1
|
Chen Y, Liu Z, Zeng W, Liu Y, Zhao D, Zhang Y, Jia X. Screening and Identification of Soil Selenium-Enriched Strains and Application in Auricularia auricula. Microorganisms 2024; 12:1136. [PMID: 38930518 PMCID: PMC11205748 DOI: 10.3390/microorganisms12061136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Selenium (Se) is an essential trace element for human physiological metabolism. The application of organic Se as a source to cultivate Se-rich plants for micronutrient supplementation has been receiving increasing attention. In our study, a bacterial strain named H1 was isolated from the soil in Heilongjiang Province, China, and under optimal culture conditions, the unit Se content could reach 3000 μg·g-1 and its 16S ribosomal DNA sequence seemed to be a new molecular record of an Enterobacter species. After the domestication of Se tolerance and Se-rich experiments, H1 can be used as a Se source for cultivation of Se-rich Auricularia auricula. The results showed that soluble protein, soluble sugar, free amino acid and vitamin C contents in Auricularia auricula were notably increased by 28.7%, 21.8%, 32.5% and 39.2% under the treatment of Se concentration of 0.24 mg·kg-1, respectively. These findings enhance our understanding that H1 is more conducive to Se uptake and nutrient accumulation.
Collapse
Affiliation(s)
- Yadong Chen
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China; (Y.C.); (Z.L.); (W.Z.); (Y.L.); (D.Z.)
| | - Zhenghan Liu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China; (Y.C.); (Z.L.); (W.Z.); (Y.L.); (D.Z.)
| | - Weimin Zeng
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China; (Y.C.); (Z.L.); (W.Z.); (Y.L.); (D.Z.)
| | - Yang Liu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China; (Y.C.); (Z.L.); (W.Z.); (Y.L.); (D.Z.)
| | - Dandan Zhao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China; (Y.C.); (Z.L.); (W.Z.); (Y.L.); (D.Z.)
| | - Yanlong Zhang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China; (Y.C.); (Z.L.); (W.Z.); (Y.L.); (D.Z.)
| | - Xiangqian Jia
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China; (Y.C.); (Z.L.); (W.Z.); (Y.L.); (D.Z.)
- Post-Doctoral Scientific Research Workstation of Heilongjiang Boli Economic Development Zone Management Committee, Qitaihe 154500, China
| |
Collapse
|
2
|
Du M, Huang S, Huang Z, Qian L, Gui Y, Hu J, Sun Y. De novo assembly and characterization of the transcriptome of Morchella esculenta growth with selenium supplementation. PeerJ 2024; 12:e17426. [PMID: 38832042 PMCID: PMC11146319 DOI: 10.7717/peerj.17426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/29/2024] [Indexed: 06/05/2024] Open
Abstract
Although Morchella esculenta (L.) Pers. is an edible and nutritious mushroom with significant selenium (Se)-enriched potential, its biological response to selenium stimuli remains unclear. This study explored the effect of selenium on mushroom growth and the global gene expression profiles of M. esculenta. While 5 µg mL-1selenite treatment slightly promoted mycelia growth and mushroom yield, 10 µg mL-1significantly inhibited growth. Based on comparative transcriptome analysis, samples treated with 5 µg mL-1 and 10 µg mL-1 of Se contained 16,061 (452 upregulated and 15,609 downregulated) and 14,155 differentially expressed genes (DEGs; 800 upregulated and 13,355 downregulated), respectively. Moreover, DEGs were mainly enriched in the cell cycle, meiosis, aminoacyl-tRNA biosynthesis, spliceosome, protein processing in endoplasmic reticulum pathway, and mRNA surveillance pathway in both selenium-treated groups. Among these, MFS substrate transporter and aspartate aminotransferase genes potentially involved in Se metabolism and those linked to redox homeostasis were significantly upregulated, while genes involved in isoflavone biosynthesis and flavonoid metabolism were significantly downregulated. Gene expression levels increased alongside selenite treatment concentration, suggesting that high Se concentrations promoted M. esculenta detoxification. These results can be used to thoroughly explain the potential detoxification and Se enrichment processes in M. esculenta and edible fungi.
Collapse
Affiliation(s)
- Mengxiang Du
- College of Agriculture, Anhui Science and Technology University, Fengyang, Anhui, China
| | - Shengwei Huang
- School of Life and Health Science, Anhui Science and Technology University, Fengyang, Chuzhou, Anhui, China
| | - Zihan Huang
- School of Life and Health Science, Anhui Science and Technology University, Fengyang, Chuzhou, Anhui, China
| | - Lijuan Qian
- College of Agriculture, Anhui Science and Technology University, Fengyang, Anhui, China
| | - Yang Gui
- School of Life and Health Science, Anhui Science and Technology University, Fengyang, Chuzhou, Anhui, China
| | - Jing Hu
- School of Life and Health Science, Anhui Science and Technology University, Fengyang, Chuzhou, Anhui, China
| | - Yujun Sun
- School of Life and Health Science, Anhui Science and Technology University, Fengyang, Chuzhou, Anhui, China
| |
Collapse
|
3
|
Xu Z, Zhou W, Zhou Y, Cui H, Liu R, Shang G. Factors controlling accumulation and bioavailability of selenium in paddy soils: A case study in Luxi County, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123196. [PMID: 38145641 DOI: 10.1016/j.envpol.2023.123196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/05/2023] [Accepted: 12/18/2023] [Indexed: 12/27/2023]
Abstract
Selenium (Se) accumulation in rice (Oryza sativa L.) has become a major global concern. Se offers multiple health benefits in humans; however, its inadequate or excessive intake can be harmful. Therefore, determining the factors driving Se abundance and bioavailability in paddy soils is essential to ensure the safety of human Se intake. This study investigated the accumulation, bioavailability, and distribution of Se in 820 paddy soil and rice grain samples from Luxi County, China to assess how soil properties (soil organic matter [SOM], cation exchange capacity [CEC], and pH), geographical factors (parent materials, elevation, and mean annual precipitation [MAP] and temperature [MAT]), and essential micronutrients (copper [Cu], zinc [Zn], and manganese [Mn]) govern Se accumulation and bioavailability in paddy soils. Results showed that the average soil Se content was 0.36 mg kg-1, which was higher than that in China (0.29 mg kg-1). Alternatively, the average rice grain Se content was 0.032 mg kg-1, which was lower than the minimum allowable content in Se-rich rice grains (0.04 mg kg-1). Five studied parent materials all had a significant effect on soil Se content but had little effect on Se bioavailability (p < 0.05). CEC, elevation, and SOM, as well as the soil contents of Cu, Zn, and Mn were positively correlated with soil Se content, but pH, MAP, and MAT were negatively correlated. Correspondingly, Se bioavailability was negatively correlated with SOM and soil Zn content, but positively correlated with MAP and grain contents of Cu, Zn, and Mn. Furthermore, partial least squares path analysis revealed the interactive impacts of the influencing factors on Se accumulation and bioavailability in soils. On this basis, prediction models were established to predict Se accumulation and bioavailability in paddy soils, thereby providing theoretical support for developing efficient control measures to meet Se challenges in agriculture.
