1
|
Li K, Wang X, Ma L, Ren Y, Shi L. The mechanism of Se in regulating the proliferation and apoptosis of sheep Leydig cells through the miR-200a/NRF2 pathway. Theriogenology 2025; 235:103-113. [PMID: 39809100 DOI: 10.1016/j.theriogenology.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/30/2024] [Accepted: 01/05/2025] [Indexed: 01/16/2025]
Abstract
This study aimed to investigate the mechanism by which Se in regulates the proliferation and apoptosis of sheep Leydig cells via the miR-200a/NRF pathway. The cells were isolated and purified from the testes of 8-month-old sheep via a Percoll density gradient. After the cells were treated with different concentrations of Se (0, 2.0, 4.0, 6.0, and 8.0 μmol/L of Se) for 18 h, the miR-200a levels was detected. MiR-200a mimics and inhibitors were transfected into the cells, resulting in five groups (control, NC mimics, miR-200a mimics, NC inhibitor and miR-200a inhibitor). Cell viability and antioxidant status were measured via CCK8 and antioxidant assays, respectively. The abundances of pro-apoptotic (BAX, CASPASE 3 and CASPASE 8), cell cycle (P21, P27 and CDK1), and NRF2-related (NRF2, HO-1, NQO1 and KEAP1) genes were detected by real-time PCR and Western blot analysis. The results revealed that miR-200a mimics group presented greater (P < 0.05) abundances of NRF2, HO-1 and NQO1 mRNA transcripts and proteins. Compared with those both in the NC mimics and the miR-200a inhibitor groups, the activities of GSH-Px and SOD, as well as cell viability in the miR-200a mimics group were significantly greater (P < 0.05). In contrast, the ROS levels, MDA content and abundances of KEAP1, P21, P27 and apoptosis-related genes mRNA transcripts and proteins were decreased (P < 0.05). The highest (P < 0.05) miR-200a expression level was detected in the Se6.0 group. Compared with that in the Se (6.0 μmol/L) group, cell viability in the Se + miR-200a inhibitor group was lower (P < 0.05). The abundances of NRF2, HO-1 and NQO1 in the Se + miR-200a inhibitor group were lower (P < 0.05) than those in the Se (6.0 μmol/L) group but greater (P < 0.05) than those in the inhibitor group, while KEAP1 displayed the opposite trend (P < 0.05). These results indicate that Se can activate the NRF2 antioxidant signaling pathway to regulate the proliferation and apoptosis of sheep Leydig cells and that miR-200a plays a vital role in this process. The regulatory effect of Se on male reproduction and spermatogenesis may be related to the number of Leydig cells. This study aimed to provide experimental data for Se regulation of spermatogenesis.
Collapse
Affiliation(s)
- Kexin Li
- Laboratory of Animal Reproductive Biotechnology, Shanxi Agricultural University, Taigu, 030801, PR China
| | - Xiaolei Wang
- Laboratory of Animal Reproductive Biotechnology, Shanxi Agricultural University, Taigu, 030801, PR China
| | - Liang Ma
- Laboratory of Animal Reproductive Biotechnology, Shanxi Agricultural University, Taigu, 030801, PR China
| | - Youshe Ren
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, PR China; Laboratory of Animal Reproductive Biotechnology, Shanxi Agricultural University, Taigu, 030801, PR China
| | - Lei Shi
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, PR China; Laboratory of Animal Reproductive Biotechnology, Shanxi Agricultural University, Taigu, 030801, PR China.
| |
Collapse
|
2
|
Zeng T, Teng FY, Wei H, Lu YY, Xu YJ, Qi YX. AANAT1 regulates insect midgut detoxification through the ROS/CncC pathway. Commun Biol 2024; 7:808. [PMID: 38961219 PMCID: PMC11222512 DOI: 10.1038/s42003-024-06505-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/25/2024] [Indexed: 07/05/2024] Open
Abstract
Insecticide resistance has been a problem in both the agricultural pests and vectors. Revealing the detoxification mechanisms may help to better manage insect pests. Here, we showed that arylalkylamine N-acetyltransferase 1 (AANAT1) regulates intestinal detoxification process through modulation of reactive oxygen species (ROS)-activated transcription factors cap"n"collar isoform-C (CncC): muscle aponeurosis fibromatosis (Maf) pathway in both the oriental fruit fly, Bactrocera dorsalis, and the arbovirus vector, Aedes aegypti. Knockout/knockdown of AANAT1 led to accumulation of biogenic amines, which induced a decreased in the gut ROS level. The reduced midgut ROS levels resulted in decreased expression of CncC and Maf, leading to lower expression level of detoxification genes. AANAT1 knockout/knockdown insects were more susceptible to insecticide treatments. Our study reveals that normal functionality of AANAT1 is important for the regulation of gut detoxification pathways, providing insights into the mechanism underlying the gut defense against xenobiotics in metazoans.
Collapse
Affiliation(s)
- Tian Zeng
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Fei-Yue Teng
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Hui Wei
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yong-Yue Lu
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yi-Juan Xu
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China.
| | - Yi-Xiang Qi
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
3
|
Guo Z, Wang M, Pan Y, Lu H, Pan S. Ecological assessment of stream water polluted by phosphorus chemical plant: Physiological, biochemical, and molecular effects on zebrafish (Danio rerio) embryos. ENVIRONMENTAL RESEARCH 2024; 247:118173. [PMID: 38224935 DOI: 10.1016/j.envres.2024.118173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/15/2023] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Abstract
The rapid development of the phosphorus chemical industry has caused serious pollution problems in the regional eco-environment. However, understanding of their ecotoxic effects remains limited. This study aimed to investigate the developmental toxicity of a stream polluted by a phosphorus chemical plant (PCP) on zebrafish embryos. For this, zebrafish embryos were exposed to stream water (0, 25, 50, and 100% v/v) for 96 h, and developmental toxicity, oxidative stress, apoptosis, and DNA damage were assessed. Stream water-treated embryos exhibited decreased hatching rates, heart rates, and body lengths, as well as increased mortality and malformation rates. The general morphology score system indicated that the swim bladder and pigmentation were the main abnormal morphological endpoints. Stream water promoted antioxidant enzymes (superoxide dismutase (SOD), peroxidase (POD), and glutathione peroxidase (GPx)), lipid peroxidation, and DNA damage. It also triggered apoptosis in the embryos' heads, hearts, and spines by activating apoptotic enzymes (Caspase-3 and Caspase-9). Additionally, stream water influenced growth, oxidative stress, and apoptosis-related 19 gene expression. Notably, tyr, sod (Mn), and caspase9 were the most sensitive indicators of growth, oxidative stress, and apoptosis, respectively. The current trial concluded that PCP-polluted stream water exhibited significant developmental toxicity to zebrafish embryos, which was regulated by the oxidative stress-mediated activation of endogenous apoptotic signaling pathways.
