1
|
Niu H, Shi S, Zhu S, Cai Y, Cao D. Biochars-inlaided nano zero-valent iron reactors: A tool for visualized analysis of soil-nanomaterials micro-interfacial interaction in soil remediation process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177829. [PMID: 39689473 DOI: 10.1016/j.scitotenv.2024.177829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/02/2024] [Accepted: 11/27/2024] [Indexed: 12/19/2024]
Abstract
It is a great challenge to depict the evolution process of soil-nanomaterials micro-interfaces during soil remediation. A novel biochar loaded nano zero-valent iron (BC-nZVI) reactor with low density, high reactivity and suitable magnetism was prepared using the method we established. Fe0 nanoparticles (NPs) with the size <10 nm uniformly embedded in a layer of porous carbon networks, which attached firmly in the pores and outer surface of biochars. The BC-nZVI reactors efficiently degraded and mineralized pentachlorophenol (PCP) in soil in a wide pH range within 72 h at room temperature. BC-nZVI were easily collected from soil using sieving method or floating technology followed with magnetic separation. The evolution of interfacial properties of BC-nZVI was measured using XPS, Raman spectroscopy, XRD and SEM-EDS. Even supported by BCs, aggregation and oxidation of Fe NPs inevitably took place on the outer surface of BC-nZVI in PCP remediation process. For BC-nZVIFeSO4 prepared via traditional impregnation and carbothermal method, severe agglomeration and various aging products of Fe NPs were seen in the pores as well. Due to the protection of porous carbon networks, Fe NPs aggregation was greatly mitigated in the pores of BC-nZVI and the Fe2+/Fe3+ ratio on BC-nZVI surface was still as high as the fresh one. Meanwhile, about 10-20 % of carbon matrix was oxidized and turned into amorphous carbon. The Fe NPs corrosion products, broken carbon phase, and K+ of BC-nZVI reactors were released into soil and had little effect or even enhanced the soil bacterial community diversity and biomass. However, the BC-nZVI itself showed certain adverse effect to soil microbes.
Collapse
Affiliation(s)
- Hongyun Niu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shaojie Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siyu Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaqi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang Province 310013, China.
| | - Dong Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
2
|
Zhang X, Han C, Sun X, Yang S, Sun Y. Surfactant-assisted biodegradation of nitrobenzene in groundwater by sulfided nano-zero valent iron activated persulfate: Synergistic effect, mechanism, and application. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123185. [PMID: 39515016 DOI: 10.1016/j.jenvman.2024.123185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/20/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Groundwater contamination by dense non-aqueous phase liquids (DNAPLs), particularly nitrobenzene, represents a significant environmental challenge due to their chemical stability, persistence, and low solubility. This study aims to develop a synergistic approach for the biodegradation of nitrobenzene in groundwater, leveraging a combined system of Tween 80-assisted solubilization, sulfidized nano-zero valent iron (S-nZVI), and persulfate (PS) activation. The reduction process is facilitated by S-nZVI, while PS activation generates strong oxidizing radicals, and Tween 80 enhances nitrobenzene solubilization, thus improving the overall treatment efficacy. Laboratory experiments, including both batch and column studies, were conducted to evaluate the performance of this approach. Furthermore, a persulfate slow-release gel system was introduced to provide sustained activation, leading to improved long-term degradation efficiency. The results demonstrated that the synergistic combination of S-nZVI, PS, and Tween 80 led to significantly enhanced degradation of nitrobenzene and its byproduct aniline, achieving degradation rates of up to 96.74% for nitrobenzene and 100% for aniline after 6 h under optimal conditions. Additionally, the oxidation rate of aniline reached 91.53% within 5 min when the optimal dosage of 1.2 mM PS was used. The Tween-80/S-nZVI/PS slow-release gel system further achieved cumulative degradation rates of 87.49% for nitrobenzene over 14 pore volumes in a column study, demonstrating its potential for practical applications in groundwater remediation. These findings provide a promising new direction for the remediation of contaminated groundwater.
Collapse
Affiliation(s)
- Xueyan Zhang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, Xi'an, 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China; Department of Environmental Engineering, School of Water and Environment, Chang'an University, Xi'an, 710054, China
| | - Caohui Han
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, Xi'an, 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China; Department of Environmental Engineering, School of Water and Environment, Chang'an University, Xi'an, 710054, China
| | - Xiaoyin Sun
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, Xi'an, 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China; Department of Environmental Engineering, School of Water and Environment, Chang'an University, Xi'an, 710054, China
| | - Shengke Yang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, Xi'an, 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China; Department of Environmental Engineering, School of Water and Environment, Chang'an University, Xi'an, 710054, China
| | - Yongchang Sun
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, Xi'an, 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China; Department of Environmental Engineering, School of Water and Environment, Chang'an University, Xi'an, 710054, China.
| |
Collapse
|
3
|
Li Y, Zhang L, Wang J, Xu S, Zhang Z, Guan Y. Activation of persulfate by a layered double oxide supported sulfidated nano zero-valent iron for efficient degradation of 2,2',4,4'-tetrabromodiphenyl ether in soil. ENVIRONMENT INTERNATIONAL 2024; 194:109098. [PMID: 39579442 DOI: 10.1016/j.envint.2024.109098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/30/2024] [Accepted: 10/23/2024] [Indexed: 11/25/2024]
Abstract
The nano zero-valent iron (nZVI) activated persulfate (PS) is recognized as a promising approach to degrade 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), which is ubiquitous in the soil at electronic waste sites. However, all the reported studies were performed in liquids, gaps in the real behaviour and microbial contribution to the degradation of BDE-47 in soil media need to be urgently filled. The removal efficiency of BDE-47 is low using traditional nZVI as activator because of its aggregation and corrosion. Herein, we designed a novel layered double oxide supported sulfidated nano zero-valent iron (S-nZVI@LDO) composite and explored the performance of S-nZVI@LDO/PS to remediate BDE-47 contaminated soil. The results showed that S-nZVI@LDO has excellent stability and superior reduction capability. It could couple PS to achieve a rapid and efficient degradation of BDE-47, and the removal efficiency reached 92.31 % (5 mg/kg) within 6 h, which was much higher than that of n-ZVI/PS (53.38 %) or S-nZVI/PS (75.69 %). The kinetic constant of BDE-47 degradation by S-nZVI@LDO/PS was 23.6 and 3.7 times higher than that by single S-nZVI@LDO and nZVI/PS, respectively. It is attributable to the efficient production of SO4•-, •OH, O2•-, and 1O2 in the system, in which SO4•- and •OH dominated. The bioinformatic analysis demonstrate that soil remediation by S-nZVI@LDO/PS significantly enriched aromatic compounds-degrading bacteria and increased the abundance of hydrocarbon degradation functions. Microbial degradation may play important roles in the BDE-47 degradation and soil quality recovery. The identification of degradation pathways suggests that BDE-47 was degraded to very low-toxic products based on GHS toxicity prediction through a series process of debromination, hydroxylation, cleavage central oxygen, and ring opening, or even completely mineralized. The findings may provide significant implications for the in-situ clean-up of brominated flame retardants in contaminated soil using S-nZVI@LDO/PS Fenton-like system.
Collapse
Affiliation(s)
- Yibing Li
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Lixun Zhang
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| | - Jing Wang
- JiangSu Longhuan Environmental Technology Co., LTD, Changzhou 213000, PR China
| | - Shan Xu
- JiangSu Longhuan Environmental Technology Co., LTD, Changzhou 213000, PR China
| | - Zhengfang Zhang
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yuntao Guan
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
4
|
Liang D, Zeng G, Lei X, Sun D. Advancements and Challenges in Nanoscale Zero-Valent Iron-Activated Persulfate Technology for the Removal of Endocrine-Disrupting Chemicals. TOXICS 2024; 12:814. [PMID: 39590993 PMCID: PMC11598129 DOI: 10.3390/toxics12110814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024]
Abstract
Endocrine-disrupting chemicals are a new class of pollutants that can affect hormonal metabolic processes in animals and humans. They can enter the aquatic environment through various pathways and gradually become enriched, thus posing a serious threat to the endocrine and physiological systems of both animals and humans. Nano zero-valent iron has promising applications in endocrine disruptor removal due to its excellent reducing properties and high specific surface area. However, given the dispersed focus and fragmented results of current studies, a comprehensive review is still lacking. In this paper, it was analyzed that the types of endocrine disruptors and their emission pathways reveal the sources of these compounds. Then, the main technologies currently used for endocrine disruptor treatment are introduced, covering physical, chemical, and biological treatment methods, with a special focus on persulfate oxidation among advanced oxidation technologies. Also, the paper summarizes the various activation methods of persulfate oxidation technology and proposes the nZVI-activated persulfate technology as the most promising means of treatment. In addition, this paper reviews the research progress of different modification methods of nZVI in activating persulfate for the removal of EDCs. Finally, the discussion includes recycling studies of nZVI/PS technology and emphasizes the urgency and importance of endocrine disruptor treatment. The review of this paper provides further scientific basis and technical support for nZVI/PS technology in the field of endocrine disruptor management.