Collapse
Affiliation(s)
- Zhangqian Xu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources, Hunan Agricultural University, Hunan, 410128, China
| | - Weijun Zhou
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources, Hunan Agricultural University, Hunan, 410128, China.
| | - Yuzhou Zhou
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources, Hunan Agricultural University, Hunan, 410128, China
| | - Haojie Cui
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources, Hunan Agricultural University, Hunan, 410128, China
| | - Rui Liu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources, Hunan Agricultural University, Hunan, 410128, China
| | - Guiduo Shang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources, Hunan Agricultural University, Hunan, 410128, China
| |
Collapse
|
4
|
Wu M, Ma Y, Yin J, Wang J, Rao S, He J, Zhang R, Xiong Y. Selenium content, chemical composition and volatile components of essential oil and hydrosol from flowers of Cardamine violifolia. Chem Biodivers 2024; 21:e202301428. [PMID: 38116867 DOI: 10.1002/cbdv.202301428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Cardamine violifolia is a unique selenium hyperaccumulating vegetable in China, but its flowers are commonly wasted in large-scale cultivation. To better utilize this resource, this study explored the selenium content, chemical composition, and volatile organic compounds (VOCs) of hydro-distilling essential oil (EO) and hydrosol from C. violifolia flowers. ICP-MS results indicated that the EO and hydrosol contained selenium reaching 13.66±2.82 mg/kg and 0.0084±0.0013 mg/kg, respectively. GC-MS analysis revealed that organic acids, hydrocarbons, and amines were the main components of EO. Additionally, benzyl nitrile, benzaldehyde, benzyl isothiocyanate, benzyl alcohol, megastigmatrienone, and 2-methoxy-4-vinylphenol also existed in considerable amounts. The hydrosol extract had fewer components, mainly amines. HS-SPME-GC-MS corresponded to the composition analysis and aromatic compounds were the prevalent VOCs, while HS-GC-IMS primarily identified C2-C10 molecular alcohols, aldehydes, ethers, and sulfur-containing compounds. This study first described the chemical composition and VOC profiles of EO and hydrosol from selenium hyperaccumulating plant.
Collapse
Affiliation(s)
- Muci Wu
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-products, Institute of Quality Standard & Testing Technology for Agro-products, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei Province, P.R. China
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, Hubei Province, P.R. China
| | - Yan Ma
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, Hubei Province, P.R. China
| | - Jinjing Yin
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, Hubei Province, P.R. China
| | - Jingyi Wang
- School of Food and Biological Engineering, Hubei University of Technology, Wuhan, 430068, Hubei Province, P.R. China
| | - Shen Rao
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, Hubei Province, P.R. China
| | - Jingren He
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, Hubei Province, P.R. China
| | - Rui Zhang
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, Hubei Province, P.R. China
| | - Yin Xiong
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, Hubei Province, P.R. China
| |
Collapse
|
5
|
Ma Y, Yin J, Wang J, Liu X, He J, Zhang R, Rao S, Cong X, Xiong Y, Wu M. Selenium speciation and volatile flavor compound profiles in the edible flowers, stems, and leaves of selenium-hyperaccumulating vegetable Cardamine violifolia. Food Chem 2023; 427:136710. [PMID: 37406448 DOI: 10.1016/j.foodchem.2023.136710] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 07/07/2023]
Abstract
Cardamine violifolia is a unique selenium (Se)-hyperaccumulating vegetable in China. The total Se content and Se speciation of three edible parts, including flowers, stems, and leaves were detected by HPLC-ICP-MS. Volatile organic compounds (VOCs) greatly impact food flavor. The VOCs of three samples were analyzed by E-nose, HS-GC-IMS, and HS-SPME-GC-MS. The results showed that the total Se content in flowers was significantly higher than that in leaves and was the lowest in stems. Organic Se accounts for more than 98% of the total Se content, primarily selenocystine, followed by methyl selenocysteine. A total of 102 VOCs were identified from C. violifolia, mainly esters, aldehydes, alcohols, and ketones. Flowers contained abundant VOCs, while stems and leaves contained fewer but similar profiles. Moreover, multivariate statistical analysis was applied to investigate the VOC variations and marker VOCs. This work can provide useful knowledge for understanding the Se characteristics and flavor of C. violifolia.
Collapse
Affiliation(s)
- Yan Ma
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jinjing Yin
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jingyi Wang
- School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Xin Liu
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jingren He
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Rui Zhang
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shen Rao
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xin Cong
- Enshi Se-Run Health Tech Development Co., Ltd., Enshi 445000, China
| | - Yin Xiong
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Muci Wu
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
6
|
Shi MT, Zhang TJ, Fang Y, Pan CP, Fu HY, Gao SJ, Wang JD. Nano-selenium enhances sugarcane resistance to Xanthomonas albilineans infection and improvement of juice quality. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114759. [PMID: 36950993 DOI: 10.1016/j.ecoenv.2023.114759] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Selenium is an important trace element that is beneficial to human health and can enhance plant resistance and crop quality. The occurrence of up-to-date nanotechnology greatly promotes the beneficial efficiency of this trace element on crops. The discovery of nano-Se increased the crop quality and reduced plant disease in different plant. In this study, we reduced sugarcane leaf scald disease incidence by exogenously spraying different concentrations (5 mg/L and 10 mg/L) of nano-Se. Additional studies revealed that spraying of nano-Se reduced reactive oxygen species (ROS) and H2O2 accumulation, and increased antioxidant enzyme activities in sugarcane. The nano-selenium treatments also increased the content of jasmonic acid (JA) and the expression of JA pathway genes. Furthermore, we also found that use nano-Se treatment in an appropriate way can enhance the quality of cane juice. The brix of the cane juice of the selenium-enriched treatment was significantly higher than that of the control group, which was 10.98% and 20.81% higher than that of the CK group, respectively. Meanwhile, the content of certain beneficial amino acids was increased, with the highest being 3.9 times higher than the control. Taken together, our findings inferred that nano-Se could act as a potential eco-fungicide to protect sugarcane from can be used as a potential ecological bactericide to protect sugarcane from Xanthomonas albilineans infections, and improve sugarcane quality. The results arising from this study not only introduces an ecological method to control X. albilineans, but also provides a deep insight into this trace elements for improving juice quality.