Collapse
Affiliation(s)
- Ziyu Guo
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 561113, China.
| | - Min Wang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 561113, China.
| | - Yuwei Pan
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Hongliang Lu
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 561113, China.
| | - Sha Pan
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 561113, China.
| |
Collapse
|
4
|
Cheng Y, Guo Y, Wang F, Zhang L. Effects of polyethylene microplastics stress on soil physicochemical properties mediated by earthworm Eisenia fetida. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:12071-12082. [PMID: 38227261 DOI: 10.1007/s11356-024-32007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/10/2024] [Indexed: 01/17/2024]
Abstract
Microplastics (MPs) are widely distributed in soil environments, but their ecological risks are not fully understood. To fill this knowledge gap, incubation experiments were conducted to explore the physiological response of Eisenia foetida (E. fetida) to polyethylene MP stress and its effects on soil physicochemical properties. E. fetida was incubated in soils amended with MPs of two particle sizes (13 μm and 130 μm) at six concentrations (0, 1, 3, 6, 10 and 20 g MPs·kg-1 soil) under laboratory conditions. The toxicity of 13 μm MPs on the growth and survival of E. fetida was greater than that of 130 μm MPs. Excessive reactive oxygen species accumulation induced by high MP concentrations decreased superoxide dismutase activity and increased malondialdehyde content. Soil pH increased significantly in the 130 μm treatments. MPs increased the contents of soil organic carbon and available potassium. However, the presence of MPs did not significantly alter available phosphorus or nitrate nitrogen content. MP contamination in soil may have adverse impacts on the growth of earthworms, induce oxidative stress in earthworms, and change soil physicochemical properties. In addition, the effects of MPs are size-dependent and dose-dependent. This study provides new evidence for the ecological risks of MP pollution in the earthworm-soil systems.
Collapse
Affiliation(s)
- Yanan Cheng
- School of Resources and Environment, Henan Institute of Science and Technology, 90 Eastern Hualan Avenue, Xinxiang, 453003, China.
| | - Yanling Guo
- School of Resources and Environment, Henan Institute of Science and Technology, 90 Eastern Hualan Avenue, Xinxiang, 453003, China
| | - Fei Wang
- School of Resources and Environment, Henan Institute of Science and Technology, 90 Eastern Hualan Avenue, Xinxiang, 453003, China
| | - Lihao Zhang
- School of Resources and Environment, Henan Institute of Science and Technology, 90 Eastern Hualan Avenue, Xinxiang, 453003, China
| |
Collapse
|
5
|
Jiang N, Li X, Wang Q, Baihetiyaer B, Fan X, Li M, Sun H, Yin X, Wang J. Ecological risk assessment of environmentally relevant concentrations of propofol on zebrafish (Danio rerio) at early life stage: Insight into physiological, biochemical, and molecular aspects. CHEMOSPHERE 2023; 316:137846. [PMID: 36646180 DOI: 10.1016/j.chemosphere.2023.137846] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/25/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Propofol is an intravenous anesthetic injection extensively used in clinic, which has been proved to be neurotoxic in humans. Improper use and disposal of propofol may lead to its release into the aquatic environment, but the potential ecological risk of propofol to aquatic organisms remains poorly understood. For this study, we comprehensively explored the ecotoxicological effects and potential mechanisms of propofol (0.04, 0.2 and 2 mg L-1) on 120 hpf zebrafish (Danio rerio) embryos from physiological, biochemical, and molecular perspectives. The results showed that propofol has moderate toxicity on zebrafish embryos (96 h LC50 = 4.260 mg L-1), which could significantly reduce the hatchability and delay the development. Propofol can trigger reactive oxygen species (ROS) generation, lipid peroxidation (Malondialdehyde, MDA) and DNA damage (8-hydroxy-2-deoxyguanosine, 8-OHdG). The glutathione peroxidase (GPX) activity of zebrafish embryos in 0.04 and 0.2 mg L-1 propofol treatment group was activated in response to oxidative damage, while activities of superoxide dismutase (SOD), catalase (CAT) and GPX in zebrafish treated with 2 mg L-1 was significant inhibited compared with the control group (p<0.05). Moreover, the expression of antioxidant genes and related pathways was inhibited. Apoptosis was investigated at genes level and histochemistry. Molecular docking confirmed that propofol could change in the secondary structure of acetylcholinesterase (AChE) and competitively inhibited acetylcholine (ACh) binding to AChE, which may disturb the nervous system. These results described toxic response and molecular mechanism in zebrafish embryos, providing multiple aspects about ecological risk assessment of propofol in water environment.
Collapse
Affiliation(s)
- Nan Jiang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, PR China; College of Natural Resources and Environment, Northwest A&F University, Yangling, 712000, PR China
| | - Xianxu Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, PR China
| | - Qian Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, PR China
| | - Baikerouzi Baihetiyaer
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712000, PR China
| | - Xiaoteng Fan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712000, PR China
| | - Mingsheng Li
- Department of Anesthesiology, Tai'an City Central Hospital, Tai'an, 271000, PR China
| | - Huimin Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712000, PR China
| | - Xianqiang Yin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712000, PR China.
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, PR China.
| |
Collapse
|
6
|
Rosales-Pérez KE, Elizalde-Velázquez GA, Gómez-Oliván LM, Orozco-Hernández JM, Cardoso-Vera JD, Heredia-García G, Islas-Flores H, García-Medina S, Galar-Martínez M. Brain damage induced by contaminants released in a hospital from Mexico: Evaluation of swimming behavior, oxidative stress, and acetylcholinesterase in zebrafish (Danio rerio). CHEMOSPHERE 2022; 294:133791. [PMID: 35104548 DOI: 10.1016/j.chemosphere.2022.133791] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/12/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Several studies have indicated that hospital effluents can produce genotoxic and mutagenic effects, cytotoxicity, hematological and histological alterations, embryotoxicity, and oxidative stress in diverse water organisms, but research on the neurotoxic effects hospital wastewater materials can generate in fish is still scarce. To fill the above-described knowledge gap, this study aimed to determine whether the exposure of adult zebrafish (Danio rerio) to several proportions (0.1%, 2.5%, 3.5%) of a hospital effluent can disrupt behavior or impair redox status and acetylcholinesterase content in the brain. After 96 h of exposure to the effluent, we observed a decrease in total distance traveled and an increase in frozen time compared to the control group. Moreover, we also observed a significant increase in the levels of reactive oxygen species in the brains of the fish, especially in hydroperoxide and protein carbonyl content, relative to the control group. Our results also demonstrated that hospital effluents significantly inhibited the activity of the AChE enzyme in the brains of the fish. Our Pearson correlation demonstrated that the response to acetylcholinesterase at the lowest proportions (0.1% and 2.5%) is positively related to the oxidative stress response and the behavioral changes observed. The cohort of our studies demonstrated that the exposure of adult zebrafish to a hospital effluent induced oxidative stress and decreased acetylcholinesterase activity in the brain of these freshwater organisms, which can lead to alterations in their behavior.
