silage. Except for the CAP and LP + CAP treatments, the additives decreased pH and the ammonia nitrogen:total nitrogen (NH3-N:TN) ratio. The results of principal component analysis revealed that the PA, LP + PA and LP + LB treatments ranked as the top three silages. The PA and LP + PA treatments exhibited higher water-soluble carbohydrate content, but lower pH, and NH3-N:TN ratio than the other treatments. With the PA and LP + PA treatments, the relative abundances of Lactobacillus and Enterobacter decreased, and of Proteobacteria and Delftia increased, while the carbohydrate metabolism of the microorganisms improved. The LP and LB treatments reduced the Shannon and Simpson diversities. In the beta diversity, PA and LP + PA separated from the other treatments, indicating that there were differences in the composition of bacterial species. The relative abundance of Lactobacillus increased in the LP and LB treatments and of Leucanostoc and Weissella increased in the CAP and LP + CAP treatments. In summary, the addition of L. plantarum, L. buchneri, propionic acid, calcium propionate, and their combinations improved fermentation quality, inhibited harmful bacteria and conserved the nutrients of hybrid Pennisetum.
Collapse
Affiliation(s)
- Qixian Feng
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Juan Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenqing Ling
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Abraham Allan Degen
- Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Yi Zhou
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chenyan Ge
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fulin Yang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jing Zhou
- China National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
14
|
Guo C, Zhang Y, Wang X, Ni K, Hao Q, Zhang Z, Zhou Z, Yang F. Effects of Oat Bran Addition on the Growth Performance and Intestinal Health of Nile Tilapia ( Oreochromis niloticus) Exposed to Copper Ions. AQUACULTURE NUTRITION 2023; 2023:5329546. [PMID: 37384036 PMCID: PMC10299885 DOI: 10.1155/2023/5329546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 06/30/2023]
Abstract
This study investigated the effects of the oat bran addition on the growth performance and intestinal health of Nile tilapia (Oreochromis niloticus) exposed to copper ions. Four groups of diets containing 0%, 5%, 10%, and 20% oat bran were fed to Nile tilapia for four weeks. The results showed that oat bran had a dose-dependent effect on the growth performance of Nile tilapia. The addition of oat bran can increase the relative abundance of Delftia, which is capable of degrading heavy metals in the intestinal tract and alleviating the intestinal damage caused by copper ion stress. Compared to the control group, the 5% oat bran group had an increased intestinal antioxidant capacity. The relative gene expression of proinflammatory factors (NF-κB, IL-1β) was significantly downregulated in the 5% oat bran group (P < 0.05), and the relative gene expression of anti-inflammatory factors (TGF-β), HIF-1α, occludin, and claudin was significantly upregulated (P < 0.05). In conclusion, we suggest that 5% oat bran should be added to the diet to improve the growth performance of Nile tilapia and alleviate the negative effects of copper ion stress on intestinal health.
Collapse
Affiliation(s)
- Chunze Guo
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yingchao Zhang
- College of Life Science, North China University of Science and Technology, Tangshan 063210, China
| | - Xuekai Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Kuikui Ni
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Qiang Hao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhen Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhigang Zhou
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fuyu Yang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
15
|
Xu Z, Nie N, Liu K, Li Q, Cui H, Du H. Analog soil organo-ferrihydrite composites as suitable amendments for cadmium and arsenic stabilization in co-contaminated soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162929. [PMID: 36934932 DOI: 10.1016/j.scitotenv.2023.162929] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 05/06/2023]
Abstract
Remediation of CdAs co-contaminated soils has long been considered a difficult problem to solve, as Cd and As have distinctly different metallic characters. Amending contaminated soils with traditional single passivation materials may not always work well in the stabilization of both Cd and As. Here, we reported that analog soil organo-ferrihydrite composites made with either living or non-living organics (bacterial cells or humic acid) could achieve stabilization of both Cd and As in contaminated soils. BCR and Wenzel sequential extractions showed that organo-ferrihydrite, particularly at 1 wt% loading, shifted liable Cd and As to more stable phases. Organo-ferrihydrite amendments significantly (p < 0.05) increased soil urease, alkaline phosphatase and catalase enzyme activities. With organo-ferrihydrite amendments, the bioavailable fraction of Cd decreased to 35.3 % compared with the control (65.1 %), while the bioavailable As declined from 29.4 % to 12.4%. Soil pH, microbial community abundance and diversity were almost unaffected by organo-ferrihydrite. Ferrihydrite and organo fractions both contributed to direct Cd-binding, while the organo fraction probably maintained the Fe-bound As via lowering ferrihydrite phase transformation. Compared to pure ferrihydrite, organo-ferrihydrite composites performed better not only in reducing liable Cd and As, but also in maintaining soil quality and ecosystem functions. This study demonstrates the applications of organo-ferrihydrite composites in eco-friendly remediation of CdAs contaminated soils, and provides a new direction in selecting appropriate soil amendments.
Collapse
Affiliation(s)
- Zelin Xu
- College of Resources and Environment, Hunan Agricultural University, 410127 Changsha, China; College of Environmental Science and Engineering, Tongji University, 200092 Shanghai, China
| | - Ning Nie
- College of Resources and Environment, Hunan Agricultural University, 410127 Changsha, China
| | - Kaiyan Liu
- College of Resources and Environment, Hunan Agricultural University, 410127 Changsha, China
| | - Qi Li
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Haojie Cui
- College of Resources and Environment, Hunan Agricultural University, 410127 Changsha, China
| | - Huihui Du
- College of Resources and Environment, Hunan Agricultural University, 410127 Changsha, China.
| |
Collapse
|
16
|
Long J, Zhou D, Wang J, Huang B, Luo Y, Zhang G, Liu Z, Lei M. Repeated inoculation of antimony resistant bacterium reduces antimony accumulation in rice plants. CHEMOSPHERE 2023; 327:138335. [PMID: 36948256 DOI: 10.1016/j.chemosphere.2023.138335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Applying beneficial bacteria in rice rhizosphere to manage heavy metal behaviour in soil-plant system is a promising strategy. However, colonization/domination of exogenous bacteria in rhizosphere soils remains a challenge. In this study, a bacterium Ochrobactrum anthropi, which showed the potential of transforming soluble SbIII into Sb2O3 mineral, was repeatedly inoculated into the rice rhizosphere weekly throughout the rice growth period, and the colonization of this bacterium in rice rhizosphere soils and its effect on Sb accumulation in rice plants were investigated. Results showed that repeated inoculants changed the native bacterial community in rhizosphere soils in comparison with the control, but the inoculated O. anthropi was not identified as an abundant species. With weekly inoculation, the decrease in Sb in rice roots and straws was maintained throughout the rice growth period, with decrease percentages ranging from 36 to 49% and 33-35%. In addition, decrease percentages of Sb in husks and grains at the maturing stage obtained 34 and 37%, respectively. Furthermore, the XRD identified the formation of valentinite (Sb2O3) on rice root in inoculation treatment, and the decrease percentages in aqueous SbIII in rhizosphere were 53-100% through the growth period. It demonstrated that weekly inoculants performed their temporary activity of valentinite formation, and reduced Sb accumulation in rice plants efficiently. This study suggests that regardless of successful colonization, repeated inoculation of beneficial bacteria is an option to facilitate the positive effects of inoculated bacteria in the management of heavy metal behaviour.
Collapse
Affiliation(s)
- Jiumei Long
- Hunan Key Laboratory for Conservation & Utilization of Biological Resources in the Nanyue Mountainous Region, College of Life Sciences, Hengyang Normal University, Hengyang, 421008, PR China
| | - Dongsheng Zhou
- Hunan Key Laboratory for Conservation & Utilization of Biological Resources in the Nanyue Mountainous Region, College of Life Sciences, Hengyang Normal University, Hengyang, 421008, PR China
| | - Jing Wang
- Hunan Key Laboratory for Conservation & Utilization of Biological Resources in the Nanyue Mountainous Region, College of Life Sciences, Hengyang Normal University, Hengyang, 421008, PR China
| | - Binyan Huang
- Hunan Key Laboratory for Conservation & Utilization of Biological Resources in the Nanyue Mountainous Region, College of Life Sciences, Hengyang Normal University, Hengyang, 421008, PR China
| | - Yuanlai Luo
- Hunan Key Laboratory for Conservation & Utilization of Biological Resources in the Nanyue Mountainous Region, College of Life Sciences, Hengyang Normal University, Hengyang, 421008, PR China
| | - Guocheng Zhang
- Hunan Key Laboratory for Conservation & Utilization of Biological Resources in the Nanyue Mountainous Region, College of Life Sciences, Hengyang Normal University, Hengyang, 421008, PR China
| | - Zui Liu
- Hunan Key Laboratory for Conservation & Utilization of Biological Resources in the Nanyue Mountainous Region, College of Life Sciences, Hengyang Normal University, Hengyang, 421008, PR China
| | - Ming Lei
- Hunan Engineering Research Center for Safe & High-Efficient Utilization of Heavy Metal Pollution Farmland, College of Resource & Environment, Hunan Agricultural University, Changsha, 410128, PR China.
| |
Collapse
|
17
|
Cai X, Li J, Guan F, Luo X, Yu Z, Yuan Y. Complete pentachlorophenol biodegradation in a dual-working electrode bioelectrochemical system: Performance and functional microorganism identification. WATER RESEARCH 2023; 230:119529. [PMID: 36580804 DOI: 10.1016/j.watres.2022.119529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/19/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Bioelectrochemical system (BES) can effectively promote the reductive dechlorination of chlorophenols (CPs). However, the complete degradation of CPs with sequential dechlorination and mineralization processes has rarely achieved from the BES. Here, a dual-working electrode BES was constructed and applied for the complete degradation of pentachlorophenol (PCP). Combined with DNA-stable isotope probing (DNA-SIP), the biofilms attached on the anodic and cathodic electrode in the BES were analyzed to explore the dechlorinating and mineralizing microorganisms. Results showed that PCP removal efficiency in the dual-working BES (84% for 21 days) was 4.1 and 4.7 times higher than those of conventional BESs with a single anodic or cathodic working electrode, respectively. Based on DNA-SIP and high-throughput sequencing analysis, the cathodic working electrode harbored the potential dechlorinators (Comamonas, Pseudomonas, Methylobacillus, and Dechlorosoma), and the anodic working enriched the potential intermediate mineralizing bacteria (Comamonas, Stenotrophomonas, and Geobacter), indicating that PCP could be completely degraded under the synergetic effect of these functional microorganisms. Besides, the potential autotrophic functional bacteria that might be involved in the PCP dechlorination were also identified by SIP labeled with 13C-NaHCO3. Our results proved that the dual-working BES could accelerate the complete degradation of PCP and enrich separately the functional microbial consortium for the PCP dechlorination and mineralization, which has broad potential for bioelectrochemical techniques in the treatment of wastewater contaminated with CPs or other halogenated organic compounds.
