1
|
Liu H, Hu J, Tan Y, Zheng Z, Liu M, Lohmann R, Vojta S, Katz S, Liu Y, Li Z, Fang Z, Cai M, Zhao W. Identification of key anthropogenic and land use factors and ecological risk assessment of dissolved polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) in an urbanized estuary in China. MARINE POLLUTION BULLETIN 2024; 207:116876. [PMID: 39173474 DOI: 10.1016/j.marpolbul.2024.116876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 08/24/2024]
Abstract
This study investigated dissolved PAHs and OCPs in Quanzhou Bay estuaries, assessed their ecological risk, and examined anthropogenic impacts on contaminant distribution. Results showed that dissolved ∑24PAH concentrations ranged from 117 to 709 ng/L (mean: 358 ng/L), with dominance of 2-ring PAHs (Naphthalene, 1-Methylnaphthalene, and 2-Methylnaphthalene). Dissolved DDT levels ranged from 0.06 to 0.49 ng/L (mean: 0.28 ng/L), while HCBz concentrations varied from 0.02 to 0.44 ng/L (mean: 0.20 ng/L). PAHs were higher in the north due to urbanization and transport, while OCPs showed higher levels in the south due to historical agricultural use. Rural areas, water bodies, and wetlands significantly influenced the behavior of PAHs according to Spearman correlation and lasso regression analyses. Quanzhou Bay was categorized as a low to medium risk area based on dispersion simulation and ecological risk assessment, highlighting implications for future sustainable development and policy planning. CAPSULE: The coupled relationship between human activities and the distribution of dissolved PAHs and OCPs in urbanized estuaries was explored using statistical methods and GIS technology, providing valuable insights into environmental processes and pollutant control policies.
Collapse
Affiliation(s)
- Huijun Liu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Jiajie Hu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Yan Tan
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Zhong Zheng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Mengyang Liu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Rainer Lohmann
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882, USA
| | - Simon Vojta
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882, USA
| | - Samuel Katz
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882, USA
| | - Yong Liu
- Zhejiang Institute of Hydraulics & Estuary (Zhejiang Institute of Marine Planning and Design), Hangzhou 310020, PR China
| | - Zhiheng Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Zhiguo Fang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Minggang Cai
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, PR China.
| | - Wenlu Zhao
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China.
| |
Collapse
|
2
|
Liu S, Liu J. An Integrated Approach of Bioassays and Non-Target Screening for the Assessment of Endocrine-Disrupting Activities in Tap Water and Identification of Novel Endocrine-Disrupting Chemicals. TOXICS 2024; 12:247. [PMID: 38668470 PMCID: PMC11054029 DOI: 10.3390/toxics12040247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/29/2024]
Abstract
The safety of drinking water is a significant environmental issue of great concern for human health since numerous contaminants are often detected in drinking water and its sources. Boiling is a common household method used to produce relatively high-quality drinking water in some countries and regions. In this study, with the aid of an integrated approach of in vitro bioassays and non-target analysis based on high-resolution mass spectrometry coupled with liquid chromatography, alterations in endocrine-disrupting activities in tap water samples without and with boiling were revealed, as well as the potential endocrine-disrupting chemicals (EDCs) contributing to these alterations were identified. The organic extracts of tap water had no significant (ant)agonistic activities against an estrogen receptor (ER), progesterone receptor (PR), glucocorticoid receptor (GR), and mineralocorticoid receptor (MR) at enrichment concentrations of ≤10 times, posing no immediate or acute health risk to humans. However, the presence of agonistic activities against PR and MR and antagonistic activities against ER, PR, GR, and MR in OEs of tap water at relatively higher enrichment concentrations still raise potential health concerns. Boiling effectively reduced antagonistic activities against these steroid hormone receptors (SHRs) but increased estrogenic and glucocorticoid activities in drinking water. Four novel potential EDCs, including one UV filter (phenylbenzimidazole sulfonic acid, PBSA) and three natural metabolites of organisms (beta-hydroxymyristic acid, 12-hydroxyoctadecanoic acid, and isorosmanol) were identified in drinking water samples, each of which showed (ant)agonistic activities against different SHRs. Given the widespread use of UV filters in sunscreens to prevent skin cancer, the health risks posed by PBSA as an identified novel EDC are of concern. Although boiling has been thought to reduce the health risk of drinking water contamination, our findings suggest that boiling may have a more complex effect on the endocrine-disrupting activities of drinking water and, therefore, a more comprehensive assessment is needed.
Collapse
Affiliation(s)
- Siyuan Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Rex KR, Vinod PG, Praveen KS, Chakraborty P. Sediment-water exchange and risk assessment of pesticidal persistent organic pollutants in Bharathappuzha and Periyar Riverine region along the Arabian Sea. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:144. [PMID: 38538830 DOI: 10.1007/s10653-024-01911-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/11/2024] [Indexed: 04/12/2024]
Abstract
Considering the extensive agricultural practices along the perennial rivers, viz. Periyar and Bharathappuzha of Kerala in the southwest coast of India, the first comprehensive surveillance of new and legacy organochlorine pesticides (OCPs) in surface sediment was conducted. Further, the sediment-water exchange fluxes have been elucidated. Mean concentrations of total HCH, DDT and endosulfan were 0.84 ng/g, 0.42 ng/g and 0.30 ng/g for Bharathappuzha Riverine sediment (BRS) and 1.08 ng/g, 0.39 ng/g and 0.35 ng/g for Periyar Riverine sediment (PRS). The dominance α-HCH and β-HCH isomers in PRS and BRS reflect the ongoing use of technical HCH in Kerala. The calculated KSW in both rivers was very low in comparison with other Indian rivers. The average log K'OC for all the detected OCPs in both the rivers was lower than the predicted log KOC in equilibrium indicating the higher adherence of OCPs to sediment. Furthermore, fugacity fraction (fs/fw) was < 1.0 for all OCPs confirming the net deposition of OCPs into the sediment. Sediment concentrations for each of the OCPs in PRS and BRS did not surpass the threshold effect level and probable effect level as stipulated by the Canadian Council of Ministry of the Environment Guidelines. In addition, all the sites of both rivers had sediment quality guideline quotient (SQGQ) values below 0.1 indicating the absence of significant biological and ecological risks.