Collapse
Affiliation(s)
- Karina Elisa Rosales-Pérez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120, Toluca, Estado de México, Mexico
| | - Gustavo Axel Elizalde-Velázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120, Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120, Toluca, Estado de México, Mexico.
| | - José Manuel Orozco-Hernández
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120, Toluca, Estado de México, Mexico
| | - Jesús Daniel Cardoso-Vera
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120, Toluca, Estado de México, Mexico
| | - Gerardo Heredia-García
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120, Toluca, Estado de México, Mexico
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120, Toluca, Estado de México, Mexico
| | - Sandra García-Medina
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México, CP, 07700, Mexico
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México, CP, 07700, Mexico
| |
Collapse
|
7
|
Tang W, Wang G, Zhang S, Li T, Xu X, Deng O, Luo L, He Y, Zhou W. Physiochemical responses of earthworms (Eisenia fetida) under exposure to lanthanum and cerium alone or in combination in artificial and contaminated soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 296:118766. [PMID: 34973377 DOI: 10.1016/j.envpol.2021.118766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/12/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Rare earth elements inevitably release into the soil due to their widespread application. However, it is unclear how they affect the soil animals. The study surveyed the growth and physiological responses of earthworm (Eisenia fetida) exposed into artificial soils spiked with La, Ce, and their mixture, and actual mine soil collected from an abandoned La-Ce mining area (Mianning, Sichuan). The results showed that the 1000-1200 mg/kg combined exposure in two soils induced significant histopathological and phenotypic changes of earthworms. Concentration significantly affected the superoxide dismutase (SOD), peroxidase (POD), malondialdehyde (MDA), and protein of E. fetida and the effects differentiated with the prolonging duration. These indicators were negatively affected under the La stress ≥800 mg/kg (SOD, POD, and protein), the 1200 mg/kg (SOD), Ce stress ≥1000 mg/kg (protein), and the combination ≥800 mg/kg (SOD, POD) and ≥1000 mg/kg (protein). Artificial combination had -15.04% (SOD), 8.87% (POD), 5.64% (MDA), and -8.34% (protein) difference compared with the contamination soil, respectively. Overall, E. fetida respond sensitively under the La and Ce stress, the antioxidant defense system and the lipid peroxidation were stimulated, and the artificial soil might overestimate eco-toxicological effect.
Collapse
Affiliation(s)
- Wantong Tang
- College of Environmental Sciences, Sichuan Agricultural University, Wenjiang, 611130, PR China; Sichuan Provincial Key Laboratory of Soil Environmental Protection, Wenjiang, 611130, PR China
| | - Guiyin Wang
- College of Environmental Sciences, Sichuan Agricultural University, Wenjiang, 611130, PR China; Sichuan Provincial Key Laboratory of Soil Environmental Protection, Wenjiang, 611130, PR China
| | - Shirong Zhang
- College of Environmental Sciences, Sichuan Agricultural University, Wenjiang, 611130, PR China; Sichuan Provincial Key Laboratory of Soil Environmental Protection, Wenjiang, 611130, PR China.
| | - Ting Li
- College of Resources, Sichuan Agricultural University, Wenjiang, 611130, PR China
| | - Xiaoxun Xu
- College of Environmental Sciences, Sichuan Agricultural University, Wenjiang, 611130, PR China
| | - Ouping Deng
- College of Resources, Sichuan Agricultural University, Wenjiang, 611130, PR China
| | - Ling Luo
- College of Environmental Sciences, Sichuan Agricultural University, Wenjiang, 611130, PR China
| | - Yan He
- College of Environmental Sciences, Sichuan Agricultural University, Wenjiang, 611130, PR China
| | - Wei Zhou
- College of Resources, Sichuan Agricultural University, Wenjiang, 611130, PR China
| |
Collapse
|
8
|
Antagonistic effects of selenium on lead-induced oxidative stress and apoptosis of Leydig cells in sheep. Theriogenology 2022; 185:43-49. [DOI: 10.1016/j.theriogenology.2022.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 03/02/2022] [Accepted: 03/22/2022] [Indexed: 11/23/2022]
|
9
|
Wu H, Liu J, Zhang X, Zhang X, Zhang J, Ma E. Four alternative splicing transcripts of intracellular copper/zinc superoxide dismutase 1 in Oxya chinensis. Int J Biol Macromol 2021; 193:1600-1609. [PMID: 34740682 DOI: 10.1016/j.ijbiomac.2021.10.222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/09/2021] [Accepted: 10/29/2021] [Indexed: 11/20/2022]
Abstract
In this study, we obtained four alternative splicing transcripts of intracellular copper/zinc superoxide dismutase 1 (icCuZnSOD1) in Oxya chinensis. OcicCuZnSOD1a has all common characteristics of CuZnSOD family and is a canonical CuZnSOD. OcicCuZnSOD1b is missing a Zn binding site. OcicCuZnSOD1c lacks Zn ion and is a Cu-only SOD. OcicCuZnSOD1d is missing a CuZnSOD conserved sequence and lacks the E-loop, a conserved disulfide bond, and an active site arginine. OcicCuZnSOD1a was the most heat-resistant and OcicCuZnSOD1c was the most unstable at high temperatures above 55 °C. They were stable at a wide pH range, especially in alkaline conditions. The four variants expressed at the throughout developmental stages and had various tissue expression patterns. OcicCuZnSOD1a and OcicCuZnSOD1d were significantly induced by 8.79 mM CuCl2 and OcicCuZnSOD1b was significantly up-regulated by 14.67 mM CuCl2. OcicCuZnSOD1a was significantly inhibited by 19.13 mM ZnSO4 while OcicCuZnSOD1d were significantly induced by 22.61 mM ZnSO4. Disc diffusion assay showed that the four isoforms of OcicCuZnSOD1 made the killing zones smaller surrounding the CdCl2-soaked filter discs. However, the reduction ratios of OcicCuZnSOD1a were the highest. These results implied that the four transcripts played roles in defense against CdCl2-induced oxidative stress while OcicCuZnSOD1a had stronger antioxidant capacity.