Collapse
Affiliation(s)
- Dong Liang
- Chongqing Academy of Science and Technology, Chongqing 401123, China
| | - Guoming Zeng
- Chongqing Academy of Science and Technology, Chongqing 401123, China
- School of Civil and Hydraulic Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
- School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Xiaoling Lei
- Chongqing Academy of Science and Technology, Chongqing 401123, China
| | - Da Sun
- National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
5
|
Arabzadeh Nosratabad N, Yan Q, Cai Z, Wan C. Exploring nanomaterial-modified biochar for environmental remediation applications. Heliyon 2024; 10:e37123. [PMID: 39315228 PMCID: PMC11417198 DOI: 10.1016/j.heliyon.2024.e37123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
Environmental pollution, particularly from heavy metals and toxic elements, poses a significant threat to both human health and ecological systems. While various remediation technologies exist, there is an urgent need for cost-effective and sustainable solutions. Biochar, a carbon-rich product derived from the pyrolysis of organic matter, has emerged as a promising material for environmental remediation. However, its pristine form has limitations, such as low adsorption capacities, a relatively narrow range of pH adaptability which can limit its effectiveness in diverse environmental conditions, and a tendency to lose adsorption capacity rapidly in the presence of competing ions or organic matters. This review aims to explore the burgeoning field of nanomaterial-modified biochar, which seeks to overcome the limitations of pristine biochar. By incorporating nanomaterials, the adsorptive and reactive properties of biochar can be significantly enhanced. Such modifications, especially biochar supported with metal nanoparticles (biochar-MNPs), have shown promise in various applications, including the removal of heavy metals, organic contaminants, and other inorganic pollutants from aqueous environments, soil, and air. This review provides a comprehensive overview of the synthesis techniques, characterization methods, and applications of biochar-MNPs, as well as discusses their underlying mechanisms for contaminant removal. It also offers insights into the advantages and challenges of using nanomaterial-modified biochar for environmental remediation and suggests directions for future research.
Collapse
Affiliation(s)
- Neda Arabzadeh Nosratabad
- Department of Chemical and Biomedical Engineering, University of Missouri, 1406 East Rollins Street, Columbia, MO, 65211, USA
| | - Qiangu Yan
- Forest Products Laboratory, USDA Forest Service, One Gifford Pinchot Drive, Madison, WI, 53726-2398, USA
| | - Zhiyong Cai
- Forest Products Laboratory, USDA Forest Service, One Gifford Pinchot Drive, Madison, WI, 53726-2398, USA
| | - Caixia Wan
- Department of Chemical and Biomedical Engineering, University of Missouri, 1406 East Rollins Street, Columbia, MO, 65211, USA
| |
Collapse
|
6
|
Wan J, Guo Y, Zhang Z, Deng R, Wang X, Cao S, Zhang X, Miao Y, Jiang J, Song Z, Long T, Sun C, Zhu X. Persulfate activation with biochar supported nanoscale zero- valent iron: Engineering application for effective degradation of NCB in soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173053. [PMID: 38723973 DOI: 10.1016/j.scitotenv.2024.173053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/20/2024] [Accepted: 05/06/2024] [Indexed: 05/19/2024]
Abstract
Nitrochlorobenzene (NCB) is very common in pesticide and chemical industries, which has become a major problem in soil environment. However, the remediation of NCB contaminated soil is received finite concern. Using biochar as a substrate for nanoscale-zero valent iron (nZVI/p-BC) to activate peroxodisulfate (PDS), a novel heterogeneous oxidative system had been applied in the current study to remediate NCB contaminants in soil. The degradation efficiencies and kinetics of m-NCB, p-NCB, and o-NCB by various systems were contrasted in soil slurry. Key factors including the dosage of nZVI/p-BC, the molar ratio of nZVI/PDS, initial pH and temperature on degradation of NCB were further examined. The results confirmed that the nZVI/p-BC/PDS displayed the remarkable performance for removing NCB compared with other systems. Higher temperature with nZVI/PDS molar ratio of 2:1 under the acidic condition favored the reduction of NCB. The treatment for NCB with optimal conditions were evaluated for the engineering application. The mechanism of nZVI/p-BC/PDS indicated that electron transfer between p-BC and nZVI was responsible for activation of PDS, generating active species (SO4•-, •OH and 1O2) via both the free and non-free radical pathways. Experimental results revealed prominent availability of nZVI/p-BC/PDS system in remediation of actual contaminated field by NCB.
Collapse
Affiliation(s)
- Jinzhong Wan
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Yang Guo
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| | - Zehang Zhang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Rufeng Deng
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Xiang Wang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Shaohua Cao
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Xiaodong Zhang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Yifei Miao
- College of Environment, Hohai University, Nanjing 210098, China
| | - Jinlin Jiang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Zhen Song
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Tao Long
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Cheng Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Xin Zhu
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| |
Collapse
|
7
|
Liu Y, Lin Q, Zheng J, Fan X, Xu K, Ma Y, He J. Magnetic Fe-doped silicon carbide induced microwave activated persulfate for decabromodiphenyl ether removal: Mechanism and unique degradation pathway. CHEMOSPHERE 2024; 349:140841. [PMID: 38040250 DOI: 10.1016/j.chemosphere.2023.140841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/09/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023]
Abstract
In this work, the magnetic nanocomposite Fe@SiC was prepared by a hydrothermal method and determined by SEM, XRD, XPS, FTIR and VNA. Fe3O4 particles were loaded onto SiC with great success, and the synthesized composites had favorable microwave absorption properties. Fe@SiC was used to activate persulfate in a microwave field for the degradation of BDE209 in soil. Specifically, the synergistic interaction between microwaves and Fe@SiC showed excellent catalytic performance in activating PS to degrade BDE209 (90.1% BDE209 degradation in 15 min). The presence of •OH, O2•- and 1O2 was demonstrated based on quench trapping and EPR experiments. LC‒MS was applied to determine the intermediates and propose the possible degradation pathway for BDE209 in the MW/Fe@SiC/PS system, and it was found that BDE209 produced almost no lower brominated diphenyl ethers. Therefore, the toxicity of BDE209 was found to be reduced using toxicity assessment software. Overall, this work provides an effective approach for the degradation of BDE209 in environmental remediation.
Collapse
Affiliation(s)
- Yuxin Liu
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Qintie Lin
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Junli Zheng
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xindan Fan
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Kehuan Xu
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yongjie Ma
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jin He
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
8
|
Yang Y, Zhu F. An overview of electrokinetically enhanced chemistry technologies for organochlorine compounds (OCs) remediation from soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:529-548. [PMID: 38015392 DOI: 10.1007/s11356-023-31183-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/18/2023] [Indexed: 11/29/2023]
Abstract
In recent years, electrokinetic (EK) remediation technology has gained significant attention among researchers. This technology has proven effective in the remediation of low-permeability polluted soil. Organochlorines (OCs) are highly toxic, persistent, bioaccumulative, and capable of long-distance migration. They can also accumulate through the food chain, posing significant environmental risks. This paper provides a review of the reaction mechanism of combining chemical technology with EK remediation for the removal of several typical OCs. Furthermore, the factors influencing the efficiency of EK remediation, such as pH and ζ potential, voltage gradients, electrode materials, electrolytes, electrode arrangements, and soil types, are summarized. The paper also presents an overview of recent advancements in the methods of combining chemical technology with EK remediation for the treatment of OCs contaminated soil. Specifically, the research progress in surfactants-combined EK technology, chemical oxidation-combined EK technology, chemical reduction-combined EK technology, and chemical adsorption-combined EK technology is summarized. These findings serve as a foundation for ongoing and future research endeavors in the field. Further exploration and investigation in this area are essential for advancing the field and improving environmental remediation strategies.
Collapse
Affiliation(s)
- Yue Yang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong, Shanxi, 030600, People's Republic of China
| | - Fang Zhu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong, Shanxi, 030600, People's Republic of China.
| |
Collapse
|
9
|
Xue C, Yi Y, Zhou L, Fang Z. Simultaneous remediation of co-contaminated soil by ball-milled zero-valent iron coupled with persulfate oxidation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 340:118004. [PMID: 37119628 DOI: 10.1016/j.jenvman.2023.118004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 05/12/2023]
Abstract
The problem of co-contaminated soil at e-waste dismantling sites is serious and constitutes a critical threat to human health and the ecological environment. Zero-valent iron (ZVI) has been proven to be effective in the stabilization of heavy metals and the removal of halogenated organic compounds (HOCs) from soils. However, for the remediation of co-contamination of heavy metals with HOCs, ZVI has disadvantages such as high remediation cost and inability to take into account both pollutants, which limits its large-scale application. In this paper, boric acid and commercial zero-valent iron (cZVI) were used as raw materials to prepare boric acid-modified zero-valent iron (B-ZVIbm) through a high-energy ball milling strategy. B-ZVIbm coupled with persulfate (PS) to achieve simultaneous remediation of co-contaminated soil. The synergistic treatment of PS and B-ZVIbm resulted in the removal efficiency of 81.3% for decabromodiphenyl ether (BDE209) and the stabilization efficiencies of 96.5%, 99.8%, and 28.8% for Cu, Pb, and Cd respectively in the co-contaminated soil. A series of physical and chemical characterization methods showed that the oxide coat on the surface of B-ZVIbm could be replaced by borides during ball milling. The boride coat facilitated the exposure of the Fe0 core, promoted the corrosion of ZVI and the orderly release of Fe2+. The analysis of the morphological transformation of heavy metals in soils revealed that most of the heavy metals in the exchangeable, carbonate-bound state were transformed into the residue state, which was the key mechanism for the remediation of heavy metal-contaminated soils with B-ZVIbm. The analysis of BDE209 degradation products showed that BDE209 was degraded to lower brominated products and further mineralized by ZVI reduction and free radical oxidation. In general, B-ZVIbm coupled with PS is a good recipe for synergistic remediation of co-contaminated soils with heavy metals and HOCs.
