1
|
Chen H, Li X, Zhao Y, Zhang Y. Stabilizing behaviors of Pseudomonas putida and Pseudomonas alcaligenes bacteria on heavy metal ions in electrolytic manganese residue. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117462. [PMID: 39632331 DOI: 10.1016/j.ecoenv.2024.117462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/29/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
Electrolytic manganese residue (EMR) contains a significant amount of Mn ions as well as Zn, Cu and Cd ions, which have negative environmental impacts due to their toxicity. This study aims to investigate the effects of Pseudomonas putida (P. putida) and Pseudomonas alcaligenes (P. alcaligenes) on the stabilization of heavy metal ions in both simulated solutions and the EMR. The results demonstrated that the synergy of P. putida and P. alcaligenes was more effective than either P. putida or P. alcaligenes alone in stabilizing Mn ions. However, the presence of higher concentration of Zn, Cu and Cd ions in the simulated solution weakened the stabilization effect of Mn ions. Fortunately, when P. putida and P. alcaligenes were synergized together, they exhibited a stronger performance in stabilizing heavy metal ions present in the EMR compared to the bacteria employed alone. After 12 days of fermentation in the EMR slurry, almost all Mn ions were eliminated through the formation of deposits, while the concentrations of Zn, Cu and Cd ions decreased to 0.28 mg/L, 0.2 mg/L and 0.1 mg/L respectively after 10 days fermentation. Under the synergy of P. putida and P. alcaligenes, soluble components such as MnSO4·H2O, (NH4)2Mn(SO4)2·6 H2O and Zn, Cu and Cd compounds from the EMR were transformed into insoluble compounds including (MnCO3, Mn3(PO4)2·3 H2O, Mn2Zn(PO4)2·4 H2O, MnFe2(PO4)2(OH)2·8 H2O), Cu5Zn(PO4)2(OH)6·H2O and Cd(OH)2) for the stabilization of heavy metals ions in the EMR. This study proposes an eco-friendly and low-cost method for rendering EMR harmless through pretreatment.
Collapse
Affiliation(s)
- Hongliang Chen
- College of Chemistry and Chemical Engineering, Anshun University, Anshun, Guizhou 561000, PR China; Key Laboratory of Agricultural Resources and Environment in High Education Institute of Guizhou Province, Anshun University, Anshun, Guizhou 561000, PR China.
| | - Xiangqian Li
- College of Chemistry and Chemical Engineering, Anshun University, Anshun, Guizhou 561000, PR China
| | - Yingxian Zhao
- College of Chemistry and Chemical Engineering, Anshun University, Anshun, Guizhou 561000, PR China
| | - Yutao Zhang
- College of Chemistry and Chemical Engineering, Anshun University, Anshun, Guizhou 561000, PR China; Key Laboratory of Agricultural Resources and Environment in High Education Institute of Guizhou Province, Anshun University, Anshun, Guizhou 561000, PR China
| |
Collapse
|
2
|
Wu F. The treatment of phosphogypsum leachate is more urgent than phosphogypsum. ENVIRONMENTAL RESEARCH 2024; 262:119849. [PMID: 39208975 DOI: 10.1016/j.envres.2024.119849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/05/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Phosphogypsum(PG) is one of the typical bulk industrial solid wastes generated in the phosphate chemical industry. Due to its huge production volume and immature resource treatment technology, a large amount of PG can only be stored and disposed in slag yards, and its impact on the ecological environment is becoming increasingly significant during long-term storage. Up to now, many researchers have focused their research on PG, with less attention paid to the PG leachate(PG-L). On the basis of the resource utilization of PG, this article analyzed the migration and transformation of pollutants and their impact on the ecological environment during long-term storage of PG. The content of pollutants in PG-L and PG was compared, and it was found that the content of toxic and harmful substances in PG-L was significantly higher than that in PG itself, and the pollution diffusion ability was greater than that of PG, the pollution of PG to the ecological environment is mainly caused by PG-L, indicating that the harmless treatment of PG-L is more urgent than PG. On the basis of traditional leachate treatment methods, a new technology of valuable element recovery and electrochemical synergistic treatment is proposed to achieve high value-added treatment of PG-L.