Collapse
Affiliation(s)
- Haihua Wu
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China.
| | - Jing Liu
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China; College of Life Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xuhan Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China; College of Life Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xueyao Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Jianzhen Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Enbo Ma
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China.
| |
Collapse
|
10
|
Li H, Dai C, Zhu Y, Hu Y. Larvae Crowding Increases Development Rate, Improves Disease Resistance, and Induces Expression of Antioxidant Enzymes and Heat Shock Proteins in Mythimna separata (Lepidoptera: Noetuidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:1808-1816. [PMID: 34104958 DOI: 10.1093/jee/toab105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Indexed: 06/12/2023]
Abstract
High population density (crowding) becomes a stress factor in insects. The oriental armyworm, Mythimna separata (Walker), displays gregarious and solitary phases at high and low population densities, respectively. In this study, we compared life history, disease resistance, and induction of antioxidant enzymes and heat shock protein (HSPs) in two phases of M. separata larvae. Results showed that gregarious larvae had a faster growth rate and lower pupal weight compared to solitary larvae. Furthermore, gregarious individuals exhibited higher survival rates than solitary individuals after Beauveria bassiana infection. The gregarious larvae had higher malondialdehyde content compared to solitary ones, but no differences in total antioxidant capacity were observed between the two larval phases before or after infection. Superoxide dismutase and glutathione peroxidase activities were significantly lower in gregarious M. separata larvae than solitary individuals before infection, but no difference was detected in two phases after infection. However, peroxidase and catalase activities in the two phases showed no difference either before or after infection. Hsp19.8 and Hsp90 expression in gregarious larvae were up-regulated when compared to solitary individuals before or after infection. CuZnSOD expression was not different between the two phases before infection, but it was up-regulated in gregarious ones compared to solitary ones after infection. However, expression of other stress-related genes in gregarious larvae was either repressed or unchanged when compared to solitary individuals before or after infection. Thus, larval crowding changed life history, improved disease resistance of M. separata larvae, and induced variable response of antioxidant enzymes and HSPs to fungal infection.
Collapse
Affiliation(s)
- Hongbo Li
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Changgeng Dai
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Yi Zhu
- Guizhou Station of Plant Protection and Quarantine, Guiyang, Guizhou, China
| | - Yang Hu
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| |
Collapse
|
11
|
Hossain MM, Huang H, Yuan Y, Wan T, Jiang C, Dai Z, Xiong S, Cao M, Tu S. Silicone stressed response of crayfish (Procambarus clarkii) in antioxidant enzyme activity and related gene expression. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 274:115836. [PMID: 33190981 DOI: 10.1016/j.envpol.2020.115836] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/24/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
Organosilicon has been widely used in various fields of industry and agriculture due to its excellent properties, such as high and low temperature resistance, flame retardant, insulation, radiation resistance and physiological inertia. However, organosilicon toxicity in aquatic animals is seldom known. In this research, two typical silicone or silane coupling agents (KH-560 (3-Glycidoxypropyltrimethoxysilane) and KH-570 (3-Methacryloxypropyltrimethoxysilane)) were used in a hydroponic experiment to evaluate the effects on survival rate, antioxidant response and gene expression in red swamp crayfish (Procambarus clarkii). Crayfishes were grown in black aquaculture boxes containing different concentrations (0, 10, 100 and 1000 mg L-1) of KH-560 and KH-570 for 72 h, and then crayfish samples were harvested and separated into tissues of carapace, gill and muscle for analysis. The results showed that silicone significantly increased malondialdehyde (MDA) content in muscle by 17%-38% except for the treatment of 100 mg L-1 KH-570, and reduced the survival rate of crayfish. Additionally, silicone KH-570 increased the activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) by 15%-31%, 17%-35%, and 9%-46%, as well as the contents of ascorbate (AsA) and glutathione (GSH) by 19%-31%, and 23%-29% respectively, in muscle tissue, and similar results occurred in KH-560. In the carapace, however, SOD activity was significantly decreased at high concentrations level of both silicone treatments. Moreover, silicon (Si) content was higher in the abdominal muscle of crayfish after silicone treatment. Assay of gene expression showed an obvious increasing expression of antioxidant related genes (Sod1, Sod2, Cat1, Cat2, and Pod1, Pod2) under silicone stress. The above results suggested that silicone caused an obvious stress response in crayfish in both biochemical and molecular levels.
Collapse
Affiliation(s)
- Md Muzammel Hossain
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Hengliang Huang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yuan Yuan
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Tianyin Wan
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Chengfeng Jiang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Zhihua Dai
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Shuanglian Xiong
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Menghua Cao
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Shuxin Tu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Research Center for Soil Remediation Engineering, Wuhan, 430070, China.
| |
Collapse
|
12
|
Yu L, Yu Y, Yin R, Duan H, Qu D, Tian F, Narbad A, Chen W, Zhai Q. Dose-dependent effects of lead induced gut injuries: An in vitro and in vivo study. CHEMOSPHERE 2021; 266:129130. [PMID: 33310514 DOI: 10.1016/j.chemosphere.2020.129130] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
Lead (Pb) toxicity has been widely studied, but its dose-dependent toxic effects on the gut remain unclear, therefore, the aim of this study was to evaluate the effects of different doses of Pb exposure on the gut microbiota and gut barrier in vitro and in vivo. The HT-29 cell model was used to determine the Pb-induced effects on cell viability, reactive oxygen species (ROS), and tight junction proteins (TJPs) in vitro, and C57BL/6 mice models exposed to 0, 20, 100, 500, and 1000 mg/kg Pb were used to investigate the Pb-induced dose-dependent effects on the gut microbiota, TJP expression, and colon histopathology. Our results showed that the exposure of HT-29 cells to 8 mM Pb decreased cell viability by 50%, elevated ROS levels by 200%, and suppressed the expression of the TJPs, zonula occludens-1 (ZO-1) and occludin by 23% and 35%, respectively. Consistently, Pb-exposed mice showed significant increases in colon tissue damage and inflammation and reductions in ZO-1 mRNA levels in a dose-dependent manner. The occludin mRNA levels decreased in the 500 and 1000 mg/kg groups. At the genus level, the relative abundance of Coprococcus and Oscillospira decreased and that of Lactobacillus increased in linear manner with the Pb exposure dose. PICRUSt analysis based on 16S rRNA sequencing revealed Pb dose-dependent alterations in metabolism through the gut microbiota. These findings suggest that Pb exposure can not only disrupt the barrier by generating oxidative stress, but can also induce gut dysbiosis, colon tissue damage, and gut inflammation in a dose-dependent manner.