Collapse
Affiliation(s)
- K Ronnie Rex
- Department of Civil Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
- Environmental Science and Technology Laboratory, Centre for Research in Environment, Sustainability Advocacy and Climate CHange (REACH), Directorate of Research, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - P G Vinod
- GeoVin Solutions Pvt. Ltd, Thiruvananthapuram, Kerala, India
- Neuvo Chakra (OPC) Pvt. Ltd., Vasai, India
| | - K S Praveen
- Liquid Waste Management Division, Suchitwa Mission, Government of Kerala, Thiruvananthapuram, Kerala, India
| | - Paromita Chakraborty
- Environmental Science and Technology Laboratory, Centre for Research in Environment, Sustainability Advocacy and Climate CHange (REACH), Directorate of Research, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
- UNESCO Chair on Ecohydrology and Applied Ecology, Faculty of Biology and Environmental Protection, The University of Lodz, Lodz, Poland.
| |
Collapse
|
4
|
Wang S, Wu X, Yuan Z. Residual levels, phase distributions, and human health risks of OCPs in the middle reach of the Huai River, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:22012-22023. [PMID: 38400976 DOI: 10.1007/s11356-024-32534-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/14/2024] [Indexed: 02/26/2024]
Abstract
Are the residues of organochlorine pesticides (OCPs) in freshwater in China still of concern after prohibition and restriction for decades? The scarcity of monitoring data on OCPs in freshwater in China over the past few years has hampered understanding of this issue. In this study, water and suspended particulate matter (SPM) samples were collected from the middle reach of the Huai River for OCP analyses. Residues of ∑OCPs in water and SPM ranged from ND to 8.6 ng L-1 and 0.50 to 179 ng L-1, with mean concentrations of 1.7 ± 1.3 ng L-1 and 6.1 ± 31 ng L-1, respectively. ∑HCHs (α-, β-, γ-, and δ-HCH) and ∑HEPTs (heptachlor and heptachlor epoxide) were the most predominant pesticides in the dissolved phase and SPM, respectively, accounting for 43 ± 35% and 27 ± 29% of ∑OCPs. HCHs and heptachlor epoxide mainly existed in the dissolved phase, while heptachlor mainly existed in SPM. The isomeric composition pattern of HCHs in water differed from that in SPM. Briefly, β-HCH dominated in water, while δ-HCH dominated in SPM. However, the composition pattern of DDT and its metabolites in water was similar to that in SPM. o,p'-DDD and p,p'-DDE dominated in both water and SPM. The ratios of α-/γ-HCH and (DDD + DDE)/DDTs indicated that HCHs and DDTs were mainly derived from historical residues. Risk assessments indicated that OCPs may not pose carcinogenic and non-carcinogenic risks to residents.
Collapse
Affiliation(s)
- Shanshan Wang
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui, 241002, People's Republic of China
- Wuhu Dongyuan New Country Developing Co., Ltd, Wuhu, Anhui, 241000, People's Republic of China
- Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui, 241002, People's Republic of China
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Xiaoguo Wu
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui, 241002, People's Republic of China.
- Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui, 241002, People's Republic of China.
| | - Zijiao Yuan
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui, 241002, People's Republic of China
- Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui, 241002, People's Republic of China
| |
Collapse
|
5
|
Yang Y, Guo Y, Jia X, Zhang Q, Mao J, Feng Y, Yin D, Zhao W, Zhang Y, Ouyang G, Zhang W. An ultrastable 2D covalent organic framework coating for headspace solid-phase microextraction of organochlorine pesticides in environmental water. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131228. [PMID: 36963192 DOI: 10.1016/j.jhazmat.2023.131228] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Herein, a quinoline-linked ultrastable 2D covalent organic framework (COF-CN) coated fiber was successfully prepared and used for highly-sensitive headspace solid-phase microextraction (HS-SPME) of organochlorine pesticides (OCPs) in environmental water. The extraction efficiency of the COF-CN coating for all 14 OCPs was higher than that of four commercial SPME fiber coatings and most of the published works, with enrichment factors ranging from 540 to 5065. In combination with gas chromatography-tandem mass spectrometry (GC-MS/MS), a wide linear range (0.05-200 ng/L), low detection limits (LODs, 0.0010-13.54 ng/L) and satisfactory reproducibility and repeatability were obtained under optimal conditions. Compared with the published works, the LODs of the developed technique were improved 2-5.9 times, and the enrichment factors (EFs) of the developed method were enhanced at least 2 times. The COF-CN coated fiber can be easily recycled and reused at least 70 times without any washing step. The adsorption mechanism was first characterized by density functional theory calculations and X-ray photoelectron spectroscopy analysis. Besides, the established method was successfully applied to the analysis of the distribution of trace OCPs in real water samples from Henan Province. All these results proved the promising application of the developed HS-SPME-GC-MS/MS method for organic pollutants analysis in water samples.
Collapse
Affiliation(s)
- Yuan Yang
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China
| | - Yun Guo
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China
| | - Xiaocan Jia
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Qidong Zhang
- Food Laboratory of Zhongyuan, Flavour Science Research Center of Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China; Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, PR China
| | - Jian Mao
- Food Laboratory of Zhongyuan, Flavour Science Research Center of Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China; Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, PR China
| | - Yumin Feng
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China
| | - Dan Yin
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Wuduo Zhao
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China
| | - Yanhao Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| | - Gangfeng Ouyang
- Food Laboratory of Zhongyuan, Flavour Science Research Center of Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China; KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510275, PR China
| | - Wenfen Zhang
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China; Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, PR China.
| |
Collapse
|
6
|
Mohasin P, Chakraborty P, Anand N, Ray S. Risk assessment of persistent pesticide pollution: Development of an indicator integrating site-specific characteristics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160555. [PMID: 36460110 DOI: 10.1016/j.scitotenv.2022.160555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Detection of high pesticide concentrations in sediments and water often leads to prioritizing a site as being 'at risk'. However, the risk does not depend on pesticide concentration alone, but on other site-specific characteristics also. We developed an indicator that identifies the 'Level of Concern' by integrating five such characteristics: (i) pesticide concentrations in surface and groundwater causing risks to ecological health (ii) impacts on human health, (iii) water scarcity, (iv) agricultural production, and (v) biodiversity richness. We applied this framework in an agricultural region of the Lower Ganges Basin in West Bengal, India. We measured concentrations of selected organochlorine pesticides (OCPs) in surface and groundwater within an 8 km2 area in 2019. Of 20 banned and restricted OCPs, 11 were detected as causing high risk to ecological health and 10 at concentrations above the Accepted Carcinogenic Risk Limit (ACRL) for humans. In the pre-monsoon, the mean concentrations of ΣOCPs in groundwater and surface water were 126.9 ng/L and 104 ng/L, in the monsoon they were 144.7 ng/L and 138 ng/L, and in the post-monsoon 122.1 ng/L and 147 ng/L respectively. In groundwater, no significant seasonal difference was observed in most pesticides. In the surface water, 7 pesticides were significantly higher in the monsoon and post-monsoon, which may be attributed to increased runoff as well as post monsoon application of OCPs. In September 2022 we again measured OCP concentrations in surface water and sediment. The mean concentration of 14 of the 20 measured OCPs were found to be significantly lower in the post-pandemic period compared to the pre-pandemic time. These lower pesticide concentrations may indicate a reduced use of OCPs in agricultural practices during the pandemic. This area was identified as being at the highest Level of Concern, even though the OCP concentrations alone conformed to general guidelines.