Collapse
Affiliation(s)
- Chengjie Xue
- School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Yunqiang Yi
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510550, China
| | - Long Zhou
- School of Environment, South China Normal University, Guangzhou, 510006, China; Guangdong Technology Research Center for Ecological Management and Remediation of Water System, Guangzhou, 510006, China
| | - Zhanqiang Fang
- School of Environment, South China Normal University, Guangzhou, 510006, China; Guangdong Technology Research Center for Ecological Management and Remediation of Water System, Guangzhou, 510006, China.
| |
Collapse
|
10
|
Xue C, Zhou L, Fang Z. Remediation of polybrominated diphenyl ethers contaminated soil in the e-waste disposal site by ball milling modified zero valent iron activated persulfate. CHEMOSPHERE 2023; 324:138376. [PMID: 36905994 DOI: 10.1016/j.chemosphere.2023.138376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Hydrophobic organic compounds (HOCs) in e-waste disposal sites are difficult to remove effectively. There is little reported about zero valent iron (ZVI) coupled with persulfate (PS) to achieve the removal of decabromodiphenyl ether (BDE209) from soil. In this work, we have prepared the flake submicron zero valent iron by ball milling with boric acid (B-mZVIbm) at a low cost. Sacrifice experiments results showed that 56.6% of BDE209 was removed in 72 h with PS/B-mZVIbm, which was 2.12 times than that of micron zero valent iron (mZVI). The morphology, crystal form, atomic valence, composition, and functional group of B-mZVIbm were determined by SEM, XRD, XPS, and FTIR, and the results indicated that the oxide layer on the surface of mZVI is replaced by borides. The results of EPR indicated that hydroxyl radical and sulfate radical played the dominant role in the degradation of BDE209. The degradation products of BDE209 were determined by gas chromatography-mass spectrometry (GC-MS), accordingly, the possible degradation pathway was further proposed. The research suggested that ball milling with mZVI and boric acid is a low-cost means of preparing highly active zero valent iron materials. And the mZVIbm has promising applications in improving the activation efficiency of PS and enhancing the removal of the contaminant.
Collapse
Affiliation(s)
- Chengjie Xue
- School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Long Zhou
- School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Zhanqiang Fang
- School of Environment, South China Normal University, Guangzhou, 510006, China; Guangdong Technology Research Center for Ecological Management and Remediation of Water System, Guangzhou, 510006, China.
| |
Collapse
|
11
|
Ahmad S, Liu L, Zhang S, Tang J. Nitrogen-doped biochar (N-doped BC) and iron/nitrogen co-doped biochar (Fe/N co-doped BC) for removal of refractory organic pollutants. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130727. [PMID: 36630878 DOI: 10.1016/j.jhazmat.2023.130727] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
The presence of refractory organic pollutants (ROPs) in the ecosystem is a serious concern because of their impact on environmental constituents as well as their known or suspected ecotoxicity and adverse health effects. According to previous studies, carbonaceous materials, such as biochar (BC), have been widely used to remove pollutants from ecosystems owing to their desirable features, such as relative stability, tunable porosity, and abundant functionalities. Nitrogen (N)-doping and iron/nitrogen (Fe/N) co-doping can tailor BC properties and provide supplementary functional groups as well as extensive active sites on the N-doped and Fe/N co-doped BC surface, which is advantageous for interaction with and removal of ROPs. This review investigates the impact of N-doped and Fe/N co-doped BC on the removal of ROPs through adsorption, activation oxidation, and catalytic reduction due to the synergistic Fe, N, and BC features that modify the physicochemical properties, surface functional groups, and persistent free radicals of BC to aid in the degradation of ROPs. Owing to the attractive properties of N-doped and Fe/N co-doped BCs for the removal of ROPs, this review focuses and evaluates previous experimental investigations on the manufacturing (including precursors and influencing parameters during manufacturing) and characterizations of N-doped and Fe/N co-doped BCs. Additionally, the effective applications and mechanisms of N-doped and Fe/N co-doped BCs in adsorption, activation oxidation, and reductive remediation of ROPs are investigated herein. Moreover, the application of N-doped and Fe/N co-doped BC for progressive environmental remediation based on their effectiveness against co-pollutants, regeneration, stability, affordability, and future research prospects are discussed.
Collapse
Affiliation(s)
- Shakeel Ahmad
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Linan Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shicheng Zhang
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Shanghai Institute of Pollution Control and Ecological Security, Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
12
|
Zhong W, Bai W, Li G. Reduction of Hexavalent Chromium from Soil of the Relocated Factory Area with Rice Straw Hydrothermal Carbon Modified by Nano Zero-Valent Iron (nZVI). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3089. [PMID: 36833784 PMCID: PMC9967011 DOI: 10.3390/ijerph20043089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
In order to reduce the content of Cr(VI) in the soil of the relocated chromium salt factory, the rice straw-derived hydrothermal carbon was prepared by hydrothermal method and loaded with nano zero-valent iron generated by liquid phase reduction, which effectively alleviated the self-aggregation problem of nano zero-valent iron (nZVI) in the treatment of Cr(VI) and improved the Cr(VI) reduction rate without changing the soil structure. The reduction effect of Cr(VI) in soil by key influencing factors such as carbon-iron ratio, initial pH value, and initial temperature was investigated. The results showed that nZVI modified hydro-thermal carbon composite (named RC-nZVI) had a good reduction effect on Cr(VI). Scanning electron microscope (SEM) and energy spectrum analysis showed that nZVI was evenly distributed on the surface of hydrothermal carbon, which effectively reduced the agglomeration of iron. Under the conditions of C/Fe = 1:2, 60 °C, with pH of 2, the average Cr(VI) content in soil decreased from 182.9 mg kg-1 to 21.6 mg kg-1. Adsorption kinetics of Cr(VI) by RC-nZVI fit well with the pseudo-second-order model, and the kinetic velocity constant revealed that Cr(VI) reduction rate decreased with increasing initial Cr(VI) concentration. Cr(VI) reduction by RC-nZVI was mainly dominated by chemical adsorption.
Collapse
Affiliation(s)
| | - Weiyang Bai
- Department of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | | |
Collapse
|
13
|
Ji C, Yang S, Cheng Y, Liu L, Wang D, Zhu S, E T, Li Y. In situ formed CaSO 4 on waste dander biochar to inhibit the mineralization of soil organic carbon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158776. [PMID: 36116653 DOI: 10.1016/j.scitotenv.2022.158776] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
In order to reduce CO2 emissions, as well as realize the resource utilization of waste dander (WD) and the goal of international "peak carbon dioxide emissions" and "carbon neutrality", Biochar was prepared with WD via pyrolysis technology, achieving CaSO4 in situ generated on its surface, which could be used to inhibit soil organic carbon (SOC) from mineralizing and enhance soil carbon sequestration ability. The characterization results showed that the unstable carbon (C) structures as well as more conjugated structures were generated on Ca-BC, obtaining an increased C sequestration of Ca-BC to 21.70 %. With the application of Ca-BC, the mineralization rate of SOC was reduced to 0.451 mg CO2/(g·d), and the soil moisture content, pH and TOC content were increased to 45.48 %, 7.96 and 47.19 %. In addition, the bioinformatics analysis and redundancy analysis revealed that the application of Ca-BC promoted bacteria to convert into the stable C-dominant phyla (Firmicutes).