Collapse
Affiliation(s)
- Meng-Ting Shi
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Tian-Jie Zhang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yong Fang
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agriculture Science, Changsha 410125, China; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China.
| | - Can-Ping Pan
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Hua-Ying Fu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - San-Ji Gao
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jin-da Wang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
7
|
Wang P, Li Y, Yu R, Huang D, Chen S, Zhu S. Effects of Different Drying Methods on the Selenium Bioaccessibility and Antioxidant Activity of Cardamine violifolia. Foods 2023; 12:foods12040758. [PMID: 36832833 PMCID: PMC9955862 DOI: 10.3390/foods12040758] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Understanding the effects of drying on the selenium (Se) content and Se bioaccessibility of Se-rich plants is critical to dietary supplementation of Se. The effects of five common drying methods (far-infrared drying (FIRD), vacuum drying (VD), microwave vacuum drying (MVD), hot air drying (HD), and freeze vacuum drying (FD)) on the content and bioaccessibility of Se and Se species in Cardamine violifolia leaves (CVLs) were studied. The content of SeCys2 in fresh CVLs was the highest (5060.50 μg/g of dry weight (DW)); after FIRD, it had the lowest selenium loss, with a loss rate of less than 19%. Among all of the drying processes, FD and VD samples had the lowest Se retention and bioaccessibility. FIRD, VD, and FD samples have similar effects on antioxidant activity.
Collapse
Affiliation(s)
- Peiyu Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Yue Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ruipeng Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Dejian Huang
- Department of Food Science and Technology, National University of Singapore, Singapore 117543, Singapore
| | - Shangwei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Song Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Correspondence: ; Tel./Fax: +86-510-85197876
| |
Collapse
|
8
|
Xie H, Tian X, He L, Li J, Cui L, Cong X, Tang B, Zhang Y, Guo Z, Zhou A, Chen D, Wang L, Zhao J, Yu YL, Li B, Li YF. Spatial Metallomics Reveals Preferable Accumulation of Methylated Selenium in a Single Seed of the Hyperaccumulator Cardamine violifolia†. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2658-2665. [PMID: 36695191 DOI: 10.1021/acs.jafc.2c08112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Cardamine violifolia is a Se hyperaccumulator found in Enshi, China. In this study, spatial metallomics was applied to visualize the distribution and speciation of Se in a single seed of C. violifolia. It was found that Se reached 1729.89 ± 28.14 mg/kg and the main Se species were SeCys and SeMet in bulk seeds. Further in situ study on a single seed found that the methylated Se species located mostly in the episperm. This is the first visualized evidence of the in situ distribution of methylated Se species in the seeds of C. violifolia. In all, spatial metallomics finds a preferable accumulation of methylated Se species in the seed coat, which deepens the understanding of the tolerance of Se by C. violifolia. The protocol applied in this study may also be used for the understanding of the tolerance of heavy metals/metalloids in other hyperaccumulators.
Collapse
Affiliation(s)
- Hongxin Xie
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and Beijing Metallomics Facility, and National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, Liaoning, China
| | - Xue Tian
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and Beijing Metallomics Facility, and National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, Liaoning, China
| | - Lina He
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and Beijing Metallomics Facility, and National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- College of Environmental Science and Engineering, and State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| | - Jincheng Li
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and Beijing Metallomics Facility, and National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- College of Mechanical Engineering, and National Consortium for Excellence in Metallomics, Guangxi University, Nanning 530004, Guangxi, China
| | - Liwei Cui
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Cong
- Enshi Se-Run Material Engineering Technology Co., Ltd., Enshi 445000, Hubei, China
| | - Bochong Tang
- Shimadzu China Innovation Center, Beijing 100020, China
| | - Yi Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Synchrotron Radiation Facility, and High Energy Photon Source, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiying Guo
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Synchrotron Radiation Facility, and High Energy Photon Source, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Aiyu Zhou
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Synchrotron Radiation Facility, and High Energy Photon Source, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Dongliang Chen
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Synchrotron Radiation Facility, and High Energy Photon Source, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Liming Wang
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and Beijing Metallomics Facility, and National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiating Zhao
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and Beijing Metallomics Facility, and National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong-Liang Yu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, Liaoning, China
| | - Bai Li
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and Beijing Metallomics Facility, and National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Feng Li
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and Beijing Metallomics Facility, and National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Sun Y, Guo J, Wei F, Chen X, Li M, Li C, Xia S, Zhang G, You W, Cong X, Yu T, Wang S. Microbial functional communities and the antibiotic resistome profile in a high-selenium ecosystem. CHEMOSPHERE 2023; 311:136858. [PMID: 36252903 DOI: 10.1016/j.chemosphere.2022.136858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/02/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Enshi City, in the Hubei Province of China, is known as the world capital of selenium with the most abundant selenium resource. An important selenium hyperaccumulator plant, Cardamine violifolia, was found to naturally grow in this high-selenium ecosystem. However, relatively little is known about the impact of the selenium levels on microbial community and functional shifts in C. violifolia rhizosphere. Here, we tested the hypothesis that underground microbial diversity and function vary along a selenium gradient, including antibiotic resistance genes (ARGs). Comprehensive metagenomic analyses, such as taxonomic investigation, functional detection, and ARG annotation, showed that selenium, mercury, cadmium, lead, arsenic, and available phosphorus and potassium were correlated with microbial diversity and function. Thaumarchaeota was exclusively dominant in the highest selenium concentration of mine outcrop, and Rhodanobacter and Nitrospira were predominant in the high-selenium ecosystem. The plant C. violifolia enriched a high concentration of selenium in the rhizosphere compared to those in the bulk soil, and it recruited Variovorax and Polaromonas in its rhizosphere. Microbial abundance showed a trend of increasing first and then decreasing from low to high selenium concentrations. Annotation of ARGs showed that the multidrug resistance genes adeF, mtrA, and poxtA, the aminoglycoside resistance gene rpsL, and the sulfonamide resistant gene sul2 were enriched in the high-selenium system. It was discovered that putative antibiotic resistant bacteria displayed obvious differences in the farmland and the soils with various selenium concentrations, indicating that a high-selenium ecosystem harbors the specific microbes with a higher capacity to enrich or resist selenium, toxic metals, or antibiotics. Taken together, these results reveal the effects of selenium concentration and the selenium hyperaccumulator plant C. violifolia on shaping the microbial functional community and ARGs. Metalloid selenium-inducible antibiotic resistance is worth paying attention to in future.