Collapse
Affiliation(s)
- Piya Mohasin
- Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India.
| | - Paromita Chakraborty
- Environmental Science and Technology Laboratory, Department of Chemical Engineering, SRM Institute of Science and Technology, Kancheepuram district, Tamil Nadu 603203, India.
| | - Niharika Anand
- Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Sujata Ray
- Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India.
| |
Collapse
|
7
|
Zhao Y, Chen YP. Coming ecological risks of organochlorine pesticides and novel brominated flame retardants in the Yellow River Basin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159296. [PMID: 36216067 DOI: 10.1016/j.scitotenv.2022.159296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
To conduct ecological risk assessment, food, water and soil samples were collected from five densely populated irrigation areas in the Yellow River Basin (YRB), and analyzed for organochlorine pesticides (OCPs) and novel brominated flame retardants (NBFRs). The results showed that the OCP residues (∑14OCP were 0.748 ng L-1, 13.1 ng g-1 dw and 3.22 ng g-1 dw in water, soil and maize) were generally within moderate levels in the YRB. Dichlorodiphenyltrichloroethane (DDT) residues dominated the OCPs, and potential ecological risks to aquatic and terrestrial organisms likely stemmed from dichlorodiphenyldichloroethylene (DDE) pollution in the upper reaches of the YRB in the Ningxia and Hetao Plain. The NBFR concentrations in the YRB were 90.9 pg L-1 in water, 21.1 pg g-1 dw in soil and 3.81 pg g-1 dw in maize. Positive correlations were observed between soil and maize contamination in the five irrigated districts, indicating a potential threat to grain security and human health risks caused by OCPs and NBFRs. Pollutants detected in soil and maize primarily originated from historical use (36.3 %), while the sources in water were more complex (64.4 %) and new inputs could not be excluded. Integrated health risks of human exposure to agricultural products and water from the YRB were acceptable. However, the ecological risk of the Ningxia Plain would further deteriorate to the medium risk after 2032. The increasing ecological risk of DDT in water indicates that regular monitoring should strengthen to ensure grain and water safety in the YRB.
Collapse
Affiliation(s)
- Yan Zhao
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, CAS, Xi'an 710061, China
| | - Yi-Ping Chen
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, CAS, Xi'an 710061, China.
| |
Collapse
|
8
|
Narita K, Matsui Y, Matsushita T, Shirasaki N. Screening priority pesticides for drinking water quality regulation and monitoring by machine learning: Analysis of factors affecting detectability. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116738. [PMID: 36375426 DOI: 10.1016/j.jenvman.2022.116738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/01/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Proper selection of new contaminants to be regulated or monitored prior to implementation is an important issue for regulators and water supply utilities. Herein, we constructed and evaluated machine learning models for predicting the detectability (detection/non-detection) of pesticides in surface water as drinking water sources. Classification and regression models were constructed for Random Forest, XGBoost, and LightGBM, respectively; of these, the LightGBM classification model had the highest prediction accuracy. Furthermore, its prediction performance was superior in all aspects of Recall, Precision, and F-measure compared to the detectability index method, which is based on runoff models from previous studies. Regardless of the type of machine learning model, the number of annual measurements, sales quantity of pesticide for rice-paddy field, and water quality guideline values were the most important model features (explanatory variables). Analysis of the impact of the features suggested the presence of a threshold (or range), above which the detectability increased. In addition, if a feature (e.g., quantity of pesticide sales) acted to increase the likelihood of detection beyond a threshold value, other features also synergistically affected detectability. Proportion of false positives and negatives varied depending on the features used. The superiority of the machine learning models is their ability to represent nonlinear and complex relationships between features and pesticide detectability that cannot be represented by existing risk scoring methods.
Collapse
Affiliation(s)
- Kentaro Narita
- Graduate School of Engineering, Hokkaido University, N13W8, Sapporo, 060-8628, Japan
| | - Yoshihiko Matsui
- Faculty of Engineering, Hokkaido University, N13W8, Sapporo, 060-8628, Japan.
| | - Taku Matsushita
- Faculty of Engineering, Hokkaido University, N13W8, Sapporo, 060-8628, Japan
| | - Nobutaka Shirasaki
- Faculty of Engineering, Hokkaido University, N13W8, Sapporo, 060-8628, Japan
| |
Collapse
|
9
|
Li A, Wang M, Kroeze C, Ma L, Strokal M. Past and future pesticide losses to Chinese waters under socioeconomic development and climate change. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115361. [PMID: 35613533 DOI: 10.1016/j.jenvman.2022.115361] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Increasing pesticide use pollutes Chinese surface waters. Pesticides often enter waters through surface runoff from agricultural fields. This occurs especially during heavy rainfall events. Socio-economic development and climate change may accelerate future loss of pesticides to surface waters due to increasing food production and rainfall events. The main objective of this study is to model past and future pesticide losses to Chinese waters under socio-economic development and climate change. To this end, we developed a pesticide model with local information to quantify the potential pesticide runoff from near-stream agriculture to surface waters after heavy rainfall. We project future trends in potential pesticide runoff. For this, we developed three scenarios: Sustainability, "Middle of the Road" and Economy-first. These scenarios are based on combined Shared Socio-economic Pathways and Representative Concentration Pathways. We identified hotspots with high potential pesticide runoff. The results show that the potential pesticide runoff increased by 45% from 2000 to 2010, nationally. Over 50% of the national pesticide runoff in 2000 was in five provinces. Over 60% of the Chinese population lived in pesticide polluted hotspots in 2000. For the future, trends differ among scenarios and years. The largest increase is projected for the Economy-first scenario, where the potential pesticide runoff is projected to increase by 85% between 2010 and 2099. Future pesticide pollution hotspots are projected to concentrate in the south and south-east of China. This is the net-effect of high pesticide application, intensive crop production and high precipitation due to climate change. In our scenarios, 58%-84% of the population is projected to live in pesticide polluted hotspots from 2050 onwards. These projections can support the development of regional management strategies to control pesticide pollution in waters in the future.