Collapse
Affiliation(s)
- Xixi Cai
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Jibing Li
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Chinese Academy of Sciences, Guangzhou Institute of Geochemistry, Guangzhou 510640, China
| | - Fengyi Guan
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaoshan Luo
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhen Yu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Academy of Sciences, Institute of Eco-environmental and Soil Sciences, Guangzhou 510650, China
| | - Yong Yuan
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
18
|
Anand S, Singh A, Kumar V. Recent advancements in cadmium-microbe interactive relations and their application for environmental remediation: a mechanistic overview. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:17009-17038. [PMID: 36622611 DOI: 10.1007/s11356-022-25065-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/26/2022] [Indexed: 01/10/2023]
Abstract
The toxic and persistent nature of cadmium (Cd) in the environment has become a matter of concern with its drastic increase in the concentrations over past few decades. Among the various techniques, the microbial remediation has been accepted as an effective decontamination tool for environmental applications, which is sustainable over a period of time. The Cd decontamination potential of the microbes depends on various internal and external factors that play a crucial role in selection of the microbes for application in a particular environment. Thus, it is important to understand the role of these factors for optimal application of the microbes. This study provides an insight into the mechanisms involved between the microbes and the environmental Cd. The study also briefly reviews the mathematical models that have been used to predict the remediation potential of the microbes and the kinetics involved during the process. A critical analysis of the recent advancements in the techniques for use of bacteria, fungi, and algal cells to remove Cd has been also presented in the manuscript.
Collapse
Affiliation(s)
- Saumya Anand
- Laboratory of Applied Microbiology, Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India, 826004
| | - Ankur Singh
- Laboratory of Applied Microbiology, Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India, 826004
| | - Vipin Kumar
- Laboratory of Applied Microbiology, Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India, 826004.
| |
Collapse
|
19
|
Wang X, Xu Q, Hu K, Wang G, Shi K. A Coculture of Enterobacter and Comamonas Species Reduces Cadmium Accumulation in Rice. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:95-108. [PMID: 36366828 DOI: 10.1094/mpmi-09-22-0186-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The accumulation of cadmium (Cd) in plants is strongly impacted by soil microbes, but its mechanism remains poorly understood. Here, we report the mechanism of reduced Cd accumulation in rice by coculture of Enterobacter and Comamonas species. In pot experiments, inoculation with the coculture decreased Cd content in rice grain and increased the amount of nonbioavailable Cd in Cd-spiked soils. Fluorescence in situ hybridization and scanning electron microscopy detection showed that the coculture colonized in the rhizosphere and rice root vascular tissue and intercellular space. Soil metagenomics data showed that the coculture increased the abundance of sulfate reduction and biofilm formation genes and related bacterial species. Moreover, the coculture increased the content of organic matter, available nitrogen, and potassium and increased the activities of arylsulfatase, β-galactosidase, phenoloxidase, arylamidase, urease, dehydrogenase, and peroxidase in soils. In subsequent rice transcriptomics assays, we found that the inoculation with coculture activated a hypersensitive response, defense-related induction, and mitogen-activated protein kinase signaling pathway in rice. Heterologous protein expression in yeast confirmed the function of four Cd-binding proteins (HIP28-1, HIP28-4, BCP2, and CID8), a Cd efflux protein (BCP1), and three Cd uptake proteins (COPT4, NRAM5, and HKT6) in rice. Succinic acid and phenylalanine were subsequently proved to inhibit rice divalent Cd [Cd(II)] uptake and activate Cd(II) efflux in rice roots. Thus, we propose a model that the coculture protects rice against Cd stress via Cd immobilization in soils and reducing Cd uptake in rice. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Xing Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Qing Xu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Kang Hu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Gejiao Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Kaixiang Shi
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China
| |
Collapse
|
20
|
Gao Y, Duan Z, Zhang L, Sun D, Li X. The Status and Research Progress of Cadmium Pollution in Rice- ( Oryza sativa L.) and Wheat- ( Triticum aestivum L.) Cropping Systems in China: A Critical Review. TOXICS 2022; 10:794. [PMID: 36548627 PMCID: PMC9783001 DOI: 10.3390/toxics10120794] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/07/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
The accumulation of cadmium in rice (Oryza sativa L.) and wheat (Triticum aestivum L.) is a serious threat to the safe use of farmland and to the health of the human diet that has attracted extensive attention from researchers. In this review, a bibliometric analysis was performed using a VOS viewer (1.6.18, Netherlands) to investigate the status of cadmium contamination in rice and wheat growing systems, human health risks, mechanisms of Cd uptake and transport, and the corresponding research hotspots. It has a certain reference value for the prevention and control of cadmium pollution in rice and wheat planting systems in China and abroad. The results showed that the Cd content in rice and wheat planting systems in the Yangtze River Basin was significantly higher than that in other areas of China, and the Cd content in rice and wheat grains and the hazard quotient (HQ) in Hunan Province was the highest. The average Cd concentration exceeded the recommended limit by about 62% for rice and 81% for wheat. The main reasons for the high Cd pollution in rice and wheat growing areas in Hunan are mining activities, phosphate fertilizer application, sewage irrigation, and electronic equipment manufacturing. In this review, we demonstrate that cadmium toxicity reduces the uptake and transport of essential elements in rice and wheat. Cadmium stress seriously affected the growth and morphology of plant roots. In the shoots, Cd toxicity was manifested by a series of physiological injuries, such as decreased photosynthesis, soluble protein, sugar, and antioxidant enzyme activity. Cadmium that accumulates in the shoots is transferred to grains and then passes up the food chain to people and animals. Therefore, methods for reducing cadmium content in grains of rice and wheat are urgently needed, especially in Cd-contaminated soil. Current research on Cd pollution in rice and wheat planting systems focuses on the bioavailability of Cd, soil rhizosphere changes in wheat and rice, and the role of antioxidant enzyme systems in alleviating heavy metal stress in rice and wheat.
Collapse
Affiliation(s)
- Yue Gao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zengqiang Duan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingxiao Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Da Sun
- Technology Extension Station of Agriculture and Fisheries of Nanhu District of Jiaxing, Jiaxing 314051, China
| | - Xun Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
21
|
Microbial Communities of Ferromanganese Sedimentary Layers and Nodules of Lake Baikal (Bolshoy Ushkany Island). DIVERSITY 2022. [DOI: 10.3390/d14100868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Ferromanganese (Fe-Mn) sedimentary layers and nodules occur at different depths within sediments at deep basins and ridges of Lake Baikal. We studied Fe-Mn nodules and host sediments recovered at the slope of Bolshoy Ushkany Island. Layer-by-layer 230Th/U dating analysis determined the initial age of the Fe-Mn nodule formation scattered in the sediments as 96 ± 5–131 ± 8 Ka. The distribution profiles of the main ions in the pore waters of the studied sediment are similar to those observed in the deep-sea areas of Lake Baikal, while the chemical composition of Fe-Mn nodules indicates their diagenetic formation with hydrothermal influence. Among the bacteria in microbial communities of sediments, members of organoheterotrophic Gammaproteobacteria, Chloroflexi, Actinobacteriota, Acidobacteriota, among them Archaea—chemolithoautotrophic ammonia-oxidizing archaea Nitrososphaeria, dominated. About 13% of the bacterial 16S rRNA gene sequences in Fe-Mn layers belonged to Methylomirabilota representatives which use nitrite ions as electron acceptors for the anaerobic oxidation of methane (AOM). Nitrospirota comprised up to 9% of the layers of Bolshoy Ushkany Island. In bacterial communities of Fe-Mn nodule, a large percentage of sequences were attributed to Alphaproteobacteria, Actinobacteriota and Firmicutes, as well as a variety of OTUs with a small number of sequences characteristic of hydrothermal ecosystems. The contribution of representatives of Methylomirabilota and Nitrospirota in communities of Fe-Mn nodule was minor. Our data support the hypothesis that chemolithoautotrophs associated with ammonium-oxidizing archaea and nitrite-oxidizing bacteria can potentially play an important role as primary producers of Fe-Mn substrates in freshwater Lake Baikal.
Collapse
|
22
|
Mei C, Wang H, Cai K, Xiao R, Xu M, Li Z, Zhang Z, Cui J, Huang F. Characterization of soil microbial community activity and structure for reducing available Cd by rice straw biochar and Bacillus cereus RC-1. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156202. [PMID: 35623534 DOI: 10.1016/j.scitotenv.2022.156202] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 05/11/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
The combination of biochar and specific bacteria has been widely applied to remediate Cadmium-contaminated soil. But little is known about how such composites affect the dynamic distribution of metal fractions. This process is accompanied by the alternations of soil properties and microbial community structures. Composite of rice straw biochar and Bacillus cereus RC-1 were applied to investigate its impacts on Cd alleviation and soil microbial diversity and structure. The bacterial/biochar composite treatment decreased the fraction of HOAc-extractable Cd by 38.82%, and increased residual Cd by 23.95% compared to the untreated control. Moreover, compared with the untreated control, the composite treatment significantly increased the soil pH by about 1.5 units, and the activities of catalase, urease and invertase enzymes were increased by 42.39%, 30.50% and 31.20%, respectively. Composite treatment increased soil bacterial and fungal alpha diversity, the relative abundance of Bacillus, Streptomyces, Arthrobacter, and Aspergillus species were also increased. Mantel test and correlation analysis indicated that the effects associated with fungal communities in influencing soil properties were lower than that those of bacterial communities by different treatment. Aggregated boosted tree (ABT) models analysis showed that soil chemical proprieties (as determined by SOM, CEC, AN, etc.,) contributed over 50% of the changes in bacterial and fungal communities by the composite treatment. The co-occurrence network results showed that all treatments enhanced the correlation between OUT groups and improved the possible relationships in the bacterial and fungal communities, especially the interrelationships between bacteria and fungi after the Cd fractions stabilized. These findings provide a new insight to optimal strategies for the remediation of Cd-contaminated soil.