Collapse
Affiliation(s)
- Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, 214122 China
| | - Yaqi Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Ruijie Yin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Hui Duan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Dingwu Qu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, 214122 China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, 225004, China
| | - Arjan Narbad
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, 214122 China; Gut Health and Microbiome Institute Strategic Programme, Quadram Institute Bioscience, Norwich, 16 NR4 7UQ, UK
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, 214122 China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China; Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology & Business University, Beijing, 100048, PR China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, 214122 China.
| |
Collapse
|
13
|
Sun X, Sun M, Chao Y, Wang H, Pan H, Yang Q, Cui X, Lou Y, Zhuge Y. Alleviation of lead toxicity and phytostimulation in perennial ryegrass by the Pb-resistant fungus Trichoderma asperellum SD-5. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:333-341. [PMID: 33256897 DOI: 10.1071/fp20237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 11/13/2020] [Indexed: 06/12/2023]
Abstract
Lead (Pb), a highly toxic metal ion, is detrimental to plants and humans. Existing botanical techniques for Pb-contaminated soil remediation are limited in their efficiency. Here, we investigated the use of the fungus Trichoderma asperellum Samuels, Lieckf & Nirenberg SD-5, which we identified previously as being Pb-resistant, for phytoremediation and for its effects on plant growth, Pb adsorption, and physiological responses in perennial ryegrass (Lolium perenne L. 'Lark'). We set up four soil treatments: CK (uncontaminated by Pb), T1 (1000 mg kg-1 Pb), T2 (1:9 ratio of sawdust to T1), and T3 (T2 inoculated with T. asperellum SD-5). A pot experiment revealed that the addition of the Pb-resistant microorganism promoted growth and increased biomass in ryegrass under Pb stress, in addition to significantly enhancing photosynthesis by increasing the leaf chlorophyll content and improving the total protein content and expression of the pAPX, POD, SOD, and GPX genes, evidence of an improved antioxidant system and the alleviation of Pb stress. We demonstrated that Pb-resistant microorganisms can enhance Pb extraction from the soil, thus improving remediation. Mitigation mechanisms operating at the physiological and gene expression levels were also determined, providing a scientific basis for the role of combined plant-microorganism methods in remediating Pb-contaminated soil.
Collapse
Affiliation(s)
- Xin Sun
- National Engineering Laboratory for Efficient Utilisation of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an, Shandong, 271018, PR China; and School of Geography, Nanjing Normal University, Wenyuan Road, Nanjing, Jiangsu, 210023, PR China
| | - Mingjie Sun
- National Engineering Laboratory for Efficient Utilisation of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an, Shandong, 271018, PR China
| | - Ying Chao
- Tai'an Hi-Tech Industrial Development Zone, Nantianmen Street, Tai'an City, Shandong, 271000, PR China
| | - Hui Wang
- National Engineering Laboratory for Efficient Utilisation of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an, Shandong, 271018, PR China
| | - Hong Pan
- National Engineering Laboratory for Efficient Utilisation of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an, Shandong, 271018, PR China
| | - Quangang Yang
- National Engineering Laboratory for Efficient Utilisation of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an, Shandong, 271018, PR China
| | - Xiumin Cui
- National Engineering Laboratory for Efficient Utilisation of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an, Shandong, 271018, PR China
| | - Yanhong Lou
- National Engineering Laboratory for Efficient Utilisation of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an, Shandong, 271018, PR China; and Corresponding authors. ;
| | - Yuping Zhuge
- National Engineering Laboratory for Efficient Utilisation of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an, Shandong, 271018, PR China; and Corresponding authors. ;
| |
Collapse
|
14
|
Tang B, Cheng Y, Li Y, Li W, Ma Y, Zhou Q, Lu K. Adipokinetic hormone regulates cytochrome P450-mediated imidacloprid resistance in the brown planthopper, Nilaparvata lugens. CHEMOSPHERE 2020; 259:127490. [PMID: 32650166 DOI: 10.1016/j.chemosphere.2020.127490] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Insect resistance to chemical insecticide is a global problem that presents an ongoing threat to sustainable agriculture. Although the increased production of detoxification enzymes has been frequently implicated in resistance development, the mechanisms employed by insecticide-resistant insects for overexpression of these genes remain elusive. Here we report that neuropeptide adipokinetic hormone (AKH) negatively regulates the expression of CYP6ER1 and CYP6AY1, two important cytochrome P450 monooxygenases (P450s) that confer resistance to neonicotinoid imidacloprid in the brown planthopper (BPH). Imidacloprid exposure suppresses AKH synthesis in the susceptible BPH, and AKH is inhibited in the imidacloprid-resistant strain. RNA interference (RNAi) and AKH peptide injection revealed that imidacloprid exposure inhibits the AKH signaling cascade and then provokes reactive oxygen species (ROS) burst. These in turn activate the transcription factors cap 'n' collar isoform-C (CncC) and muscle aponeurosis fibromatosis (MafK). RNAi and ROS scavenger assays showed that ROS induces CYP6ER1 expression by activating CncC and MafK, while ROS mediates induction of CYP6AY1 through another unidentified pathway in the resistant BPH. Collectively, these results provide new insights into the regulation of insecticide resistance and implicate both the neuropeptide AKH-mediated ROS burst and transcription factors are involved in the overexpression of P450 detoxification genes in insecticide-resistant insects.
Collapse
Affiliation(s)
- Bingjie Tang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Yibei Cheng
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Yimin Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Wenru Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Ying Ma
- School of Agriculture, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Qiang Zhou
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China.
| | - Kai Lu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China.