Collapse
Affiliation(s)
- Yanmei Sun
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, China; Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, China
| | - Jia Guo
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, 213164, China
| | - Fu Wei
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Xiaohui Chen
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Meng Li
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, China
| | - Chao Li
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Size Xia
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Guangming Zhang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Wencai You
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Xin Cong
- Enshi Se-Run Health Tech Development Co., Ltd., Enshi, 445000, China
| | - Tian Yu
- Enshi Se-Run Health Tech Development Co., Ltd., Enshi, 445000, China.
| | - Shiwei Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
10
|
Liu H, Xiao C, Qiu T, Deng J, Cheng H, Cong X, Cheng S, Rao S, Zhang Y. Selenium Regulates Antioxidant, Photosynthesis, and Cell Permeability in Plants under Various Abiotic Stresses: A Review. PLANTS (BASEL, SWITZERLAND) 2022; 12:44. [PMID: 36616173 PMCID: PMC9824017 DOI: 10.3390/plants12010044] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/06/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Plant growth is affected by various abiotic stresses, including water, temperature, light, salt, and heavy metals. Selenium (Se) is not an essential nutrient for plants but plays important roles in alleviating the abiotic stresses suffered by plants. This article summarizes the Se uptake and metabolic processes in plants and the functions of Se in response to water, temperature, light, salt, and heavy metal stresses in plants. Se promotes the uptake of beneficial substances, maintains the stability of plasma membranes, and enhances the activity of various antioxidant enzymes, thus alleviating adverse effects in plants under abiotic stresses. Future research directions on the relationship between Se and abiotic stresses in plants are proposed. This article will further deepen our understanding of the relationship between Se and plants.
Collapse
Affiliation(s)
- Haodong Liu
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-Rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Chunmei Xiao
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-Rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Tianci Qiu
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-Rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jie Deng
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-Rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hua Cheng
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-Rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xin Cong
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-Rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China
- Enshi Se-Run Material Engineering Technology Co., Ltd., Enshi 445000, China
| | - Shuiyuan Cheng
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-Rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shen Rao
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-Rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yue Zhang
- Enshi Se-Run Material Engineering Technology Co., Ltd., Enshi 445000, China
| |
Collapse
|
11
|
Gui JY, Rao S, Huang X, Liu X, Cheng S, Xu F. Interaction between selenium and essential micronutrient elements in plants: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158673. [PMID: 36096215 DOI: 10.1016/j.scitotenv.2022.158673] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Nutrient imbalance (i.e., deficiency and toxicity) of microelements is an outstanding environmental issue that influences each aspect of ecosystems. Although the crucial roles of microelements in entire lifecycle of plants have been widely acknowledged, the effective control of microelements is still neglected due to the narrow safe margins. Selenium (Se) is an essential element for humans and animals. Although it is not believed to be indispensable for plants, many literatures have reported the significance of Se in terms of the uptake, accumulation, and detoxification of essential microelements in plants. However, most papers only concerned on the antagonistic effect of Se on metal elements in plants and ignored the underlying mechanisms. There is still a lack of systematic review articles to summarize the comprehensive knowledge on the connections between Se and microelements in plants. In this review, we conclude the bidirectional effects of Se on micronutrients in plants, including iron, zinc, copper, manganese, nickel, molybdenum, sodium, chlorine, and boron. The regulatory mechanisms of Se on these micronutrients are also analyzed. Moreover, we further emphasize the role of Se in alleviating element toxicity and adjusting the concentration of micronutrients in plants by altering the soil conditions (e.g., adsorption, pH, and organic matter), promoting microbial activity, participating in vital physiological and metabolic processes, generating element competition, stimulating metal chelation, organelle compartmentalization, and sequestration, improving the antioxidant defense system, and controlling related genes involved in transportation and tolerance. Based on the current understanding of the interaction between Se and these essential elements, future directions for research are suggested.
Collapse
Affiliation(s)
- Jia-Ying Gui
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Shen Rao
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xinru Huang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Xiaomeng Liu
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shuiyuan Cheng
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China.
| |
Collapse
|
12
|
Chen Q, Yu L, Chao W, Xiang J, Yang X, Ye J, Liao X, Zhou X, Rao S, Cheng S, Cong X, Xiao B, Xu F. Comparative physiological and transcriptome analysis reveals the potential mechanism of selenium accumulation and tolerance to selenate toxicity of Broussonetia papyrifera. TREE PHYSIOLOGY 2022; 42:2578-2595. [PMID: 35899437 DOI: 10.1093/treephys/tpac095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Broussonetia papyrifera is an important fodder tree that is widely distributed in China. Enhancing the selenium (Se) content in B. papyrifera may help to improve the nutritional value of the feed. In this study, sodium selenite and selenate were foliar applied to investigate the mechanisms of Se tolerance and accumulation in B. papyrifera. The results showed that both Se forms significantly increased the total Se content, and the proportion of organic Se was significantly higher in the sodium selenite treatment than in the control. In addition, the soluble sugar, phenolic acid and flavonoid contents and antioxidant enzyme activities were increased by exogenous Se. The de novo RNA sequencing results showed that 644 and 1804 differentially expressed genes were identified in the selenite and selenate comparison groups, respectively. Pathway enrichment analysis demonstrated that 24 of the 108 pathways were significantly enriched, of which sulfur assimilation genes in the sodium selenite-treated groups were upregulated, whereas Se conjugation and transporter genes, such as SBP1, PCS, GSTs, ABCs and GPX, were significantly induced under selenate treatment. The hub genes identified by weighted-gene co-expression network analysis further confirmed that sulfur assimilation, conjugation and transporter genes might play a vital role in Se assimilation and tolerance. From this, a model of Se metabolism in B. papyrifera was proposed based on the above physiological and RNA sequencing data. This study is the first study to report that B. papyrifera has a strong ability to accumulate and tolerate exogenous Se, thereby providing a foundation for further characterization of the accumulation and tolerance mechanism of B. papyrifera. Our findings can provide technical support for producing Se-enriched fodder.