Collapse
Affiliation(s)
- Fenghui Wu
- Faculty of Biological and Chemical Engineering, Panzhihua University, Panzhihua, 617000, Sichuan, China; Fujian Goshi Green Environmental Protection Technology Development Co., Ltd, Fuqing, 350301, Fujian, China.
| |
Collapse
|
3
|
Tao M, Qiu X, Lu D. Life cycle assessment of electrolytic manganese metal production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174862. [PMID: 39038680 DOI: 10.1016/j.scitotenv.2024.174862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/26/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Abstract
Manganese is an indispensable metal widely used in various fields. China ranks as the fourth-largest producer of manganese ore and the largest producer of electrolytic manganese metal (EMM). However, EMM production is linked to high energy consumption and pollution. This study conducts a life cycle assessment (LCA) of EMM production in the Manganese Triangle region of China to comprehensively evaluate its environmental impact. Results show that Human carcinogenic toxicity, mainly from electricity generation (65.3 %) and mining activities (24.4 %), is the most significant environmental impact. Chromium (VI) is identified as the predominant hazardous substance, contributing up to 91 % to Human carcinogenic toxicity. Endpoint results estimate that the production of 1 t of EMM results in 1.01E-02 DALY of harm to human health, 1.97E-05 species.yr of harm to the ecosystem, and $227.15 worth of resource depletion. Simulation scenarios demonstrate that replacing thermal power with hydropower can reduce environmental pollution by over 90 %. Finally, based on the findings, technical measures for promoting clean production of EMM were proposed.
Collapse
Affiliation(s)
- Ming Tao
- School of Resources and Safety Engineering, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Resources Exploitation and Hazard Control for Deep Metal Mines, Changsha, China.
| | - Xianpeng Qiu
- School of Resources and Safety Engineering, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Resources Exploitation and Hazard Control for Deep Metal Mines, Changsha, China
| | - Daoming Lu
- School of Resources and Safety Engineering, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Resources Exploitation and Hazard Control for Deep Metal Mines, Changsha, China
| |
Collapse
|
4
|
Li X, Liu H, Zhang Y, Mahlknecht J, Wang C. A review of metallurgical slags as catalysts in advanced oxidation processes for removal of refractory organic pollutants in wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120051. [PMID: 38262282 DOI: 10.1016/j.jenvman.2024.120051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/30/2023] [Accepted: 01/04/2024] [Indexed: 01/25/2024]
Abstract
With the rapid growth of the metallurgical industry, there is a significant increase in the production of metallurgical slags. The waste slags pose significant challenges for their disposal because of complex compositions, low utilization rates, and environmental toxicity. One promising approach is to utilize metallurgical slags as catalysts for treatment of refractory organic pollutants in wastewater through advanced oxidation processes (AOPs), achieving the objective of "treating waste with waste". This work provides a literature review of the source, production, and chemical composition of metallurgical slags, including steel slag, copper slag, electrolytic manganese residue, and red mud. It emphasizes the modification methods of metallurgical slags as catalysts and the application in AOPs for degradation of refractory organic pollutants. The reaction conditions, catalytic performance, and degradation mechanisms of organic pollutants using metallurgical slags are summarized. Studies have proved the feasibility of using metallurgical slags as catalysts for removing various pollutants by AOPs. The catalytic performance was significantly influenced by slags-derived catalysts, catalyst modification, and process factors. Future research should focus on addressing the safety and stability of catalysts, developing green and efficient modification methods, enhancing degradation efficiency, and implementing large-scale treatment of real wastewater. This work offers insights into the resource utilization of metallurgical slags and pollutant degradation in wastewater.