| |
Collapse
|
15
|
Riane K, Ouled-Haddar H, Alyane M, Sifour M, Espinosa C, Angeles Esteban M. Assessment of Streptococcus salivarius sp thermophiles Antioxidant Efficiency and its Role in Reducing Paracetamol Hepatotoxicity. IRANIAN JOURNAL OF BIOTECHNOLOGY 2020; 17:e2061. [PMID: 32671120 PMCID: PMC7357701 DOI: 10.30498/ijb.2019.91761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background: Probiotics have attracted a great attention aiming to develop natural non-toxic antioxidants, because of their role in decreasing the risk of reactive oxygen species [ROS] accumulation. Objectives: The purpose of this study was to assess the antioxidant activity of a probiotic Streptococcus salivarius ssp thermophillus [St.sa] and to evaluate its protective effect against the oxidative stress induced by a toxic dose of paracetamol in Wistar rats. Materials and Methods: Several assays were used to investigate the in vitro antioxidant capacity of the strain. To evaluate the protective effect against oxidative stress induced by paracetamol in liver, hepatic marker enzymes, the antioxidant enzyme activities, malondialdehyde [MDA] and glutathione [GSH] content in liver tissues were investigated. Results: The strain has shown a considerable ability to scavenge DPPH free radical [89.43%],a good resistance to hydroxyl radicals [47%], a considerable ability to chelate iron ions [33.21%] and a good inhibitory effect against plasma lipid peroxidation [54.36%]. Significant changes in liver function tests, antioxidant enzyme activities, MDA and GSH levels in paracetamol treated group were obtained compared to control group. Pretreatment with probiotic removed significantly the inhibition of antioxidant enzymes and suppressed MDA increase and GSH depletion. The analysis of the level of mRNA expression of antioxidant enzymes showed no significant differences in the expression of the enzymes in treated or non-treated groups. Conclusion: This finding emphasizes the protective role of probiotics against ROS generated during the treatment with paracetamol
Collapse
Affiliation(s)
- Karima Riane
- Laboratory of Molecular Toxicology, Faculty of Nature and Life Sciences, University Mohamed Seddik Benyahia of Jijel, Algeria
| | - Houria Ouled-Haddar
- Laboratory of Molecular Toxicology, Faculty of Nature and Life Sciences, University Mohamed Seddik Benyahia of Jijel, Algeria
| | - Mohamed Alyane
- Laboratory of Molecular Toxicology, Faculty of Nature and Life Sciences, University Mohamed Seddik Benyahia of Jijel, Algeria.,Ecole Nationale Supérieure de Biotechnologie, Constantine, Algeria
| | - Mohamed Sifour
- Laboratory of Molecular Toxicology, Faculty of Nature and Life Sciences, University Mohamed Seddik Benyahia of Jijel, Algeria
| | - Cristobal Espinosa
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - Maria Angeles Esteban
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| |
Collapse
|
16
|
Zhang H, Xing Y, Ji S, Pu J, Sun H, Wang L. Benzotriazole alleviates copper mediated lysosomal membrane damage and antioxidant defense system responses in earthworms (Eisenia fetida). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 197:110618. [PMID: 32302861 DOI: 10.1016/j.ecoenv.2020.110618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
Benzotriazole (BTR) is a common corrosion inhibitor used to protect copper (Cu) and Cu alloys. To reveal the combined subacute toxicity of BTR and Cu at environmental levels on terrestrial animals, the activity of antioxidative enzymes and the glutathione levels in earthworms (Eisenia fetida) of the single or co-exposure treatments were determined. The activity of both antioxidant enzymes and non-enzymatic antioxidants was affected by BTR in earthworms. Moreover, the analyses of lysosomal neutral red retention time and total antioxidant capacity indicated a detoxification effect of BTR on Cu-induced impairments of the antioxidant defense capacity in earthworms. The apoptotic rate of coelomocytes in earthworms of the co-exposure treatment was lower than that in earthworms treated with Cu only, indicating that BTR alleviates Cu mediated lysosomal membrane damage and antioxidant defense system responses in earthworms.
Collapse
Affiliation(s)
- Huajing Zhang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 300350, Tianjin, China
| | - Yanshuai Xing
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 300350, Tianjin, China
| | - Shengtian Ji
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 300350, Tianjin, China
| | - Jian Pu
- Institute for Future Initiatives, The University of Tokyo, Tokyo, 113-8654, Japan
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 300350, Tianjin, China
| | - Lei Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 300350, Tianjin, China.
| |
Collapse
|
17
|
Gu Y, Liang C. Responses of antioxidative enzymes and gene expression in Oryza sativa L and Cucumis sativus L seedlings to microcystins stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 193:110351. [PMID: 32109583 DOI: 10.1016/j.ecoenv.2020.110351] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/12/2020] [Accepted: 02/15/2020] [Indexed: 06/10/2023]
Abstract
Microcystins (MCs) have become an important global environmental issue, causing oxidative stress, which is an important toxic mechanism for MCs in plants. However, the regulating mechanism of antioxidative enzymes in plants in adapting to MCs stress remains unclear. We studied the dynamic effects of MCs at different concentrations (5, 10, 50 and 100 μg/L) in rice and cucumber seedlings on relative growth rate (RGR), and reactive oxygen species and malondialdehyde (MDA) content, and antioxidative enzyme activities, during a stress period (MCs exposed for 1, 3, 5 and 7 d) and recovery period (7 d). During the stress period, MCs at 5 μg/L inhibited RGR in cucumber and promoted RGR in rice. The contents of superoxide anion (O2·-), hydrogen peroxide (H2O2) and MDA increased and RGR declined in both crops with time and intensity of MCs stress. For cucumber, all these parameters responded earlier to MCs stress, and O2·-, MDA and RGR were more responsive to MCs stress than in rice. Moreover, catalase (CAT) and peroxidase (POD), and the relative expressions of CAT genes increased in both crops at 5-100 μg/L MCs, whereas relative expression of POD genes increased only in cucumber. Diversely, superoxide dismutase (SOD) response to MCs in cucumber leaves was later than for rice. MCs at 100 μg/L decreased the relative expression of SOD genes in cucumber but did not change SOD activity. During the recovery period, all the above indicators in both crops were higher than the control and lower than in the stress period. Conversely, RGR was lower than in the control and higher than in the stress period, except for cucumber which was lower, and MDA content higher than the stress period at 100 μg/L MCs. Overall, these results indicated that cucumber was more sensitive to MCs than rice, and SOD, CAT and POD play an important role in plant response to MCs stress.
Collapse
Affiliation(s)
- Yanfang Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Chanjuan Liang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Cooperative Innovation Center of Technology and Material of Water Treatment, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
18
|
Lu K, Cheng Y, Li W, Li Y, Zeng R, Song Y. Activation of CncC pathway by ROS burst regulates cytochrome P450 CYP6AB12 responsible for λ-cyhalothrin tolerance in Spodoptera litura. JOURNAL OF HAZARDOUS MATERIALS 2020; 387:121698. [PMID: 31791865 DOI: 10.1016/j.jhazmat.2019.121698] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/05/2019] [Accepted: 11/14/2019] [Indexed: 05/24/2023]
Abstract
Frequent insecticide use poses an environmental hazard and also selects for insecticide tolerance. Increased metabolic detoxification by cytochrome P450 monooxygenases (P450s) is the most common mechanism of insecticide tolerance. However, the underlying regulatory mechanisms remain unknown. We studied the midgut-specific P450 gene, CYP6AB12, associated with λ-cyhalothrin tolerance. Its regulatory pathway was investigated in the tobacco cutworm, Spodoptera litura (Fabricius). P450 activities and CYP6AB12 transcript levels increased after λ-cyhalothrin exposure. Inhibiting P450 activities with piperonyl butoxide and silencing CYP6AB12 by double-stranded RNA (dsRNA) injection decreased larval tolerance to λ-cyhalothrin. λ-Cyhalothrin exposure induced the expression of the cap 'n' collar isoform C (CncC) and muscle aponeurosis fibromatosis (Maf), increased hydrogen peroxide (H2O2) contents and elevated antioxidant enzyme activities. CncC knockdown by dsRNA feeding suppressed CYP6AB12 expression and decreased larval tolerance to λ-cyhalothrin. In contrast, application of the CncC agonist curcumin induced CYP6AB12 expression and enhanced insecticide tolerance. Ingestion of the reactive oxygen species (ROS) scavenger N-acetylcysteine reduced H2O2 accumulation, suppressed the expression of CncC, Maf and CYP6AB12 and led to increased larval susceptibility to λ-cyhalothrin. The results demonstrate that in S. litura, λ-cyhalothrin induces cytochrome P450 CYP6AB12 via elicitation of the ROS burst and activation of the CncC pathway.