Collapse
Affiliation(s)
- Cheng Ji
- Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, Bohai University, Jinzhou 121013, Liaoning, China
| | - Shuyi Yang
- Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, Bohai University, Jinzhou 121013, Liaoning, China
| | - Ying Cheng
- Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, Bohai University, Jinzhou 121013, Liaoning, China
| | - Lin Liu
- Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, Bohai University, Jinzhou 121013, Liaoning, China
| | - Daohan Wang
- Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, Bohai University, Jinzhou 121013, Liaoning, China
| | - Shujing Zhu
- Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, Bohai University, Jinzhou 121013, Liaoning, China
| | - Tao E
- Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, Bohai University, Jinzhou 121013, Liaoning, China.
| | - Yun Li
- Chemistry & Chemical Engineering College of Yantai University, Yantai 264005, Shandong, China.
| |
Collapse
|
14
|
Chen K, Liang J, Xu X, Zhao L, Qiu H, Wang X, Cao X. Roles of soil active constituents in the degradation of sulfamethoxazole by biochar/persulfate: Contrasting effects of iron minerals and organic matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158532. [PMID: 36075408 DOI: 10.1016/j.scitotenv.2022.158532] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/19/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
The biochar/persulfate (BC/PS) has been extensively applied in the degradation of organic contaminants in the aqueous solutions. However, much less work has been done on the degradation of organic contaminants in soil by BC/PS, especially on the unclear roles of soil active constituents in the degradation. This study was conducted to investigate the degradation of sulfamethoxazole (SMX) in two soils through PS oxidation activated by biochar. Biochar was produced via the pyrolysis of peanut shell at 400 °C and 700 °C, which was denoted as BC400 and BC700, respectively. Two soils used were red soil and paddy soil, mainly differing in iron minerals and organic matter. Both biochar promoted SMX degradation (42.6 %-90.7 %) in two soils, compared to PS alone (20.9 %-41.7 %). In BC400/PS system, the free radicals were the dominant reactive species for SMX degradation, while the electron transfer pathway played a vital role in the SMX degradation by BC700/PS. Higher SMX degradation was observed in red soil (41.7 %-97.8 %) than that in paddy soil (20.3 %-94.8 %), which was ascribed to the promotion of iron minerals in red soil yet the inhibition of organic matter in paddy soil. Specifically, the reaction between ≡Fe(III)/≡Fe(II) and PS on the surface of iron minerals in red soil generated more SO4•- and •OH, resulting in the enhanced SMX degradation. However, the consumption of free radicals and suppression of electron transfer pathway by organic matter in paddy soil inhibited SMX degradation. As the comparative carbonaceous materials to biochar, graphite exerted no obvious degradation effect, whereas activated carbon exhibited the comparable promoting efficacy to BC700. Both biochar, especially BC700, significantly (p < 0.05) alleviated the adverse effects of PS treatment on wheat (Triticum aestivum L.) growth. Overall, this study demonstrates that biochar/persulfate was effective in SMX degradation in soil and the degradation was affected by soil iron minerals and organic matter, which should be paid more attention in the persulfate remediation of organic contaminated soils at a specific site.
Collapse
Affiliation(s)
- Kexin Chen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jun Liang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyun Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ling Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinbing Wang
- Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; National Field Observation and Research Station of Erhai Lake Ecosystem, Yunnan 671000, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
15
|
Dong J, Li G, Gao J, Zhang H, Bi S, Liu S, Liao C, Jiang G. Catalytic degradation of brominated flame retardants in the environment: New techniques and research highlights. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157695. [PMID: 35908699 DOI: 10.1016/j.scitotenv.2022.157695] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/09/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Due to the extensive commercial use of brominated flame retardants (BFRs), human beings are chronically exposed to BFRs, causing great harms to human health, which imposes urgent demands to degrade them in the environment. Among various degradation techniques, catalytic degradation has been proven to be outstanding because of its rapidness and effectiveness. Therefore, much attention has been given to catalytic degradation, especially the extensively studied photocatalytic degradation and nanocatalytic reduction techniques. Recently, some novel advanced catalytic techniques have been developed and show excellent catalytic degradation efficiency for BFRs, including natural substances catalytic degradation, new Fenton catalytic degradation, new chemical reagent catalytic degradation, new material catalytic degradation, electrocatalytic degradation, plasma catalytic degradation, and composite catalytic degradation systems. In addition to the common features of traditional catalytic techniques, these novel techniques possess their own specific advantages in various aspects. Therefore, this review summarized the degradation mechanism of BFRs by the above new catalytic degradation methods under the laboratory conditions, simulated real environment, and real environment conditions, and further evaluated their advantages and disadvantages, aiming to provide some research ideas for the catalytic degradation of BFRs in the environment in the future. We suggested that more attention should focus on features of novel catalytic techniques, including eco-friendliness, cost-effectiveness, and pragmatic usefulness.
Collapse
Affiliation(s)
- Jingcun Dong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Guoliang Li
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Jia Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - He Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shihao Bi
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of the Chinese Academy of Sciences, Beijing 100049, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Lin D, Fu Y, Li X, Wang L, Hou M, Hu D, Li Q, Zhang Z, Xu C, Qiu S, Wang Z, Boczkaj G. Application of persulfate-based oxidation processes to address diverse sustainability challenges: A critical review. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129722. [PMID: 35963083 DOI: 10.1016/j.jhazmat.2022.129722] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Over the past years, persulfate (PS) is widely applied due to their high versatility and efficacy in decontamination and sterilization. While treatment of organic chemicals, remediation of soil and groundwater, sludge treatment, disinfection on pathogen microorganisms have been covered by most published reviews, there are no comprehensive and specific reviews on its application to address diverse sustainability challenges, including solid waste treatment, resources recovery and regeneration of ecomaterials. PS applications mainly rely on direct oxidation by PS itself or the reactive sulfate radical (SO4•-) or hydroxyl radical (•OH) from the activation of peroxodisulfate (PDS, S2O82-) or peroxymonosulfate (PMS, HSO5-) in SO4•--based advanced oxidation processes (SO4•--AOPs). From a broader perspective of environmental cleanup and sustainability, this review summarizes the various applications of PS except pollutant decontamination and elaborates the possible reaction mechanisms. Additionally, the differences between PS treatment and conventional technologies are highlighted. Challenges, research needs and future prospect are thus discussed to promote the development of the applications of PS-based oxidation processes in niche environmental fields. In all, this review is a call to pay more attention to the possibilities of PS application in practical resource reutilization and environmental protection except widely reported pollutant degradation.
Collapse
Affiliation(s)
- Dagang Lin
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yu Fu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaodie Li
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Lingli Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Meiru Hou
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Dongdong Hu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Qingchao Li
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Zhen Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Chunxiao Xu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Sifan Qiu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Zhaohui Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai 200062, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, China.
| | - Grzegorz Boczkaj
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland; EkoTech Center, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
| |
Collapse
|
17
|
Liu T, Yao B, Luo Z, Li W, Li C, Ye Z, Gong X, Yang J, Zhou Y. Applications and influencing factors of the biochar-persulfate based advanced oxidation processes for the remediation of groundwater and soil contaminated with organic compounds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155421. [PMID: 35472360 DOI: 10.1016/j.scitotenv.2022.155421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/17/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
Biochar (BC) is a low-cost material rich in carbon, which is being used increasingly as a catalyst in persulfate-based advanced oxidation processes (PS-AOPs) for the remediation of groundwater and soil contaminated with organic compounds. In this work, a general summary of preparation methods and applications of various BC (i.e., pristine BC, magnetic BC, and chemically modified BC) in PS-AOPs is presented. Different influence factors (e.g., pH, anions, natural organic matter) for the degradation of organic compounds are discussed. Meanwhile, the influence of external energy (e.g., solar irradiation, UV-Vis, ultrasonic) is also mentioned. Furthermore, the advantage of different BC in PS-AOPs are compared. Finally, potential problems, challenges, and prospects in the application of biochar-persulfate based advanced oxidation processes (BCPS-AOPs) are discussed in the conclusion and perspective.
Collapse
Affiliation(s)
- Tianhao Liu
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Bin Yao
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Zirui Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Wei Li
- School of Biology and Chemistry, Key Laboratory of Chemical Synthesis and Environmental Pollution Control-Remediation Technology of Guizhou Province, Minzu Normal University of Xingyi, Xingyi 562400, China.
| | - Changwu Li
- Aerospace Kaitian Environmental Technology Co., Ltd, Changsha 410100, China
| | - Ziyi Ye
- Aerospace Kaitian Environmental Technology Co., Ltd, Changsha 410100, China
| | - Xiaoxiang Gong
- School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Jian Yang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
18
|
Liu Z, Yang H, Wang M, Sun Y, Fei Z, Chen S, Luo R, Hu L, Gu C. Enhanced reductive debromination of decabromodiphenyl ether by organic-attapulgite supported Fe/Pd nanoparticles: Synergetic effect and mechanism. J Colloid Interface Sci 2022; 613:337-348. [DOI: 10.1016/j.jcis.2022.01.064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 11/28/2022]
|
19
|
Fernández-Velayos S, Sánchez-Marcos J, Munoz-Bonilla A, Herrasti P, Menéndez N, Mazarío E. Direct 3D printing of zero valent iron@polylactic acid catalyst for tetracycline degradation with magnetically inducing active persulfate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150917. [PMID: 34653463 DOI: 10.1016/j.scitotenv.2021.150917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/07/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Catalyst stability has become a challenging issue for advanced oxidation processes (AOPs). Herein, we report an alternative method based on 3D printing technology to obtain zero-valent iron polylactic acid prototypes (ZVI@PLA) in a single step and without post etching treatment. ZVI@PLA was used to activate persulfate (PS) for the removal of Tetracycline (TC) in recirculating mode under two different heating methodologies, thermal bath and contactless heating promoted by magnetic induction (MIH). The effect of both heating methodologies was systematically analysed by comparing the kinetic constant of the degradation processes. It was demonstrated that the non-contact heating of ZVI by MIH reactivates the surface of the catalyst, renewing the surface iron content exposed to the pollutant solution, which makes the ZVI@PLA catalyst reusable up to 10 cycles with no efficiency reduction. In contrast, by using a conventional thermal bath, the kinetic constant gradually decreases over the 10 cycles, because of the superficial iron consumption, being the kinetic constant 5 times lower in the 10th run compared to MIH experiment. X-ray diffraction and Mössbauer spectroscopy confirmed the presence of metallic iron embedded in the ZVI@PLA prototype, whose crystalline structure remained unchanged for 10th cycles of MIH. Moreover, it was proven that with no contact heating technology at low magnetic fields (12.2 mT), the solution temperature does not increase, but only the surface of the catalyst does. Under these superficial heated conditions, kinetic rate is increased up to 0.016 min-1 compared to the value of 0.0086 min-1 obtained for conventional heating at 20 °C. This increase is explained not only by PS activation by iron leaching but also by the contribution of ZVI in the heterogeneous activation of persulfate.
