1
|
Zhang Y, Xu F, Yao J, Liu SS, Lei B, Tang L, Sun H, Wu M. Spontaneous interactions between typical antibiotics and soil enzyme: Insights from multi-spectroscopic approaches, XPS technology, molecular modeling, and joint toxic actions. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135990. [PMID: 39357361 DOI: 10.1016/j.jhazmat.2024.135990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/15/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
A large amount of antibiotics enters the soil environment and accumulates therein as individuals and mixtures, threatening the soil safety. However, there is little information regarding the influence of single and mixed antibiotics on key soil proteins at molecular level. In this study, setting sulfadiazine (SD) and tetracycline hydrochloride (TC) as the representative antibiotics, the interactions between these agents and α-amylase (an important hydrolase in soil carbon cycle) were investigated through multi-spectroscopic approaches, X-ray photoelectron spectrometry, and molecular modeling. It was found that both SD and TC spontaneously bound to α-amylase with 1:1 stoichiometry mainly via forming stable chemical bonds. The interactions altered the polarity of aromatic amino acids, protein backbone, secondary structure, hydrophobicity and activity of α-amylase. The SD-TC mixtures were designed based on the direct equipartition ray to comprehensively characterize the possible concentration distribution, and interactive effects indicated that the mixtures antagonistically impacted α-amylase. These findings reveal the binding characteristics between α-amylase and typical antibiotics, which probably influence the ecological functions of α-amylase in soil. This study clarifies the potential harm of antibiotics on soil functional enzyme, which is significant for the environmental risk assessment of antibiotics and their mixtures.
Collapse
Affiliation(s)
- Yulian Zhang
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Fangyu Xu
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jingyi Yao
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Shu-Shen Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Bo Lei
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Liang Tang
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Haoyu Sun
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Minghong Wu
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, Fujian, China
| |
Collapse
|
2
|
Qutob M, Rafatullah M, Muhammad SA, Siddiqui MR, Alam M. A sustainable method for oxidizing phenanthrene in tropical soil using natural iron as a catalyst in a slurry phase reactor with persulfate assistance. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1391-1404. [PMID: 38973648 DOI: 10.1039/d4em00328d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
The presence of impurities is a significant restriction to the use of natural iron minerals as catalysts in the advanced oxidation process (AOP), especially if applied for soil remediation. This study evaluated the catalytic activity of tropical soil, which has relatively low impurities and naturally contains iron, for the remediation of phenanthrene (PHE) contamination. The system showed good performance, and the best result was 81% PHE removal after 24 h under experimental conditions of pH 7, [PHE]0 = 300 mg/50 g soil, temperature 55 °C, air flow = 260 mL min-1, and [persulfate]0 = 20 mg kg-1, while the mineralization was 61%. Nevertheless, certain limitations were noted in the soil matrix following the remediation procedure, including the appearance of cracks in the soil aggregate, reduction in the crystal size of the soil particles, and decline in the iron and aluminium contents. The results confirmed that the radicals play a major role in the remediation process. SO4˙- was more dominant than O2˙-, while HO˙ played a minor role. Additionally, the by-products were detected by gas chromatography-mass spectroscopy (GC-MS), and the degradation pathway of PHE is proposed. Toxicity assessment tests were performed by using a computational method. In spite of the challenges, this research achieved notable progress in soil remediation, taking a significant step forward in implementing the AOP without catalysts to activate oxidants and remove PHE within the soil. Also, this approach supports sustainability by reducing the need for extra materials and providing an environmentally friendly way of soil remediation.
Collapse
Affiliation(s)
- Mohammad Qutob
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Mohd Rafatullah
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Syahidah Akmal Muhammad
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Masoom Raza Siddiqui
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mahboob Alam
- Division of Chemistry and Biotechnology, Dongguk University, 123, Dongdaero, Gyeongju-si 780714, Republic of Korea
| |
Collapse
|
3
|
Qutob M, Rafatullah M, Muhammad SA, Siddiqui MR, Alam M. Advanced oxidation of polycyclic aromatic hydrocarbons in tropical soil: Self-catalytic utilization of natural iron contents in an oxygenation reactor supported with persulfate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171843. [PMID: 38521259 DOI: 10.1016/j.scitotenv.2024.171843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/03/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
The catalysts derived from natural iron minerals in the advanced oxidation process offer several advantages. However, their utilization in soil remediation is restricted due to the presence of soil impurities, which can inhibit the catalytic activity of these minerals. The soils in tropical regions exhibit lower organic matter content, limited cation exchange capacity, and are non-saline, this enhances the efficiency of utilizing natural iron minerals from tropical soil as a catalyst. In this regard, the catalytic potential of naturally iron-bearing tropical soil was investigated to eliminate phenanthrene (PHE), pyrene (PYR), and benzo[α]pyrene (B[α]P) using an oxygenated reactor supported with persulfate (PS). The system showed an efficient performance, and the removal efficiencies under the optimum conditions were 81 %, 73 %, and 86 % for PHE, PYR, and B[α]P, respectively. This indicated that the catalytic activity of iron was working efficiently. However, there were changes in the soil characteristics after the remediation process such as a significant reduction in iron and aluminum contents. The scavenging experiments demonstrated that HO• had a minor role in the oxidation process, SO4•- and O2•- emerged as the primary reactive species responsible for the effective degradation of the PAHs. Moreover, the by-products were monitored after soil remediation to evaluate their toxicity and to propose degradation pathways. The Mutagenicity test showed that two by-products from each PHE and B[α]P had positive results, while only one by-product of PYR showed positive. The toxicity tests of oral rat LD50 and developmental toxicity tests revealed that certain PAHs by-products could be more toxic from the parent pollutant itself. This study represents a notable progression in soil remediation by providing a step forward in the application of the advanced oxidation process (AOP) without requiring additional catalysts to activate oxidants and degrade pollutant PAHs from the soil.
Collapse
Affiliation(s)
- Mohammad Qutob
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Mohd Rafatullah
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia; Renewable Biomass Transformation Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Syahidah Akmal Muhammad
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia; Renewable Biomass Transformation Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Masoom Raza Siddiqui
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mahboob Alam
- Division of Chemistry and Biotechnology, Dongguk University, 123, Dongdaero, Gyeongju-si 780714, Republic of Korea
| |
Collapse
|
4
|
Shi H, He F, Huo C, Wan J, Song H, Du F, Liu R. Molecular mechanisms of polystyrene nanoplastics and alpha-amylase interactions and their binding model: A multidimensional analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170036. [PMID: 38242479 DOI: 10.1016/j.scitotenv.2024.170036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/06/2024] [Accepted: 01/07/2024] [Indexed: 01/21/2024]
Abstract
Plastic fragments are widely distributed in different environmental media and has recently drawn special attention due to its difficulty in degradation and serious health and environmental problems. Among, nanoplastics (NPs) are smaller in size, larger in surface/volume ratio, and more likely to easily adsorb ambient pollutants than macro plastic particles. Moreover, NPs can be easily absorbed by wide variety of organisms and accumulate in multiple tissues/organs and cells, thus posing a more serious threat to living organisms. Alpha-amylase (α-amylase) is a hydrolase, which can be derived from various sources such as animals, plants, and microorganisms. Currently, no studies have concentrated on the binding of NPs with α-amylase and their interaction mechanisms by employing a multidimensional strategy. Hence, we explored the interaction mechanisms of polystyrene nanoplastics (PS-NPs) with α-amylase by means of multispectral analysis, in vitro enzymatic activity analysis, and molecular simulation techniques under in vitro conditions. The findings showed that PS-NPs had the capability to bind with the intrinsic fluorescence chromophores, leading to fluorescence changes of these specific amino acids. This interaction also caused the alterations in the micro-environment of the fluorophore residues mainly tryptophan (TRP) and tyrosine (TYR) residues of α-amylase. PS-NPs interaction promoted the unfolding and partial expansion of polypeptide chains and the loosening of protein skeletons, and destroyed the secondary structure (increased random coil contents and decreased α-helical contents) of this protein, forming a larger particle size of the PS-NPs-α-amylase complex. Moreover, the enzymatic activity of α-amylase in vitro was found to be inhibited in a concentration dependent manner, thereby impairing its physiological functions. Further molecular simulation found that PS-NPs had a higher tendency to bind to the active site of α-amylase, which is the cause for its structural and functional changes. Additionally, the hydrophobic force played a major role in mediating the binding interactions between PS-NPs and α-amylase. Taken together, our study indicated that PS-NPs interaction can initiate the abnormal physiological functions of α-amylase through PS-NPs-induced structural and conformational alternations.