Collapse
Affiliation(s)
- Chuang Mei
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China
| | - Heng Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Kunzheng Cai
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China
| | - Rongbo Xiao
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Meili Xu
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Zishan Li
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Zhenyan Zhang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China
| | - Jingyi Cui
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China
| | - Fei Huang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
23
|
Ali Q, Ayaz M, Yu C, Wang Y, Gu Q, Wu H, Gao X. Cadmium tolerant microbial strains possess different mechanisms for cadmium biosorption and immobilization in rice seedlings. CHEMOSPHERE 2022; 303:135206. [PMID: 35660052 DOI: 10.1016/j.chemosphere.2022.135206] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/18/2022] [Accepted: 05/31/2022] [Indexed: 05/06/2023]
Abstract
Heavy metal remediation, such as cadmium (Cd2+) by microbial strains is efficient and environment-friendly. In this current study, we exploited the potential of Bacillus strains (Cd2+-tolerant; NMTD17, GBSW22, and LLTC96) to regulate Cd2+ biosorption mechanisms and improve rice seedling growth. The results showed that initial concentration and contact time affected Cd2+ biosorption, and the kinetic models of pseudo orders were effective in the elaborate biosorption process. Mainly, the bacterial cell wall had the potential for Cd2+ biosorption, and we found non-significant biosorption alterations among bacterial strains' inner and outer surfaces of cell membranes. Furthermore, the Fourier transform infrared (FTIR) spectroscopy analysis identified the differences in functional groups, such as C-N, PO2, -SO3, CO, COOH, C-O, C-N, -OH, and -NH that interact in biosorption by Bacillus strains. The scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) examination revealed that the binding of Cd2+ to microbes was mostly based on ion exchange pathways. Moreover, the Bacillus strains responded to Cd2+ stress in rice under pot experiment at various concentrations (0, 0.25, and 0.50 mg kg-1), and they also influenced the chlorophyll contents and antioxidants activities were studied. The analysis of physio-morphological parameters was observed to be increased, which indicated that all Bacillus strains showed significant effects on rice growth under Cd2+ stress. These results revealed that the selected strains had the capability for additional use in the development of Cd2+ bioremediation methods. These strains also provided plant growth-promoting (PGP) traits that can alleviate the harmful effects of Cd2+ in rice plants.
Collapse
Affiliation(s)
- Qurban Ali
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Muhammad Ayaz
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chenjie Yu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yujie Wang
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qin Gu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huijun Wu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuewen Gao
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
24
|
Collao J, García-Encina PA, Blanco S, Bolado-Rodríguez S, Fernandez-Gonzalez N. Current Concentrations of Zn, Cu, and As in Piggery Wastewater Compromise Nutrient Removals in Microalgae–Bacteria Photobioreactors Due to Altered Microbial Communities. BIOLOGY 2022; 11:biology11081176. [PMID: 36009803 PMCID: PMC9405037 DOI: 10.3390/biology11081176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 01/04/2023]
Abstract
Simple Summary Photobioreactor systems based on consortia of microalgae and bacteria are a promising, efficient and sustainable alternative for treatment of wastewaters with high nitrogen content, such as piggery wastewater. In these biological systems, microorganisms play a key role in wastewater treatment by degradation of organic matter and accumulation of nutrients into the generated biomass. However, these wastewaters often contain high concentrations of zinc, copper and arsenic, which can severely affect the activity and growth of microorganisms, and so, the wastewater treatment performance. This article studies the effect of high concentrations of zinc, copper and arsenic on microbial communities, specifically microalgae and bacteria, in photobioreactors treating piggery wastewater, with the aim of elucidating their impact on wastewater treatment performance. For this purpose, the growth of microalgae and the composition and structure of bacterial communities exposed to these pollutants were studied. The performance of the reactors was also evaluated by determining the removal of nutrients, zinc, copper and arsenic. The results showed that high concentrations of zinc, copper and arsenic in piggery wastewater significantly affect the microbiome of the reactors without recovery after exposure to these contaminants, resulting in poorer performance of the reactors and compromising the environmental and health impact of treated effluents. Abstract The treatment of pig manure is a major environmental issue, and photobioreactors containing consortia of microalgae and bacteria have proven to be a promising and sustainable treatment alternative. This work studies the effect of Cu, Zn and As, three toxic elements frequently present in piggery wastewater, on the performance and microbiome of photobioreactors. After dopage with Zn (100 mg/L), Cu (100 mg/L), and As (500 µg/L), the high biomass uptake of Zn (69–81%) and Cu (81–83%) decreased the carbon removal in the photobioreactors, inhibited the growth of Chlorella sp., and affected heterotrophic bacterial populations. The biomass As uptake result was low (19%) and actually promoted microalgae growth. The presence of Cu and As decreased nitrogen removal, reducing the abundance of denitrifying bacterial populations. The results showed that metal(loid)s significantly affected 24 bacterial genera and that they did not recover after exposure. Therefore, this study makes an important contribution on the impact of the presence of metal(loid)s in piggery wastewater that compromises the overall performance of PBRs, and so, the environmental and health impact of treated effluents.
Collapse
Affiliation(s)
- Javiera Collao
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain
- Institute of Sustainable Processes (ISP), University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain
| | - Pedro Antonio García-Encina
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain
- Institute of Sustainable Processes (ISP), University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain
| | - Saúl Blanco
- Department of Biodiversity and Environmental Management, University of León, 24071 León, Spain
| | - Silvia Bolado-Rodríguez
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain
- Institute of Sustainable Processes (ISP), University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain
- Correspondence: ; Tel.: +34-983423958
| | - Nuria Fernandez-Gonzalez
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain
- Institute of Sustainable Processes (ISP), University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain
- Department of Systems Biology, Spanish Center for Biotechnology, CSIC, C/Darwin n°3, 28049 Madrid, Spain
| |
Collapse
|
25
|
Li Q, Xing Y, Huang B, Chen X, Ji L, Fu X, Li T, Wang J, Chen G, Zhang Q. Rhizospheric mechanisms of Bacillus subtilis bioaugmentation-assisted phytostabilization of cadmium-contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:154136. [PMID: 35218830 DOI: 10.1016/j.scitotenv.2022.154136] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/24/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Plant growth promoting (PGP) traits of inoculation in bioaugmentation assisted phytostabilization of heavy metal-contaminated soil have been well documented. The property of inoculation to immobilize heavy metals is another major contributor to phytostabilization efficiency. This study investigated the effects of inoculation with different concentrations of rhizobacteria Bacillus subtilis on the cadmium (Cd) bioavailability and distribution, enzyme activities, and bacterial community structure in soil planted with ryegrass (Lolium multiflorum L.). Addition of a high dosage of Bacillus subtilis decreased plant malondialdehyde (MDA) amount, increased plant antioxidant enzyme and soil nutrient cycling-involved enzyme activities, and subsequently enhanced biomass by 20.9%. In particular, the inoculation reduced the Cd bioavailability in soil, bioaccumulation coefficient (BCF), translocation factors (TF), and accumulation in ryegrass by 39.1%, 36.5%, 24.2%, and 27.9%, respectively. Furthermore, 16S rRNA gene sequencing analysis of rhizosphere soil revealed microbial community structure alterations (e.g., enrichment of Proteobacteria), eight phenotype regulations, and seventeen Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway transformations accounted for the stress mitigation and Cd immobilization in the presence of inocula. Besides, intracellular accumulation and biofilm sequestration were proposed as primary immobilization mechanisms induced by bioaugmentation.
Collapse
Affiliation(s)
- Qi Li
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China.
| | - Yingna Xing
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China.
| | - Bin Huang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Xin Chen
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Lei Ji
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China
| | - Xiaowen Fu
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China
| | - Tianyuan Li
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China
| | - Jianing Wang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China
| | - Guanhong Chen
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China
| | - Qiang Zhang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China.
| |
Collapse
|
26
|
Iminodisuccinic Acid Relieved Cadmium Stress in Rapeseed Leaf by Affecting Cadmium Distribution and Cadmium Chelation with Pectin. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/7747152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rapeseed (Brassica napus L.) is a nutritious vegetable, while cadmium (Cd) pollution threatens the growth, productivity, and food security of rapeseed. By studying the effects of iminodisuccinic acid (IDS), an easily biodegradable and environmental friendly chelating agent, on Cd distribution at the organ and cellular level, we found IDS promoted dry matter accumulation of rapeseed and increased the contents of photosynthetic pigment in leaves. Inhibited root-shoot Cd transport resulted in higher activity of antioxidant enzymes and decreased hydrogen peroxide (H2O2) and malondialdehyde (MDA) accumulation in leaves, which indicated that IDS contributed to alleviating Cd-caused oxidative damage in leaf cells. Additionally, IDS increased Cd subcellular distribution in cell wall (CW), especially in covalently bound pectin (CSP), and relieved Cd toxicity in organelle of leaves. IDS also enhanced demethylation of CSP. The Cd content in CSP, demethylation degree, and pectin methylesterase activity of CSP increased by 37.95%, 13.34%, and 13.16%, respectively, while IDS did not change the contents of different CW components. The improved Cd fixation in leaf CW was mainly attributed to enhance demethylation of covalently bound pectin (CSP) and Cd chelation with CSP.
Collapse
|
27
|
Jiang Y, Zhang J, Wen Q, Zheng J, Zhang Y, Wei Q, Qin Y, Zhang X. Up-flow anaerobic column reactor for sulfate-rich cadmium-bearing wastewater purification: system performance, removal mechanism and microbial community structure. Biodegradation 2022; 33:239-253. [PMID: 35461432 DOI: 10.1007/s10532-022-09983-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 04/13/2022] [Indexed: 11/02/2022]
Abstract
This study constructed an up-flow anaerobic column reactor fed with synthetic sulfate-rich cadmium (Cd(II))-bearing wastewater, for investigating its Cd(II) removal performance and mechanism. Long-term experiment results manifest that introducing Cd(II) into influent led to an enhanced sulfate removal but did not increase the effluent sulfide concentration, implying the CdS formation. When influent Cd(II) concentration was shifted from 50 to 100 mg/L, the median Cd(II) removal rate was increased from 13.6 to 32.2 mg/(L·d). Batch tests indicate that the uptake and sequestration function of anaerobes merely led to a small portion of Cd(II) removal. A majority of aqueous Cd(II) (86.3%) was eliminated by precipitation reactions. The generated precipitates were found to be dominantly presented in carbonate, Fe-Mn oxide, sulfide bound and residue forms, which account for 92.6-93.9% of total Cd content of sludge obtained at diverse operation phases. The crystallographic CdS (i.e., residue fraction) particles have nano-scale sizes, and the relatively high atomic ratio of S to Cd was likely due to the adsorption/deposition of other sulfides. The dominant sulfate-reducing bacteria (SRB) were recognized as Desulfurella, Desulforhabdus and Desulfovibrio, and the primary competitor with them for substrate utilization were identified to be methanogens.