Collapse
Affiliation(s)
- S Fernández-Velayos
- Departamento de Química Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - J Sánchez-Marcos
- Departamento de Química Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - A Munoz-Bonilla
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/ Juan de la Cierva 3, E-28006 Madrid, Spain
| | - P Herrasti
- Departamento de Química Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - N Menéndez
- Departamento de Química Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - E Mazarío
- Departamento de Química Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|
20
|
Shao J, Zhang Y, Liu Z, Fei Z, Sun Y, Chen Z, Wen X, Shi W, Wang D, Gu C. Highly efficient debromination of 4,4'-dibrominated diphenyl ether by organic palygorskite-supported Pd/Fe nanoparticles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:4461-4473. [PMID: 34405333 DOI: 10.1007/s11356-021-15997-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Organic palygorskite (OP)-supported Pd/Fe nanoparticles composite (OP-Pd/Fe) was prepared by stepwise reduction method. The removal capacity of 4,4'-dibrominated diphenyl ether (BDE15) by OP-Pd/Fe was compared with other various materials. For better understanding the possible mechanism, the synthesized and reacted OP-Pd/Fe materials were characterized by TEM, SEM, XRD, and XPS, respectively. The effects of major influencing parameters on the degradation of BDE15 were also studied. Benefit from the synergistic effect of the carrier and bimetallic nanoparticles, BDE15 could be completely debrominated into diphenyl ether (DE) under suitable conditions. A two-stage adsorption/debromination removal mechanism was proposed. The degradation of BDE15 with OP-Pd/Fe was mainly stepwise debromination reaction, and hydrogen transfer mode was assumed as the dominated debromination mechanism. The removal process fitted well to the pseudo first-order kinetic equation. The observed rate constants increased with increasing Pd loading and OP-Pd/Fe dosage while decreased with increasing initial BDE15 concentration, the tetrahydrofuran/water ratio, and the initial pH of the solution. The work provides a new approach for the treatment of PBDEs pollution.
Collapse
Affiliation(s)
- Jiang Shao
- Jiangsu Province Engineering Research Center of Agricultural Breeding Pollution Control and Resource, Yancheng Teachers University, Yancheng, 224007, PR China
| | - Yi Zhang
- Jiangsu Province Engineering Research Center of Agricultural Breeding Pollution Control and Resource, Yancheng Teachers University, Yancheng, 224007, PR China
| | - Zongtang Liu
- Jiangsu Province Engineering Research Center of Agricultural Breeding Pollution Control and Resource, Yancheng Teachers University, Yancheng, 224007, PR China.
| | - Zhenghao Fei
- Jiangsu Province Engineering Research Center of Agricultural Breeding Pollution Control and Resource, Yancheng Teachers University, Yancheng, 224007, PR China
| | - Yufeng Sun
- Jiangsu Province Engineering Research Center of Agricultural Breeding Pollution Control and Resource, Yancheng Teachers University, Yancheng, 224007, PR China
| | - Ziyan Chen
- Jiangsu Province Engineering Research Center of Agricultural Breeding Pollution Control and Resource, Yancheng Teachers University, Yancheng, 224007, PR China
| | - Xiaoju Wen
- Jiangsu Province Engineering Research Center of Agricultural Breeding Pollution Control and Resource, Yancheng Teachers University, Yancheng, 224007, PR China
| | - Weizhong Shi
- Jiangsu Province Engineering Research Center of Agricultural Breeding Pollution Control and Resource, Yancheng Teachers University, Yancheng, 224007, PR China
| | - Dandan Wang
- Analysis and Testing Center, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Chenggang Gu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China
| |
Collapse
|
21
|
Yi Y, Kou F, Tsang PE, Fang Z. Highly efficient remediation of decabromodiphenyl ether-contaminated soil using mechanochemistry in the presence of additive and its mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 299:113595. [PMID: 34450304 DOI: 10.1016/j.jenvman.2021.113595] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 06/13/2023]
Abstract
Mechanochemistry has been proved to be an effective method to remediation of organic-contaminated sites. However, the high ball-to-powder mass ratio (CR) limits the large-scale application of mechanochemistry. In this study, co-milling additives were introduced to enhance the mechanochemical degradation of decabromodiphenyl ether (BDE209)-contaminated soil under the condition of low CR. Based on additive screening experiments, sodium borohydride was selected as the ideal additive to assist the mechanochemical degradation of BDE209, and the resulting removal efficiency was approximately 100% with 2 h of ball milling at a rotational speed of 550 rpm. The main degradation intermediates and degradation pathway of BDE209 were identified using gas chromatography-tandem mass spectrometry. It was proposed that the degradation of BDE209 by sodium borohydride-assisted mechanochemistry was a concurrent process of stepwise and multistage debromination. Meanwhile, the meta-bromine atom in BDE209 was more susceptible to debromination than those at the para and ortho positions. The evolution of the concentration of Br- was monitored by ion chromatography, which revealed that reduction and oxidation both occurred in the removal of BDE209. This paper provides a new perspective for reducing the CR in the mechanochemical remediation of BDE209-contaminated soil.
Collapse
Affiliation(s)
- Yunqiang Yi
- School of Environment, South China Normal University, Guangzhou, 510006, China; Guangdong Technology Research Center for Ecological Management and Remediation of Water System, Guangzhou, 510006, China; SCNU Qingyuan Institute of Science and Technology Innovation Co., Ltd., Qingyuan, 511517, China.
| | - Fangying Kou
- School of Environment, South China Normal University, Guangzhou, 510006, China; Guangdong Technology Research Center for Ecological Management and Remediation of Water System, Guangzhou, 510006, China; Agile Environmental Protection Group, Guangzhou, 510006, China
| | - Pokeung Eric Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, 00852, China
| | - Zhanqiang Fang
- School of Environment, South China Normal University, Guangzhou, 510006, China; Guangdong Technology Research Center for Ecological Management and Remediation of Water System, Guangzhou, 510006, China; SCNU Qingyuan Institute of Science and Technology Innovation Co., Ltd., Qingyuan, 511517, China
| |
Collapse
|
22
|
Lin X, Yang X, Hu Z, Zhang Y, Wang J, Zhang Z, Zhao Z, Li Y. Highly effective removal of bisphenol A by greigite/persulfate in spiked soil: Heterogeneous soil/water system balance and degradation. CHEMOSPHERE 2021; 280:130655. [PMID: 33940457 DOI: 10.1016/j.chemosphere.2021.130655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
The degradation of bisphenol A (BPA) in spiked soil was studied to investigate persulfate (PS) activation by the environment-friendly heterogeneous material greigite for removing organic pollutants from soil. The effects of the PS and greigite doses were investigated, and the BPA degradation rate in the lateritic red soil was lower than that in kaolin. Notably, 500 mg/kg of BPA could be effectively removed by the flower-like greigite (FLG)/PS system in 30 min. The difference in BPA degradation in kaolin and the lateritic red soil was negligible, thus indicating that the contents of components such as total organic matters in the lateritic red soil did not affect the BPA degradation rate of the FLG/PS system considerably. Furthermore, the distribution processes of BPA in the soil and liquid phase were also investigated in detail. The results showed that the water contents were a key factor in the distribution and degradation of BPA. The transfer of BPA from kaolin to the liquid phase was simpler than that from the lateritic red soil to the liquid phase. BPA might be transferred to the liquid phase first and then degraded by the FLG/PS system in that phase. Regarding BPA degradation in the lateritic red soil, BPA was degraded in the soil and liquid phases at the same time. This study proposed a pathway for BPA degradation in soil slurries by heterogeneous material/PS systems for first time, providing a deeper understanding of the degradation mechanism of organic pollutants in soil and new methods for soil remediation.