Collapse
Affiliation(s)
- Xingyang Li
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Hongwen Liu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Yingshuang Zhang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830017, China
| | - Jürgen Mahlknecht
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey, 64849, Nuevo Leon, Mexico
| | - Chongqing Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
5
|
Li W, Jin H, Xie H, Wang D. Progress in comprehensive utilization of electrolytic manganese residue: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:48837-48853. [PMID: 36884169 DOI: 10.1007/s11356-023-26156-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/23/2023] [Indexed: 04/16/2023]
Abstract
Electrolytic manganese residue (EMR) is a solid waste produced in the process of electrolytic manganese metal (EMM) production. In recent years, the accumulation of EMR has caused increasingly serious environmental problems. To better understand the state of EMR recycling in recent years, this paper used a comprehensive literature database to conduct a statistical analysis of EMR-related publications from 2010 to 2022 from two perspectives: harmless green treatment and resource utilization. The results showed that the research on the comprehensive utilization of EMR mainly focused on the fields of chemical hazard-free treatment and manufacturing building materials. The related studies of EMR in the fields of biological harmlessness, applied electric field harmlessness, manganese series materials, adsorbents, geopolymers, glass-ceramics, catalysts, and agriculture were also reported. Finally, we put forward some suggestions to solve the EMR problem, hoping that this work could provide a reference for the clean disposal and efficient utilization of EMR.
Collapse
Affiliation(s)
- Wenlei Li
- College of Materials and Metallurgy, Guizhou University, 550025, Guiyang, China
| | - Huixin Jin
- College of Materials and Metallurgy, Guizhou University, 550025, Guiyang, China.
| | - Hongyan Xie
- College of Materials and Metallurgy, Guizhou University, 550025, Guiyang, China
| | - Duolun Wang
- College of Materials and Metallurgy, Guizhou University, 550025, Guiyang, China
| |
Collapse
|
6
|
Shen Z, Zhang Q. Mechanistic Insight of Hydrophobic Agglomeration of Rhodochrosite Fines Co-enhanced by Oleic-Kerosene Emulsion and Static Magnetic Field. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.123017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
7
|
Wu F, Ren Y, Qu G, Liu S, Chen B, Liu X, Zhao C, Li J. Utilization path of bulk industrial solid waste: A review on the multi-directional resource utilization path of phosphogypsum. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 313:114957. [PMID: 35390656 DOI: 10.1016/j.jenvman.2022.114957] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/09/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Phosphogypsum is one of the hottest issues in the field of environmental solid waste treatment, with complex and changeable composition. Meanwhile, phosphogypsum contains a large number of impurities, thus leading to the low resource utilization rate, and it can only be stockpiled in large quantities. Phosphogypsum occupies a lot of land and poses a serious pollution threat to the ecological environment. This paper mainly summarizes the existing pretreatment and resource utilization technology of phosphogypsum. The pretreatment mainly includes dry method and wet method. The resource utilization technology mainly includes building materials, chemical raw materials, agriculture, environmental functional materials, filling materials, carbon sequestration and rare and precious extraction. Although there are many aspects of resource utilization of phosphogypsum, the existing technology is far from being able to consume a large amount of accumulated and generated phosphogypsum. Through the analysis, the comparison and mechanism analysis of the existing multifaceted and multi-level resource treatment technologies of phosphogypsum, the four promising resource utilization directions of phosphogypsum are put forward, mainly including prefabricated building materials, eco-friendly materials and soil materials, and new green functional materials and chemical fillers. Moreover, this paper summarizes the research basis of multi field and all-round treatment and disposal of phosphogypsum, which reduces repeated researches and development, as well as the treatment cost of phosphogypsum. This paper could provide a feasible research direction for the resource treatment technology of phosphogypsum in the future, so as to improve the consumption of phosphogypsum and reduce environmental risks.
Collapse
Affiliation(s)
- Fenghui Wu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; National Regional Engineering Research Center-NCW, Kunming, 650500, Yunnan, China
| | - Yuanchaun Ren
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; National Regional Engineering Research Center-NCW, Kunming, 650500, Yunnan, China
| | - Guangfei Qu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; National Regional Engineering Research Center-NCW, Kunming, 650500, Yunnan, China.