Collapse
Affiliation(s)
- Ang Li
- Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, The Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang, 050021, Hebei, China; Water Systems and Global Change Group, Wageningen University & Research, P.O. Box 47, 6700 AA, Wageningen, the Netherlands
| | - Mengru Wang
- Water Systems and Global Change Group, Wageningen University & Research, P.O. Box 47, 6700 AA, Wageningen, the Netherlands
| | - Carolien Kroeze
- Water Systems and Global Change Group, Wageningen University & Research, P.O. Box 47, 6700 AA, Wageningen, the Netherlands
| | - Lin Ma
- Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, The Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang, 050021, Hebei, China
| | - Maryna Strokal
- Water Systems and Global Change Group, Wageningen University & Research, P.O. Box 47, 6700 AA, Wageningen, the Netherlands.
| |
Collapse
|
10
|
Dai Q, Wang Y, Chen L, Li P, Xia S, Huang Q. Contamination of 16 priority polycyclic aromatic hydrocarbons (PAHs) in urban source water at the tidal reach of the Yangtze River. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:61222-61235. [PMID: 35438400 DOI: 10.1007/s11356-022-20052-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
To explore the occurrence, source, and risk of 16 priority polycyclic aromatic hydrocarbons (PAHs) in urban source water at the tidal reach of the Yangtze River, eighty-nine surface water samples were collected in 8 field campaigns from July 2018 to November 2019. Fifteen of 16 PAHs except for dibenz(a,h)anthracene (DBA) were found in the water. Detection frequencies were observed between 53 and 72% for PAHs with 4 rings, while most of other PAHs were less detected, e.g., benzo(a)pyrene (BaP) in 31% of samples. The total concentrations of 16 priority PAHs reached up to 2.8 µg·L-1 and increased during the tidal transitions from flood to ebb. The average concentrations of PAHs in ebb tides were higher than those in flood tides. PAH concentrations and compositions showed great variation with different sampling campaigns, and higher levels and more components were observed in the rainy months and cold months. Those priority PAHs in the tidal water source are mainly from combustion activities (especially fossil fuel combustion), but the contribution from oil spills/leakage is also important in rainy months. High-molecular-weight PAHs in this tidal water source may pose risks to aquatic life, while they pose no carcinogenic risk to human health via ingestion of drinking water.
Collapse
Affiliation(s)
- Qi Dai
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai, 200092, China
| | - Yanyan Wang
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai, 200092, China
| | - Ling Chen
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Pan Li
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai, 200092, China
| | - Shengji Xia
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai, 200092, China
| | - Qinghui Huang
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai, 200092, China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
11
|
Hong S, Kim Y, Lee Y, Yoon SJ, Lee C, Liu P, Kwon BO, Hu W, Khim JS. Distributions and potential sources of traditional and emerging polycyclic aromatic hydrocarbons in sediments from the lower reach of the Yangtze River, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152831. [PMID: 34998741 DOI: 10.1016/j.scitotenv.2021.152831] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
This study investigated the current contamination status and potential sources of traditional and emerging polycyclic aromatic hydrocarbons (t-PAHs and e-PAHs) in the sediments across a wide area of the Yangtze River, spanning nine cities. Fifty-seven sediment samples were collected in 2019, from which 15 t-PAHs and 11 e-PAHs were analyzed using GC-MSD. In addition, organic carbon (OC), total nitrogen (TN), and carbon and nitrogen stable isotope ratios (δ13C and δ15N) in sediments were measured to evaluate associations with PAHs contamination. OC, TN, and their stable isotope ratios showed a wide range of site-specific contents and values, indicating high variation in contamination and sources. Concentrations of t-PAHs and e-PAHs in sediments ranged from 0.6 to 200,000 ng g-1 dry weight (dw) and 1.1 to 20,000 ng g-1 dw, respectively. Hotspot sites located in Nanjing (PuKou), Taizhou (JingJiang), and Suzhou (ZhangJiaGang). PAHs contamination reflected land use type and human activity in the surrounding area. Positive matrix factorization (PMF) modeling showed that, on average (n = 57), vehicle emissions were the most dominant contribution (57%), followed by petroleum (28%) and fossil fuel combustion (15%). Sites with high PAHs contamination in sediments were of severe ecological risk. Contributions to the potential risks of PAHs were most significant in the order of dibenz[a,h]anthracene, benzo[b]fluoranthene, and benzo[a]pyrene. The primary origin of these compounds appeared to be fossil fuel combustion. The results of this study are expected to provide useful baseline data on the current contamination status and potential sources of traditional and emerging pollutants in the sediments of the Yangtze River, China.
Collapse
Affiliation(s)
- Seongjin Hong
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Youngnam Kim
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yeonjung Lee
- Marine Ecosystem Research Center, Korea Institute of Ocean Science and Technology, Busan 49111, Republic of Korea
| | - Seo Joon Yoon
- School of Earth and Environmental Sciences, Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Changkeun Lee
- School of Earth and Environmental Sciences, Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Peng Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Bong-Oh Kwon
- Department of Marine Biotechnology, Kunsan National University, Kunsan 54150, Republic of Korea
| | - Wenyou Hu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Jong Seong Khim
- School of Earth and Environmental Sciences, Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
12
|
Yang J, Liu Y, Tan X, Xu C, Lin A. Safety assessment of drinking water sources along Yangtze River using vulnerability and risk analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:27294-27310. [PMID: 34981399 DOI: 10.1007/s11356-021-18297-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/20/2021] [Indexed: 05/12/2023]
Abstract
Recently, the safety of drinking water sources along Yangtze River Basin is received much attention. But few works have carried out large-scale and all-round safety assessment of drinking water sources on the main stream of the whole Yangtze River Basin. In this work, 97 drinking water sources in 8 provinces of the main stream of the Yangtze River were selected as the objects to clarify the spatial distribution of the safety risk levels of drinking water sources in the whole basin and analyze the causes of drinking water source risks. The results showed that 13.4%, 55.7%, 25.8%, 5.1%, and 0% of the 97 drinking water sources were classified as low, moderate, considerate, high, and very high respectively, according to the safety risk level. This indicated that the safety risk of drinking water sources in the mainstream of Yangtze River is generally low, but there are also a number of high safety risk drinking water sources. And the safety risk degree of the lower and upper reaches in the mainstream of Yangtze River is generally higher than that of the middle reaches. The current situation of drinking water sources along the mainstream of Yangtze River could be attributed to the superposition of human activities and natural background factors. This study could contribute to the government's targeted management and control of safety risk sources for drinking water sources along the Yangtze River Basin.