Collapse
Affiliation(s)
- Yongrong Jiang
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin, 541004, China
| | - Jie Zhang
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin, 541004, China
- School of Chemistry and Materials Engineering, Huizhou University, 46 Yanda Road, Huizhou, 516007, China
| | - Qianmin Wen
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin, 541004, China
| | - Junjian Zheng
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin, 541004, China.
| | - Yuanyuan Zhang
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin, 541004, China.
| | - Qiaoyan Wei
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin, 541004, China
| | - Yongli Qin
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin, 541004, China
| | - Xuehong Zhang
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin, 541004, China
- College of Environmental Science and Engineering, Guilin University of Technology, 319 Yanshan Street, Guilin, 541006, China
| |
Collapse
|
28
|
Potential for Natural Attenuation of Domestic and Agricultural Pollution in Karst Groundwater Environments. WATER 2022. [DOI: 10.3390/w14101597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In karst areas, anthropogenic contaminants reach the subsurface with detrimental effects on the groundwater ecosystem and downstream springs, which often serve as drinking water sources for the local human communities. We analyzed the water chemistry and microbial community composition in upstream and downstream locations of five hydrokarst systems (HKS) during four seasons. Conductivity and nitrates were higher in the downstream springs than in the pre-karst waters, whereas the concentration of organic matter, considered here as a pollution indicator, was lower. The microbial community composition varied largely between upstream and downstream locations, with multiple species of potentially pathogenic bacteria decreasing in the HKS. Bacteria indicative of pollution decreased as well when passing through the HKS, but potential biodegraders increased. This suggests that the HKS can filter out part of the polluting organic matter and, with it, part of the associated microorganisms. Nevertheless, the water quality, including the presence of pathogens in downstream springs, must be further monitored to control whether the water is appropriate for consumption. In parallel, the human populations located upstream must be advised of the risks resulting from their daily activities, improper stocking of their various wastes and dumping of their refuse in surface streams.
Collapse
|
29
|
Qian L, Song F, Xia J, Wang R. A Glucuronic Acid-Producing Endophyte Pseudomonas sp. MCS15 Reduces Cadmium Uptake in Rice by Inhibition of Ethylene Biosynthesis. FRONTIERS IN PLANT SCIENCE 2022; 13:876545. [PMID: 35498658 PMCID: PMC9047996 DOI: 10.3389/fpls.2022.876545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Dynamic regulation of phytohormone levels is pivotal for plant adaptation to harmful conditions. It is increasingly evidenced that endophytic bacteria can regulate plant hormone levels to help their hosts counteract adverse effects imposed by abiotic and biotic stresses, but the mechanisms underlying the endophyte-induced stress resistance of plants remain largely elusive. In this study, a glucuronic acid-producing endophyte Pseudomonas sp. MCS15 alleviated cadmium (Cd) toxicity in rice plants. Inoculation with MCS15 significantly inhibited the expression of ethylene biosynthetic genes including OsACO3, OsACO4, OsACO5, OsACS2, and OsACS5 and thus reduced the content of ethylene in rice roots. In addition, the expression of iron uptake-related genes including OsIRT1, OsIRT2, OsNAS1, OsNAS2 and OsYSL15 was significantly downregulated in the MCS15-inoculated roots under Cd stress. Similarly, glucuronic acid treatment also remarkably inhibited root uptake of Cd and reduced the production of ethylene. However, treatment with 1-aminocyclopropyl carboxylic acid (ACC), a precursor of ethylene, almost abolished the MCS15 or glucuronic acid-induced inhibition of Cd accumulation in rice plants. Conversely, treatment with aminoethoxyvinyl glycine (AVG), an inhibitor of ethylene biosynthesis, markedly reduced the Cd accumulation in plants. Taken together, our results revealed that the endophytic bacteria MCS15-secreted glucuronic acid inhibited the biosynthesis of ethylene and thus weakened iron uptake-related systems in rice roots, which contributed to preventing the Cd accumulation.
Collapse
Affiliation(s)
- Lisheng Qian
- College of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Fei Song
- College of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Jinlin Xia
- College of Life Sciences, Anhui Agricultural University, Hefei, China
- Anhui Shengnong Agricultural Group Co., Ltd., Maanshan, China
| | - Rongfu Wang
- College of Life Sciences, Anhui Agricultural University, Hefei, China
| |
Collapse
|
30
|
Li D, Zheng X, Lin L, An Q, Jiao Y, Li Q, Li Z, Hong Y, Zhang K, Xie C, Yin J, Zhang H, Wang B, Hu Y, Zhu Z. Remediation of soils co-contaminated with cadmium and dichlorodiphenyltrichloroethanes by king grass associated with Piriformospora indica: Insights into the regulation of root excretion and reshaping of rhizosphere microbial community structure. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126936. [PMID: 34463272 DOI: 10.1016/j.jhazmat.2021.126936] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) and dichlorodiphenyltrichloroethane (DDT) are frequently detected in agricultural soils, which poses a threat to public health. This study investigated the effects of inoculation of king grass with Piriformospora indica on the remediation of soils co-contaminated with Cd and DDTs. After treatment for 90 days, the dry shoot and root biomass of king grass inoculated with P. indica markedly increased by 13.0-15.8% and 24.1-46.4%, respectively, compared with those of uninoculated plants. Inoculation with P. indica also increased the uptake of Cd and DDTs by shoots and roots of king grass. The removal efficiency of Cd and DDTs from soils reached 4.88-17.4% and 48.4-51.0%, respectively, in the presence of king grass inoculated with P. indica. Under three Cd-DDTs contamination conditions, root secretion of organic acids, alcohol, and polyamines was distinctively stimulated by P. indica inoculation of king grass compared with planting king grass alone. After phytoremediation, changes in soil bacterial and fungal community composition occurred at different contamination levels. Overall, the results showed that king grass associated with P. indica can be adopted for phytoextraction of Cd and DDTs from moderately contaminated soils by regulating root excretion and reshaping rhizosphere microbial community structure.
Collapse
Affiliation(s)
- Dong Li
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Xiaoxiao Zheng
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Li Lin
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 53007, China
| | - Qianli An
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310000, China
| | - Yangqiu Jiao
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Qiuli Li
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Zhidong Li
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Yi Hong
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Kailu Zhang
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Can Xie
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Jing Yin
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Haixiang Zhang
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Baijie Wang
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Yueming Hu
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Zhiqiang Zhu
- College of Tropical Crops, Hainan University, Haikou 570228, China.
| |
Collapse
|
31
|
Chu C, Fan M, Song C, Li N, Zhang C, Fu S, Wang W, Yang Z. Unveiling Endophytic Bacterial Community Structures of Different Rice Cultivars Grown in a Cadmium-Contaminated Paddy Field. Front Microbiol 2021; 12:756327. [PMID: 34867879 PMCID: PMC8635021 DOI: 10.3389/fmicb.2021.756327] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/04/2021] [Indexed: 12/07/2022] Open
Abstract
Endophytic bacteria play potentially important roles in the processes of plant adaptation to the environment. Understanding the composition and dynamics of endophytic bacterial communities under heavy metal (HM) stress can reveal their impacts on host development and stress tolerance. In this study, we investigated root endophytic bacterial communities of different rice cultivars grown in a cadmium (Cd)-contaminated paddy field. These rice cultivars are classified into low (RBQ, 728B, and NX1B) and high (BB and S95B) levels of Cd-accumulating capacity. Our metagenomic analysis targeting 16S rRNA gene sequence data reveals that Proteobacteria, Firmicutes, Actinobacteria, Acidobacteria, Bacteroidetes, and Spirochaetes are predominant root endophytic bacterial phyla of the five rice cultivars that we studied. Principal coordinate analysis shows that the developmental stage of rice governs a larger source of variation in the bacterial communities compared to that of any specific rice cultivar or of the root Cd content. Endophytic bacterial communities during the reproductive stage of rice form a more highly interconnected network and exhibit higher operational taxonomic unit numbers, diversities, and abundance than those during the vegetative stage. Forty-five genera are significantly correlated with Cd content in rice root, notably including positive-correlating Geobacter and Haliangium; and negative-correlating Pseudomonas and Streptacidiphilus. Furthermore, Phylogenetic Investigation of Communities by Reconstruction of Unobserved States analysis shows that functional pathways, such as biosynthesis of siderophore and type II polyketide products, are significantly enhanced during the reproductive stage compared to those during the vegetative stage under Cd stress. The isolated endophytic bacteria from the Cd-contaminated rice roots display high Cd resistance and multiple traits that may promote plant growth, suggesting their potential application in alleviating HM stress on plants. This study describes in detail for the first time the assemblage of the bacterial endophytomes of rice roots under Cd stress and may provide insights into the interactions among endophytes, plants, and HM contamination.
Collapse
Affiliation(s)
- Chaoqun Chu
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Meiyu Fan
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Chongyang Song
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Ni Li
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
| | - Chao Zhang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
| | - Shaowei Fu
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Weiping Wang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
| | - Zhiwei Yang
- College of Life Sciences, Capital Normal University, Beijing, China
| |
Collapse
|
32
|
Madline A, Benidire L, Boularbah A. Alleviation of salinity and metal stress using plant growth-promoting rhizobacteria isolated from semiarid Moroccan copper-mine soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:67185-67202. [PMID: 34247350 DOI: 10.1007/s11356-021-15168-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Phytoremediation is an eco-friendly method for rehabilitation of mine tailing. Some heavy metals and salt-tolerant plant growth-promoting rhizobacteria (PGPR) could be beneficial in alleviating soil salinity and heavy metal stress during plant growth. The aim of this work is to select PGPR that could be used in phytoremediation process. Twenty-nine rhizobacteria are examined for their ability to grow at increasing concentrations of NaCl, Zn, Pb, Cu, and Cd. The results showed that seventeen rhizobacteria displayed high salinity and metal tolerance up to 100 g L-1 of NaCl, 5 mM of Cd, 9 mM of Pb, 10 mM of Zn, and 6 mM of Cu. Moreover, almost all tested bacteria maintained their PGP traits under 10% of NaCl and multi-metal stress. Based on seedling bioassay under metallic and salt stress, using Peganum harmala L. and Lactuca sativa L., beneficial effects of seed inoculation with bacterial consortia (Mesorhizobium tamadayense, Enterobacter xiangfangensis, Pseudomonas azotifigens, and Streptomyces caelestis) have been observed in terms of root and shoot elongation. Our results show that the stress-tolerant consortium used has a great potential to sustain plants establishment in heavily disturbed soils.