Collapse
Affiliation(s)
- Qiangwen Chen
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Li Yu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Wei Chao
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Juan Xiang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Xiaoyan Yang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Jiabao Ye
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Xiaoli Liao
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Xian Zhou
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Shen Rao
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
| | - Shuiyuan Cheng
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
- National Selenium Rich Product Quality Supervision and Inspection Center, Enshi 445000, Hubei, China
| | - Xin Cong
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
- Enshi Se-Run Material Engineering Technology Co., Ltd, Enshi, 445000, China
| | - Bo Xiao
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| |
Collapse
|
13
|
Wang R, Deng Z, Luo Y. The complete chloroplast genome and phylogenetic analysis of Cardamine circaeoides Hook. f. et Thoms., 1861 (Brassicaceae). Mitochondrial DNA B Resour 2022; 7:1964-1967. [DOI: 10.1080/23802359.2022.2141081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Ru Wang
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi, P. R. China
- Research Center for Germplasm Engineering of Characteristic Plant Resources in Enshi Prefecture, Hubei Minzu University, Enshi, P. R. China
| | - Zhijun Deng
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi, P. R. China
- Research Center for Germplasm Engineering of Characteristic Plant Resources in Enshi Prefecture, Hubei Minzu University, Enshi, P. R. China
- Center for Crop Germplasm Resources, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Yongjian Luo
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi, P. R. China
- Research Center for Germplasm Engineering of Characteristic Plant Resources in Enshi Prefecture, Hubei Minzu University, Enshi, P. R. China
| |
Collapse
|
14
|
Zhou C, Zhang J, Wu Y, Cheng H, Pang Q, Xiao Y, Li D, Pan C. Metabolomic Analysis on the Mechanism of Nanoselenium Biofortification Improving the Siraitia grosvenorii Nutritional and Health Value. Foods 2022; 11:foods11193019. [PMID: 36230095 PMCID: PMC9564208 DOI: 10.3390/foods11193019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 11/16/2022] Open
Abstract
Nanoselenium (nano-Se) foliar application is crucial for enhancing plant health. However, the mechanism by which nano-Se biofortification promotes the nutritional components of Siraitia grosvenorii remains unclear. In this study, nano-Se foliar application increased the carbohydrate and amino acid contents, including glucose (23.6%), fructose (39.7%), sucrose (60.6%), tryptophan (104.5%), glycine (85.9%), tyrosine (78.4%), phenylalanine (60.1%), glutamic acid (63.4%), and proline (52.5%). Nano-Se application enhanced apigenin (3.8 times), syringic acid (0.7 times), and 4-hydroxy-3,5-dimethoxycinnamic acid (1.4 times) of the phenylpropane biosynthesis pathways. Importantly, the SgCDS (31.1%), CYP-P450 (39.1%), and UGT (24.6%) were induced by nano-Se, which enhanced the mogroside V content (16.2%). Compared to the control, nano-Se treatment dramatically enhanced aromatic substances, including 2-butanone (51.9%), methylpropanal (146.3%), n-nonanal dimer (141.7%), pentanal (52.5%), and 2-pentanone (46.0%). In summary, nano-Se improves S. grosvenorii quality by increasing nutrients and volatile organic compounds and adjusting the phenylpropane pathway.
Collapse
Affiliation(s)
- Chunran Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, China Yuanmingyuan West Road 2, Beijing 100193, China
| | - Jingbang Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, China Yuanmingyuan West Road 2, Beijing 100193, China
| | - Yangliu Wu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, China Yuanmingyuan West Road 2, Beijing 100193, China
| | - Haiyan Cheng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, China Yuanmingyuan West Road 2, Beijing 100193, China
| | - Qiuling Pang
- Guangxi Academy of Specialty Crops, Putuo Road 40, Guilin 541004, China
| | - Yuanhui Xiao
- Guangxi Academy of Specialty Crops, Putuo Road 40, Guilin 541004, China
| | - Dong Li
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou 570228, China
- Correspondence: (D.L.); (C.P.)
| | - Canping Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, China Yuanmingyuan West Road 2, Beijing 100193, China
- Correspondence: (D.L.); (C.P.)
| |
Collapse
|
15
|
Zhu Y, Dong Y, Zhu N, Jin H. Foliar application of biosynthetic nano-selenium alleviates the toxicity of Cd, Pb, and Hg in Brassica chinensis by inhibiting heavy metal adsorption and improving antioxidant system in plant. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 240:113681. [PMID: 35653978 DOI: 10.1016/j.ecoenv.2022.113681] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/06/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Biosynthetic nano-selenium (bio-SeNP), as a plant growth regulator, has better bioavailability and lower toxicity than selenite and selenate. This study investigated the beneficial role of bio-SeNP in mitigating the adverse effects of multiple heavy metals (HMs, e.g., Cd, Pb, and Hg) on growth and yield of pak choi (Brassica chinensis) grown in slightly or heavily polluted (SP or HP) soil by regulating metabolic and antioxidant systems. The results revealed that foliar application of bio-SeNP (5, 10, 20 mg L-1 Se) at the 6-leaf stage greatly reduced the levels of Cd, Pb, and Hg in shoots and roots of pak choi. Application of 5 mg L-1 bio-SeNP significantly (p < 0.05) decreased the translocation factor (TF) of Cd, Pb, and Hg from root to shoot by 9.83%, 44.21%, and 46.99% for SP soil, 24.17%, 56.00%, and 39.36% for HP soil, respectively. Meanwhile, all bio-SeNP treatments led to a significant improvement in plants growth by enhancing the antioxidant defense system (e.g., AsA-GSH) and promoting chlorophyll synthesis as well as suppressed the lipid peroxidation products contents (MDA) in shoots. Moreover, the enhanced levels of mineral nutrient elements (e.g., Ca, Mg, Fe, or Zn) and organic selenium (e.g., selenocystine, Se-methylselenocysteine, and selenomethionine) in the edible shoots of bio-SeNP-treated pak choi plant under multiple HMs stress indicated the positive impacts of bio-SeNP on the improvement of shoot quality and nutritional values. Collectively, our results indicated that bio-SeNP play an important role in the management of multiple HMs-induced adverse effects on pak choi. Foliar application of bio-SeNP at appropriate concentration (≤ 5 mg L-1 Se) can be considered as a promising agronomic measure for safety leafy vegetable production in multiple HMs polluted soils when bio-SeNP application.