Collapse
Affiliation(s)
- Jingjing Yang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
- Chinese Academy of Environmental Planning, Beijing, 100012, People's Republic of China
| | - Yaxiu Liu
- Hangzhou Huanyan Technology Co., Ltd, Hangzhou, 310015, People's Republic of China
| | - Xiao Tan
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Congbon Xu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| | - Aijun Lin
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| |
Collapse
|
13
|
Yu L, Liu X, Hua Z. Occurrence, distribution, and risk assessment of perfluoroalkyl acids in drinking water sources from the lower Yangtze River. CHEMOSPHERE 2022; 287:132064. [PMID: 34474389 DOI: 10.1016/j.chemosphere.2021.132064] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/19/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
The occurrence, spatial distribution, potential sources, and risk assessment of 14 perfluoroalkyl acids (PFAAs), including 11 perfluoroalkyl carboxylic acids and 3 perfluoroalkyl sulfonates acids, were investigated in 21 drinking water sources from the lower Yangtze River in November 2019. The total PFAAs (∑PFAAs) concentrations ranged from 39.3 to 220.3 ng/L, and perfluorooctanoic acid and perfluorooctanesulfonate were predominant with average concentrations of 19.4 and 15.4 ng/L, respectively. The higher ∑PFAAs concentrations in the southern shore and downstream could be attributed to industrial development and surface runoff/tide currents, respectively. Principal component analysis-multiple linear regression revealed that the primary sources of PFAAs were fluororesin coatings/metal plating, surface runoff/textile, effluent discharge/food packaging, and leather/fabrics. Human intake risks of PFAAs were assessed by target hazard quotient (THQ), which showed that human health risks of PFAAs decreased with increasing age, excluding 13-17 years age group. Moreover, the total exposure risks of PFOA/PFOS in all sampling sites to people aged over 18 years calculated based on contribution from drinking water were noted to be at safe level. The results obtained were helpful for improving our understanding of human health risks of PFAAs, and expanding our knowledge on PFAAs in drinking water.
Collapse
Affiliation(s)
- Liang Yu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Xiaodong Liu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Zulin Hua
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China.
| |
Collapse
|
14
|
Nyihirani F, Qu C, Yuan Z, Zhang Y, Mbululo Y, Janneh M, Qi S. Level, source, and distribution of organochlorine pesticides (OCPs) in agricultural soils of Tanzania. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 194:19. [PMID: 34890011 DOI: 10.1007/s10661-021-09631-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 11/12/2021] [Indexed: 05/16/2023]
Abstract
This study investigated the level, composition, and spatial and vertical distribution of the organochlorine pesticides (OCPs) at 0-2 cm and 2-20 cm in the agricultural surface soils from Southeastern to Central-western Tanzania. Although the most abundant OCPs were DDT with a mean concentration of 2.29 ng/g, dieldrin (1.57 ng/g), and methoxychlor (0.79 ng/g), HCH was the most dominant (with detection frequency of 88%). OCP dominance was in the Southern Highlands, which is the most productive agricultural zone. Though there were indicators of recent inputs for some sites, OCP contamination was mainly historical. DDT contamination was dominated by p,p'-DDE and resulted from both technical DDT and dicofol while HCH contamination was dominated by γ-HCH and resulted from both technical HCH and lindane. Based on depth, the OCPs dominated mainly the upper 2 cm, which was associated with soil and environmental factors rather than recent inputs since most of the detected compounds were historical. Nevertheless, some sites showed exceptional high abundance in the lower soil with more concentration of parent compounds. Therefore, this study recommends the need for further studies on the influence of soil properties on OCPs' transport in the soil, surface water, and air. Besides, detection of recent inputs at some sites calls for more mapping of the OCPs in the country to strengthen their control and prevention of future risks.
Collapse
Affiliation(s)
- Fatuma Nyihirani
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
- School of Environmental Studies, China University of Geosciences, Wuhan, China
- Institute of Development Studies, Center for Environment, Poverty and Sustainable Development, Mzumbe University, Morogoro, Tanzania
| | - Chengkai Qu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Zhang Yuan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Yunchao Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Yassin Mbululo
- Department of Geography and Environmental Studies, Solomon Mahlangu College of Science and Education, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Mariama Janneh
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Shihua Qi
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China.
- School of Environmental Studies, China University of Geosciences, Wuhan, China.
| |
Collapse
|
15
|
Hua Z, Yu L, Liu X, Zhang Y, Ma Y, Lu Y, Wang Y, Yang Y, Xue H. Perfluoroalkyl acids in surface sediments from the lower Yangtze River: Occurrence, distribution, sources, inventory, and risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149332. [PMID: 34375265 DOI: 10.1016/j.scitotenv.2021.149332] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/24/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
In this study, the occurrence, spatial distribution, potential sources, mass inventory, and ecological risk assessment of perfluoroalkyl acids (PFAAs) in surface sediments from the lower Yangtze River were investigated based on field and laboratory assays conducted in November 2019. The total concentrations of 13 target PFAAs (∑PFAAs) ranged from 13.83 to 20.33 ng/g dw, and perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate (PFOS) were predominant in the surface sediments with average concentrations of 2.89 and 4.07 ng/g dw, respectively. The ∑PFAAs concentrations in pore-water ranged from 23.30 to 58.81 ng/L, and PFOA and PFOS were predominant with mean concentrations of 6.29 and 5.04 ng/L, respectively. The profiles of PFAAs composition in surface sediments showed limited difference. Results of fugacity model revealed that PFOS was in relative equilibrium, whereas PFOA exhibited a diffusion trend from sediments to water body. Correlation analysis and positive matrix factorization demonstrated that the main sources of ∑PFAAs were electroplating and fast-food packaging, degradation products and textile, mixed sources, and PFOA-based products. The mass inventory of ∑PFAAs was estimated to be 1680.72 kg, and the results of ecological risk assessments based on equilibrium partition and species sensitivity distribution methods suggested that the hazards of PFAAs in sediments to local aquatic organisms are low. However, the evaluation methods and control measures of PFAAs in surface sediments are still limited, requiring further research.