| | - Shan Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; National Regional Engineering Research Center-NCW, Kunming, 650500, Yunnan, China
| | - Bangjin Chen
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; National Regional Engineering Research Center-NCW, Kunming, 650500, Yunnan, China
| | - Xinxin Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; National Regional Engineering Research Center-NCW, Kunming, 650500, Yunnan, China
| | - Chenyang Zhao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; National Regional Engineering Research Center-NCW, Kunming, 650500, Yunnan, China
| | - Junyan Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; National Regional Engineering Research Center-NCW, Kunming, 650500, Yunnan, China
| |
Collapse
|
8
|
He D, Luo Z, Zeng X, Chen Q, Zhao Z, Cao W, Shu J, Chen M. Electrolytic manganese residue disposal based on basic burning raw material: Heavy metals solidification/stabilization and long-term stability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:153774. [PMID: 35192822 DOI: 10.1016/j.scitotenv.2022.153774] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/22/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Solidification/stabilization (S/S) is an option for the treatment of electrolytic manganese residue (EMR). Basic burning raw material (BRM) could successfully solidify/stabilize EMR, though heavy metals S/S mechanism and long-term stability remain unclear. Herein, Mn2+ and NH4+ S/S behavior, hydrated BRM and S/S EMR characterization, Mn2+ long-term leaching behavior, phase and morphology changes for long-term leaching were discussed in detail to clarify these mechanisms. Mn2+ and NH4+ leaching concentrations as well as pH value in S/S EMR were respectively 0.02 mg/L, 0.68 mg/L and 8.75, meeting the regulations of Chinese standard GB 8978-1996. Long-term stability of EMR was significantly enhanced after S/S. Mn2+ leaching concentration, Mn2+ migration, Mn2+ cumulative release, Mn2+ apparent diffusion coefficient and conductivity of EMR reduced to 0.05 mg/L, 5.5 × 10-6 mg/(m2·s), ~ 9 mg/m2, 6.30 × 10-15 m2/s and 435 μs/cm. Mechanism studies showed that the hydration of BRM forms OH-, calcium silicate hydrate gels (C-S-H) and ettringite. Therefore, during S/S process, NH4+ was escaped as NH3, Mn2+ was solidified/stabilized as tephroite (Mn2SiO4), johannsenite (CaMnSi2O6) and davreuxite (MnAl6Si4O17(OH)2), and Pb2+, Cu2+, Ni2+, Zn2+ were solidified/stabilized by C-S-H and ettringite via substitution and encapsulation. This study provides a good choice for EMR long-term stable storage.
Collapse
Affiliation(s)
- Dejun He
- Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China
| | - Zhenggang Luo
- Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China
| | - Xiangfei Zeng
- Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China
| | - Qiqi Chen
- Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China
| | - Zhisheng Zhao
- Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China
| | - Wenxing Cao
- Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China
| | - Jiancheng Shu
- Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China
| | - Mengjun Chen
- Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China.
| |
Collapse
|
9
|
Gómez-Villegas P, Guerrero JL, Pérez-Rodriguez M, Bolívar JP, Morillo A, Vigara J, Léon R. Exploring the microbial community inhabiting the phosphogypsum stacks of Huelva (SW SPAIN) by a high throughput 16S/18S rDNA sequencing approach. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 245:106103. [PMID: 35151972 DOI: 10.1016/j.aquatox.2022.106103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/20/2022] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Around 100 Mt of phosphogypsum (PG) have been deposited in large stacks on the salt marshes of the Tinto River estuary in Huelva (SW Spain), covering about 1000 ha. These stacks contain extremely acidic water (pH < 2) with high concentrations of pollutants which can cause emissions into their surroundings, generating important environmental concerns. Despite many chemical, geological or hydrological studies have been conducted to characterize the PG stacks of Huelva, the microbial community inhabiting this extreme environment remains unexplored. Using a 16S/18S-rRNA-high throughput sequencing approach, we have uncovered the main taxonomic groups able to live in the acidic metal-contaminated water, which is in direct contact with the PG, demonstrating for the first time the existence of a huge diversity of microbial species in these extreme conditions. In addition, the physicochemical characteristics of the water sampled have been analyzed. These studies have revealed that the most abundant bacteria found in two different leachate samples of the PG stacks belong to the genera Acidiphilium, Pseudomonas, Leptosprillum, Acidithrix, or Acidithiobacillus, typically found in acid mine drainage (AMD) environments, which in total represent around 50% of the total bacterial community. Biodiversity of eukaryotes in PG water is lower than that of prokaryotes, especially in the water collected from the perimeter channel that surrounds the PG stacks, where the pH reaches a value of 1.5 and the activity concentrations exceed 300 Bq L-1 for 238U or 20 Bq L-1 for 210Po, values which are from four to five orders of magnitude higher than those usually found in unperturbed surface waters. Even so, an unexpected diversity of algae, fungi, and ciliates have been found in the PG stacks of Huelva, where chlorophyte microalgae and basidiomycetes fungi are the most abundant eukaryotes. Additional bioinformatics tools have been used to perform a functional analysis and predict the most common metabolic pathways in the PG microbiota. The obtained data indicate that the extreme conditions of these PG stacks hide an unexpected microbial diversity, which can play an important role in the dynamics of the contaminating compounds of the PG and provide new strains with unique biotechnological applications.