Collapse
Affiliation(s)
- Atika Madline
- Université Cadi-Ayyad, Faculté des Sciences et Techniques Marrakech, Laboratoire Bioressources et Sécurité Sanitaire des Aliments, BP 549, M-40000, Guéliz, Marrakech, Morocco
| | - Leila Benidire
- Université Cadi-Ayyad, Faculté des Sciences et Techniques Marrakech, Laboratoire Bioressources et Sécurité Sanitaire des Aliments, BP 549, M-40000, Guéliz, Marrakech, Morocco
| | - Ali Boularbah
- Université Cadi-Ayyad, Faculté des Sciences et Techniques Marrakech, Laboratoire Bioressources et Sécurité Sanitaire des Aliments, BP 549, M-40000, Guéliz, Marrakech, Morocco.
- Center of Excellence for Soil and Africa Research in Africa, AgroBioSciences, Mohammed VI Polytechnique - University Lot 660, Hay Moulay Rachid, Ben Guerir, Morocco.
- Université Cadi Ayyad, Ecole Supérieure de Technologie, El Kelâa des Sraghna, Morocco.
| |
Collapse
|
33
|
Du H, Nie N, Rao W, Lu L, Lei M, Tie B. Ferrihydrite-organo composites are a suitable analog for predicting Cd(II)-As(V) coexistence behaviors at the soil solid-liquid interfaces. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118040. [PMID: 34454194 DOI: 10.1016/j.envpol.2021.118040] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/11/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Organomineral assemblages are building units of soil micro-aggregates and exert their essential roles in immobilizing toxic elements. Currently, our knowledge of the adsorption and partitioning behaviors of coexisting Cd-As onto organomineral composites is limited. Herein, we carefully studied Cd-As cosorption onto ferrihydrite organomineral composites made with either living or non-living organics, i.e., bacteria (Delftia sp.) or humic acid (HA), using batch adsorption and various spectroscopies. Batch results show that As(V) only enhances Cd(II) sorption on pure Fh at pH < 6 but cannot promote Cd(II) sorption to Fh-organo composites. However, Cd(II) noticeably promotes As(V) sorption at pH>~5-6. Synchrotron micro X-ray fluorescence indicates that Cd(II) adsorbs predominately to the bacterial fraction (Cd versus P, r = 0.924), whereas As(V) binds mainly to the Fh fraction (As versus Fe, r = 0.844) of the Fh-bacteria composite. On Fh-HA composite, however, Cd(II) and As(V) are both primarily sorbed by the Fh fraction (Cd/As versus P, r > 0.8), based on the scanning transmission electron microscopy-energy disperse spectroscopy analyses. Elemental distribution characterization also manifests the co-localization of Cd(II) and As(V) within the organomineral composite, particular in Fh-HA composite (Cd versus As, r = 0.8), which is further identified as the Fh-As-Cd ternary complex based on the observations (higher frequencies at ~753-761 cm-1) of attenuated total reflection Fourier-transform infrared spectroscopy. Moreover, this ternary interaction is more pronounced in Fh-HA than in Fh-bacteria. In summary, our results suggest that Cd-As coadsorption behaviors on Fh-organo composites are different from those on pure minerals, and the presence of bacteria/HA can significantly affect metal (loid)s speciation, distribution, and ternary interaction. Therefore organomineral composites are a more suitable analog than pure mineral phases to predict the mobility and fate of Cd-As in natural environments.
Collapse
Affiliation(s)
- Huihui Du
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China.
| | - Ning Nie
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Wenkai Rao
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Lei Lu
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Ming Lei
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Boqing Tie
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| |
Collapse
|
34
|
Li Z, Liang Y, Hu H, Shaheen SM, Zhong H, Tack FMG, Wu M, Li YF, Gao Y, Rinklebe J, Zhao J. Speciation, transportation, and pathways of cadmium in soil-rice systems: A review on the environmental implications and remediation approaches for food safety. ENVIRONMENT INTERNATIONAL 2021; 156:106749. [PMID: 34247006 DOI: 10.1016/j.envint.2021.106749] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/03/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) contamination in paddy fields is a serious health concern because of its high toxicity and widespread pollution. Recently, much progress has been made in elucidating the mechanisms involved in Cd uptake, transport, and transformation from paddy soils to rice grains, aiming to mitigate the associated health risk; however, these topics have not been critically reviewed to date. Here, we summarized and reviewed the (1) geochemical distribution and speciation of Cd in soil-rice systems, (2) mobilization, uptake, and transport of Cd from soil to rice grains and the associated health risks, (3) pathways and transformation mechanisms of Cd from soil to rice grains, (4) transporters involved in reducing Cd uptake, transport, and accumulation in rice plants, (5) factors governing Cd bioavailability in paddy, and (6) comparison of remediation approaches for mitigating the environmental and health risks of Cd contamination in paddy fields. Briefly, this review presents the state of the art about the fate of Cd in paddy fields and its transport from soil to grains, contributing to a better understanding of the environmental hazards of Cd in rice ecosystems. Challenges and perspectives for controlling Cd risks in rice are thus raised. The summarized findings in this review may help to develop innovative and applicable methods for controlling Cd accumulation in rice grains and sustainably manage Cd-contaminated paddy fields.
Collapse
Affiliation(s)
- Zhanming Li
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Liang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China
| | - Hangwei Hu
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516 Kafr El-Sheikh, Egypt
| | - Huan Zhong
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Filip M G Tack
- Department of Green Chemistry and Technology, Ghent University, Coupure Links 659, B-9000 Gent, Belgium
| | - Mengjie Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yu-Feng Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuxi Gao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea.
| | - Jiating Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
35
|
Zhou X, Liu X, Zhao J, Guan F, Yao D, Wu N, Tian J. The endophytic bacterium Bacillus koreensis 181-22 promotes rice growth and alleviates cadmium stress under cadmium exposure. Appl Microbiol Biotechnol 2021; 105:8517-8529. [PMID: 34609525 DOI: 10.1007/s00253-021-11613-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/14/2021] [Accepted: 09/18/2021] [Indexed: 11/24/2022]
Abstract
Recently, cadmium (Cd) contamination in paddy soils has become a highly concerning pollution problem. Endophytic microbes in rice not only affect the plant growth but also contribute to ion absorption by the roots. Therefore, they are a promising, ecologically sound means of reducing the Cd transport from soils to shoots and grains of the plant. In this study, a Cd-resistant endophytic bacterium, named 181-22, with high Cd absorption capacity (90.8%) was isolated from the roots of rice planting in heavily Cd-contaminated paddy soils and was identified as Bacillus koreensis CGMCC 19,468. The strain significantly increased fresh weight of roots and shoots (44.4% and 42.7%) and dry weight of roots and shoots (71.3% and 39.9%) and decreased Cd content in the rice roots (12.8%), shoots (34.3%), and grains (39.1%) under Cd stress compared to uninoculated plant by colonizing rice roots via seed inoculation. Moreover, colonization of 181-22 reprogrammed rice physiology to alleviate Cd stress by increasing pigment and total protein content, regulating Cd-induced oxidative stress enzymes such as superoxide dismutase and catalase and reducing malondialdehyde. Thus, B. koreensis 181-22 has the potential to protect rice against Cd stress and can be used as a biofertilizer to bioremediate paddy soils contaminated with Cd. KEY POINTS: • Bacillus koreensis 181-22 colonized the inside of rice roots at high numbers via seed inoculation. • B. koreensis 181-22 promoted rice growth and decreased Cd accumulation in grains. • B. koreensis 181-22 regulated the physiological response to alleviated Cd stress in rice.
Collapse
Affiliation(s)
- Xin Zhou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaoqing Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jintong Zhao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Feifei Guan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Dongsheng Yao
- Institute of Microbial Biotechnology, Guangdong Province, Jinan University, Guangzhou City, 510632, China
- National Engineering Research Center of Genetic Medicine, Guangdong Province, Guangzhou City, 510632, China
| | - Ningfeng Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Jian Tian
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
36
|
The fate of plant growth-promoting rhizobacteria in soilless agriculture: future perspectives. 3 Biotech 2021; 11:382. [PMID: 34350087 DOI: 10.1007/s13205-021-02941-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
The application of plant growth-promoting rhizobacteria (PGPRs) can be an excellent and eco-friendly alternative to the use of chemical fertilizers. While PGPRs are often used in traditional agriculture to facilitate yield increases, their use in soilless agriculture has been limited. Soilless agriculture is growing in popularity among commercial farmers because it eliminates soil-borne problems, and the essential strategy is to keep the system as clean as possible. However, a new trend is the inclusion of PGPRs to enhance plant development. Despite the plethora of research that has been performed to date, there remains a huge knowledge gap that needs to be addressed to facilitate the commercialization of PGPRs for sustainable soilless agriculture. Hence, the development of proper strategies and additional research and trials are required. The present review provides an update on recent developments in the use of PGPRs in soilless agriculture, examining these bacteria from different perspectives in an attempt to generate critical discussion and aid in the understanding of the interaction between soilless agriculture and PGPRs.
Collapse
|
37
|
Zou M, Zhou S, Zhou Y, Jia Z, Guo T, Wang J. Cadmium pollution of soil-rice ecosystems in rice cultivation dominated regions in China: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 280:116965. [PMID: 33774546 DOI: 10.1016/j.envpol.2021.116965] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 05/22/2023]
Abstract
Cd accumulation in paddy soils and its subsequent transfer to the food chain are widespread environmental issues, which has been extensively investigated in China. However, most studies focused on regional scales and these results may not be applicable to present the Cd contamination status in soil-rice ecosystems at a national scale. Therefore, based on collected data from China's rice cultivation dominated regions, this study provides the Cd pollution level of paddy soils and rice grains in China. Results indicates that the Yangtze River basin, especially Hunan, required more attention due to the elevated Cd concentrations in soil-rice ecosystems. Moreover, this review summarizes the significant natural and anthropogenic sources, transport and accumulation mechanism as well as the influencing factors of Cd in soil-rice ecosystems. The wide occurrence of Cd contamination in paddy soils derived primarily from mining activities, intensive application of phosphates fertilizers and e-waste. Physicochemical characteristics of soil, soil microorganisms, temperature as well as the physiological features of rice plants all contribute to Cd accumulation in rice grains, which can be controlled to mitigate Cd accumulation in rice grains. This review will provide a scientific reference for Cd pollution control and management with respect to paddy field ecosystems in China and other countries.