Collapse
Affiliation(s)
- Zulin Hua
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Liang Yu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Xiaodong Liu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Yuan Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yixin Ma
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Ying Lu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yifan Wang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yundong Yang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Hongqin Xue
- School of Civil Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| |
Collapse
|
16
|
Ara T, Nisa WU, Aziz R, Rafiq MT, Gill RA, Hayat MT, Afridi U. Health risk assessment of hexachlorocyclohexane in soil, water and plants in the agricultural area of Potohar region, Punjab, Pakistan. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:1-17. [PMID: 33624225 DOI: 10.1007/s10653-021-00847-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
In this study analysis of soil, water and plant residue samples is presented to evaluate the contamination levels and possible health risks. Hexachlorocyclohexane (HCH) is a persistent organic pollutant used as a pesticide in agricultural sector for pest control in order to obtain higher productivity. For analysis soil, water and crop residue samples were collected from different agricultural areas of the northern Punjab region of Pakistan. The investigation of the samples shows significant levels of HCH residues in all types of samples. Gas chromatography-mass spectrometry analysis was used to assess the higher residue levels of HCH in the samples. The concentration of HCH residues detected in samples ranged from 2.43 to 8.88 µg/g in soil, nd -5.87 µg/l in water and nd - 4.87 µg/g in plants. The presence of HCH residues in soil, water and plant samples was beyond the recommended quality guidelines. Human health risk was evaluated for cancer and non-cancer risks through dietary and non-dietary exposure routes. The hazard index was HI > 1 in children and HI < 1 in adults, while the non-dietary incremental lifetime cancer risks (ILCR) were beyond the internationally acceptable limit of 1 × 10-5. Hence, results of the present investigation concluded the presence of high levels of HCH residues in samples and pose high health risk to the inhabitants. These findings are alarming and apprise the concerned departments for the remediation of contamination and proper implementation of environmental laws in the area.
Collapse
Affiliation(s)
- Talat Ara
- Department of Environmental Science, International Islamic University, Islamabad, 44000, Pakistan
| | - Waqar-Un Nisa
- Center for Interdisciplinary Research in Basic Sciences, International Islamic University, Islamabad, 44000, Pakistan.
| | - Rukhsanda Aziz
- Department of Environmental Science, International Islamic University, Islamabad, 44000, Pakistan.
| | - Muhammad Tariq Rafiq
- Center for Interdisciplinary Research in Basic Sciences, International Islamic University, Islamabad, 44000, Pakistan
| | - Rafaqat Ali Gill
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Malik Tahir Hayat
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Uzma Afridi
- Department of Environmental Science, International Islamic University, Islamabad, 44000, Pakistan
| |
Collapse
|
17
|
da Silva Sousa J, do Nascimento HO, de Oliveira Gomes H, do Nascimento RF. Pesticide residues in groundwater and surface water: recent advances in solid-phase extraction and solid-phase microextraction sample preparation methods for multiclass analysis by gas chromatography-mass spectrometry. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106359] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Yang Y, Chen Z, Zhang J, Wu S, Yang L, Chen L, Shao Y. The challenge of micropollutants in surface water of the Yangtze River. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146537. [PMID: 33774309 DOI: 10.1016/j.scitotenv.2021.146537] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
The Yangtze River, the third largest river and supporting nearly one-third of Chinese population, has been severely polluted in recent decades. Among the numerous pollutants, organic micropollutants, as one kind of important emerging contaminants, are currently key contaminants of concern. However, few studies have focused on their mixture environmental impacts, especially for the complex environmental mixtures. In the current study, four categories of organic micropollutants, including 16 polycyclic aromatic hydrocarbons (PAHs), 32 polychlorinated biphenyls (PCBs), 27 organochlorine pesticides (OCPs) and 20 pharmaceutical and personal care products (PPCPs) are analyzed in 10 study sites on the Yangtze River. Subsequently, comprehensive risk assessment for micropollutant mixtures was conducted by risk quotient based on the sum of PEC/PNEC values (RQMEC/PNEC) and risk quotient based on the toxic units (RQSTU). The mixture risk evaluation based on the detected environmental concentrations indicates that micropollutant mixtures in surface water of the Yangtze River exhibited relative high risks for aquatic organisms. The observed results revealed that mixture risk assessments have to consider the complexity of environmental samples; PCBs dominated main mixture risks in the upper stream; PAHs contributed major comprehensive risks in the middle stream; and OCPs were the key micropollutants in the downstream. The outcomes of the present study here can serve for pollution control in the Yangtze River, which provide the scientific underpinnings and regulatory reference for risk management and river protection.
Collapse
Affiliation(s)
- Yinjie Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, College of Environment and Ecology, Chongqing University, Chongqing 400030, PR China
| | - Zhongli Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, College of Environment and Ecology, Chongqing University, Chongqing 400030, PR China
| | - Jialing Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, College of Environment and Ecology, Chongqing University, Chongqing 400030, PR China
| | - Siqi Wu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, College of Environment and Ecology, Chongqing University, Chongqing 400030, PR China
| | - Li Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, College of Environment and Ecology, Chongqing University, Chongqing 400030, PR China
| | - Lin Chen
- Department of Otorhinolaryngology, The first Hospital Affiliated to Army Medical University (Southwest Hospital), Chongqing 400038, PR China
| | - Ying Shao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, College of Environment and Ecology, Chongqing University, Chongqing 400030, PR China.
| |
Collapse
|
19
|
El-Sheikh MA, Hadibarata T, Yuniarto A, Sathishkumar P, Abdel-Salam EM, Alatar AA. Role of nanocatalyst in the treatment of organochlorine compounds - A review. CHEMOSPHERE 2021; 268:128873. [PMID: 33220978 DOI: 10.1016/j.chemosphere.2020.128873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/20/2020] [Accepted: 10/31/2020] [Indexed: 06/11/2023]
Abstract
Since a few centuries ago, organochlorine compounds (OCs) become one of the threatened contaminants in the world. Due to the lipophilic and hydrophobic properties, OCs always discover in fat or lipid layers through bioaccumulation and biomagnification. The OCs are able to retain in soil, sediment and water for long time as it is volatile, OCs will evaporate from soil and condense in water easily and frequently, which pollute the shelter of aquatic life and it affects the function of organs and damage system in human body. Photocatalysis that employs the usage of semiconductor nanophotocatalyst and solar energy can be the possible alternative for current conventional water remediation technologies. With the benefits of utilizing renewable energy, no production of harmful by-products and easy operation, degradation of organic pollutants in rural water bodies can be established. Besides, nanophotocatalyst that is synthesized with nanotechnology outnumbered conventional catalyst with larger surface area to volume ratio, thus higher photocatalytic activity is observed. In contrast, disadvantages particularly no residual effect in water distribution network, requirement of post-treatment and easily affected by various factors accompanied with photocatalysis method cannot be ignored. These various factors constrained the photocatalytic efficiency via nanocatalysts which causes the full capacity of solar photocatalysis has yet to be put into practice. Therefore, further modifications and research are still required in nanophotocatalysts' synthesis to overcome limitations such as large band gaps and photodecontamination.