Collapse
Affiliation(s)
- Patricia Gómez-Villegas
- Laboratory of Biochemistry, Center for Natural Resources, Health and Environment (RENSMA), University of Huelva, Avda. de las Fuerzas Armadas s/n, Huelva 21071, Spain
| | - José Luis Guerrero
- Department of Integrated Sciences, Center for Natural Resources, Health and Environment (RENSMA), University of Huelva, Avda. de las Fuerzas Armadas s/n, Huelva 21071, Spain
| | - Miguel Pérez-Rodriguez
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Campus de Excelencia Internacional Agroalimentario CeiA3, Córdoba, Spain
| | - Juan Pedro Bolívar
- Department of Integrated Sciences, Center for Natural Resources, Health and Environment (RENSMA), University of Huelva, Avda. de las Fuerzas Armadas s/n, Huelva 21071, Spain
| | - Antonio Morillo
- Laboratory of Biochemistry, Center for Natural Resources, Health and Environment (RENSMA), University of Huelva, Avda. de las Fuerzas Armadas s/n, Huelva 21071, Spain
| | - Javier Vigara
- Laboratory of Biochemistry, Center for Natural Resources, Health and Environment (RENSMA), University of Huelva, Avda. de las Fuerzas Armadas s/n, Huelva 21071, Spain
| | - Rosa Léon
- Laboratory of Biochemistry, Center for Natural Resources, Health and Environment (RENSMA), University of Huelva, Avda. de las Fuerzas Armadas s/n, Huelva 21071, Spain.
| |
Collapse
|
10
|
He D, Shu J, Zeng X, Wei Y, Chen M, Tan D, Liang Q. Synergistic solidification/stabilization of electrolytic manganese residue and carbide slag. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152175. [PMID: 34896487 DOI: 10.1016/j.scitotenv.2021.152175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/20/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Electrolytic manganese residue (EMR) contains high concentrations of NH4+ and heavy metals, such as Mn2+, Zn2+, Cu2+, Pb2+, Ni2+ and Co2+, while carbide slag (CS) contains high amount of OH- and CO32-, both posing a serious threat to the ecosystem. In this study, EMR and CS synergistic stabilization/solidification (S/S) was discussed science CS could stabilize or solidify EMR and simultaneously reduce its corrosive. The results showed that after the synergistic S/S for 24 h when liquid-solid ratio was 17.5% and CS dosage was 7%, Mn2+ and NH4+ leaching concentrations of the S/S EMR were below the detection limits (0.02 mg/L and 0.10 mg/L) with a pH value of 8.8, meeting the requirements of the Chinese integrated wastewater discharge standard (GB 8978-1996). Mn2+ was stabilized as MnFe2O4, Mn2SiO4, CaMnSi2O6, and NH4+ escaped as NH3. Zn2+, Cu2+, Pb2+, Ni2+ and Co2+ in EMR can also be stabilized/solidified because of the react with OH- and CO32- in CS. Chemical cost was only $ 0.54 for per ton of EMR synergistic harmless treatment with CS. This study provided a new idea for EMR cost-effective and environment-friendly harmless treatment.