Collapse
Affiliation(s)
- Huijian Shi
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Chengqian Huo
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Jingqiang Wan
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Hengyu Song
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Fei Du
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
5
|
Qutob M, Rafatullah M, Muhammad SA, Alamry KA, Hussein MA. Tropical soil remediation from pyrene: Release the power of natural iron content in soil for the efficient oxidant's activation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120179. [PMID: 38295641 DOI: 10.1016/j.jenvman.2024.120179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/25/2023] [Accepted: 01/20/2024] [Indexed: 02/18/2024]
Abstract
Natural soil minerals often contain numerous impurities, resulting in comparatively lower catalytic activity. Tropical soils are viewed as poor from soil organic matter, cations, and anions, which are considered the main impurities in the soil that are restricted to utilizing natural minerals as a catalyst. In this regard, the dissolved iron and hematite crystals that presented naturally in tropical soil were evaluated to activate oxidants and degrade pyrene. The optimum results obtained in this study were 73 %, and the rate constant was 0.0553 h-1 under experimental conditions [pyrene] = 300 mg/50 g, pH = 7, T = 55 °C, airflow = 260 mL/min, [Persulfate (PS)] = 1.0 g/L, and humic acid (HA) ( % w/w) = 0.5 %. The soil characterization analysis after the remediation process showed an increase in moieties and cracks of the soil aggregate, and a decline in the iron and aluminium contents. The scavengers test revealed that both SO4•- and O2•- were responsible for the pyrene degradation, while HO• had a minor role in the degradation process. In addition, the monitoring of by-products, degradation pathways, and toxicity assessment were also investigated. This system is considered an efficient, green method, and could provide a step forward to develop low-cost soil remediation for full-scale implementation.
Collapse
Affiliation(s)
- Mohammad Qutob
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, 11800, Malaysia
| | - Mohd Rafatullah
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, 11800, Malaysia; Renewable Biomass Transformation Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang, 11800, Malaysia.
| | - Syahidah Akmal Muhammad
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, 11800, Malaysia; Renewable Biomass Transformation Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang, 11800, Malaysia
| | - Khalid A Alamry
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Mahmoud A Hussein
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
6
|
Wang H, Guo S, He F, Li X, Wang Y, Wang T, Tian G, Liu R. The combined effects of polystyrene nanoplastics with nickel on oxidative stress and related toxic effects to earthworms from individual and cellular perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168819. [PMID: 38043826 DOI: 10.1016/j.scitotenv.2023.168819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 12/05/2023]
Abstract
Nanoplastics may adsorb other pollutants in the environment due to their high specific surface area and small size. We used earthworms as experimental organisms to evaluate the ecotoxicity of NPs and Ni combined pollution at the individual and cellular levels. The results showed that when only 20 mg/L Ni2+ was added to the combined pollution system, the antioxidant system of earthworm coelomocytes was destroyed to a certain extent, the ROS level increased, the cell viability decreased significantly, and the redox balance was destroyed. With the introduction of PS-NPs and the increase of concentration, the oxidative damage in the coelomocytes of earthworms gradually increased, and finally tended to be stable when the maximum concentration of 50 mg/L PS-NPs and Ni were exposed together. At the animal level, the activities of CAT and SOD decreased within 28 days of exposure, and the combined pollution showed a synergistic effect. At the same time, it promoted the synthesis of GST in earthworms, improved their detoxification ability and reduced oxidative damage. The changes of T-AOC and MDA showed that the combined pollution caused the accumulation of ROS and caused more serious toxicological effects. With the increase of exposure time, the antioxidant system of earthworms was continuously destroyed, and the oxidative damage was serious, which induced more serious lipid peroxidation and caused the damage of earthworm body wall structure.
Collapse
Affiliation(s)
- Hao Wang
- School of Environmental Science and Engineering, China - America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Shuqi Guo
- School of Environmental Science and Engineering, China - America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Falin He
- School of Environmental Science and Engineering, China - America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Xiangxiang Li
- School of Environmental Science and Engineering, China - America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Yaoyue Wang
- School of Environmental Science and Engineering, China - America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Tingting Wang
- School of Environmental Science and Engineering, China - America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Guang Tian
- School of Environmental Science and Engineering, China - America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, China - America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
7
|
He F, Wan J, Huo C, Li X, Cui Z, Li Y, Liu R, Zong W. New strategies for evaluating imidacloprid-induced biological consequences targeted to Eisenia fetida species and the corresponding mechanisms of its toxicity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119456. [PMID: 37897899 DOI: 10.1016/j.jenvman.2023.119456] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/04/2023] [Accepted: 10/21/2023] [Indexed: 10/30/2023]
Abstract
Imidacloprid (IMI), a neonicotinoid insecticide, has a wide variety of applications in both agriculture and horticulture. As a result of it massive and repeated use, its traces remained in soil pose severe damage to soil invertebrates, particularly earthworms. Limited information is available regarding the underlying mechanisms of IMI toxicity toward earthworms at the molecular, transcriptional, and cellular levels. Here, Eisenia fetida coelomocytes and key defensive proteins were selected as targeted receptors to explore the toxic mechanisms of oxidative stress-mediated cytotoxicity, genotoxicity, and antioxidant responses induced by IMI stress and the molecular mechanisms underlying the binding of IMI and superoxide dismutase (SOD)/catalase (CAT). Results showed that IMI exposure destroyed the cell membrane integrity of earthworm cells, causing cell damage and cytotoxicity. The intracellular levels of ROS, including ·O2- and H2O2 were induced by IMI exposure, thereby triggering oxidative stress and damage. Moreover, IMI exposure attenuated the antioxidative stress responses (reduced antioxidant capacity and CAT/SOD activities) and caused deleterious effects (enhanced DNA damage, lipid peroxidation (LPO), and protein carbonylation (PCO)) through ROS-mediated oxidative stress pathway. Aberrant gene expression associated with oxidative stress and defense regulation, including CAT, CRT, MT, SOD, GST, and Hsp70 were induced after IMI exposure. Concentration-dependent conformational and structural alterations of CAT/SOD were observed when IMI binding. Also, direct binding of IMI resulted in significant inhibition of CAT/SOD activities in vitro. Molecular simulation showed that IMI preferred to bind to CAT active center through its direct binding with the key residue Tyr 357, while IMI bound more easily to the connecting cavity of two subunits away from SOD active center. In addition, hydrogen bonds and hydrophobic force are the main driving force of IMI binding with CAT/SOD. These findings have implications for comprehensive evaluation of IMI toxicity to soil eco-safety and offer novel strategies to elucidate the toxic mechanisms and pathways of IMI stress.