Collapse
Affiliation(s)
- Mohamed A El-Sheikh
- Botany & Microbiology Department, College of Science, King Saud University, P.O. Box. 2455, Riyadh, 11451, Saudi Arabia; Botany Department, Faculty of Science, Damanhour University, Damanhour, 22516, Egypt
| | - Tony Hadibarata
- Department of Environmental Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Malaysia.
| | - Adhi Yuniarto
- Department of Environmental Engineering, Faculty of Civil, Planning, and Geo-Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia
| | - Palanivel Sathishkumar
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou, 510006, PR China.
| | - Eslam M Abdel-Salam
- Botany & Microbiology Department, College of Science, King Saud University, P.O. Box. 2455, Riyadh, 11451, Saudi Arabia
| | - Abdulrahman A Alatar
- Botany & Microbiology Department, College of Science, King Saud University, P.O. Box. 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
20
|
Nanoparticle Beads of Chitosan-Ethylene Glycol Diglycidyl Ether/Fe for the Removal of Aldrin. J CHEM-NY 2021. [DOI: 10.1155/2021/8421840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This article reports on the preparation of iron nanoparticles (FeNPs) supported in chitosan beads (Chi-EDGE-Fe) for removing aldrin from aqueous solutions. The FeNPs and Chi-EDGE-Fe beads were characterized by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR), and the Mössbauer spectroscopy (MS) techniques. TEM, XRD, and MS showed that the FeNPs had core-shell structures consisting of a core of either Fe0 or Fe2B and a shell of magnetite. Furthermore, SEM images showed that Chi-EDGE-Fe beads were spherical with irregular surfaces and certain degrees of roughness and porosity, whilst the sorbent mean pore size was 204 nm, and the occluded iron nanoparticles in the chitosan material had diameters of 70 nm and formed agglomerates. The sorbent beads consisted of carbon, oxygen, chlorine, aluminum, silicon, and iron according to the SEM-EDS analysis. Functional groups such as O-H, C-H, -CH2, N-H, C-O, C-OH, and Fe-OH were detected in the FTIR spectra. In addition, a characteristic band appeared at about 1700 cm−1 after the sorption process involving aldrin. MS also showed that the iron nanoparticles in the beads probably oxidized into NPs of α-Fe2O3 as a result of the supporting process. The isotherm of the aldrin removal followed the Langmuir–Freundlich model and presented a maximum adsorption capacity of 74.84 mg/g, demonstrating that chitosan-Fe beads are promising sorbents for the removal of toxic pollutants in aqueous solutions.
Collapse
|
21
|
Li H, Jiang W, Pan Y, Li F, Wang C, Tian H. Occurrence and partition of organochlorine pesticides (OCPs) in water, sediment, and organisms from the eastern sea area of Shandong Peninsula, Yellow Sea, China. MARINE POLLUTION BULLETIN 2021; 162:111906. [PMID: 33321305 DOI: 10.1016/j.marpolbul.2020.111906] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
To evaluate the occurrence and partition of organochlorine pesticides (OCPs), hexachlorocyclohexanes (HCHs) and dichlorodiphenyltrichloroethanes (DDTs), water, sediment, and organisms were sampled from the eastern sea area of Shandong Peninsula (Yellow Sea, China) across all four seasons in 2016. There were three OCP hotspots in the sediment, mainly caused by the transportation of lindane and dicofol from adjacent Swan Lake and Guhe River. Waterborne OCP levels were highest in winter and lowest in spring, without vertical variability, suggesting that the Yellow Sea Cold Water Mass was governing the spatio-temporal distribution of OCPs in seawater. There was substantial accumulation of HCHs and DDTs in organisms via sediment, as indicated by the relatively low fraction of sedimental fugacity, high bio-sediment accumulation factor, and a positive linear correlation between logΣHCHs and trophic level. This is the first study that has focused on the accumulation of OCPs in entire sediment-seawater-organism system involving multi-phyla of species.
Collapse
Affiliation(s)
- Huaxin Li
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, Shandong, China
| | - Weiwei Jiang
- North China Sea Marine Forecasting Center of State Oceanic Administrator, Qingdao 266061, Shandong, China; Shandong Provincial Key Laboratory of Marine Ecological Environment and Disaster Prevention and Mitigation, Qingdao 266061, Shandong, China
| | - Yulong Pan
- Shandong Provincial Key Laboratory of Marine Ecological Environment and Disaster Prevention and Mitigation, Qingdao 266061, Shandong, China; North China Sea Environmental Monitoring Center of State Oceanic Administration, Qingdao 266033, Shandong, China
| | - Fujuan Li
- Shandong Provincial Key Laboratory of Marine Ecological Environment and Disaster Prevention and Mitigation, Qingdao 266061, Shandong, China; North China Sea Environmental Monitoring Center of State Oceanic Administration, Qingdao 266033, Shandong, China
| | - Chunhui Wang
- Shandong Provincial Key Laboratory of Marine Ecological Environment and Disaster Prevention and Mitigation, Qingdao 266061, Shandong, China; North China Sea Environmental Monitoring Center of State Oceanic Administration, Qingdao 266033, Shandong, China.
| | - Hua Tian
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, Shandong, China.
| |
Collapse
|
22
|
Zhang S, Zhu N, Zheng H, Gao Y, Du H, Cai M, Meng XZ. Occurrence of seventy-nine SVOCs in tapwater of China based on high throughput organic analysis testing combined with high volume solid phase extraction. CHEMOSPHERE 2020; 256:127136. [PMID: 32460164 DOI: 10.1016/j.chemosphere.2020.127136] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/05/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
Semi-volatile organic compounds (SVOCs) are ubiquitous and toxic environmental pollutants, and have recently attracted much research attention. However, their occurrence in tapwater and the associated potential health risks have not been thoroughly studied. This work examined 26 household tapwater samples collected in 26 Chinese cities during August and September 2019. Concentrations of 79 SVOCs, including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), and polychlorobenzenes (CBs), were determined using an emerging method of high throughput organic analysis testing combined with high volume solid phase extraction (Hi-throat/Hi-volume SPE). Total concentrations of PAHs, PCBs, OCPs, and CBs were in the ranges 8.70-103 ng L-1 (average 42.1 ng L-1), 61.6-434 pg L-1 (average 274 pg L-1), 13.1-266 pg L-1 (average 59.8 pg L-1), and 3.5-83.0 pg L-1 (average 13.8 pg L-1), respectively. PAHs were the dominant SVOCs, with concentrations 10-100 times those of PCBs, OCPs, and CBs. All the studied SVOCs had concentrations deemed acceptable by Chinese national tapwater standards. These measured SVOCs displayed little spatial variation across China, but were significantly correlated with the size of the economy and population of each city. The human non-carcinogenic and carcinogenic risks associated with the studied SVOCs in Chinese tapwater are negligible.