Collapse
Affiliation(s)
- Mengmeng Zou
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China; Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing, 210024, China
| | - Shenglu Zhou
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China; Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing, 210024, China.
| | - Yujie Zhou
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China; Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing, 210024, China
| | - Zhenyi Jia
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China; Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing, 210024, China
| | - Tianwei Guo
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China; Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing, 210024, China
| | - Junxiao Wang
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China; Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing, 210024, China
| |
Collapse
|
38
|
Wang G, Zhang Q, Du W, Ai F, Yin Y, Ji R, Guo H. Microbial communities in the rhizosphere of different willow genotypes affect phytoremediation potential in Cd contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:145224. [PMID: 33485209 DOI: 10.1016/j.scitotenv.2021.145224] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 05/22/2023]
Abstract
Plant-associated microorganisms play an important role in controlling heavy metal uptake and accumulation in aerial parts. The microbial community and its interaction with Cd accumulation by willow were assessed to explore the association of phytoextraction efficiency and rhizospheric microbial populations. Therefore, the rhizosphere microbial compositions of three willow genotypes grown in two Cd polluted sites were investigated, focusing on their interactions with phytoremediation potential. Principal coordinate analysis revealed a significant effect of genotype on the rhizosphere microbial communities. Distinct beneficial microorganisms, such as plant growth promoting bacteria (PGPB) and mycorrhizal fungi, were assembled in the rhizosphere of different willow genotypes. Linear mixed models showed that the relative abundance of PGPB was positively associated (p < 0.01) with Cd accumulation, since these microbes significantly increased willow growth. The higher abundance of arbuscular mycorrhizal fungi in the rhizosphere of Salix × aureo-pendula CL 'J1011' at the Kejing site, showed a negative correlation with the Cd content, but a positive correlation with biomass. Conversely, mycorrhizal fungi, were more abundant in the rhizosphere of S. × jiangsuensis CL. 'J2345' and positively correlated with the Cd content in willow tissues. This study provides new insights into the distinctive microbial communities in rhizosphere of different willow genotypes, which may be consistent with the phytoremediation potential.
Collapse
Affiliation(s)
- Guobing Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing 210023, China.
| | - Qingquan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing 210023, China.
| | - Wenchao Du
- School of Environment, Nanjing Normal University, Nanjing 210036, China.
| | - Fuxun Ai
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing 210023, China.
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing 210023, China.
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing 210023, China.
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
39
|
Liu S, Liu H, Chen R, Ma Y, Yang B, Chen Z, Liang Y, Fang J, Xiao Y. Role of Two Plant Growth-Promoting Bacteria in Remediating Cadmium-Contaminated Soil Combined with Miscanthus floridulus (Lab.). PLANTS 2021; 10:plants10050912. [PMID: 34063227 PMCID: PMC8147505 DOI: 10.3390/plants10050912] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 11/19/2022]
Abstract
Miscanthus spp. are energy plants and excellent candidates for phytoremediation approaches of metal(loid)s-contaminated soils, especially when combined with plant growth-promoting bacteria. Forty-one bacterial strains were isolated from the rhizosphere soils and roots tissue of five dominant plants (Artemisia argyi Levl., Gladiolus gandavensis Vaniot Houtt, Boehmeria nivea L., Veronica didyma Tenore, and Miscanthus floridulus Lab.) colonizing a cadmium (Cd)-contaminated mining area (Huayuan, Hunan, China). We subsequently tested their plant growth-promoting (PGP) traits (e.g., production of indole-3-acetic acid, siderophore, and 1-aminocyclopropane-1-carboxylate deaminase) and Cd tolerance. Among bacteria, two strains, Klebsiella michiganensis TS8 and Lelliottia jeotgali MR2, presented higher Cd tolerance and showed the best results regarding in vitro growth-promoting traits. In the subsequent pot experiments using soil spiked with 10 mg Cd·kg−1, we investigated the effects of TS8 and MR2 strains on soil Cd phytoremediation when combined with M. floridulus (Lab.). After sixty days of planting M. floridulus (Lab.), we found that TS8 increased plant height by 39.9%, dry weight of leaves by 99.1%, and the total Cd in the rhizosphere soil was reduced by 49.2%. Although MR2 had no significant effects on the efficiency of phytoremediation, it significantly enhanced the Cd translocation from the root to the aboveground tissues (translocation factor > 1). The combination of K. michiganensis TS8 and M. floridulus (Lab.) may be an effective method to remediate Cd-contaminated soils, while the inoculation of L. jeotgali MR2 may be used to enhance the phytoextraction potential of M. floridulus.
Collapse
Affiliation(s)
- Shuming Liu
- College of Bioscience and Biotechnology, College of Resource and Environment, Hunan Agricultural University, Changsha 410128, China; (S.L.); (H.L.); (R.C.); (Y.M.); (B.Y.); (Z.C.); (Y.L.)
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, China
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, China
| | - Hongmei Liu
- College of Bioscience and Biotechnology, College of Resource and Environment, Hunan Agricultural University, Changsha 410128, China; (S.L.); (H.L.); (R.C.); (Y.M.); (B.Y.); (Z.C.); (Y.L.)
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, China
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, China
| | - Rui Chen
- College of Bioscience and Biotechnology, College of Resource and Environment, Hunan Agricultural University, Changsha 410128, China; (S.L.); (H.L.); (R.C.); (Y.M.); (B.Y.); (Z.C.); (Y.L.)
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, China
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, China
| | - Yong Ma
- College of Bioscience and Biotechnology, College of Resource and Environment, Hunan Agricultural University, Changsha 410128, China; (S.L.); (H.L.); (R.C.); (Y.M.); (B.Y.); (Z.C.); (Y.L.)
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, China
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, China
| | - Bo Yang
- College of Bioscience and Biotechnology, College of Resource and Environment, Hunan Agricultural University, Changsha 410128, China; (S.L.); (H.L.); (R.C.); (Y.M.); (B.Y.); (Z.C.); (Y.L.)
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, China
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, China
| | - Zhiyong Chen
- College of Bioscience and Biotechnology, College of Resource and Environment, Hunan Agricultural University, Changsha 410128, China; (S.L.); (H.L.); (R.C.); (Y.M.); (B.Y.); (Z.C.); (Y.L.)
| | - Yunshan Liang
- College of Bioscience and Biotechnology, College of Resource and Environment, Hunan Agricultural University, Changsha 410128, China; (S.L.); (H.L.); (R.C.); (Y.M.); (B.Y.); (Z.C.); (Y.L.)
| | - Jun Fang
- College of Bioscience and Biotechnology, College of Resource and Environment, Hunan Agricultural University, Changsha 410128, China; (S.L.); (H.L.); (R.C.); (Y.M.); (B.Y.); (Z.C.); (Y.L.)
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, China
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, China
- Correspondence: (J.F.); (Y.X.)
| | - Yunhua Xiao
- College of Bioscience and Biotechnology, College of Resource and Environment, Hunan Agricultural University, Changsha 410128, China; (S.L.); (H.L.); (R.C.); (Y.M.); (B.Y.); (Z.C.); (Y.L.)
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, China
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, China
- Correspondence: (J.F.); (Y.X.)
| |
Collapse
|
40
|
Ke T, Guo G, Liu J, Zhang C, Tao Y, Wang P, Xu Y, Chen L. Improvement of the Cu and Cd phytostabilization efficiency of perennial ryegrass through the inoculation of three metal-resistant PGPR strains. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116314. [PMID: 33360656 DOI: 10.1016/j.envpol.2020.116314] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/01/2020] [Accepted: 12/13/2020] [Indexed: 05/08/2023]
Abstract
To explore a novel strategy for the remediation of soils polluted with Cu and Cd, three strains of plant-growth-promoting rhizobacteria (PGPRs) isolated from contaminated mines and two grass species (perennial ryegrass and tall fescue) were selected in this study. The performance of PGPR strains in metal adsorption, maintaining promotion traits under stress, and ameliorating phytostabilization potential was evaluated. Cd2+ exerted a stronger deleterious effect on microbial growth than Cu2+, but the opposite occurred for grass seedlings. Adsorption experiment showed that the growing PGPR strains were able to immobilize maximum 79.49% Cu and 81.35% Cd owing to biosorption or bioaccumulation. The strains exhibited the ability to secrete indole-3-acetic acid (IAA) and dissolve phosphorus in the absence and presence of metals, and IAA production was even enhanced in the presence of low Cu2+ (5 mg L-1). However, the siderophore-producing ability of the isolates was strongly suppressed under Cu and Cd exposure. Ryegrass was further selected for pot experiments owing to its higher germination rate and tolerance under Cu and Cd stress than fescue. Pot-experiment results revealed that PGPR addition significantly increased the shoot and root biomasses of ryegrass by 11.49%-44.50% and 43.53%-90.29% in soil co-contaminated with 800 mg Cu kg-1 and 30 mg Cd kg-1, respectively. Metal uptake and translocation in inoculated ryegrass significantly decreased owing to the reduced diethylenetriamine pentaacetic acid-extractable metal content and increased residual metal-fraction percentage mediated by PGPR. Interestingly, stress mitigation was observed in these inoculated plants; in particular, their malondialdehyde content and superoxide dismutase activity were even significantly lower than those of ryegrass under normal conditions. Therefore, PGPR could be a promising option to enhance the phytostabilization efficiency of Cu and Cd in heavily polluted soils.