Collapse
Affiliation(s)
- Xueming Lin
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China.
| | - Xingjian Yang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China
| | - Zheng Hu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China
| | - Yulong Zhang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China
| | - Jinjin Wang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China
| | - Zhen Zhang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China
| | - Zhongqiu Zhao
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China
| | - Yongtao Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China.
| |
Collapse
|
23
|
Nguyen THA, Oh SY. Oxidation of phenol by persulfate activated by zero-valent iron-biochar composites. CHEM ENG COMMUN 2021. [DOI: 10.1080/00986445.2021.1983546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Thi-Hai Anh Nguyen
- Department of Civil and Environmental Engineering, University of Ulsan, Ulsan, South Korea
| | - Seok-Young Oh
- Department of Civil and Environmental Engineering, University of Ulsan, Ulsan, South Korea
| |
Collapse
|
24
|
Wang B, Zhu C, Ai D, Fan Z. Activation of persulfate by green nano-zero-valent iron-loaded biochar for the removal of p-nitrophenol: Performance, mechanism and variables effects. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126106. [PMID: 34229395 DOI: 10.1016/j.jhazmat.2021.126106] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 06/13/2023]
Abstract
In this study, with the green tea extraction solution as a reducing agent and green tea residues as a raw material of biochar, green nano zero-valent iron biochar (G-nZVI-BC) was prepared with the green synthesis method and then combined with potassium persulfate to degrade p-nitrophenol in water. Compared with zero-valent iron-loaded biochar (C-nZVI-BC) prepared by the traditional chemical liquid phase synthesis method, G-nZVI-BC containing tea polyphenols further improved dispersibility of Fe0 on biochar, prevented nZVI agglomeration on BC, and promoted PNP degradation. The system constructed by G-nZVI-BC/PDS showed the high oxidation resistance than the C-nZVI-BC/PDS system, thus endowing the synthesis material with long-term reactivity. Both the radical pathway and non-radical pathways contributed to catalytic degradation and free radicals played a key role. The G-nZVI-BC/PDS system realized the good removal effect on PNP in the pH range of 3.06-9.23. The reusability of G-nZVI-BC and the PNP removal effect in water body conditions indicated that G-nZVI-BC had a good application prospect in the field of water treatment.
Collapse
Affiliation(s)
- Bo Wang
- Institute of Eco-environmental Research, Liaoning Shihua University, Fushun 113001, China
| | - Chi Zhu
- Jiangsu Environmental Engineering Technology Co., Ltd., Nanjing 210019, China
| | - Dan Ai
- Institute of Eco-environmental Research, Liaoning Shihua University, Fushun 113001, China
| | - Zhiping Fan
- Institute of Eco-environmental Research, Liaoning Shihua University, Fushun 113001, China.
| |
Collapse
|
25
|
Chen C, Liu J, Gen C, Liu Q, Zhu X, Qi W, Wang F. Synthesis of zero-valent iron/biochar by carbothermal reduction from wood waste and iron mud for removing rhodamine B. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:48556-48568. [PMID: 33909249 DOI: 10.1007/s11356-021-13962-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
This study proposes a new process to synthesize zero-valent iron/biochar (Fe0-BC) by carbothermal reduction using wood waste and iron mud as raw materials under different temperature. The characterization results showed that the Fe0-BC synthesized at 1200 °C (Fe0-BC-1200) possessed favorable adsorption capacity with the specific surface area of 103.18 m2/g and that the zero-valent iron (Fe0) particles were uniformly dispersed on the biochar surface. The removal efficiency of rhodamine B (RB) was determined to evaluate the performance of the prepared Fe0-BC. Fe0-BC-1200 presented the best performance on RB removal, which mainly ascribes to that more Fe0 particles generated at higher temperature. The equilibrium adsorption capacity reached 49.93 mg/g when the initial RB concentration and the Fe0-BC-1200 dosage were 100 mg/L and 2 g/L, respectively, and the pseudo-second-order model was suitable to fit the removal experimental data. LCMC and XRD analyses revealed that the removal mechanism included the physical adsorption of biochar and the redox reaction of Fe0. Moreover, copper existing in the iron mud was also reduced to Cu0, which was beneficial to catalyze the oxidation of iron; the degradation of RB was promoted at the same time.
Collapse
Affiliation(s)
- Chao Chen
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jianguo Liu
- School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Chao Gen
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Qin Liu
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xuetao Zhu
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Wenzhi Qi
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Fan Wang
- School of Environment, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
26
|
Li X, Qin Y, Jia Y, Li Y, Zhao Y, Pan Y, Sun J. Preparation and application of Fe/biochar (Fe-BC) catalysts in wastewater treatment: A review. CHEMOSPHERE 2021; 274:129766. [PMID: 33529955 DOI: 10.1016/j.chemosphere.2021.129766] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/03/2021] [Accepted: 01/21/2021] [Indexed: 05/15/2023]
Abstract
The removal of organic pollutants from water environments is a challenging problem. Fe-based BC (Fe-BC) composites are promising catalysts for generating reactive oxygen species (ROS) for environmental remediation considering their low costs and excellent physicochemical surface characteristics. The synthesis methods, properties, applications, and the mechanism of Fe-BC for removing pollutants are reviewed. Various methods have been used to prepare Fe-BC composites, and the synthetic methods and conditions used affect the properties of the Fe-BC material, thereby influencing its pollutant removal performance. The mechanisms of pollutant removal by Fe-BC are intricate and include adsorption, degradation and reduction. Fe loading on BC could improve the performance of BC by affecting its surface area, surface functional groups and electron transfer rate. Moreover, research gaps and uncertainties that exist in the use of Fe-BC were identified. Finally, the problems that need to be solved to make Fe-BC suitable for future applications are described.
Collapse
Affiliation(s)
- Xiang Li
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China.
| | - Yang Qin
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China
| | - Yan Jia
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China
| | - Yanyan Li
- Resources & Environment College, Tibet Key Laboratory of Forest Ecology in Plateau Area, Ministry of Education, Tibet Agriculture & Animal Husbandry University, Linzhi, 860000, China
| | - Yixuan Zhao
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Yuwei Pan
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China.
| | - Jianhui Sun
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
27
|
Tan Q, Si J, He Y, Yang Y, Shen K, Xia T, Kang L, Fang Z, Wu B, Guo Y, Han X. Improvement of karst soil nutrients by arbuscular mycorrhizal fungi through promoting nutrient release from the litter. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 23:1244-1254. [PMID: 33682536 DOI: 10.1080/15226514.2021.1889966] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
How arbuscular mycorrhizal (AM) fungi affect litter nutrient release and soil properties in the nutrient-deficient karst soil, is unclear. An experiment was conducted in this study using a dual compartment device composed of a planting compartment (for the Cinnamomum camphora seedlings with or without Funneliformis mosseae fungus) and a litter compartment (with or without the litter of Arthraxon hispidus). The center baffle between the compartments was covered with a double layer of 20-µm or 0.45-µm nylon mesh, which controlled the entrance of AM mycelium into the litter compartment. The results are as follows: AM mycelium significantly increased the mass loss and carbon and nitrogen releases and decreased the nitrogen concentration in the litter. AM mycelium could significantly increase soil organic carbon, total nitrogen and availability of phosphorus during litter decomposition in the litter compartment. Redundancy analysis showed that the effect of AM mycelium on the soil organic carbon, total nitrogen in the litter compartment was closely associated with the increase in carbon and nitrogen release from litter. It was concluded that AM mycelium can enhance litter decomposition and nutrient releases, contributing to greater nutrient input to the soil and then subsequently higher soil organic carbon and nutrient content in the nutrient-poor karst soils. STATEMENT OF NOVELTYThis study firstly estimated the impacts of arbuscular mycorrhizal fungi on litter nutrient releases and soil properties through root external mycelium.
Collapse
Affiliation(s)
- Qiyu Tan
- Forestry College, Research Center of Forest Ecology, Guizhou University, Guiyang, China
| | - Jianpeng Si
- Forestry College, Research Center of Forest Ecology, Guizhou University, Guiyang, China
| | - Yuejun He
- Forestry College, Research Center of Forest Ecology, Guizhou University, Guiyang, China
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, China
| | - Ying Yang
- Forestry College, Research Center of Forest Ecology, Guizhou University, Guiyang, China
| | - Kaiping Shen
- Forestry College, Research Center of Forest Ecology, Guizhou University, Guiyang, China
| | - Tingting Xia
- Forestry College, Research Center of Forest Ecology, Guizhou University, Guiyang, China
| | - Liling Kang
- Forestry College, Research Center of Forest Ecology, Guizhou University, Guiyang, China
| | - Zhengyuan Fang
- Forestry College, Research Center of Forest Ecology, Guizhou University, Guiyang, China
| | - Bangli Wu
- Forestry College, Research Center of Forest Ecology, Guizhou University, Guiyang, China
| | - Yun Guo
- Forestry College, Research Center of Forest Ecology, Guizhou University, Guiyang, China
| | - Xu Han
- Forestry College, Research Center of Forest Ecology, Guizhou University, Guiyang, China
| |
Collapse
|
28
|
Zhao N, Liu K, Yan B, Zhu L, Zhao C, Gao J, Ruan J, Zhang W, Qiu R. Chlortetracycline hydrochloride removal by different biochar/Fe composites: A comparative study. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123889. [PMID: 33264955 DOI: 10.1016/j.jhazmat.2020.123889] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/19/2020] [Accepted: 08/29/2020] [Indexed: 05/22/2023]
Abstract
In the last years, the synthesis and applications of biochar/Fe composites have been extensively studied, but only few papers have systematically evaluated their removal performances. Herein, we successfully synthesized and structurally characterized Fe0, Fe3C, and Fe3O4-coated biochars (BCs) for the removal of chlortetracycline hydrochloride (CH). Evaluation of their removal rate and affinity revealed that Fe0@BC could achieve better and faster CH removal and degradation than Fe3C@BC and Fe3O4@BC. The removal rate was controlled by the O-Fe content and solution pH after the reaction. The CH adsorption occurred on the O C groups of Fe0@BC and the OC and OFe groups of Fe3C@BC and Fe3O4@BC. Electron paramagnetic resonance analysis and radical quenching experiments indicated that HO and 1O2/ O2- were mainly responsible for CH degradation by biochar/Fe composites. Additional parameters, such as effects of initial concentrations and coexisting anions, regeneration capacity, cost and actual wastewater treatment were also explored. Principal component analysis was applied for a comprehensive and quantitative assessment of the three materials, indicating Fe0@BC is the most beneficial functional material for CH removal.