Collapse
Affiliation(s)
- Kai Lu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Yibei Cheng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Wenru Li
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Yimin Li
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Rensen Zeng
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Yuanyuan Song
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China; College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China.
| |
Collapse
|
19
|
Gomes AR, Andrade Vieira JED, Costa Araújo APD, Malafaia G. Insights about the toxicity of tannery effluent on chicken (Gallus gallus domesticus) embryos. CHEMOSPHERE 2020; 244:125403. [PMID: 31809935 DOI: 10.1016/j.chemosphere.2019.125403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 11/10/2019] [Accepted: 11/17/2019] [Indexed: 06/10/2023]
Abstract
Although tannery effluent (TE) toxicity has already been demonstrated in different vertebrate models, our knowledge about their effects on birds remains significantly incipient. Thus, the aim of the current study was to evaluate the impact of ephemeral exposure of Gallus gallus domesticus eggs to environmental predictive TE dilutions (1.4% and 6.5%). Eggs at E6 developmental stage were opened in order to assess embryos' external morphology and genotoxic biomarkers. Based on our data, embryos exposed in ovo to TE recorded higher mortality rate, lower biomass and different morphological abnormalities such as optic vesicle depigmentation, pericardial and encephalic edemas, as well as body rotation error. Embryos exposed to TE showed lower crown-rump length head and anterior-posterior length, as well as reduced beak size. Embryos exposed to the highest TE dilution (6.5%) also showed greater lower/upper limb development, larger optic vesicle area and smaller crystalline lens area than the other groups. On the other hand, differences in mitotic index were not observed between groups; however, total erythrocyte chromosomal abnormalities, mainly in metaphase and anaphase, were higher in embryos exposed to TE. These phases presented chromosome fragments formed from typical chromosome breakage, laggard chromosome and chromosome bridge. Higher Cr, Mn and Zn concentrations in embryos exposed to TE strongly suggest that the observed abnormalities were directly associated with the absorption of chemical constituents. The present study is pioneer in investigating the morphotoxic and genotoxic potential of TE (a complex mixture of various xenobiotics) in bird embryos in order to better understand the eco (toxicological) magnitude of this pollutant in aquatic ecosystems.
Collapse
Affiliation(s)
- Alex Rodrigues Gomes
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil
| | - Julya Emmanuela de Andrade Vieira
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil
| | - Amanda Pereira da Costa Araújo
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil
| | - Guilherme Malafaia
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil.
| |
Collapse
|
20
|
Yu F, Wang X, Yao Y, Lin J, Huang Y, Xie D, Liu K, Li Y. Manganese accumulation and plant physiology behavior of Camellia oleifera in response to different levels of potassium fertilization. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 22:1075-1084. [PMID: 32064892 DOI: 10.1080/15226514.2020.1726871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The effects of potassium (K) fertilization (KCl, analytically pure; 0, 60, 200, and 400 mg kg-1) on the growth and Mn accumulation of Camellia oleifera in two types of Mn-contaminated soils were investigated. The potential mechanisms underlying the impacts of K fertilization were explored. C. oleifera accumulated high amounts of Mn in both soil conditions. The addition of K fertilizer decreased the soil pH and promoted Mn accumulation in C. oleifera. However, the plant biomass decreased significantly under the high level of K fertilization (400 mg kg-1), and the oxidative stress was stimulated under Mn contamination. But an appropriate concentration of K fertilizer (200 mg kg-1) was necessary for the formation of photosynthesis pigments, nonenzymatic antioxidants and antioxidant enzymes, metabolic processes, and nutrient uptake. Furthermore, when plants supplemented with a low level of K fertilization (200 mg kg-1), the catalase activity in C. oleifera leaves was enhanced to alleviate oxidative stress and protect the plant from Mn contamination. Our study demonstrated that 200 mg kg-1 of K fertilizer has the potential to further enhance the efficiency of Mn phytoremediation by C. oleifera.
Collapse
Affiliation(s)
- Fangming Yu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guangxi Normal University, Guilin, China
- Key Laboratory of Karst Ecology and Environment Change of Guangxi Department of Education, Guangxi Normal University, Guilin, China
- College of Environment and Resource, Guangxi Normal University, Guilin, China
| | - Xueru Wang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guangxi Normal University, Guilin, China
| | - Yawei Yao
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guangxi Normal University, Guilin, China
| | - Jiamin Lin
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guangxi Normal University, Guilin, China
| | - Yuanyuan Huang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guangxi Normal University, Guilin, China
| | - Dongyu Xie
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guangxi Normal University, Guilin, China
| | - Kehui Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guangxi Normal University, Guilin, China
- College of Life Science, Guangxi Normal University, Guilin, China
| | - Yi Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guangxi Normal University, Guilin, China
- Key Laboratory of Karst Ecology and Environment Change of Guangxi Department of Education, Guangxi Normal University, Guilin, China
- College of Environment and Resource, Guangxi Normal University, Guilin, China
| |
Collapse
|
21
|
Li H, Huang X, Zhan A. Stress Memory of Recurrent Environmental Challenges in Marine Invasive Species: Ciona robusta as a Case Study. Front Physiol 2020; 11:94. [PMID: 32116797 PMCID: PMC7031352 DOI: 10.3389/fphys.2020.00094] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/27/2020] [Indexed: 12/14/2022] Open
Abstract
Fluctuating environmental changes impose tremendous stresses on sessile organisms in marine ecosystems, in turn, organisms develop complex response mechanisms to keep adaptive homeostasis for survival. Physiological plasticity is one of the primary lines of defense against environmental challenges, and such defense often relies on the antioxidant defense system (ADS). Hence, it is imperative to understand response mechanisms of ADS to fluctuating environments. Invasive species provide excellent models to study how species cope with environmental stresses, as invasive species encounter sudden, and often recurrent, extensive environmental challenges during the whole invasion process. Here, we studied the roles of ADS on rapid response to recurrent cold challenges in a highly invasive tunicate (Ciona robusta) by simulating cold stresses during its invasion process. We assessed antioxidative indicators, including malondialdehyde (MDA), total antioxidant capacity (T-AOC), superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH), as well as transcriptional changes of ADS-related genes to reveal the physiological plasticity under recurring cold stresses. Our results demonstrated that physiological homeostasis relied on the resilience of ADS, which further accordingly tuned antioxidant activity and gene expression to changing environments. The initial cold stress remodeled baselines of ADS to promote the development of stress memory, and subsequent stress memory largely decreased the physiological response to recurrent environmental challenges. All results here suggest that C. robusta could develop stress memory to maintain physiological homeostasis in changing or harsh environments. The results obtained in this study provide new insights into the mechanism of rapid physiological adaption during biological invasions.