Collapse
Affiliation(s)
- Dejun He
- Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China
| | - Jiancheng Shu
- Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China
| | - Xiangfei Zeng
- Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China
| | - Yifan Wei
- Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China
| | - Mengjun Chen
- Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China.
| | - Daoyong Tan
- Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China
| | - Qian Liang
- Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China
| |
Collapse
|
11
|
Hydrophobic agglomeration behavior of rhodochrosite fines Co-induced by oleic acid and shearing. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Nie Z, Li C, Tian S, Ning P, Yang D, Li Y. An insight into mineral waste pulp for sulfur dioxide removal: A novel synergy-coordination mechanism involving surfactant. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
He D, Shu J, Wang R, Chen M, Wang R, Gao Y, Liu R, Liu Z, Xu Z, Tan D, Gu H, Wang N. A critical review on approaches for electrolytic manganese residue treatment and disposal technology: Reduction, pretreatment, and reuse. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126235. [PMID: 34126381 DOI: 10.1016/j.jhazmat.2021.126235] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/10/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Electrolytic manganese residue (EMR) has become a barrier to the sustainable development of the electrolytic metallic manganese (EMM) industry. EMR has a great potential to harm local ecosystems and human health, due to it contains high concentrations of soluble pollutant, especially NH4+ and Mn2+, and also the possible dam break risk because of its huge storage. There seems to be not a mature and stable industrial solution for EMR, though a lot of researches have been done in this area. Hence, by fully considering the EMM ecosystem, we analyzed the characteristics and eco-environmental impact of EMR, highlighted state-of-the-art technologies for EMR reduction, pretreatment, and reuse; indicated the factors that block EMR treatment and disposal; and proposed plausible and feasible suggestions to solve this problem. We hope that the results of this review could help solve the problem of EMR and thus promote the sustainable development of EMM industry.
Collapse
Affiliation(s)
- Dejun He
- Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China
| | - Jiancheng Shu
- Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China.
| | - Rong Wang
- Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China
| | - Mengjun Chen
- Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China
| | - Rui Wang
- Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China
| | - Yushi Gao
- Guizhou Academy of Sciences, Guiyang 550001, China; Guizhou Institute of Building Materials Scientific Research and Design Limited Company, Guiyang 550007, China
| | - Renlong Liu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Zuohua Liu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Zhonghui Xu
- Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China
| | - Daoyong Tan
- Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China
| | - Hannian Gu
- Key Laboratory of High-temperature and High-pressure Study of the Earth's Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Ning Wang
- Key Laboratory of High-temperature and High-pressure Study of the Earth's Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| |
Collapse
|
14
|
Lan J, Dong Y, Xiang Y, Zhang S, Mei T, Hou H. Selective recovery of manganese from electrolytic manganese residue by using water as extractant under mechanochemical ball grinding: Mechanism and kinetics. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125556. [PMID: 33752086 DOI: 10.1016/j.jhazmat.2021.125556] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/08/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
This research aimed to address the issue of residual manganese in electrolytic manganese residue (EMR), which is difficult to recycle and can easily become an environmental hazard and resource waste. This research developed a method for the efficient and selective recovery of manganese from EMR and the removal of ammonia nitrogen (ammonium sulfate) under the combined action of ball milling and oxalic acid. The optimum process parameters of this method were obtained through single-factor experiment and response-surface model. Results showed that the recovery rate of manganese can exceed 98%, the leaching rate of iron was much lower than 2%, and the leaching rates of manganese and ammonia nitrogen after EMR ball grinding were 1.01 and 13.65 mg/L, respectively. Kinetics and mechanism studies revealed that ammonium salts were primarily removed in the form of ammonia, and that insoluble manganese (MnO2) was recovered by the reduction of FeS and FeS2 in EMR under the action of oxalic acid. Iron was solidified in the form of Fe2O3 and Fe2(SiO3)3. The technology proposed in this research has great industrial application value for the recycling and harmless treatment of EMR.
Collapse
Affiliation(s)
- Jirong Lan
- School of Resource and Environmental Sciences, Wuhan University, PR China; Hubei Environmental Remediation Material Engineering Technology Research Center, Wuhan 430072, PR China
| | - Yiqie Dong
- School of Resource and Environmental Sciences, Wuhan University, PR China; Hubei Environmental Remediation Material Engineering Technology Research Center, Wuhan 430072, PR China
| | - Yuwei Xiang
- School of Resource and Environmental Sciences, Wuhan University, PR China; Hubei Environmental Remediation Material Engineering Technology Research Center, Wuhan 430072, PR China
| | - Shanshan Zhang
- School of Resource and Environmental Sciences, Wuhan University, PR China; Hubei Environmental Remediation Material Engineering Technology Research Center, Wuhan 430072, PR China
| | - Tao Mei
- School of Resource and Environmental Sciences, Wuhan University, PR China; Hubei Environmental Remediation Material Engineering Technology Research Center, Wuhan 430072, PR China
| | - Haobo Hou
- School of Resource and Environmental Sciences, Wuhan University, PR China; Hubei Environmental Remediation Material Engineering Technology Research Center, Wuhan 430072, PR China.