Collapse
Affiliation(s)
- Nan Zhao
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China; School of Environmental Science and Engineering, Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Kunyuan Liu
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Bofang Yan
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Ling Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Chuanfang Zhao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Jia Gao
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Jujun Ruan
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Weihua Zhang
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Rongliang Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China; School of Environmental Science and Engineering, Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
29
|
Pan X, Gu Z, Chen W, Li Q. Preparation of biochar and biochar composites and their application in a Fenton-like process for wastewater decontamination: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142104. [PMID: 33254921 DOI: 10.1016/j.scitotenv.2020.142104] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/24/2020] [Accepted: 08/29/2020] [Indexed: 05/04/2023]
Abstract
Biochar is a carbon-rich material that can be obtained from pyrolysis of solid waste (e.g., agricultural solid waste and sludge from wastewater treatment plants). Biochar features low cost, large specific surface area, and strong adsorption capacity. New biochar composites can be produced via modification and loading of nano particles onto biochar. Biochar can contribute to the dispersion and stabilization of nano particles. In addition, nano particles can increase the number of surface-active sites, which improves the physicochemical properties of the material. Biochar and biochar composites have been applied widely in wastewater treatment, and have significantly enhanced the treatment performance of Fenton-like processes (activation of hydrogen peroxide and persulfate) as an advanced oxidation process for organics removal and wastewater decontamination. This paper reviews the preparation methods for biochar and biochar composites to systematically analyze the influential factors on the preparation process. The paper also comprehensively reviews the mechanisms by which biochar removes different organic pollutants. However, due to the vast number of different biochar feedstocks and their preparation methods, it is difficult to compare the properties of one biochar to another. Guidance if provided for the application of biochar and biochar composites for wastewater decontamination.
Collapse
Affiliation(s)
- Xuqin Pan
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Zhepei Gu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Weiming Chen
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Qibin Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China.
| |
Collapse
|
30
|
Diao ZH, Chu W. FeS 2 assisted degradation of atrazine by bentonite-supported nZVI coupling with hydrogen peroxide process in water: Performance and mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142155. [PMID: 33254865 DOI: 10.1016/j.scitotenv.2020.142155] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 06/12/2023]
Abstract
In this study, bentonite-supported nZVI (B-nZVI) was used as a catalyst to activate H2O2 for atrazine (ATZ) degradation in the presence of FeS2. Results indicated that ATZ degradation by B-nZVI/H2O2 process was significantly enhanced when FeS2 was introduced, and nearly 98% of ATZ was degraded by B-nZVI/FeS2/H2O2 process within 60 min under the optimum conditions. ATZ degradation of B-nZVI/FeS2/H2O2 process was much higher than the sum of B-nZVI and FeS2/H2O2 processes. The presence of HCO3-, PO43- and F- exhibited significant negative effects on the ATZ degradation, whereas both Cu2+ and Ni2+ exhibited positive effects on that. Both citric acid (CA) and ethylenediaminetetraacetic acid (EDTA) with lower concentration enhanced ATZ degradation rate, but significant suppression effects on that with higher concentration. The degradation of ATZ and 2,4-Dichlorophenol (2,4-DCP) could be simultaneously achieved in B-nZVI/FeS2/H2O2 process under certain conditions. High soluble Fe2+ induced an excellent decomposition of H2O2 by B-nZVI and FeS2. OH was dominant radical, and contributed to nearly 86% of the overall ATZ removal. A total of five intermediate products of ATZ were identified, and ATZ degradation was achieved via de-alkylation and hydroxylation processes. An enhanced reaction mechanism for ATZ degradation by B-nZVI/FeS2/H2O2 process was proposed, and B-nZVI/FeS2/H2O2 process exhibited an excellect catalytic performance within four successive runs.
Collapse
Affiliation(s)
- Zeng-Hui Diao
- Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Hong Kong Polytechnic University, Hong Kong; Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control of Guangdong Higher Education Institutes, Guangzhou 510225, China.
| | - Wei Chu
- Hong Kong Polytechnic University, Hong Kong
| |
Collapse
|
31
|
Xie R, Jiang Y, Armutlulu A, Shen Z, Lai B, Wang H. One-step fabrication of oxygen vacancy-enriched Fe@Ti/C composite for highly efficient degradation of organic pollutants through persulfate activation. J Colloid Interface Sci 2021; 583:394-403. [PMID: 33011409 DOI: 10.1016/j.jcis.2020.09.064] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/16/2022]
Abstract
In this work, cost-effective, magnetic carbon-supported Fe@Ti composite (Fe@Ti/Cs) with abundant active sites was synthesized by one-step carbothermal reduction of ilmenite with the assistance of microwave oven and utilized as a highly efficient persulfate (PS) activator for the wastewater purification. The coexistence of Fe0/2+/3+, Ti3+/4+ and oxygen vacancies on Fe@Ti/Cs was found to favor for the electron transfer to PS, which facilitate the generation of reactive oxygen species (ROS). Catalytic experiment results showed that the Fe@Ti/C-4 produced from ilmenite/carbon with a mass ratio of 4:1 exhibited the best catalytic activation performance towards PS for the degradation of Rhodamine B (RhB). Usage of merely 0.12 g/L Fe@Ti/C-4 enabled the removal of 94.01% RhB (200 mg/L) within 30 min in the PS containing system, significantly outperforming ilmenite + PS (29.29%) and carbon + PS (49.91%) systems tested under the same conditions. The physico-chemical properties of the produced Fe@Ti/Cs before and after the reaction were carefully characterized. Radical scavenging experiments and electron paramagnetic resonance (EPR) analysis were carried out to better understand the underlying mechanism. The results indicate that oxygen vacancies in Fe@Ti/C-4 promoted the electron transfer and participated in the transition metal redox cycle to generate ROS in the PS-containing system, which was highly efficient for degrading RhB into small molecules and finally enabling mineralization. This work offers a new perspective for designing highly efficient and stable PS activators with long life derived from natural ore for environmental remediation.
Collapse
Affiliation(s)
- Ruzhen Xie
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Yanbin Jiang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Andac Armutlulu
- Department of Mechanical and Process Engineering, ETH Zürich, Leonhardstrasse 27, 8092 Zurich, Switzerland
| | - Ziye Shen
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Bo Lai
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Hui Wang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
32
|
Zhu F, Liu T, Zhang Z, Liang W. Remediation of hexavalent chromium in column by green synthesized nanoscale zero-valent iron/nickel: Factors, migration model and numerical simulation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111572. [PMID: 33254420 DOI: 10.1016/j.ecoenv.2020.111572] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/16/2020] [Accepted: 10/26/2020] [Indexed: 06/12/2023]
Abstract
In this work, green tea extracts synthesized nanoscale zero-valent iron/nickel (GT-nZVI/Ni) was prepared and the Cr(VI) contaminated soil column was remediated by GT-nZVI/Ni suspension. The influence factors including the concentration, pH value and flow rate of GT-nZVI/Ni suspension were studied. Under the conditions of pH = 4, concentration of 0.15 g/L and flow rate of 1.25 mL/h, GT-nZVI/Ni suspension had the best reduction and immobilization effect on Cr(VI) in the soil column. Na+ and Ca2+ can promote the immobilization of Cr (VI) in soil, while humic acid weakened the immobilization of Cr (VI). After GT-nZVI/Ni is injected into the soil column, the content of weak acid extractable and reduced chromium is significantly reduced, and the toxic hazard of hexavalent chromium in the soil is greatly reduced. The 1D-CDE model was used to fit the breakthrough curves of Fe(tot), Fe(aq) and Fe(0), and the migration of GT-nZVI/Ni in Cr(VI) contaminated soil was simulated and predicted. Compared with the inert solute Cl-, the breakthrough curves of Fe (tot), Fe (aq) and Fe (0) in Cr (VI) contaminated soil column were significantly lagged, with delay coefficients of 2.465, 2.322 and 3.288, respectively. The reaction of GT-nZVI/Ni with Cr (VI) led to the decrease of Fe mobility. Finally, the outflow concentration of Fe (tot) was 0.064 g/L, and the loss was mainly due to reaction and retention in the soil. About 57.89% of GT-nZVI/Ni was retained in the soil.