Collapse
Affiliation(s)
- Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Jingqiang Wan
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Chengqian Huo
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Xiangxiang Li
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Zhihan Cui
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Yuze Li
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China.
| | - Wansong Zong
- College of Geography and Environment, Shandong Normal University, 88# East Wenhua Road, Jinan, Shandong, 250014, PR China
| |
Collapse
|
8
|
Sun K, White JC, He E, Van Gestel CAM, Zhang P, Peijnenburg WJGM, Qiu H. Earthworm Coelomocyte Internalization of MoS 2 Nanosheets: Multiplexed Imaging, Molecular Profiling, and Computational Modeling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21637-21649. [PMID: 38012053 DOI: 10.1021/acs.est.3c06665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Fully understanding the cellular uptake and intracellular localization of MoS2 nanosheets (NSMoS2) is a prerequisite for their safe applications. Here, we characterized the uptake profile of NSMoS2 by functional coelomocytes of the earthworm Eisenia fetida. Considering that vacancy engineering is widely applied to enhance the NSMoS2 performance, we assessed the potential role of such atomic vacancies in regulating cellular uptake processes. Coelomocyte internalization and lysosomal accumulation of NSMoS2 were tracked by fluorescent labeling imaging. Cellular uptake inhibitors, proteomics, and transcriptomics helped to mechanistically distinguish vacancy-mediated endocytosis pathways. Specifically, Mo ions activated transmembrane transporter and ion-binding pathways, entering the coelomocyte through assisted diffusion. Unlike molybdate, pristine NSMoS2 (P-NSMoS2) induced protein polymerization and upregulated gene expression related to actin filament binding, which phenotypically initiated actin-mediated endocytosis. Conversely, vacancy-rich NSMoS2 (V-NSMoS2) were internalized by coelomocytes through a vesicle-mediated and energy-dependent pathway. Mechanistically, atomic vacancies inhibited mitochondrial transport gene expression and likely induced membrane stress, significantly enhancing endocytosis (20.3%, p < 0.001). Molecular dynamics modeling revealed structural and conformational damage of cytoskeletal protein caused by P-NSMoS2, as well as the rapid response of transport protein to V-NSMoS2. These findings demonstrate that earthworm functional coelomocytes can accumulate NSMoS2 and directly mediate cytotoxicity and that atomic vacancies can alter the endocytic pathway and enhance cellular uptake by reprogramming protein response and gene expression patterns. This study provides an important mechanistic understanding of the ecological risks of NSMoS2.
Collapse
Affiliation(s)
- Kailun Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, United States
| | - Erkai He
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Cornelis A M Van Gestel
- Faculty of Science, Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit, Amsterdam 1081 HV, The Netherlands
| | - Peng Zhang
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Willie J G M Peijnenburg
- National Institute of Public Health and the Environment, Center for the Safety of Substances and Products, Bilthoven 3720 BA, The Netherlands
- Institute of Environmental Sciences, Leiden University, Leiden 2300 RA, The Netherlands
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
9
|
Song Y, Sun K, Zhao Q, Li Y, Liu G, Liu R. Molecular interaction mechanisms and cellular response of superoxide dismutase and catalase to fluoranthene. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:104233-104245. [PMID: 37698795 DOI: 10.1007/s11356-023-29703-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/31/2023] [Indexed: 09/13/2023]
Abstract
As an important raw material and intermediate product of the petrochemical industry, fluoranthene (Fla) can be emitted with industrial activities and has become a typical polycyclic aromatic hydrocarbon enriched in the Chinese topsoil layer, posing a significant threat to sensitive soil biota. Here, multispectral tools and molecular simulation techniques were integrated to elucidate the molecular mechanism of Fla interaction with key antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) at the molecular level. Meanwhile, we further revealed the cellular responses of SOD and CAT and the associated redox states in earthworm (Eisenia fetida) coelomocytes based on the molecular-level results. Our results showed that the exposure to Fla affected the backbone structure of SOD and CAT molecules and resulted in the formation of Fla-SOD polymers as well as an overall reduction in the size of the Fla-CAT binding system. Fla altered the microenvironment around Tyr residues in the SOD molecule and quenched the endogenous fluorescence of Tyr within the CAT molecule. In earthworm coelomocytes, Fla at 60 and 80 μM resulted in a significant elevation of CAT and SOD activities by 114% (p = 0.032) and 6.09% (p = 0.013), respectively. Molecular simulation results suggested that Fla-induced changes in the structure and conformation of SOD and CAT may be the key reason for their altered activities. The related redox homeostasis detection in earthworm coelomocytes indicated that high concentrations (80 μM) of Fla led to a significant accumulation of intracellular ROS (p = 0.018) and resulted in the development of lipid peroxidation. Our work contributes to an in-depth understanding of the biological effect of Fla to sensitive soil fauna, thus providing new ideas for Fla ecological risk prevention and control.
Collapse
Affiliation(s)
- Yan Song
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500# Dongchuan Road, Shanghai, 200241, China
| | - Kailun Sun
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, 266237, Shandong, China
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800# Dongchuan Road, Shanghai, 200240, China
| | - Qiang Zhao
- Shandong Provincial Eco-environment Monitoring Center, 3377 Jingshi Dong Road, Jinan, 250100, Shandong, China
| | - Yuze Li
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, 266237, Shandong, China
| | - Guiqing Liu
- Semiconductor Components Laboratory, 51# Heping Road, Jinan, 250014, Shandong, China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, 266237, Shandong, China.
| |
Collapse
|
10
|
Li W, Zhou H, Zhang X, Li Z, Zou Z, Shen Y, Wang G. Oxidation-Resistant Silicon Nanosystem for Intelligent Controlled Ferrous Foliar Delivery to Crops. ACS NANO 2023; 17:15199-15215. [PMID: 37486141 DOI: 10.1021/acsnano.3c05120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Since ferrous (Fe(II)) is the main form of plant absorption, traditional ferrous foliar fertilizers (TFFF) are widely used in modern agriculture. However, TFFF suffer from the shortcomings of weak antioxidant capacity (AC), low foliar adhesion efficiency (FAE), poor fertilizer utilization efficiency (FUE), and noncontrollable slow-release behavior. To overcome these limitations, an oxidation-resistant silicon nanosystem for intelligent controlled ferrous foliar delivery to crops was first developed by using environmentally friendly micro/nano structured hollow silicon as carrier, and combining with vitamin C (in situ antioxidant) to synthesize an oxidation-resistant ferrous foliar fertilizer (ORFFF) for ameliorating Fe-deficiency in crops and increasing crop yield. Compared with TFFF, the ORFFF has excellent ferrous AC (only 11.5% of Fe(II) was oxidized in ORFFF within 72 h), ultrahigh FAE (∼84% of adhesion percentage (%) after two-times simulated rain rinsing), nutrient slow-release ability (720 h gradually release 100.6 mg·g-1), pH-controlled release ability (pH 3-8), and verified high biological safety (100% survival rate for zebrafish and earthworm). The pot experiments showed that ORFFF can correct the Fe-deficiency symptoms of tomato seedlings promptly compared with TFFF, and the FUE of ORFFF is 4.2 times that of TFFF. The specific pH responsiveness of ORFFF can control the slow-release rate of Fe(II) to satisfy the needs of Fe in varying crops and different growing periods of crops. This work provides a feasible way to achieve green and safe Fe supplementation for crops, reduce Fe fertilizer waste, avoid soil pollution caused by Fe fertilizer abuse, and promote the sustainable development of modern nanoagriculture.