| |
Collapse
|
15
|
Lan J, Sun Y, Tian H, Zhan W, Du Y, Ye H, Du D, Zhang TC, Hou H. Electrolytic manganese residue-based cement for manganese ore pit backfilling: Performance and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:124941. [PMID: 33858079 DOI: 10.1016/j.jhazmat.2020.124941] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Slag backfilling with electrolytic manganese residue (EMR) is an economical and environmentally-friendly method. However, high ammonium-nitrogen and manganese ions in EMRs limit this practice. In this study, a method of highly efficient simultaneous stabilization/solidification of ultrafine EMR by making EMR-based cementitious material (named EMR-P) was proposed and tested via single-factor and response surface optimization experiments. Results show that the stabilization efficiency of NH4+ and Mn2+ were above 95%, and the unconfined compressive strength of the EMR-P was 18.85 MPa (megapascal = N/mm2). The mechanistic study concluded that the soluble manganese sulfate and ammonium sulfate in EMR were converted into the insoluble precipitates of manganite (MnOOH), gypsum (CaSO4), MnNH4PO4·H2O, and struvite (MgNH4PO4∙6 H2O), leading to the stabilization of NH4+ and Mn2+ in the EMR-P. Leaching tests of EMR-P indicated that NH4+, Mn2+, and others heavy metals in the leachate were within the permitted level of the GB/T8978-1996. The novelty of this study includes the addition of phosphate and magnesium ions to precipitate ammonium-nitrogen and the combination between calcium ions (from CaHPO4∙2 H2O) and sulfate (from the EMR) to form calcium sulfate to improve the stability and unconfined compressive strength of cementitious materials (EMR-P).
Collapse
Affiliation(s)
- Jirong Lan
- Key Laboratory of Catalysis Conversion and Energy Materials Chemistry of Ministry of Education, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, PR China; School of Resource and Environmental Sciences, Wuhan University, Wuhan, PR China
| | - Yan Sun
- Key Laboratory of Catalysis Conversion and Energy Materials Chemistry of Ministry of Education, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, PR China
| | - Hong Tian
- Key Laboratory of Catalysis Conversion and Energy Materials Chemistry of Ministry of Education, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, PR China
| | - Wei Zhan
- Key Laboratory of Catalysis Conversion and Energy Materials Chemistry of Ministry of Education, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, PR China
| | - Yaguang Du
- Key Laboratory of Catalysis Conversion and Energy Materials Chemistry of Ministry of Education, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, PR China.
| | - Hengpeng Ye
- Key Laboratory of Catalysis Conversion and Energy Materials Chemistry of Ministry of Education, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, PR China
| | - Dongyun Du
- Key Laboratory of Catalysis Conversion and Energy Materials Chemistry of Ministry of Education, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, PR China.
| | - Tian C Zhang
- Civil and Environmental Engineering Department, College of Engineering, University of Nebraska-Lincoln, Omaha, NE 68182, USA
| | - Haobo Hou
- School of Resource and Environmental Sciences, Wuhan University, Wuhan, PR China
| |
Collapse
|
16
|
Lan J, Sun Y, Chen X, Zhan W, Du Y, Zhang TC, Ye H, Du D, Hou H. Bio-leaching of manganese from electrolytic manganese slag by Microbacterium trichothecenolyticum Y1: Mechanism and characteristics of microbial metabolites. BIORESOURCE TECHNOLOGY 2021; 319:124056. [PMID: 33038655 DOI: 10.1016/j.biortech.2020.124056] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
The related microbial metabolomics on biological recovery of manganese (Mn) from Electrolytic Manganese Slag (EMS) has not been studied. This study aimed at open the door to the metabolic characteristics of microorganisms in leaching Mn from EMS by using waste molasses (WM) as carbon source. Results show Microbacterium trichothecenolyticum Y1 (Y1) could effectively leach Mn from EMS in combination with using waste molasses as carbon and energy sources. For the first time, Y1 was identified to be capable of generating and then metabolizing several organic acids or other organic matter (e.g., fumaric acid, succinic acid, malic acid, glyoxylic acid, 3-hydroxybutyric acid, glutaric acid, L(+)-tartaric acid, citric acid, tetrahydrofolic acid, and L-methionine). The production of organic acids by Y1 bacteria was promoted by EMS with the carbon source. This study demonstrated for the first time that metabolic characteristics and carbon source metabolic pathways of Y1 in bioleaching of Mn from EMS.