Collapse
Affiliation(s)
- Shengwei Zhang
- Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, 200136, China; Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing, 314051, Zhejiang Province, China
| | - Ningzheng Zhu
- Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, 200136, China; State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing, 314051, Zhejiang Province, China
| | - Hongyuan Zheng
- Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, 200136, China; State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yuan Gao
- Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, 200136, China; Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing, 314051, Zhejiang Province, China
| | - Haonan Du
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing, 314051, Zhejiang Province, China
| | - MingHong Cai
- Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, 200136, China; Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing, 314051, Zhejiang Province, China.
| | - Xiang-Zhou Meng
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing, 314051, Zhejiang Province, China
| |
Collapse
|
23
|
He B, Ni Y, Jin Y, Fu Z. Pesticides-induced energy metabolic disorders. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 729:139033. [PMID: 32388131 DOI: 10.1016/j.scitotenv.2020.139033] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/17/2020] [Accepted: 04/25/2020] [Indexed: 06/11/2023]
Abstract
Metabolic disorders have become a heavy burden on society. Recently, through excessive use, pesticides have been found to be present in environmental matrixes and sometimes even accumulate in humans or other mammals through the food chain, which then causes health concerns. Evidence has indicated that pesticides have the potential to induce energy metabolic disorders by disturbing the physical process of energy absorption in the intestine and energy storage in the liver, adipose tissue and skeletal muscle in humans or other mammals. In addition, the homeostasis of energy regulation by the pancreas and immune cells is also affected by pesticides. These pesticide-induced disruptions ultimately cause abnormal levels of blood glucose and lipids, which in turn induce the development of related metabolic diseases, including overweight, underweight, insulin resistance and even diabetes. In this review, the results of previous studies focused on the induction of metabolic disorders by pesticides are summarized. We hope that this work will facilitate the discovery of a potential strategy for the treatment of diseases caused by pesticides.
Collapse
Affiliation(s)
- Bingnan He
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yinhua Ni
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
24
|
Qian Z, Mao Y, Xiong S, Peng B, Liu W, Liu H, Zhang Y, Chen W, Zhou H, Qi S. Historical residues of organochlorine pesticides (OCPs) and polycyclic aromatic hydrocarbons (PAHs) in a flood sediment profile from the Longwang Cave in Yichang, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 196:110542. [PMID: 32276160 DOI: 10.1016/j.ecoenv.2020.110542] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Historical residual of persistent organic pollutants (POPs) in flood sediment from a karst cave were investigated. Fifteen vertical sediment samples were collected from a 6 m-deep flood sediment profile in the Longwang Cave, and the concentrations of organochlorine pesticides (OCPs), polycyclic aromatic hydrocarbons (PAHs) and particle size distribution in the sediments were analysed. The concentrations of OCPs and PAHs varied from 0.85 ng g-1 to 63.1 ng g-1 (mean 8.11 ng g-1) and 5.05 ng g-1 to 82.6 ng g-1 (mean 13.9 ng g-1), respectively; major PAHs in the profile were 2- and 3-ringed PAHs and a few were 5- or 6- ringed PAHs, which indicated less influence from industry but a high impact from the local combustion of coal and biomass; HCHs and DDTs in the profile were historically residual in this region, and HCHs mainly originated from the application of Lindane, while DDTs originated from the application of dicofol and technical DDTs; no significant correlation between the concentrations of OCPs and PAHs and the sedimental particle size in the sediments was found.
Collapse
Affiliation(s)
- Zhe Qian
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China
| | - Yao Mao
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China
| | - Shuai Xiong
- Institute of Geological Survey, China University of Geosciences, Wuhan, 430074, China
| | - Bo Peng
- School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China
| | - Wei Liu
- Institute of Geological Survey, China University of Geosciences, Wuhan, 430074, China; Key Laboratory of Karst Dynamics, MNR & Guangxi, Institute of Karst Geology, CAGS, Guilin, 541004, China; Key Laboratory of Karst Ecosystem and Treatment of Rocky Desertification, Institute of Karst Geology, CAGS, MNR, Guilin, 541004, China.
| | - Huafeng Liu
- Shandong Geological Survey Institute, Jinan, 250013, China
| | - Yuan Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China
| | - Wei Chen
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China; Key Laboratory of Karst Dynamics, MNR & Guangxi, Institute of Karst Geology, CAGS, Guilin, 541004, China
| | - Hong Zhou
- Institute of Geological Survey, China University of Geosciences, Wuhan, 430074, China
| | - Shihua Qi
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China
| |
Collapse
|
25
|
The Occurrence and Risks of Selected Emerging Pollutants in Drinking Water Source Areas in Henan, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16214109. [PMID: 31731401 PMCID: PMC6862118 DOI: 10.3390/ijerph16214109] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 12/22/2022]
Abstract
The occurrence of organic micropollutants (OMPs) in aqueous environments has potential effects on ecological safety and human health. Three kinds of OMPs (namely, pharmaceuticals, ultraviolet (UV) filters and organophosphate esters (OPEs)) in four drinking water source areas in Henan Province of China were analyzed, and their potential risks were evaluated. Among 48 target chemicals, 37 pollutants with total concentrations ranging from 403.0 to 1751.6 ng/L were detected in water, and 13 contaminants with total concentrations from 326.0 to 1465.4 ng/g (dry weight) were observed in sediment. The aqueous pollution levels in Jiangang Reservoir and Shahe Water Source Area were higher than that in Nanwan Reservoir and Baiguishan Reservoir, while the highest total amount of pollutants in sediment was found in Baiguishan Reservoir. Compared with pharmaceuticals and UV filters, OPEs presented higher concentrations in all investigated drinking water source areas. The highest observed concentration was triphenylphosphine oxide (TPPO, 865.2 ng/L) in water and tripentyl phosphate (TPeP, 1289.8 ng/g) in sediment. Moreover, the risk quotient (RQ) analysis implies that the determined aqueous contaminants exhibited high risks to algae and invertebrates, whereas moderate risk to fish was exhibited. The health risk assessment of aqueous OMPs by means of the hazard index (HI) indicates that the risks to adults and children were negligible. These observations are expected to provide useful information for the assessment of water quality in drinking water sources in Henan, China.
Collapse
|