Collapse
Affiliation(s)
- Yanyun Zhu
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China.
| | - Yiwei Dong
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ning Zhu
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| | - Hongmei Jin
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China; School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
16
|
Yang X, Liao X, Yu L, Rao S, Chen Q, Zhu Z, Cong X, Zhang W, Ye J, Cheng S, Xu F. Combined metabolome and transcriptome analysis reveal the mechanism of selenate influence on the growth and quality of cabbage (Brassica oleracea var. capitata L.). Food Res Int 2022; 156:111135. [DOI: 10.1016/j.foodres.2022.111135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 12/26/2022]
|
17
|
Guo Z, Zhu B, Guo J, Wang G, Li M, Yang Q, Wang L, Fei Y, Wang S, Yu T, Sun Y. Impact of selenium on rhizosphere microbiome of a hyperaccumulation plant Cardamine violifolia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:40241-40251. [PMID: 35122198 DOI: 10.1007/s11356-022-18974-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Cardamine violifolia is the only selenium hyperaccumulation plant found in China. It has been developed as a source of medicinal and edible products that we can consume as selenium supplements. Many planting approaches have been developed to increase the selenium content of C. violifolia for nutrient biofortification. However, the contribution of rhizosphere microbes of C. violifolia to selenium enrichment has not been investigated. In this study, four types of selenium, i.e., selenate, selenite, nanoparticles selenium from Bacillus subtilis (B. subtilis-Se), and organic selenium from yeast (yeast-Se), were added to the soil that C. violifolia was grown in, respectively. Selenate led to the greatest accumulation of selenium in C. violifolia, followed by selenite, B. subtilis-Se, and yeast-Se. Except for yeast-Se, the concentration of selenium in C. violifolia positively correlated with the amount of selenium added to the soil. Furthermore, the different types of exogenous selenium exhibited distinct effects on the rhizosphere microbiome of C. violifolia. Alpha and beta diversity analyses demonstrated that rhizosphere microbiome was more obviously affected by selenium from B. subtilis and yeast than from selenate and selenite. Different microbial species were enriched in the rhizosphere of C. violifolia under various exogenous selenium treatments. B. subtilis-Se application enhanced the abundance of Leucobacter, Sporosarcina, Patulibacter, and Denitrobacter, and yeast-Se application enriched the abundance of Singulishaera, Lactobacillus, Bdellovibrio, and Bosea. Bosea and the taxon belonging to the order Solirubrobacterales were enriched in the samples with selenate and selenite addition, respectively, and the abundances of these were linearly related to the concentrations of selenate and selenite applied in the rhizosphere of C. violifolia. In summary, this study revealed the response of the rhizosphere microbiome of C. violifolia to exogenous selenium. Our findings are useful for developing suitable selenium fertilizers to increase the selenium hyperaccumulation level of this plant.
Collapse
Affiliation(s)
- Zisheng Guo
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
- Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Fucheng Road, Beijing, 100048, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Bin Zhu
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Jia Guo
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, 213164, China
| | - Gongting Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Meng Li
- Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Fucheng Road, Beijing, 100048, China
| | - Qiaoli Yang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Liping Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Yue Fei
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Shiwei Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Tian Yu
- Enshi Se-Run Health Tech Development Co., Ltd., Enshi, 445000, China.
| | - Yanmei Sun
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China.
- Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Fucheng Road, Beijing, 100048, China.
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
18
|
Gui JY, Rao S, Gou Y, Xu F, Cheng S. Comparative study of the effects of selenium yeast and sodium selenite on selenium content and nutrient quality in broccoli florets (Brassica oleracea L. var. italica). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1707-1718. [PMID: 34460116 DOI: 10.1002/jsfa.11511] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/16/2021] [Accepted: 08/30/2021] [Indexed: 05/28/2023]
Abstract
BACKGROUND Approximately 0.5-1 billion people worldwide face the risk of selenium (Se) deficiency because of the low Se concentration in their diets. Broccoli can accumulate Se and comprises a source of daily Se supplement for humans. Se biofortification is an effective strategy for enhancing Se content in crops. In the present study, the effects of Se yeast and selenite application on the Se content and nutrient quality of broccoli were investigated. RESULTS Broccoli growth was promoted by Se yeast but inhibited by selenite. The total Se content of broccoli florets remarkably increased with increasing exogenous Se fertilizer concentrations. The main Se species in broccoli florets were methyl-selenocysteine and selenomethionine, and their contents were significantly higher under Se yeast treatments than under selenite treatments. Se(VI) was detected only under selenite treatments. Se yeast and selenite had different influences on soluble sugar, soluble protein, vitamin C and free amino acid contents in broccoli florets. The total phenolic acid and glucosinolate contents were substantially increased by Se yeast and selenite, although the total flavonoid content was reduced by Se yeast. Tests on antioxidant enzyme activities revealed that several antioxidant enzymes (catalase, peroxidase, superoxide dismutase and glutathione peroxidase) responded to Se yeast and selenite treatments. CONCLUSION Se yeast is preferred over selenite for maximizing Se uptake and nutrient accumulation in Se-rich broccoli cultivation. However, an extremely high Se content in broccoli florets cannot be directly consumed by humans, although they can be processed into Se supplements. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jia-Ying Gui
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Shen Rao
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Yuanyuan Gou
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Shuiyuan Cheng
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| |
Collapse
|
19
|
Zhang R, Yang Y, Min M, Li Y. Effect of dietary supplements on Se bioavailability: A comprehensive in vitro and in vivo study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 231:113193. [PMID: 35030521 DOI: 10.1016/j.ecoenv.2022.113193] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/02/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Selenium (Se) is an essential micronutrient for animals and humans, and it is present in many different forms with different levels of bioaccessibility in food. Based on the maldistribution of Se and overall low level of Se dietary intake in China, an integrated study was conducted in this thesis to provide references for the regulation of Se nutrition. An in vitro simulation test was used to monitor the concentration effects, the impacts of dietary supplement combinations on the bioaccessibility of Se were examined in rice, and a model animal experiment (in vivo) was used to evaluate the practicability of the Se nutrition regulation scheme. The main results were as follows: the bioaccessibility of Se was effectively increased by 30 mg·d-1 VE (VE), 300 mg·d-1 VC + 300 μg·d-1 VB9 (VC+VB9) and 30 mg·d-1 VE + 300 mg·d-1 VC + 300 μg·d-1 VB9 (3IN1) (P < 0.05). The results of the healthy broiler tests showed that the 3 treatments increased the weight and Se content of the broilers, and 3IN1 had the most significant effect (P < 0.05). VC+VB9 was the best at promoting GPx activity, while 3IN1 was the best at promoting SOD activity and the inhibition of MDA content in broilers. The results suggested that VE, VC+VB9 and 3IN1 can benefit the bioavailability of Se and the antioxidant capacity of the body. The results can be used as a scientific reference for Se nutrition regulation.