Collapse
Affiliation(s)
- Wenchao Li
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Hongjian Zhou
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, P. R. China
- Lu'an Branch, Anhui Institute of Innovation for Industrial Technology, Lu'an 237100, P. R. China
| | - Xinyuan Zhang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Zeyang Li
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Zidan Zou
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yue Shen
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Guozhong Wang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, P. R. China
- Lu'an Branch, Anhui Institute of Innovation for Industrial Technology, Lu'an 237100, P. R. China
| |
Collapse
|
11
|
Sun K, White JC, Qiu H, van Gestel CAM, Peijnenburg WJGM, He E. Coupled Lipidomics and Digital Pathology as an Effective Strategy to Identify Novel Adverse Outcome Pathways in Eisenia fetida Exposed to MoS 2 Nanosheets and Ionic Mo. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37471269 DOI: 10.1021/acs.est.3c02518] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Molybdenum disulfide (MoS2) nanosheets are increasingly applied in several fields, but effective and accurate strategies to fully characterize potential risks to soil ecosystems are lacking. We introduce a coelomocyte-based in vivo exposure strategy to identify novel adverse outcome pathways (AOPs) and molecular endpoints from nontransformed (NTMoS2) and ultraviolet-transformed (UTMoS2) MoS2 nanosheets (10 and 100 mg Mo/L) on the earthworm Eisenia fetida using nontargeted lipidomics integrated with transcriptomics. Machine learning-based digital pathology analysis coupled with phenotypic monitoring was further used to establish the correlation between lipid profiling and whole organism effects. As an ionic control, Na2MoO4 exposure significantly reduced (61.2-79.5%) the cellular contents of membrane-associated lipids (glycerophospholipids) in earthworm coelomocytes. Downregulation of the unsaturated fatty acid synthesis pathway and leakage of lactate dehydrogenase (LDH) verified the Na2MoO4-induced membrane stress. Compared to conventional molybdate, NTMoS2 inhibited genes related to transmembrane transport and caused the differential upregulation of phospholipid content. Unlike NTMoS2, UTMoS2 specifically upregulated the glyceride metabolism (10.3-179%) and lipid peroxidation degree (50.4-69.4%). Consequently, lipolytic pathways were activated to compensate for the potential energy deprivation. With pathology image quantification, we report that UTMoS2 caused more severe epithelial damage and intestinal steatosis than NTMoS2, which is attributed to the edge effect and higher Mo release upon UV irradiation. Our results reveal differential AOPs involving soil sentinel organisms exposed to different Mo forms, demonstrating the potential of liposome analysis to identify novel AOPs and furthermore accurate soil risk assessment strategies for emerging contaminants.
Collapse
Affiliation(s)
- Kailun Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, United States
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cornelis A M van Gestel
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit, Amsterdam 1081 HV, The Netherlands
| | - Willie J G M Peijnenburg
- Center for the Safety of Substances and Products, National Institute of Public Health and the Environment, Bilthoven 3720 BA, The Netherlands
- Institute of Environmental Sciences, Leiden University, Leiden 2300 RA, The Netherlands
| | - Erkai He
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
12
|
He F, Qi T, Guo S, Wang H, Zhang Z, Liu R, Zong W. Mechanistic insights into pyridine exposure induced toxicity in model Eisenia fetida species: Evidence from whole-animal, cellular, and molecular-based perspectives. CHEMOSPHERE 2023:139139. [PMID: 37285977 DOI: 10.1016/j.chemosphere.2023.139139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/29/2023] [Accepted: 06/03/2023] [Indexed: 06/09/2023]
Abstract
Pyridine and its derivatives are widely used in many applications and inevitably cause extreme scenarios of serious soil contamination, which pose a threat to soil organisms. Still, the eco-toxicological effects and underlying mechanisms of pyridine-caused toxicity toward soil fauna have not been well established. Thus, earthworms (Eisenia fetida), coelomocytes, and oxidative stress-related proteins were selected as targeted receptors to probe the ecotoxicity mechanism of extreme pyridine soil exposure targeted to earthworms by using a combination of in vivo animal experiments, cell-based in vitro tests, in vitro functional and conformational analyses, and in silico analyses. The results showed that pyridine caused severe toxicity to E. fetida at extreme environmental concentrations. Exposure of pyridine induced excessive ROS formation in earthworms, causing oxidative stress and various deleterious effects, including lipid damage, DNA injury, histopathological change, and decreased defense capacity. Also, pyridine destroyed the cell membrane of earthworm coelomic cells and triggered a significant cytotoxicity. Importantly, the intracellular ROS (e.g., O2-, H2O2, and OH·-) was release-activated, which eventually inducing oxidative stress effects (lipid peroxidation, inhibited defense capacity, and genotoxicity) through the ROS-mediated mitochondrial pathway. Moreover, the antioxidant defence mechanisms in coelomocytes responded quickly to reduce ROS-mediated oxidative injury. It was conformed that the abnormal expression of targeted genes associated with oxidative stress in coelomic cells was activated after pyridine exposure. Particularly, we found that the normal conformation (particle sizes, intrinsic fluorescence, and polypeptide backbone structure) of CAT/SOD was destroyed by the direct binding of pyridine. Furthermore, pyridine bound easily to the active center of CAT, but preferentially to the junction cavity of two subunits of SOD, which is considered to be a reason for impaired protein function in cells and in vitro. Based on these evidences, the ecotoxicity mechanisms of pyridine toward soil fauna are elucidated based on multi-level evaluation.
Collapse
Affiliation(s)
- Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Tianyu Qi
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Shuqi Guo
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Hao Wang
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Zhuo Zhang
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China.
| | - Wansong Zong
- College of Geography and Environment, Shandong Normal University, 88# East Wenhua Road, Jinan, Shandong, 250014, PR China
| |
Collapse
|
13
|
He F, Liu R. Mechanistic insights into phenanthrene-triggered oxidative stress-associated neurotoxicity, genotoxicity, and behavioral disturbances toward the brandling worm (Eisenia fetida) brain: The need for an ecotoxicological evaluation. JOURNAL OF HAZARDOUS MATERIALS 2023; 450:131072. [PMID: 36857826 DOI: 10.1016/j.jhazmat.2023.131072] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
In this study, earthworm (Eisenia fetida) brain was chosen as targeted receptors to probe the mechanisms of oxidative stress-related neurotoxicity, genotoxicity, and behavioral disturbances triggered by PHE. Results showed that PHE stress can initiate significant amounts of ROS, thus triggering oxidative stress in E. fetida brain. These effects were accompanied by a significant increase of damage to macromolecules DNA and lipids, resulting in severe oxidative effects. PHE exposure can induce AChE inhibition by ROS-induced injury and the accumulation of excess ACh at the nicotinic post-synaptic membrane, thus inducing aggravated neurological dysfunction and neurotoxicity of E. fetida through an oxidative stress pathway. Moreover, the burrowing behavior of earthworms was disturbed by oxidative stress-induced neurotoxicity after exposure to PHE. Furthermore, the abnormal mRNA expression profiles of oxidative stress- and neurotoxicity-related genes in worm brain were induced by PHE stress. The IBR results suggested that E. fetida brain was suffered more serious damage caused by PHE under higher doses and long-term exposure. Taken together, PHE exposure can trigger oxidative stress-mediated neurotoxicity and genotoxicity in worm brain and behavioral disorder through ROS-induced damage. This study is of great significance to evaluate the harmful effects of PHE and its mechanisms on soil ecological health.