Collapse
Affiliation(s)
- Tan Ke
- School of Resource & Environmental Sciences, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei Research Center of Environment Remediation Technology, Wuhan University, Wuhan, 430079, PR China
| | - Guangyu Guo
- School of Resource & Environmental Sciences, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei Research Center of Environment Remediation Technology, Wuhan University, Wuhan, 430079, PR China
| | - Junrong Liu
- School of Resource & Environmental Sciences, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei Research Center of Environment Remediation Technology, Wuhan University, Wuhan, 430079, PR China
| | - Chao Zhang
- School of Resource & Environmental Sciences, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei Research Center of Environment Remediation Technology, Wuhan University, Wuhan, 430079, PR China
| | - Yue Tao
- School of Resource & Environmental Sciences, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei Research Center of Environment Remediation Technology, Wuhan University, Wuhan, 430079, PR China
| | - Panpan Wang
- School of Resource & Environmental Sciences, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei Research Center of Environment Remediation Technology, Wuhan University, Wuhan, 430079, PR China
| | - Yanhong Xu
- National Central City Research Institute, Zhengzhou Normal University, Zhengzhou, 450044, PR China
| | - Lanzhou Chen
- School of Resource & Environmental Sciences, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei Research Center of Environment Remediation Technology, Wuhan University, Wuhan, 430079, PR China.
| |
Collapse
|
41
|
Yao X, Chen P, Cheng T, Sun K, Megharaj M, He W. Inoculation of Bacillus megaterium strain A14 alleviates cadmium accumulation in peanut: effects and underlying mechanisms. J Appl Microbiol 2021; 131:819-832. [PMID: 33386698 DOI: 10.1111/jam.14983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/01/2020] [Accepted: 12/21/2020] [Indexed: 11/30/2022]
Abstract
AIMS A cadmium (Cd)-tolerant Bacillus megaterium strain A14 was used to investigate the effects and mechanisms of bacterial inoculation on peanut growth, Cd accumulation in grains and Cd fixation in Cd-contaminated soil. METHODS AND RESULTS Spectroscopic analysis showed that A14 has many functional groups (-OH, -NH2 and -COO et al.) distributed on its surface. The pot experiment indicated that compared to the Cd-contaminated soil alone treatment, inoculation with strain A14 increased shoot and root biomass by 59·93 and 58·31% respectively. The accumulation of Cd in grains decreased by 48·14%, while the proportion of exchangeable Cd in soil decreased from 40 to 26% in A14 inoculated soil. CONCLUSIONS Inoculation with B. megaterium A14 improved peanut plant growth via (i) adsorbing Cd2+ through functional groups on cell surface, (ii) immobilization of Cd in soil through extracellular secretions, (iii) scavenging the reactive oxygen species through production of antioxidant enzymes, and (iv) by reducing the phytoavailable Cd through regulation of Cd transport gene expression. SIGNIFICANCE AND IMPACT OF THE STUDY This study provided a new sight on microbial approach for the chemical composition transformation of soil Cd and associated food safety production, which pointed out an efficient way to improve peanut cultivation.
Collapse
Affiliation(s)
- X Yao
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - P Chen
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - T Cheng
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - K Sun
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - M Megharaj
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle (UoN), Callaghan, NSW, Australia
| | - W He
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
42
|
Wang C, Huang Y, Yang X, Xue W, Zhang X, Zhang Y, Pang J, Liu Y, Liu Z. Burkholderia sp. Y4 inhibits cadmium accumulation in rice by increasing essential nutrient uptake and preferentially absorbing cadmium. CHEMOSPHERE 2020; 252:126603. [PMID: 32240860 DOI: 10.1016/j.chemosphere.2020.126603] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/12/2020] [Accepted: 03/22/2020] [Indexed: 06/11/2023]
Abstract
Microbial remediation of heavy metal-polluted soil is a commonly used method. Burkholderia sp. Y4, isolated from cadmium (Cd)-contaminated rice rhizosphere soil, was investigated for its direct and indirect effects on Cd accumulation in rice by SEM-EDS, FITR and sequencing analysis of the soil bacterial community. Burkholderia sp. Y4 inoculation reduced Cd accumulation in rice roots, rachises, and grains of the two rice varieties T705 and X24 and increased levels of essential elements, especially Fe and Mn, which competitively inhibited Cd transport through cationic channels. Living Burkholderia sp. Y4 cells, rather than non-living ones, could colonize the surface of rice roots and accumulated more Cd through direct biosorption associated with -CO and -NH/-CO bonds of amino acids and proteins. The results of soil microbial community showed that the colonization of externally added Burkholderia sp. Y4 could be maintained over some time to impact the total rhizospheric environment. Burkholderia sp. Y4 inoculation decreased the abundance of microbes involved in the iron cycle (Acidobacteria) as well as of those mediating the transformation of ammonium nitrogen to nitrate nitrogen (Nitrosomonadaceae and Nitrospira). So Burkholderia sp. Y4 inoculation may indirectly change the availability of micronutrients and Cd in rice rhizosphere soil through iron-nitrogen coupled cycles to increase essential nutrient uptake and inhibit Cd accumulation in rice by preferential Cd-biosorption. Therefore, Burkholderia sp. Y4 is potentially suitable for the bioremediation of Cd-contaminated paddy soil.
Collapse
Affiliation(s)
- Changrong Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China
| | - Yongchun Huang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China.
| | - Xiaorong Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China
| | - Weijie Xue
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China
| | - Xin Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China
| | - Yahui Zhang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, People's Republic of China
| | - Jie Pang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, People's Republic of China
| | - Yuemin Liu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, People's Republic of China
| | - Zhongqi Liu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China.
| |
Collapse
|
43
|
Liu Y, Tie B, Peng O, Luo H, Li D, Liu S, Lei M, Wei X, Liu X, Du H. Inoculation of Cd-contaminated paddy soil with biochar-supported microbial cell composite: A novel approach to reducing cadmium accumulation in rice grains. CHEMOSPHERE 2020; 247:125850. [PMID: 31931314 DOI: 10.1016/j.chemosphere.2020.125850] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/25/2019] [Accepted: 01/04/2020] [Indexed: 06/10/2023]
Abstract
Bioremediation of heavy metal-contaminated soil using metal-resistant microbes is a promising remediation technology. However, as exogenous bacteria sometimes struggle to survive and grow when introduced to new soils, it is important to develop appropriate carriers for microbial populations. In this study, we report a novel approach to remediating Cd-contaminated rice paddy soil using biochar-supported microbial cell composites (BMCs) produced from agricultural waste (cornstalks). Pot experiments showed that amendment with BMC was more efficient at reducing root and grain Cd content than pure bacteria, while improving soil Cd fractionation toward more stabilized and less labile forms. Bacteria in the BMC medium grew more readily with more abundant metabolites than those raised in free cells, probably because biochar provides shelter via porous structures (as confirmed by scanning electron microscopy) as well as additional nutrients. Overall, the improved long-term production of microbial biomass caused by BMC inoculation results in a higher remediation efficiency. Our results demonstrate the feasibility of using biochar as an appropriate carrier for metal-tolerant bacteria to remediate Cd-contaminated paddy fields.
Collapse
Affiliation(s)
- Yuling Liu
- Hunan Engineering & Technology Research Center for Irrigation Water Purification, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China; Key Laboratory of Southern Farmland Pollution Prevention and Control, Ministry of Agriculture, Changsha, 410128, China
| | - Boqing Tie
- Hunan Engineering & Technology Research Center for Irrigation Water Purification, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China; Key Laboratory of Southern Farmland Pollution Prevention and Control, Ministry of Agriculture, Changsha, 410128, China.
| | - Ou Peng
- Hunan Engineering & Technology Research Center for Irrigation Water Purification, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China; Key Laboratory of Southern Farmland Pollution Prevention and Control, Ministry of Agriculture, Changsha, 410128, China
| | - Haiyan Luo
- Hunan Engineering & Technology Research Center for Irrigation Water Purification, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China; Key Laboratory of Southern Farmland Pollution Prevention and Control, Ministry of Agriculture, Changsha, 410128, China
| | - Danyang Li
- Hunan Engineering & Technology Research Center for Irrigation Water Purification, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China; Key Laboratory of Southern Farmland Pollution Prevention and Control, Ministry of Agriculture, Changsha, 410128, China
| | - Shoutao Liu
- Hunan Engineering & Technology Research Center for Irrigation Water Purification, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China; Key Laboratory of Southern Farmland Pollution Prevention and Control, Ministry of Agriculture, Changsha, 410128, China
| | - Ming Lei
- Hunan Engineering & Technology Research Center for Irrigation Water Purification, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China; Key Laboratory of Southern Farmland Pollution Prevention and Control, Ministry of Agriculture, Changsha, 410128, China
| | - Xiangdong Wei
- Hunan Engineering & Technology Research Center for Irrigation Water Purification, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China; Key Laboratory of Southern Farmland Pollution Prevention and Control, Ministry of Agriculture, Changsha, 410128, China
| | - Xiaoli Liu
- Hunan Engineering & Technology Research Center for Irrigation Water Purification, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China; Key Laboratory of Southern Farmland Pollution Prevention and Control, Ministry of Agriculture, Changsha, 410128, China
| | - Huihui Du
- Hunan Engineering & Technology Research Center for Irrigation Water Purification, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China; Key Laboratory of Southern Farmland Pollution Prevention and Control, Ministry of Agriculture, Changsha, 410128, China.
| |
Collapse
|
44
|
Shan S, Guo Z, Lei P, Li Y, Wang Y, Zhang M, Cheng W, Wu S, Wu M, Du D. Increased biomass and reduced tissue cadmium accumulation in rice via indigenous Citrobacter sp. XT1-2-2 and its mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:135224. [PMID: 31796275 DOI: 10.1016/j.scitotenv.2019.135224] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/22/2019] [Accepted: 10/25/2019] [Indexed: 06/10/2023]
Abstract
Microbial remediation is a promising technique to remediate heavy metals contaminated soils. In this study, the cadmium (Cd)- resistant Citrobacter sp. XT1-2-2, isolated from heavy metals contaminated paddy soils, was investigated to evaluate the effect of this strain on soil Cd speciation, cellular Cd distribution, tissue Cd accumulation and rice biomass. The percentage of Cd2+ removal by Citrobacter sp. XT1-2-2 was up to 82.3 ± 2.1% within 240 min in the solution. The average content of soil soluble plus exchangeable and carbonate-bound fractions of Cd decreased, whereas Fe/Mn oxide-bound, organic matter-bound and residual fractions increased with bacteria inoculation. For the paddy soil inoculated with the XT1-2-2 strain, Cd concentrations of roots, culms, leaves and grains were significantly reduced by 24.1%, 46.9%, 41.5% and 66.7%, respectively. In addition, inoculation bacteria significantly increased the biomass of the roots, above-ground tissues and the rice grains. All results indicated that the XT1-2-2 strain had the ability to immobilize soil Cd and decrease Cd accumulation in rice grains. Therefore, the XT1-2-2 strain has potential for application to remediate Cd-contaminated paddy soils. It is possible to exploit a new bacterial-assisted technique for the remediation in Cd-contaminated paddy soils.