Collapse
Affiliation(s)
- Ru Zhang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Min
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yonghua Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
20
|
Cao L, Zhu J, Li N. Selenium-agarose hybrid hydrogel as a recyclable natural substrate for selenium-enriched cultivation of mung bean sprouts. Int J Biol Macromol 2022; 194:17-23. [PMID: 34822824 DOI: 10.1016/j.ijbiomac.2021.11.091] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/09/2021] [Accepted: 11/14/2021] [Indexed: 01/16/2023]
Abstract
Selenium (Se) is an essential trace element for human beings and animals. Traditional plant Se enrichment technology suffers from selenium pollution. Herein, environmentally friendly Se-agarose (Se-Agar) hybrid hydrogels are prepared by simply mixing agar with different Se species including selenocarrageenan (SeCA), selenite and Se yeast under heating and stirring for 0.5 h without any other reagent. Such Se-Agar hybrid hydrogels with excellent biocompatibility were used as natural substrates for the cultivation of Se-enriched mung bean sprouts. Compared with Se yeast, SeCA and selenite show a better Se enrichment effect on mung bean sprouts. Furthermore, the growth indices including plant weight and plant height of mung bean sprouts were investigated with different concentrations and sources of Se. Notably, the Se-Agar hybrid hydrogels could be easily regenerated and reused for multiple cycles. The results indicated that Se-Agar hybrid hydrogels as recyclable natural substrates offer a simple, sustainable and affordable strategy for plant Se enrichment.
Collapse
Affiliation(s)
- Lu Cao
- Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jian Zhu
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Na Li
- Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
21
|
Riaz A, Sarker MR, Saad MHM, Mohamed R. Review on Comparison of Different Energy Storage Technologies Used in Micro-Energy Harvesting, WSNs, Low-Cost Microelectronic Devices: Challenges and Recommendations. SENSORS 2021; 21:s21155041. [PMID: 34372278 PMCID: PMC8428241 DOI: 10.3390/s21155041] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 11/16/2022]
Abstract
This paper reviews energy storage systems, in general, and for specific applications in low-cost micro-energy harvesting (MEH) systems, low-cost microelectronic devices, and wireless sensor networks (WSNs). With the development of electronic gadgets, low-cost microelectronic devices and WSNs, the need for an efficient, light and reliable energy storage device is increased. The current energy storage systems (ESS) have the disadvantages of self-discharging, energy density, life cycles, and cost. The ambient energy resources are the best option as an energy source, but the main challenge in harvesting energy from ambient sources is the instability of the source of energy. Due to the explosion of lithium batteries in many cases, and the pros associated with them, the design of an efficient device, which is more reliable and efficient than conventional batteries, is important. This review paper focused on the issues of the reliability and performance of electrical ESS, and, especially, discussed the technical challenges and suggested solutions for ESS (batteries, supercapacitors, and for a hybrid combination of supercapacitors and batteries) in detail. Nowadays, the main market of batteries is WSNs, but in the last decade, the world's attention has turned toward supercapacitors as a good alternative of batteries. The main advantages of supercapacitors are their light weight, volume, greater life cycle, turbo charging/discharging, high energy density and power density, low cost, easy maintenance, and no pollution. This study reviews supercapacitors as a better alternative of batteries in low-cost electronic devices, WSNs, and MEH systems.
Collapse
Affiliation(s)
- Amna Riaz
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (A.R.); (R.M.)
- Department of Electrical Engineering, Bahauddin Zakariya University, Punjab 60000, Pakistan
| | - Mahidur R. Sarker
- Institute of IR 4.0, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia;
- Industrial Engineering and Automotive, Campus de la Dehesa de la Villa, Nebrija University, Calle Pirineos, 55, 28040 Madrid, Spain
- Correspondence:
| | | | - Ramizi Mohamed
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (A.R.); (R.M.)
| |
Collapse
|
22
|
Li M, Huang X, Zhang Q, Zhou Y, Luo K. Structure of
Cardamine hupingshanensis
No. 2 Polysaccharide (CHP‐2) and Its Effect on Streptozotocin‐induced Diabetic Rats. STARCH-STARKE 2021. [DOI: 10.1002/star.202000250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Meidong Li
- College of Biological Science and Technology Hubei Minzu University Enshi Hubei 445000 China
| | - Xiufang Huang
- College of Biological Science and Technology Hubei Minzu University Enshi Hubei 445000 China
| | - Qin Zhang
- College of Biological Science and Technology Hubei Minzu University Enshi Hubei 445000 China
| | - Yifeng Zhou
- College of Biological Science and Technology Hubei Minzu University Enshi Hubei 445000 China
| | - Kai Luo
- College of Biological Science and Technology Hubei Minzu University Enshi Hubei 445000 China
| |
Collapse
|
23
|
Han D, Xiong S, Jia W, Chen S, Wei Y, Shao H, Huang W. Separation of selenium species in plant tissues by high performance liquid chromatography-ultraviolet treatment-hydride generation atomic fluorescence spectrometry using various mobile phases. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1911682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Dan Han
- College of Tobacco Science, Henan Agricultural University, National Tobacco Cultivation and Physiology and Biochemistry Research Center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, PR China
| | - Shuanglian Xiong
- College of Resources and Environment, Huazhong Agricultural University, Microelement Research Center, Wuhan, Hubei, PR China
| | - Wei Jia
- College of Tobacco Science, Henan Agricultural University, National Tobacco Cultivation and Physiology and Biochemistry Research Center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, PR China
| | - Simeng Chen
- College of Tobacco Science, Henan Agricultural University, National Tobacco Cultivation and Physiology and Biochemistry Research Center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, PR China
| | - Yanqiu Wei
- College of Tobacco Science, Henan Agricultural University, National Tobacco Cultivation and Physiology and Biochemistry Research Center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, PR China
| | - Huifang Shao
- College of Tobacco Science, Henan Agricultural University, National Tobacco Cultivation and Physiology and Biochemistry Research Center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, PR China
| | - Wuxing Huang
- College of Tobacco Science, Henan Agricultural University, National Tobacco Cultivation and Physiology and Biochemistry Research Center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, PR China
| |
Collapse
|
24
|
Liao X, Rao S, Yu T, Zhu Z, Yang X, Xue H, Gou Y, Cheng S, Xu F. Selenium yeast promoted the Se accumulation, nutrient quality and antioxidant system of cabbage ( Brassica oleracea var. capitata L.). PLANT SIGNALING & BEHAVIOR 2021; 16:1907042. [PMID: 33818289 PMCID: PMC8143226 DOI: 10.1080/15592324.2021.1907042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 05/31/2023]
Abstract
The application of Se yeast as a Se source to cultivate Se-rich cabbage has a significant effect on cabbage growth and quality indices. Results showed that total plant weight, head weight, and head size in cabbage were notably increased by 48.4%, 88.3%, and 25.4% under 16 mg/kg Se yeast treatment, respectively. Compare with the control, a high proportion of 3874% of Se accumulation in cabbage head was also detected in 16 mg/kg Se yeast treatment. Selenocystine (SeCys2) and Methyl-selenocysteine (MeSeCys) were the main Se speciations in the cabbage head. Application of 8 mg/kg Se yeast improved cabbage quality and antioxidant system indices, including free amino acid, soluble sugar, ascorbic acid, phenolic acid, glucosinolates, and SOD activity, which had 81.6%, 46.5%, 34.9%, 12.3%, 44.8%, 25.2% higher than that of the control, respectively. In summary, considering 8 mg/kg Se yeast as the appropriate level of Se enrichment during cabbage cultivation. These findings enhanced our understanding of the effects of Se yeast on the growth and quality of cabbage and provided new insights into Se-enrichment vegetable cultivation.