Collapse
Affiliation(s)
- Fang Zhu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, PR China 030024.
| | - Tao Liu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, PR China 030024
| | - Zichao Zhang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, PR China 030024
| | - Wenjing Liang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, PR China 030024
| |
Collapse
|
33
|
Pereira Lopes R, Astruc D. Biochar as a support for nanocatalysts and other reagents: Recent advances and applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213585] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
34
|
Microwave-assisted synthesis of magnetic surface molecular imprinted polymer for adsorption and solid phase extraction of 4-nitrophenol in wastewater. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105316] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Rayaroth MP, Oh D, Lee CS, Kang YG, Chang YS. In situ chemical oxidation of contaminated groundwater using a sulfidized nanoscale zerovalent iron-persulfate system: Insights from a box-type study. CHEMOSPHERE 2020; 257:127117. [PMID: 32480085 DOI: 10.1016/j.chemosphere.2020.127117] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/26/2020] [Accepted: 05/17/2020] [Indexed: 06/11/2023]
Abstract
We report the potential of a sulfidized nanoscale zerovalent iron-persulfate (S-nZVI-PS) system for in situ chemical oxidation (ISCO) of groundwater pollutants. The study was conducted using a sand-filled rectangular box with a permeable reactive barrier of S-nZVI as a facsimile of the ISCO system. Synthetic water contaminated with a target pollutant (reactive black-5, RB-5) was continuously passed through the box. The injection of PS led to the complete removal of RB-5 and the system remained reactive for approximately 12 days. This system has a benefit that the oxidation products of S-nZVI (i.e., Fe3O4, Fe2O3, and FeSO4) can further activate PS to retain its reactivity. In a separate trial, this method exploited oxidation, reduction, adsorption and co-precipitation mechanisms that conspired to remove two different groundwater pollutants- arsenite and 1,4-dioxane. These results confirmed the utility of S-nZVI-PS as a mediator of ISCO processes to degrade groundwater pollutants.
Collapse
Affiliation(s)
- Manoj P Rayaroth
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Nam-gu, Pohang, 37673, Republic of Korea
| | - Dasom Oh
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Nam-gu, Pohang, 37673, Republic of Korea
| | - Chung-Seop Lee
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Nam-gu, Pohang, 37673, Republic of Korea
| | - Yu-Gyeong Kang
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Nam-gu, Pohang, 37673, Republic of Korea
| | - Yoon-Seok Chang
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Nam-gu, Pohang, 37673, Republic of Korea; National Institute of Environmental Research, Seo-gu, Incheon, 22689, Republic of Korea.
| |
Collapse
|
36
|
Liu S, Gao H, Cheng R, Wang Y, Ma X, Peng C, Xie Z. Study on influencing factors and mechanism of removal of Cr(VI) from soil suspended liquid by bentonite-supported nanoscale zero-valent iron. Sci Rep 2020; 10:8831. [PMID: 32483261 PMCID: PMC7264320 DOI: 10.1038/s41598-020-65814-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/07/2020] [Indexed: 11/09/2022] Open
Abstract
In order to clarify the mechanism and effect of bentonite-supported nanoscale zero-valent iron (nZVI@Bent) on Cr(VI) removal in soil suspended liquid, nZVI@Bent was prepared by liquid-phase reduction method in this research. A number of factors, including the mass ratio of Fe2+ to bentonite during preparation of nZVI@Bent, nZVI@Bent dosage, soil suspended liquid pH value and reaction temperature were assessed to determine their impact on the reduction of Cr(VI) in soil suspended liquid. The nZVI@Bent was characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) to analyze the mechanism of removal of Cr(VI) from the soil. The results showed that the temperature of soil suspended liquid had a significant effect on the removal efficiency. Calculated by the Arrhenius formula, nZVI@Bent removes Cr(VI) from the soil suspended liquid as an endothermic reaction with a reaction activation energy of 47.02 kJ/mol, showed that the reaction occurred easily. The removal of mechanism Cr(VI) from the soil by nZVI@Bent included adsorption and reduction, moreover, the reduction process can be divided into direct reduction and indirect reduction. According to XPS spectrogram analysis, the content of Cr(III) in the reaction product was 2.1 times of Cr(VI), indicated that the reduction effect was greater than the adsorption effect in the process of Cr(VI) removal. The experiment proved that nZVI@Bent can effectively remove Cr(VI) from soil suspension, and can provide technical support for repairing Cr(VI)-polluted paddy fields.
Collapse
Affiliation(s)
- Shichao Liu
- College of Resources and Environment, Jilin Agricultural University, Changchun, 130118, China
| | - Hongjun Gao
- Institute of Agricultural Resources and Environment, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, 130033, China
| | - Rui Cheng
- Key Laboratory of Aquatic Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yujun Wang
- College of Resources and Environment, Jilin Agricultural University, Changchun, 130118, China.
| | - Xiulan Ma
- College of Resources and Environment, Jilin Agricultural University, Changchun, 130118, China
| | - Chang Peng
- Institute of Agricultural Resources and Environment, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, 130033, China
| | - Zhonglei Xie
- College of Plant Science, Jilin University, Changchun, 130062, China. .,College of Construction Engineering, Changchun Sci-Tech University, Changchun, 130600, China.
| |
Collapse
|
37
|
Liu J, Jiang J, Meng Y, Aihemaiti A, Xu Y, Xiang H, Gao Y, Chen X. Preparation, environmental application and prospect of biochar-supported metal nanoparticles: A review. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:122026. [PMID: 31958612 DOI: 10.1016/j.jhazmat.2020.122026] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 05/27/2023]
Abstract
Biochar is a low-cost, porous, and carbon-rich material and it exhibits a great potential as an adsorbent and a supporting matrix due to its high surface activity, high specific surface area, and high ion exchange capacity. Metal nanomaterials are nanometer-sized solid particles which have high reactivity, high surface area, and high surface energy. Owing to their aggregation and passivation, metal nanomaterials will lose excellent physiochemical properties. Carbon-enriched biochar can be applied to overcome these drawbacks of metal nanomaterials. Combining the advantages of biochar and metal nanomaterials, supporting metal nanomaterials on porous and stable biochar creates a new biochar-supported metal nanoparticles (MNPs@BC). Therefore, MNPs@BC can be used to design the properties of metal nanoparticles, stabilize the anchored metal nanoparticles, and facilitate the catalytic/redox reactions at the biochar-metal interfaces, which maximizes the efficiency of biochar and metal nanoparticles in environmental application. This work detailedly reviews the synthesis methods of MNPs@BC and the effects of preparation conditions on the properties of MNPs@BC during the preparation processes. The characterization methods of MNPs@BC, the removal/remediation performance of MNPs@BC for organic contaminants, heavy metals and other inorganic contaminants in water and soil, and the effect of MNPs@BC properties on the remediation efficiency were discussed. In addition, this paper summarizes the effect of various parameters on the removal of contaminants from water, the effect of MNPs@BC remediation on soil properties, and the removal/remediation mechanisms of the contaminants by MNPs@BC in water and soil. Moreover, the potential directions for future research and development of MNPs@BC have also been discussed.
Collapse
Affiliation(s)
- Jiwei Liu
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jianguo Jiang
- School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Yuan Meng
- School of Environment, Tsinghua University, Beijing, 100084, China
| | | | - Yiwen Xu
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Honglin Xiang
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yuchen Gao
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xuejing Chen
- School of Environment, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
38
|
Wu H, Wei W, Xu C, Meng Y, Bai W, Yang W, Lin A. Polyethylene glycol-stabilized nano zero-valent iron supported by biochar for highly efficient removal of Cr(VI). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 188:109902. [PMID: 31704325 DOI: 10.1016/j.ecoenv.2019.109902] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/26/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
In this study, polyethylene glycol (PEG)-stabilized nano zero-valent iron (nZVI) supported by biochar (BC) (PEG-nZVI@BC) was prepared to remedy Cr(VI) with high efficiency. The morphology, functional groups, and crystalline structure of PEG-nZVI@BC composites were characterized, revealing that when PEG was added, a large number of -OH functional groups were introduced, and nZVI was effectively dispersed on the BC surface with a smaller particle size. The results of Cr(VI) remediation experiments showed Cr(VI) removal rate by PEG-nZVI@BC (97.38%) was much greater than that by BC-loaded nZVI (nZVI@BC) (51.73%). The pseudo second-order and Sips isotherm models provide the best simulation for Cr(VI) removal experimental data, respectively. The main remediation mechanism of Cr(VI) was reduction and co-precipitation of Cr-containing metal deposits onto PEG-nZVI@BC. Ecotoxicity assessment revealed PEG-nZVI@BC (1.00 g/L) has little influence on rice germination and growth, but resisted the toxicity of Cr(VI) to rice. The modified Community Bureau of Reference (BCR) sequential extraction showed pyrolysis could increase the percentage of oxidizable and residual Cr and diminish the environmental risk of Cr release from post-removal composites.
Collapse
Affiliation(s)
- Huihui Wu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Wenxia Wei
- Beijing Key Laboratory of Industrial Land Contamination and Remediation, Environmental Protection Research Institute of Light Industry, Beijing, 100089, PR China
| | - Congbin Xu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yue Meng
- Beijing Management Division of North Grand Canal, Beijing, 101100, PR China
| | - Wenrong Bai
- Beijing Management Division of North Grand Canal, Beijing, 101100, PR China
| | - Wenjie Yang
- Chinese Academy for Environmental Planning, Beijing, 100012, PR China.
| | - Aijun Lin
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China; Qinhuangdao Bohai Biological Research Institute of Beijing University of Chemical Technology, Qinhuangdao, 066000, PR China.
| |
Collapse
|