Collapse
Affiliation(s)
- Shiping Shan
- Hunan Institute of Microbiology, Changsha, Hunan 410009, China; Hunan Engineering Research Center of Safe and Efficient Utilization of Heavy Metal Contaminated Arable Land, Changsha, Hunan 410083, China
| | - Zhaohui Guo
- Hunan Institute of Microbiology, Changsha, Hunan 410009, China; Hunan Engineering Research Center of Safe and Efficient Utilization of Heavy Metal Contaminated Arable Land, Changsha, Hunan 410083, China.
| | - Ping Lei
- Hunan Institute of Microbiology, Changsha, Hunan 410009, China
| | - Yilu Li
- Hunan Institute of Microbiology, Changsha, Hunan 410009, China
| | - Yushuang Wang
- Hunan Institute of Microbiology, Changsha, Hunan 410009, China
| | - Min Zhang
- Hunan Institute of Microbiology, Changsha, Hunan 410009, China
| | - Wei Cheng
- Hunan Institute of Microbiology, Changsha, Hunan 410009, China; Hunan Engineering Research Center of Safe and Efficient Utilization of Heavy Metal Contaminated Arable Land, Changsha, Hunan 410083, China
| | - Shandong Wu
- Hunan Institute of Microbiology, Changsha, Hunan 410009, China
| | - Minxi Wu
- Hunan Institute of Microbiology, Changsha, Hunan 410009, China
| | - Dongxia Du
- Hunan Institute of Microbiology, Changsha, Hunan 410009, China.
| |
Collapse
|
45
|
Affiliation(s)
- Likun Wang
- Hebei Key Laboratory of Soil Ecology, Key Laboratory of Agricultural Water Resources, Centre for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Xiaofang Li
- Hebei Key Laboratory of Soil Ecology, Key Laboratory of Agricultural Water Resources, Centre for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| |
Collapse
|
46
|
Wang C, Liu Z, Huang Y, Zhang Y, Wang X, Hu Z. Cadmium-resistant rhizobacterium Bacillus cereus M4 promotes the growth and reduces cadmium accumulation in rice (Oryza sativa L.). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 72:103265. [PMID: 31563731 DOI: 10.1016/j.etap.2019.103265] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 06/27/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
Rice farmland cadmium pollution is an increasing problem for food safety. Cd-resistant bacterial strain was isolated from rice rhizosphere soil and identified as Bacillus cereus M4. Treatment with M4 fermentation broth increased rice seedlings growth in vermiculite, while reduced Cd accumulation in grains of rice grown in Cd-contaminated potted soil from 0.309 to 0.186 mg/kg. Indoleacetic acid (IAA) was detected in M4 metabolites and in potted soil solutions supplemented with M4 broth. M4 broth increased the abundance of Bacillus from 0.54% to 0.95% and changed the soil bacterial community composition. These findings indicate that M4 promotes rice growth by secreting IAA and altering the rhizospheric soil microenvironment, via soil solution composition and microbial community, which may affect Cd translocation from soil to rice roots, thereby decreasing grain Cd accumulation. Therefore, B. cereus M4 is potentially suitable for the bioremediation of Cd-contaminated paddy soils.
Collapse
Affiliation(s)
- Changrong Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin, 300191, People's Republic of China.
| | - Zhongqi Liu
- Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin, 300191, People's Republic of China.
| | - Yongchun Huang
- Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin, 300191, People's Republic of China
| | - Yeni Zhang
- College of Food Science and Biotechnology, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China
| | - Xiaohan Wang
- College of Food Science and Biotechnology, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China
| | - Zhouyue Hu
- College of Food Science and Biotechnology, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China
| |
Collapse
|
47
|
Zhou C, Ge N, Guo J, Zhu L, Ma Z, Cheng S, Wang J. Enterobacter asburiae Reduces Cadmium Toxicity in Maize Plants by Repressing Iron Uptake-Associated Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10126-10136. [PMID: 31433635 DOI: 10.1021/acs.jafc.9b03293] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Soil microbes have recently been utilized to improve cadmium (Cd) tolerance and lower its accumulation in plants. Nevertheless, whether rhizobacteria can prevent Cd uptake by graminaceous plants and the underlying mechanisms remain elusive. In this study, inoculation with Enterobacter asburiae NC16 reduced transpiration rates and the expression of some iron (Fe) uptake-related genes including ZmFer, ZmYS1, ZmZIP, and ZmNAS2 in maize (Zea mays) plants, which contributed to mitigation of Cd toxicity. However, the inoculation with NC16 failed to suppress the transpiration rates and transcription of these Fe uptake-related genes in plants treated with fluridone, an abscisic acid (ABA) biosynthetic inhibitor, indicating that the impacts of NC16-inoculation observed were dependent on the actions of ABA. We found that NC16 increased the host ABA levels by mediating the metabolism of ABA rather than its synthesis. Moreover, the capacity of NC16 to inhibit plant uptake of Cd was greatly weakened in plants overexpressing ZmZIP, encoding a zinc/iron transporter. Collectively, our findings indicated that E. asburiae NC16 reduced Cd toxicity in maize plants at least partially by hampering the Fe uptake-associated pathways.
Collapse
Affiliation(s)
- Cheng Zhou
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture , Anhui Science and Technology University , Bengbu 233100 , China
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers , Nanjing Agricultural University , Nanjing 210095 , China
| | - Ninggao Ge
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture , Anhui Science and Technology University , Bengbu 233100 , China
| | - Jiansheng Guo
- School of Medicine , Zhejiang University , Hangzhou 310058 , China
| | - Lin Zhu
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture , Anhui Science and Technology University , Bengbu 233100 , China
| | - Zhongyou Ma
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture , Anhui Science and Technology University , Bengbu 233100 , China
| | - Shiyong Cheng
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture , Anhui Science and Technology University , Bengbu 233100 , China
| | - Jianfei Wang
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture , Anhui Science and Technology University , Bengbu 233100 , China
| |
Collapse
|
48
|
Chang J, Yang Q, Dong J, Ji B, Si G, He F, Li B, Chen J. Reduction in Hg phytoavailability in soil using Hg-volatilizing bacteria and biochar and the response of the native bacterial community. Microb Biotechnol 2019; 12:1014-1023. [PMID: 31241863 PMCID: PMC6681405 DOI: 10.1111/1751-7915.13457] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/23/2019] [Accepted: 06/14/2019] [Indexed: 01/02/2023] Open
Abstract
Biological approaches are considered promising and eco-friendly strategies to remediate Hg contamination in soil. This study investigated the potential of two 'green' additives, Hg-volatilizing bacteria (Pseudomonas sp. DC-B1 and Bacillus sp. DC-B2) and sawdust biochar, and their combination to reduce Hg(II) phytoavailability in soil and the effect of the additives on the soil bacterial community. The results showed that the Hg(II) contents in soils and lettuce shoots and roots were all reduced with these additives, achieving more declines of 12.3-27.4%, 24.8-57.8% and 2.0-48.6%, respectively, within 56 days of incubation compared to the control with no additive. The combination of DC-B2 and 4% biochar performed best in reducing Hg(II) contents in lettuce shoots, achieving a decrease of 57.8% compared with the control. Pyrosequencing analysis showed that the overall bacterial community compositions in the soil samples were similar under different treatments, despite the fact that the relative abundance of dominant genera altered with the additives, suggesting a relatively weak impact of the additives on the soil microbial ecosystem. The low relative abundances of Pseudomonas and Bacillus, close to the background levels, at the end of the experiment indicated a small biological disturbance of the local microbial niche by the exogenous bacteria.
Collapse
Affiliation(s)
- Junjun Chang
- School of Ecology and Environmental Science and Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded EnvironmentsYunnan UniversityKunming 650091China
| | - Qingchen Yang
- Institute of International Rivers and Eco‐securityYunnan UniversityKunmingYunnan 650091China
| | - Jia Dong
- School of Ecology and Environmental Science and Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded EnvironmentsYunnan UniversityKunming 650091China
| | - Bohua Ji
- Institute of International Rivers and Eco‐securityYunnan UniversityKunmingYunnan 650091China
| | - Guangzheng Si
- Institute of International Rivers and Eco‐securityYunnan UniversityKunmingYunnan 650091China
| | - Fang He
- Institute of International Rivers and Eco‐securityYunnan UniversityKunmingYunnan 650091China
| | - Benyan Li
- School of Ecology and Environmental Science and Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded EnvironmentsYunnan UniversityKunming 650091China
| | - Jinquan Chen
- School of Ecology and Environmental Science and Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded EnvironmentsYunnan UniversityKunming 650091China
| |
Collapse
|
49
|
The Study on the Cultivable Microbiome of the Aquatic Fern Azolla Filiculoides L. as New Source of Beneficial Microorganisms. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9102143] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of the study was to determine the still not completely described microbiome associated with the aquatic fern Azolla filiculoides. During the experiment, 58 microbial isolates (43 epiphytes and 15 endophytes) with different morphologies were obtained. We successfully identified 85% of microorganisms and assigned them to 9 bacterial genera: Achromobacter, Bacillus, Microbacterium, Delftia, Agrobacterium, and Alcaligenes (epiphytes) as well as Bacillus, Staphylococcus, Micrococcus, and Acinetobacter (endophytes). We also studied an A. filiculoides cyanobiont originally classified as Anabaena azollae; however, the analysis of its morphological traits suggests that this should be renamed as Trichormus azollae. Finally, the potential of the representatives of the identified microbial genera to synthesize plant growth-promoting substances such as indole-3-acetic acid (IAA), cellulase and protease enzymes, siderophores and phosphorus (P) and their potential of utilization thereof were checked. Delftia sp. AzoEpi7 was the only one from all the identified genera exhibiting the ability to synthesize all the studied growth promoters; thus, it was recommended as the most beneficial bacteria in the studied microbiome. The other three potentially advantageous isolates (Micrococcus sp. AzoEndo14, Agrobacterium sp. AzoEpi25 and Bacillus sp. AzoEndo3) displayed 5 parameters: IAA (excluding Bacillus sp. AzoEndo3), cellulase, protease, siderophores (excluding Micrococcus sp. AzoEndo14), as well as mineralization and solubilization of P (excluding Agrobacterium sp. AzoEpi25).
Collapse
|