Collapse
Affiliation(s)
- Xiaoli Liao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Shen Rao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Tian Yu
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, China
- Enshi Se-Run Health Tech Development Co., Ltd, Enshi, 445000, China
| | - Zhenzhou Zhu
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, China
| | - Xiaoyan Yang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Hua Xue
- National Selenium Rich Product Quality Supervision and Inspection Center, Enshi, Hubei, 445000, China
| | - Yuanyuan Gou
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Shuiyuan Cheng
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, China
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| |
Collapse
|
25
|
Rao S, Yu T, Cong X, Lai X, Xiang J, Cao J, Liao X, Gou Y, Chao W, Xue H, Cheng S, Xu F. Transcriptome, proteome, and metabolome reveal the mechanism of tolerance to selenate toxicity in Cardamine violifolia. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124283. [PMID: 33187796 DOI: 10.1016/j.jhazmat.2020.124283] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 05/28/2023]
Abstract
Cardamine violifolia was found here to accumulate selenium (Se) to over 9000 mg kg-1 dry weight. To investigate the mechanism of Se accumulation and tolerance in C. violifolia, metabolome, transcriptome, and proteome technologies were applied to C. violifolia seedlings treated with selenate. Several sulfate transporter (Sultr) genes (Sultr1;1, Sultr1;2, and Sultr2;1) and sulfur assimilatory enzyme genes showed high expression levels in response to selenate. Many calcium protein and cysteine-rich kinase genes of C. violifolia were downregulated, whereas selenium-binding protein 1 (SBP1) and protein sulfur deficiency-induced 2 (SDI2) of C. violifolia were upregulated by selenate. The expression of genes involved in the ribosome and posttranslational modifications and chaperones in C. violifolia were also detected in response to selenate. Based on the results of this study and previous findings, we suggest that the downregulated expression of calcium proteins and cysteine-rich kinases, and the upregulated expression of SBP1 and SDI2, were important contributors to the Se tolerance of C. violifolia. The downregulation of cysteine-rich kinases and calcium proteins would enhance Se tolerance of C. violifolia is a novel proposition that has not been reported on other Se hyperaccumulators. This study provides us novel insights to understand Se accumulation and tolerance in plants.
Collapse
Affiliation(s)
- Shen Rao
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China; Engineering Research Center of Ecology and Agricultural Use of Wetland of Ministry of Education, Yangtze University, Jingzhou 434025, Hubei, China.
| | - Tian Yu
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China; Enshi Se-Run Health Tech Development Co., Ltd., Enshi 445000, China.
| | - Xin Cong
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China; Enshi Se-Run Health Tech Development Co., Ltd., Enshi 445000, China.
| | - Xiaozhuo Lai
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China.
| | - Jiqian Xiang
- Enshi Autonomous Prefecture Academy of Agriculture Sciences, Enshi 445002, China.
| | - Jie Cao
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China.
| | - Xiaoli Liao
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China.
| | - Yuanyuan Gou
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China.
| | - Wei Chao
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China.
| | - Hua Xue
- National Selenium Rich Product Quality Supervision and Inspection Center, Enshi 445000, Hubei, China.
| | - Shuiyuan Cheng
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China; National Selenium Rich Product Quality Supervision and Inspection Center, Enshi 445000, Hubei, China.
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China; Engineering Research Center of Ecology and Agricultural Use of Wetland of Ministry of Education, Yangtze University, Jingzhou 434025, Hubei, China.
| |
Collapse
|
26
|
The Effect of Foliar Selenium (Se) Treatment on Growth, Photosynthesis, and Oxidative-Nitrosative Signalling of Stevia rebaudiana Leaves. Antioxidants (Basel) 2021; 10:antiox10010072. [PMID: 33429850 PMCID: PMC7826996 DOI: 10.3390/antiox10010072] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/02/2021] [Accepted: 01/05/2021] [Indexed: 12/22/2022] Open
Abstract
Selenium (Se) enrichment of Stevia rebaudiana Bertoni can serve a dual purpose, on the one hand to increase plant biomass and stress tolerance and on the other hand to produce Se fortified plant-based food. Foliar Se spraying (0, 6, 8, 10 mg/L selenate, 14 days) of Stevia plantlets resulted in slightly decreased stevioside and rebaudioside A concentrations, and it also caused significant increment in stem elongation, leaf number, and Se content, suggesting that foliar Se supplementation can be used as a biofortifying approach. Furthermore, Se slightly limited photosynthetic CO2 assimilation (AN, gsw, Ci/Ca), but exerted no significant effect on chlorophyll, carotenoid contents and on parameters associated with photosystem II (PSII) activity (FV/FM, F0, Y(NO)), indicating that Se causes no photodamage in PSII. Further results indicate that Se is able to activate PSI-cyclic electron flow independent protection mechanisms of the photosynthetic apparatus of Stevia plants. The applied Se activated superoxide dismutase (SOD) isoenzymes (MnSOD1, FeSOD1, FeSOD2, Cu/ZnSOD1, Cu/ZnSOD2) and down-regulated NADPH oxidase suggesting the Se-induced limitation of superoxide anion levels and consequent oxidative signalling in Stevia leaves. Additionally, the decrease in S-nitrosoglutathione reductase protein abundance and the intensification of protein tyrosine nitration indicate Se-triggered nitrosative signalling. Collectively, these results suggest that Se supplementation alters Stevia shoot morphology without significantly affecting biomass yield and photosynthesis, but increasing Se content and performing antioxidant effects, which indicates that foliar application of Se may be a promising method in Stevia cultivation.
Collapse
|