Collapse
Affiliation(s)
- Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
14
|
He F, Liu R, Tian G, Qi Y, Wang T. Ecotoxicological evaluation of oxidative stress-mediated neurotoxic effects, genetic toxicity, behavioral disorders, and the corresponding mechanisms induced by fluorene-contaminated soil targeted to earthworm (Eisenia fetida) brain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162014. [PMID: 36740067 DOI: 10.1016/j.scitotenv.2023.162014] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Fluorene is a commonly identified PAH pollutant in soil and exhibits various worrisome hazardous effects to soil organisms. Currently, the toxicity profiles of fluorene on earthworm brain are rare, and the mechanisms and their corresponding pathways involved in fluorene-triggered neurotoxicity, genotoxicity, and behavior changes have not been reported hitherto. Herein, earthworm (Eisenia fetida) brain was chosen as targeted receptor to explore the neurotoxic effects, genetic toxicity, behavioral disorders, and related mechanisms caused by fluorene-induced oxidative stress pathways. The results showed excess fluorene initiated the release of excessive quantities of ROS in earthworm brain, which have caused oxidative stress and accompanied by serious oxidative effects, including LPO (lipid peroxidation) and DNA injury. To minimize the damage effects, the antioxidant defense mechanisms (antioxidant enzymes and non-enzymatic antioxidants) were activated, and entailed a decrease of the antioxidant capacity in E. fetida brain, which, in turn, causes further ROS-induced ROS release. Exposure of fluorene induced the abnormal mRNA expression of genes relevant to oxidative stress (e.g., GST, SOD, CAT, GPx, MT, and Hsp70) and neurotoxicity (e.g., H02, C04, D06, and E08) in E. fetida brain. Specifically, fluorene can bind directly to AChE, destroying the conformation of this protein, and even affecting its physiological functions. This occurrence caused the inhibition of AChE activity and excess ACh accumulation at the nicotinic post-synaptic membrane, finally triggering neurotoxicity by activation of pathways related to oxidative stress. Moreover, the avoidance responses and burrowing behavior were obviously disturbed by oxidative stress-induced neurotoxicity after exposure to fluorene. The results form IBR suggested more severe poisoning effects to E. fetida brain initiated by high-dose and long-term exposure of fluorene. Among, oxidative stress injury and genotoxic potential are more sensitive endpoint than others. Collectively, fluorene stress can provoke potential neurotoxicity, genotoxicity, and behavioral disturbances targeted to E. fetida brain through the ROS-mediated pathways involving oxidative stress. These findings are of great significance to estimate the detrimental effects of fluorene and the corresponding mechanisms on soil eco-safety.
Collapse
Affiliation(s)
- Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| | - Guang Tian
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Yuntao Qi
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Tingting Wang
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| |
Collapse
|
15
|
Zhu L, Liu J, Zhou J, Wu X, Yang K, Ni Z, Liu Z, Jia H. The overlooked toxicity of environmentally persistent free radicals (EPFRs) induced by anthracene transformation to earthworms (Eisenia fetida). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158571. [PMID: 36075414 DOI: 10.1016/j.scitotenv.2022.158571] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/22/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
Environmentally persistent free radicals (EPFRs) as intermediate products exist widely in the PAHs-contaminated soils, but toxicity assessment associated with EPFRs for terrestrial invertebrates remains unclear. Using the model organism Eisenia fetida, we compared the adverse effects among anthracene (ANT), anthraquinone (ANQ), and EPFRs induced by ANT transformation on clay surfaces. Our results showed that EPFRs-exposed earthworms experienced histopathological damage, which was more severe than ANT and ANQ-exposed earthworms. The source of EPFRs damage was associated with the obvious dysbiosis of reactive oxygen species in earthworms. Specifically, EPFRs trigged more severe antioxidant responses and oxidative damages (e.g., membrane lipid and DNA injury) in comparison with ANT and ANQ exposure, as evidenced by the values of integrated biomarker response (IBR) following the order of EPFRs (14.5) > ANT (12.8) > ANQ (10.9). Moreover, high-throughput sequencing found that EPFRs induced dramatic changes in the composition and structure of earthworm gut microbiota, which may involve immune and metabolism dysfunction, in turn aggravated EPFRs toxicity. Overall, the obtained information highlights the more severe injury of EPFRs to terrestrial organisms, deserving more attentions for the assessment of potential risks associated with radical intermediates in PAHs-contaminated soils.
Collapse
Affiliation(s)
- Lang Zhu
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Jinbo Liu
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Jinyi Zhou
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Xintong Wu
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Kangjie Yang
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Zheng Ni
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Ze Liu
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Hanzhong Jia
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China; Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, China.
| |
Collapse
|
16
|
Tallec K, Gabriele M, Paul-Pont I, Alunno-Bruscia M, Huvet A. Tire rubber chemicals reduce juvenile oyster (Crassostrea gigas) filtration and respiration under experimental conditions. MARINE POLLUTION BULLETIN 2022; 181:113936. [PMID: 35850084 DOI: 10.1016/j.marpolbul.2022.113936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Tires can release a large number of chemical compounds that are potentially hazardous for aquatic organisms. An ecophysiological system was used to do high-frequency monitoring of individual clearance, respiration rates, and absorption efficiency of juvenile oysters (8 months old) gradually exposed to four concentrations of tire leachates (equivalent masses: 0, 1, 10, and 100 μg tire mL-1). Leachates significantly reduced clearance (52 %) and respiration (16 %) rates from 1 μg mL-1, while no effect was observed on the absorption efficiency. These results suggest that tire leachates affect oyster gills, which are the organ of respiration and food retention as well as the first barrier against contaminants. Calculations of scope for growth suggested a disruption of the energy balance with a significant reduction of 57 %. Because energy balance directs whole-organism functions (e.g., growth, reproductive outputs), the present study calls for an investigation of the long-term consequences of chemicals released by tires.
Collapse
Affiliation(s)
- Kevin Tallec
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, F-29280 Plouzané, France.
| | - Marta Gabriele
- Università di Pisa, Lungarno Pacinotti 43, 56126 Pisa, Italy
| | - Ika Paul-Pont
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, F-29280 Plouzané, France
| | | | - Arnaud Huvet
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, F-29280 Plouzané, France
| |
Collapse
|
17
|
Shi Z, Wen M, Ma Z. Effects of polyethylene, polyvinyl chloride, and polystyrene microplastics on the vermitoxicity of fluoranthene in soil. CHEMOSPHERE 2022; 298:134278. [PMID: 35276114 DOI: 10.1016/j.chemosphere.2022.134278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/14/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and microplastics (MPs) may coexist in soil. Consequently, the toxicity of PAHs to "soil engineers" earthworms (vermitoxicity), may be influenced by various MPs. However, studies on this issue are scarce. In particular, the differential effect of MPs of different polymers on the vermitoxicity of PAHs remains unclear. Therefore, a series of microcosm experiments were conducted to evaluate the potential vermitoxicity of fluoranthene (Fla) in the presence of polyethylene (PE), polyvinyl chloride (PVC), and polystyrene (PS) MPs at an environmentally relevant concentration (125 mg kg-1). The results indicated that Fla exerted vermitoxicity and MPs enhanced the adverse effects. Specifically, after the introduction of MPs, the 14-d LC50s of Fla on earthworms decreased from 130.9 to 98.0-123.6 mg kg-1; in addition, the growth inhibition rates improved from 5.37%-15.34% to 15.63%-33.38%, and the avoidance rate increased by 10%-100% at the same exposure doses in most cases. In most cases, the neutral red retention time was shortened by 14.3%-47.9%, indicating that the integrity of the coelomocytes' lysosomal membrane had worsened. The affected antioxidant enzyme activity and improved malondialdehyde content indicated enhanced oxidative damage in the treatments containing MPs. However, the aggravation of the vermitoxicity varied by MPs type and toxicological endpoints. Overall, Fla + PS MPs exerted the greatest effect on the mortality of earthworms. On the contrary, PVC and PE MPs exhibited higher subacute effects on the vermitoxicity of Fla. Our study also demonstrated that MPs at environmentally relevant doses may directly induce vermitoxicity. In particular, damaged coelomocytes' lysosomal membrane stability by MPs was second reported to the best of our knowledge. Our results revealed the differences in the effects of various MPs on the vermitoxicity of PAHs, which provides new data in assessing the ecological effects of PAHs and MPs in soils.