Collapse
Affiliation(s)
- Hanxi Li
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Xuena Huang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Aibin Zhan
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
22
|
Wu H, Li R, Liu Y, Zhang X, Zhang J, Ma E. A second intracellular copper/zinc superoxide dismutase and a manganese superoxide dismutase in Oxya chinensis: Molecular and biochemical characteristics and roles in chlorpyrifos stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 187:109830. [PMID: 31648074 DOI: 10.1016/j.ecoenv.2019.109830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
A second intracellular copper/zinc superoxide dismutase (icCuZnSOD2) and manganese SOD (MnSOD) were cloned and characterized in Oxya chinensis. The open reading frame (ORF) of OcicCuZnSOD2 and OcMnSOD are 462 and 672 bp encoding 153 and 223 amino acids, respectively. OcicCuZnSOD2 contains two signature sequences, one potential N-glycosylation site, and seven copper/zinc binding sites. OcMnSOD includes a mitochondria targeting sequence of 7 amino acids at N-terminal, one signature sequence, two N-glycosylation sites, and four manganese binding sites. The secondary structure and homology model of OcicCuZnSOD2 include nine β sheets, two Greek-key motifs, and one electrostatic loop. OcMnSOD contains nine α-helices and three β-sheets. Phylogenetic analysis shows that OcMnSOD is evolutionarily conserved while OcicCuZnSOD2 may be gene duplication and is paralogous to OcicCuZnSOD1. OcMnSOD expressed widely in all tissues and developmental stages. OcicCuZnSOD2 showed testis-specific expression and expressed highest in the 5th-instar nymph and the adult. The optimum temperatures and pH values of the recombinant OcicCuZnSOD2 and OcMnSOD were 40 °C and 8.0. They were stable at 25-55 °C and at pH 5.0-12.0 and pH 6.0-12.0, respectively. The activity and mRNA expression of each OcSOD were assayed after chlorpyrifos treatments. Total SOD and CuZnSOD activities first increased then declined under chlorpyrifos stress. Chlorpyrifos induced the mRNA expression and activity of OcMnSOD as a dose-dependent manner and inhibited OcicCuZnSOD2 transcription. The role of each OcSOD gene in chlorpyrifos stress was investigated using RNAi and disc diffusion assay with Escherichia coli overexpressing OcSOD proteins. Silencing of OcMnSOD significantly increased ROS content in chlorpyrifos-exposed grasshoppers. Disc diffusion assay showed that the plates with E. coli overexpressing OcMnSOD had the smaller inhibition zones around the chlorpyrifos-soaked filter discs. These results implied that OcMnSOD played a significant role in defense chlorpyrifos-induced oxidative stress.
Collapse
Affiliation(s)
- Haihua Wu
- Institute of Applied Biology, Shanxi University, Taiyuan, 030006, Shanxi, PR China.
| | - Ruiying Li
- Institute of Applied Biology, Shanxi University, Taiyuan, 030006, Shanxi, PR China
| | - Yongmei Liu
- Institute of Applied Biology, Shanxi University, Taiyuan, 030006, Shanxi, PR China
| | - Xueyao Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan, 030006, Shanxi, PR China
| | - Jianzhen Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan, 030006, Shanxi, PR China
| | - Enbo Ma
- Institute of Applied Biology, Shanxi University, Taiyuan, 030006, Shanxi, PR China.
| |
Collapse
|
23
|
Lu K, Cheng Y, Li W, Ni H, Chen X, Li Y, Tang B, Li Y, Chen D, Zeng R, Song Y. Copper-induced H 2O 2 accumulation confers larval tolerance to xanthotoxin by modulating CYP6B50 expression in Spodoptera litura. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 159:118-126. [PMID: 31400773 DOI: 10.1016/j.pestbp.2019.06.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/30/2019] [Accepted: 06/04/2019] [Indexed: 05/12/2023]
Abstract
In the plant-insect arms race, plants synthesize toxic compounds to defend against herbivorous insects, whereas insects employ cytochrome P450 monooxygenases (P450s) to detoxify these phytotoxins. As ubiquitous environmental contaminants, heavy metals can be easily absorbed by plants and further accumulated in herbivorous insects through the food chains, resulting in tangible consequences for plant-insect interactions. However, whether heavy metals can influence P450 activities and thereby cause further effects on larval tolerance to phytotoxins remains unknown. In this study, we shown that prior exposure to copper (Cu) enhanced larval tolerance to xanthotoxin in Spodoptera litura, a major polyphagous pest of agriculture. P450 activities were induced in larvae exposed to Cu or xanthotoxin, and a midgut specific expressed P450 gene, CYP6B50 was cross-induced after exposure to these two toxic xenobiotics. Knocking down CYP6B50 by RNA interference (RNAi) rendered the larvae more sensitive to xanthotoxin. As defense against oxidative stress following metal exposure has been demonstrated to affect insecticide resistance, the reactive oxygen species (ROS) generation and antioxidant enzyme activities were assessed. Cu exposure caused the accumulation of hydrogen peroxide (H2O2) and enhanced the activities of superoxide dismutase (SOD) and peroxidase (POD) in larval midgut. In addition, two antioxidant response elements (AREs) were identified from the CYP6B50 promoter, indicating that Cu-induced CYP6B50 expression may be related to the ROS burst. Application of ROS scavenger N-acetylcysteine (NAC) effectively suppressed CYP6B50 expression, inhibited P450 activities and impaired larval tolerance to xanthotoxin that had been induced by Cu. These results indicate that the increase in CYP6B50 expression regulated by Cu-induced H2O2 generation contributed to the enhancement of larval tolerance to xanthotoxin in S. litura. Ingestion of heavy metals from their host plants can inadvertently boost the counter-defense system of herbivorous insects to protect themselves against plant defensive toxins.
Collapse
Affiliation(s)
- Kai Lu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Yibei Cheng
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Wenru Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Hanfang Ni
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Xia Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Yue Li
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Bingjie Tang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Yimin Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Dongmei Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Rensen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Yuanyuan Song
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| |
Collapse
|