Collapse
Affiliation(s)
- Jirong Lan
- Key Laboratory of Catalysis Conversion and Energy Materials Chemistry of Ministry of Education, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, PR China; School of Resource and Environmental Sciences, Wuhan University, Wuhan, PR China
| | - Yan Sun
- Key Laboratory of Catalysis Conversion and Energy Materials Chemistry of Ministry of Education, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, PR China
| | - Xiaohong Chen
- Key Laboratory of Catalysis Conversion and Energy Materials Chemistry of Ministry of Education, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, PR China
| | - Wei Zhan
- Key Laboratory of Catalysis Conversion and Energy Materials Chemistry of Ministry of Education, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, PR China
| | - Yaguang Du
- Key Laboratory of Catalysis Conversion and Energy Materials Chemistry of Ministry of Education, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, PR China.
| | - Tian C Zhang
- Civil and Environmental Engineering Department, College of Engineering, University of Nebraska-Lincoln, Omaha, NE 68182, USA
| | - Hengpeng Ye
- Key Laboratory of Catalysis Conversion and Energy Materials Chemistry of Ministry of Education, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, PR China
| | - Dongyun Du
- Key Laboratory of Catalysis Conversion and Energy Materials Chemistry of Ministry of Education, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, PR China
| | - Haobo Hou
- School of Resource and Environmental Sciences, Wuhan University, Wuhan, PR China
| |
Collapse
|
17
|
Shu J, Cai L, Zhao J, Feng H, Chen M, Zhang X, Wu H, Yang Y, Liu R. A low cost of phosphate-based binder for Mn 2+ and NH 4+-N simultaneous stabilization in electrolytic manganese residue. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111317. [PMID: 32950807 DOI: 10.1016/j.ecoenv.2020.111317] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/03/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
Electrolytic manganese residue (EMR) is a solid waste remained in filters after using sulfuric acid to leaching manganese carbonate ore. EMR contains high concentration of soluble manganese (Mn2+) and ammonia nitrogen (NH4+-N), which seriously pollutes the environment. In this study, a low cost of phosphate based binder for Mn2+ and NH4+-N stabilization in EMR by low grade-MgO (LG-MgO) and superphosphate was studied. The effects of different types of stabilizing agent on the concentrations of NH4+-N and Mn2+, the pH of the EMR leaching solution, stabilizing mechanisms of NH4+-N and Mn2+, leaching test and economic analysis were investigated. The results shown that the pH of the EMR leaching solution was 8.07, and the concentration of Mn2+ was 1.58 mg/L, both of which met the integrated wastewater discharge standard (GB8978-1996), as well as the concentration of NH4+-N decreased from 523.46 mg/L to 32 mg/L, when 4.5 wt.% LG-MgO and 8 wt.% superphosphate dosage were simultaneously used for the stabilization of EMR for 50 d Mn2+ and NH4+-N were mainly stabilized by Mn3(PO4)2·2H2O, MnOOH, Mn3O4, Mn(H2PO4)2·2H2O and NH4MgPO4·6H2O. Economic evaluation revealed that the treatment cost of EMR was $ 11.89/t. This study provides a low-cost materials for NH4+-N and Mn2+ stabilization in EMR.
Collapse
Affiliation(s)
- Jiancheng Shu
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China.
| | - Linhong Cai
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Junjie Zhao
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Hui Feng
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Mengjun Chen
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Xingran Zhang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, PR China
| | - Haiping Wu
- Sichuan Jiuzhou Technician College, Jiusheng Road, Mianyang, 621099, China
| | - Yong Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Renlong Liu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|