Collapse
Affiliation(s)
- Zhiming Shi
- College of Environmental and Resource Sciences, Shanxi University, Taiyuan, 030006, PR China; Shanxi Laboratory for Yellow River, Taiyuan, 030006, PR China; Shaanxi Key Laboratory of Land Consolidation, Chang'an University, Xi'an, 710064, PR China.
| | - Mei Wen
- College of Environmental and Resource Sciences, Shanxi University, Taiyuan, 030006, PR China
| | - Zhifeng Ma
- College of Environmental and Resource Sciences, Shanxi University, Taiyuan, 030006, PR China
| |
Collapse
|
18
|
Li X, Li M, Sun N, He F, Chu S, Zong W, Niu Q, Liu R. Response of earthworm coelomocytes and catalase to pentanone and hexanone: a revelation of the toxicity of conventional solvents at the cellular and molecular level. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:44282-44296. [PMID: 35128610 DOI: 10.1007/s11356-022-18864-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Organic solvents like 2-pentanone and 2-hexanone which are widely used in industrial production make up a large proportion of the source of chemical pollution. What is worrisome is that the cellular and molecular toxicity of 2-pentanone and 2-hexanone has not been reported yet. Based on this, earthworms and catalase (CAT) were chosen as target receptors for the toxicity studies. The cytotoxicity of 2-pentanone and 2-hexanone was revealed by measuring the multiple intracellular indicators of oxidative stress. At the molecular level, changes in the structure and function of CAT were characterized in vitro by the spectroscopy and molecular docking. The results show that 2-pentanone and 2-hexanone that induced the accumulation of reactive oxygen species can eventually reduce coelomocytes viability, accompanying by the regular changes of antioxidant activity and lipid peroxidation level. In addition, the exposure of 2-pentanone and 2-hexanone can shrink the backbone structure of CAT, quench the fluorescence, and misfold the secondary structure. The decrease in enzyme activity should be attributed to the structural changes induced by surface binding. This study discussed the toxicological effects and mechanisms of conventional solvents at the cellular and molecular level, which creatively proposed a joint research method.
Collapse
Affiliation(s)
- Xiangxiang Li
- School of Environmental Science and Engineering, China - America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Meifei Li
- School of Environmental Science and Engineering, China - America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Ning Sun
- School of Environmental Science and Engineering, China - America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Falin He
- School of Environmental Science and Engineering, China - America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Shanshan Chu
- School of Environmental Science and Engineering, China - America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Wansong Zong
- College of Population, Resources and Environment, Shandong Normal University, 88# East Wenhua Road, Jinan, 250014, People's Republic of China
| | - Qigui Niu
- School of Environmental Science and Engineering, China - America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Rutao Liu
- School of Environmental Science and Engineering, China - America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China.
| |
Collapse
|
19
|
Jin T, Tang J, Lyu H, Wang L, Gillmore AB, Schaeffer SM. Activities of Microplastics (MPs) in Agricultural Soil: A Review of MPs Pollution from the Perspective of Agricultural Ecosystems. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4182-4201. [PMID: 35380817 DOI: 10.1021/acs.jafc.1c07849] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Microplastics are emerging persistent pollutants which have attracted increasing attention worldwide. Although microplastics have been widely detected in aquatic environments, their presence in soil ecosystems remains largely unexplored. Plastic debris accumulates in farmland, causing serious environmental problems, which may directly affect food substances or indirectly affect the members in each trophic level of the food chain. This review summarizes the origins, migration, and fate of microplastics in agricultural soils and discusses the interaction between microplastics and the components in farmland from the perspectives of toxicology and accumulation and deduces impacts on ecosystems by linking the organismal response to an ecological role. The effects on farmland ecosystem function are also discussed, emphasizing the supply of agricultural products, food chain pathways, carbon deposition, and nitrogen cycling and soil and water conservation, as microplastic pollution will affect agricultural ecosystems for a long period, posing an ecological risk. Finally, several directions for future research are proposed, which is important for reducing the effect of microplastics in agricultural systems.
Collapse
Affiliation(s)
- Tianyue Jin
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Jingchun Tang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Honghong Lyu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Lan Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Alexis B Gillmore
- Department of Biosystems Engineering and Soil Science, University of Tennessee - Knoxville, 2506 East J. Chapman Drive, Knoxville, Tennessee 37996, United States
| | - Sean M Schaeffer
- Department of Biosystems Engineering and Soil Science, University of Tennessee - Knoxville, 2506 East J. Chapman Drive, Knoxville, Tennessee 37996, United States
| |
Collapse
|
20
|
Magdy MM, Gaber Y, Sebak M, Azmy AF, AbdelGhani S. Different metabolic pathways involved in anthracene biodegradation by Brevibacillus, Pseudomonas and Methylocystis Species. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-021-00178-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Polycyclic aromatic hydrocarbons (PAHs) such as anthracene are one of the most toxic contaminants to our environment. Microbial biodegradation of these xenobiotics is a cost-effective technological solution. The present study aimed to recover some bacterial isolates from Beni-Suef Governorate in Egypt with high capabilities of anthracene biodegradation. The selected isolates were molecularly characterized by 16S rRNA gene sequencing, the degree of anthracene biodegradation was monitored using optical density (OD) and high-performance liquid chromatography (HPLC), PCR amplification of some selected genes encoding biodegradation of PAHs was monitored, and gas chromatography–mass spectrometry (GC–MS) analysis was applied for detecting the resulted metabolites.
Result
Three bacterial isolates were studied, the 16s rRNA sequences of the isolates showed homology of the first isolate to Brevibacillus sp. (94.58 %), the second isolates showed homology to Pseudomonas sp. (94.53%) and the third isolate showed homology to Methylocystis sp. (99.61 %), all isolates showed the ability to degrade anthracene. PCR amplification of some selected genes encoding biodegradation of PAHs revealed the presence of many biodegrading genes in the selected strains. Gas chromatography-mass spectrometry (GC–MS) analysis of the metabolites resulted from anthracene biodegradation in the present study suggested that more than one biodegradation pathway was followed by the selected isolates.
Conclusions
The selected strains could represent a potential bioremediation tool in solving the PAHs problem in the Egyptian environment with a clean and cost-effective technique.
Graphical Abstract
Collapse
|
21
|
Sun K, Li M, Song Y, Tang J, Liu R. Organism and molecular-level responses of superoxide dismutase interaction with 2-pentanone. CHEMOSPHERE 2022; 286:131707. [PMID: 34365170 DOI: 10.1016/j.chemosphere.2021.131707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
2-Pentanone is an excellent organic solvent and extractant, which is widely used in industrial production. 2-Pentanone is harmful to soil organisms when it enters the soil. However, current studies have not clarified the response of the antioxidant enzyme superoxide dismutase (SOD) to 2-Pentanone and its mechanism. In this study, the response of earthworm antioxidant enzyme SOD to 2-Pentanone and its molecular mechanism was investigated at organism molecular levels. The results showed that the SOD activity of earthworms under 2-Pentanone stress was significantly inhibited, and the inability of superoxide anion radicals (·O2-) to be scavenged in time might be one of the reasons for the increase of lipid peroxidation. Under 2-Pentanone exposure conditions, catalase (CAT), an antioxidant enzyme closely related to SOD, and the total antioxidant capacity (T-AOC) of earthworms were activated to resist oxidative damage. On the other hand, the observation of earthworm microstructure provided evidence of a direct risk of 2-Pentanone on earthworm body wall tissues. Molecular-level assays have shown that 2-pentanone altered the secondary structure of SOD, which further led to the loosening of the SOD backbone structure and the extension of the polypeptide chain. On the other hand, 2-pentanone quenched the endogenous fluorescence of SOD in the form of static quenching and formed the 2-pentanone/SOD complex. Molecular simulation results suggested that 2-pentanone tended to bind on the surface of SOD rather than close to the active site, and it is speculated that the alteration of SOD structure is the key reason for the change in its activity. This study enriches the toxicological data of 2-Pentanone on soil organisms, thus responding to the current concerns about its ecological risk.
Collapse
Affiliation(s)
- Kailun Sun
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Meifei Li
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Yan Song
- School of Water Conservancy and Environment, University of Jinan, Jinan, Shandong Province, 250022, China
| | - Jingchun Tang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China.
| |
Collapse
|
22
|
Sun N, Liu Q, Wang J, He F, Jing M, Chu S, Zong W, Liu R, Gao C. Probing the biological toxicity of pyrene to the earthworm Eisenia fetida and the toxicity pathways of oxidative damage: A systematic study at the animal and molecular levels. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117936. [PMID: 34391044 DOI: 10.1016/j.envpol.2021.117936] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/28/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Pyrene (Pyr), a widely used tetracyclic aromatic hydrocarbon, enters soil in large quantities and causes environmental pollution due to its production and mining. In order to systematically study the biotoxicity of pyrene to model organisms Eisenia fetida in soil, experiments were carried out from four dimensions: animal, tissue, cell and molecule. Experimental results proved that the mortality rate increased with increasing concentration and time of exposure to pyrene, while the mean body weight and spawning rate decreased. Meanwhile, when the pyrene concentration reached 900 mg/kg, the seminal vesicle and longitudinal muscle of the earthworm showed obvious atrophy. Experimental results at the cellular level showed that pyrene induced cell membrane damage and Ca2+ influx triggered mitochondrial membrane depolarization and a surge in ROS levels. Oxidative stress causes damage to proteins and lipids and DNA inside cells. When the mortality rate was 91.67 %, the Olive Tail Movement (OTM) of the comet experiment reached 15. The results of molecular level tests showed that pyrene inhibited the activity of Cu/Zn-superoxide dismutase (Cu/Zn-SOD) mainly by changing the microenvironment and secondary structure of amino acid Tyr 108. The weakened function of direct antioxidant enzymes may be the root cause of the excessive increase of reactive oxygen species (ROS) in cells. The systematic approach used in this study enriches the network of toxic pathways in toxicological studies, and basic data on the biological toxicity of pyrene can provide support for future soil contamination detection.
Collapse
Affiliation(s)
- Ning Sun
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Qiang Liu
- Solid Waste and Hazardous Chemicals Pollution Prevention and Control Center of Shandong Province, 145# Jingshi West Road, Jinan, 250117, PR China
| | - Jinhu Wang
- College of Chemistry, Chemical Engineering and Material Science, Zaozhuang University, Zaozhuang, Shandong Province, 277160, China
| | - Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Mingyang Jing
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Shanshan Chu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Wansong Zong
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China.
| | - Canzhu Gao
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| |
Collapse
|
23
|
Filipović A, Mrdaković M, Ilijin L, Grčić A, Matić D, Todorović D, Vlahović M, Perić-Mataruga V. Effects of fluoranthene on digestive enzymes activity and relative growth rate of larvae of lepidopteran species, Lymantria dispar L. and Euproctis chrysorrhoea L. Comp Biochem Physiol C Toxicol Pharmacol 2021; 249:109123. [PMID: 34237426 DOI: 10.1016/j.cbpc.2021.109123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/21/2021] [Accepted: 06/27/2021] [Indexed: 11/20/2022]
Abstract
Fluoranthene is one of the most abundant polycyclic aromatic hydrocarbon pollutants in the environment and it may accumulate in plant leaves which are the main food source for phytophagous insect species. The aim of this study was to establish the effects of dietary fluoranthene on specific activities of digestive enzymes and expression of their isoforms in the midgut, and the relative growth rates of Lymantria dispar and Euproctis chrysorrhoea larvae. Exposure to fluoranthene led to significantly decreased trypsin activity in the midgut of larvae of both species. Leucine aminopeptidase activity decreased significantly in the midgut of L. dispar larvae exposed to the lower concentration of fluoranthene, but that enzyme activity showed the opposite trend in E. chrysorrhoea larvae. There was no pollutant induced changes in lipase activity in L. dispar, while elevated enzyme activity was recorded in the midgut of E. chrysorrhoea larvae exposed to the lower concentration of fluoranthene. Different patterns of expression of enzyme isoforms were noticed. Relative growth rates of both species significantly decreased in fluoranthene treated larvae. These responses indicate to the significance of relationships between physiological changes and fitness-related traits in L. dispar and E. chrysorrhoea larvae affected by pollutant, and contribute to understanding the mechanisms of their adjustment to stressful conditions.
Collapse
Affiliation(s)
- Aleksandra Filipović
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković" National Institute of Republic of Serbia, University of Belgrade, Despot Stefan Blvd. 142, 11060 Belgrade, Serbia.
| | - Marija Mrdaković
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković" National Institute of Republic of Serbia, University of Belgrade, Despot Stefan Blvd. 142, 11060 Belgrade, Serbia
| | - Larisa Ilijin
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković" National Institute of Republic of Serbia, University of Belgrade, Despot Stefan Blvd. 142, 11060 Belgrade, Serbia
| | - Anja Grčić
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković" National Institute of Republic of Serbia, University of Belgrade, Despot Stefan Blvd. 142, 11060 Belgrade, Serbia
| | - Dragana Matić
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković" National Institute of Republic of Serbia, University of Belgrade, Despot Stefan Blvd. 142, 11060 Belgrade, Serbia
| | - Dajana Todorović
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković" National Institute of Republic of Serbia, University of Belgrade, Despot Stefan Blvd. 142, 11060 Belgrade, Serbia
| | - Milena Vlahović
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković" National Institute of Republic of Serbia, University of Belgrade, Despot Stefan Blvd. 142, 11060 Belgrade, Serbia
| | - Vesna Perić-Mataruga
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković" National Institute of Republic of Serbia, University of Belgrade, Despot Stefan Blvd. 142, 11060 Belgrade, Serbia
| |
Collapse
|
24
|
Microalgae–Bacteria Consortia: A Review on the Degradation of Polycyclic Aromatic Hydrocarbons (PAHs). ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-021-06236-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
25
|
Sun K, Song Y, He F, Jing M, Tang J, Liu R. A review of human and animals exposure to polycyclic aromatic hydrocarbons: Health risk and adverse effects, photo-induced toxicity and regulating effect of microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145403. [PMID: 33582342 DOI: 10.1016/j.scitotenv.2021.145403] [Citation(s) in RCA: 157] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are one of the most widely distributed persistent organic pollutants (POPs) in the environmental media. PAHs have been widely concerned due to their significant health risk and adverse effects to human and animals. Currently, the main sources of PAHs in the environment are the incomplete combustion of fossil fuels, as well as municipal waste incineration and agricultural non-surface source emissions. In this work, the scope of our attention includes 16 typical PAHs themselves without involving their metabolites and industrial by-products. Exposure of human and animals to PAHs can lead to a variety of adverse effects, including carcinogenicity and teratogenicity, genotoxicity, reproductive- and endocrine-disrupting effects, immunotoxicity and neurotoxicity, the type and severity of which depend on a variety of factors. On the other hand, the regulatory effect of microplastics (MPs) on the bio-toxicity and bioaccumulation capacity of PAHs has now gradually attracted attention. We critically reviewed the adsorption capacity and mechanisms of MPs on PAHs as well as the effects of MPs on PAHs toxicity, thus highlighting the importance of paying attention to the joint bio-toxicity caused by PAHs-MPs interactions. In addition, due to the extensive nature of the common exposure pathway of PAHs and ultraviolet ray, an accurate understanding of biological processes exposed to both PAHs and UV light is necessary to develop effective protective strategies. Finally, based on the above critical review, we highlighted the research gaps and pointed out the priority of further studies.
Collapse
Affiliation(s)
- Kailun Sun
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Yan Song
- School of Water Conservancy and Environment, University of Jinan, Jinan, Shandong Province 250022, China
| | - Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Mingyang Jing
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Jingchun Tang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
26
|
Gao S, Li T, Pan J, Han D, Lin J, Niu Q, Liu R. Toxic effect and mechanism of ultrafine carbon black on mouse primary splenocytes and two digestive enzymes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 212:111980. [PMID: 33545408 DOI: 10.1016/j.ecoenv.2021.111980] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
This paper investigated the toxic effect and mechanism of ultrafine carbon black (UFCB) on splenocytes and enzymes in the digestive system. It was found that the toxicity of UFCB to splenocytes was dose-dependent. UFCB with a low concentration (<15 μg/mL) had no significant effect on splenocytes while UFCB with high concentration (>15 μg/mL) induced significant oxidative damage with increased content of reactive oxygen species (ROS) (134%) and malonaldehyde (MDA) (222.3%) along with the decreased activity of superoxide dismutase (SOD) (55.63%) and catalase (CAT) (87.73%). Analysis combined cellular and molecular levels indicated that UFCB induced splenocyte toxicity through oxidative stress. The interactions of UFCB with two important digestive enzymes, α-amylase and lipase, were also studied respectively. Results showed that the interaction of UFCB and the two enzymes altered the particle size and fluorescence intensity in both experimental systems. The formation of protein corona also resulted in the contraction of the polypeptide skeleton in both enzymes, which further inhibited their activity. Our work provided basic data on the toxicity of UFCB in the spleen and digestive system and fills the gap in the study of UFPs toxicity. CAPSULE: UFCB induced splenocyte toxicity and enzyme dysfunction through oxidative stress and protein corona formation respectively.
Collapse
Affiliation(s)
- Sichen Gao
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao 266237, Shandong, PR China
| | - Tong Li
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao 266237, Shandong, PR China
| | - Jie Pan
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao 266237, Shandong, PR China
| | - Dengcheng Han
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao 266237, Shandong, PR China
| | - Jing Lin
- North China Sea Data & Information Service of SOA, 27# Yunling Road, Laoshan, Qingdao 266061, PR China
| | - Qigui Niu
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao 266237, Shandong, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao 266237, Shandong, PR China.
| |
Collapse
|
27
|
Sun N, Li M, Liu G, Jing M, He F, Cao Z, Zong W, Tang J, Gao C, Liu R. Toxic mechanism of pyrene to catalase and protective effects of vitamin C: Studies at the molecular and cell levels. Int J Biol Macromol 2021; 171:225-233. [PMID: 33418042 DOI: 10.1016/j.ijbiomac.2020.12.169] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/10/2020] [Accepted: 12/22/2020] [Indexed: 11/17/2022]
Abstract
Polycyclic aromatic hydrocarbons, distributing extensively in the soil, would potentially threaten the soil organisms (Eisenia fetida) by triggering oxidative stress. As a ubiquitous antioxidant enzyme, catalase can protect organisms from oxidative damage. To reveal the potential impact of polycyclic aromatic hydrocarbon pyrene (Pyr) on catalase (CAT) and the possible protective effect of Ascorbic acid (vitamin C), multi-spectral and molecular docking techniques were used to investigate the influence of structure and function of catalase by pyrene. Fluorescence and circular dichroism analysis showed that pyrene would induce the microenvironmental changes of CAT amino acid residues and increase the α-helix in the secondary structure. Molecular simulation results indicated that the main binding force of pyrene around the active center of CAT is hydrogen bonding force. Furthermore, pyrene inhibited catalase activity to 69.9% compared with the blank group, but the degree of inhibition was significantly weakened after vitamin C added into the research group. Cell level experiments showed that pyrene can increase the level of ROS in the body cavity cell of earthworms, and put the cells under the threat of potential oxidative damage. Antioxidants-vitamin C has a protective effect on catalase and maintains the stability of intracellular ROS levels to a certain extent.
Collapse
Affiliation(s)
- Ning Sun
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Meifei Li
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Guiliang Liu
- Shandong Institute for Food and Drug Control, Jinan 250101, PR China
| | - Mingyang Jing
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Zhaozhen Cao
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Wansong Zong
- College of Geography and Environment, Shandong Normal University, 88# East Wenhua Road, Jinan, Shandong 250014, PR China
| | - Jingchun Tang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Canzhu Gao
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
28
|
Song Y, Sun K, Liu R. An exploration of the interaction mechanism of Direct Red 80 with α-Amylase at the molecular level. J Mol Recognit 2020; 34:e2883. [PMID: 33331039 DOI: 10.1002/jmr.2883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/04/2020] [Accepted: 11/23/2020] [Indexed: 12/23/2022]
Abstract
The use and production of Direct Red 80 (DR80) dye are growing rapidly, and a large amount of dye wastewater is discharged into the soil without treatment. DR80 accumulated in soil or sludge can lead to enzyme poisoning, inhibit microbial activity, and affect the transformation of substances in the soil. In this research, the interaction mechanism between DR80 and α-Amylase (a typical enzyme in soil and sludge) was investigated by multi-spectra, molecular docking, thermodynamics analysis and enzyme activity experiment. The results of UV-visible and resonance light scattering (RLS) spectra showed that the skeleton of α-Amylase became loosened and unfolded under the exposure of Direct Red. The size of α-Amylase was smaller and α-Amylase became dispersed under high concentration of DR80. Molecular docking and thermodynamic analysis showed that DR80 bound to the surface of domain A rather than the active site of α-Amylase in the form of hydrogen bonds, and the binding process was an exothermic reaction. In addition, the inhibition of α-Amylase activity by DR80 was verified by enzyme activity experiment. These results indicate that DR80 has an effect on the structure and function of α-Amylase at molecular level, which means that the toxicity of DR80 should receive more attention.
Collapse
Affiliation(s)
- Yan Song
- School of Water Conservancy and Environment, University of Jinan, Jinan, China
| | - Kailun Sun
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Qingdao, China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Qingdao, China
| |
Collapse
|
29
|
Sun K, Song Y, Zong W, Tang J, Liu R. Anthracene-induced DNA damage and oxidative stress: a combined study at molecular and cellular levels. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:41458-41474. [PMID: 32683626 DOI: 10.1007/s11356-020-10049-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
At present, research progress of anthracene's toxicity lags far behind the pollution caused on its application fields such as petroleum and minerals. In this paper, anthracene-induced oxidative stress effects and genetic toxicity were investigated at both the molecular and cellular levels. The intracellular oxidative stress effect of anthracene on earthworm primary coelomocyte was confirmed by the detection of reactive oxygen species, antioxidant enzymes activity, and malondialdehyde content. Moreover, after anthracene exposure, the decrease in the mitochondrial membrane potential and cell viability also indicated the adverse effects of anthracene on earthworm coelomocyte. The comet assay proved the break in DNA strand, revealing the anthracene-induced DNA damage. On the molecular level, we revealed that anthracene caused the shrinkage of the catalase skeleton and altered the microenvironment of chromophores of catalase by multi-spectral methods. Molecular simulation results indicated that anthracene interacted with His74 by "arene-arene" force and the dominant binding site between anthracene and catalase was close to the active site of catalase. In addition, anthracene was shown to bind to the DNA molecule by groove binding mode. This study proposed a new combined analysis method for the toxicity evaluation of anthracene at the cellular and molecular levels. Graphical abstract This study creatively proposed a new combined analysis for the toxicity evaluation of ANT at the cellular and molecular levels.
Collapse
Affiliation(s)
- Kailun Sun
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, 266237, Shandong, People's Republic of China
| | - Yan Song
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, Shandong Province, People's Republic of China
| | - Wansong Zong
- College of Geography and Environment, Shandong Normal University, 88# East Wenhua Road, Jinan, 250014, Shandong, People's Republic of China
| | - Jingchun Tang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, People's Republic of China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, 266237, Shandong, People's Republic of China.
| |
Collapse
|