1
|
Cuccaro A, Moreira A, De Marchi L, Meucci V, Soares AMVM, Pretti C, Freitas R. Impacts of UV-filter pollution and low pH: Sperm and adult biomarkers in the mussel Mytilus galloprovincialis in a multi-stressor context. JOURNAL OF HAZARDOUS MATERIALS 2025; 481:136405. [PMID: 39566449 DOI: 10.1016/j.jhazmat.2024.136405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/20/2024] [Accepted: 11/03/2024] [Indexed: 11/22/2024]
Abstract
In an era of unprecedented environmental changes, understanding the combined effects of multiple stressors on species' performance is urgent. The increasing UV-filter incorporation in daily-life products raises concerns about their potential impact on marine-coastal environments upon release. As stressors rarely act alone, global change-induced factors, such as ocean acidification (OA), can amplify ecological hazards promoted by contaminants in coastal realms. This study investigated the combined impacts of UV-filters 4-methylbenzylidene camphor (4-MBC) and benzophenone-3 (BP-3), at ecologically relevant concentrations (1 and 10 µg/L), under two target pH levels (8.2 and 7.7, reflecting a ∆pH of 0 and -0.3 relative to the average pH at the sampling site), on the biological performance and male reproductive health of the mussel Mytilus galloprovincialis. Using sperm and adult assays alongside a multi-biomarker approach, the study revealed that pH was the primary driver of the decline in mussel physiological and biochemical performances, further intensifying UV-filters' impacts. While sperm cells showed adaptive responses to low pH conditions alone, characterized by reduced lipid peroxidation (LPO) levels and superoxide anion overproduction, adult mussels experienced more pronounced effects, particularly under simultaneous exposure to low pH and UV-filters. Specifically, the adults exhibited distinct bioconcentration patterns under low pH, enhanced cellular metabolic activity and energy-demand compensatory processes, activation of biotransformation pathways, and regulation of antioxidant defenses. Given the ecological and socio-economic importance of M. galloprovincialis and its demonstrated vulnerability to these stressors, these findings highlight the need for further studies on potential transgenerational impacts and evolutionary implications for mussel populations.
Collapse
Affiliation(s)
- Alessia Cuccaro
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Anthony Moreira
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Lucia De Marchi
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado, 56122, Pisa, Italy
| | - Valentina Meucci
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado, 56122, Pisa, Italy
| | - Amadeu M V M Soares
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Carlo Pretti
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado, 56122, Pisa, Italy; Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci", 57128, Livorno, Italy
| | - Rosa Freitas
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
2
|
Leite C, Russo T, Polese G, Soares AMVM, Pretti C, Pereira E, Freitas R. Effects of the Interaction of Salinity and Rare Earth Elements on the Health of Mytilus galloprovincialis: The Case of Praseodymium and Europium. J Xenobiot 2024; 14:2015-2038. [PMID: 39728416 DOI: 10.3390/jox14040108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024] Open
Abstract
The growing use of products containing rare earth elements (REEs) may lead to higher environmental emissions of these elements, which can potentially enter aquatic systems. Praseodymium (Pr) and europium (Eu) are widely used REEs with various applications. However, their ecotoxicological impacts remain largely unexplored, with poorly understood risks to wildlife. Moreover, organisms also face environmental stressors like salinity fluctuations, and the nature of the interaction between salinity variations and contaminants is not yet clear. Therefore, this study aimed to evaluate the influence of salinity shifts on the impacts of Pr and Eu on adult mussels and the sperm of the species Mytilus galloprovincialis after 28 days and 30 min of exposure, respectively. To do so, biochemical and histopathological alterations were evaluated in adults, while biochemical and physiological changes were analysed in sperm. Additionally, the Integrated Biological Index (IBR) was calculated to understand the overall impact of each treatment. The results showed that adult mussels were most affected when exposed to the combination of high salinity and each element, which altered the behaviour of defence mechanisms causing redox imbalance and cellular damage. On the other hand, sperm demonstrated sensitivity to specific REE-salinity combinations, particularly Pr at lower salinity and Eu at higher salinity. These specific treatments elicited changes in sperm motility and velocity: Pr 20 led to a higher production of O2- and a decrease in velocity, while Eu 40 resulted in reduced motility and an increase in irregular movement. At both lower and higher salinity levels, exposure to Eu caused similar sensitivities in adults and sperm, reflected by comparable IBR scores. In contrast, Pr exposure induced greater alterations in sperm than in adult mussels at lower salinity, whereas the reverse was observed at higher salinity. These findings suggest that reproductive success and population dynamics could be modulated by interactions between salinity levels and REE pollution, highlighting the need for further investigation into how REEs and environmental factors interact. This study offers valuable insights to inform policymakers about the potential risks of REE contamination, emphasising the importance of implementing environmental regulations and developing strategies to mitigate the impact of these pollutants.
Collapse
Affiliation(s)
- Carla Leite
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Tania Russo
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy
| | - Gianluca Polese
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy
| | - Amadeu M V M Soares
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carlo Pretti
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado, 56122 Pisa, Italy
- Interuniversity Consortium of Marine Biology of Leghorn "G. Bacci", 57128 Livorno, Italy
| | - Eduarda Pereira
- Department of Chemistry & LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
3
|
Cuccaro A, De Marchi L, Pirone A, Monni G, Meucci V, Lazzarini G, Fumagalli G, Oliva M, Miragliotta V, Freitas R, Pretti C. Interplay of UV-filter pollution and temperature rise scenarios on Mytilus galloprovincialis health: Unveiling sperm quality and adult physiology, biochemistry, and histology insights. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124930. [PMID: 39260551 DOI: 10.1016/j.envpol.2024.124930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/07/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Addressing the impacts of emerging contaminants within the context of climate change is crucial for understanding ecosystem health decline. Among these, the organic UV-filters 4-methylbenzylidenecamphor (4-MBC) and benzophenone-3 (BP-3) are widely used in cosmetics and personal care products. Their unique physico-chemical properties, along with their growing commercialization and consumption, have made them ubiquitous in aquatic environments through both direct and indirect releases, raising significant concerns about their potential threats to inhabiting biota. Additionally, increasing surface water temperatures exacerbate ecological risks, making it imperative to understand the implications for non-target species at different biological levels. This study investigated the short- and long-term effects of UV-filters 4-MBC or BP-3, at ecologically relevant concentrations, combined with current and predicted warming scenarios, on the performance and male reproductive health of Mytilus galloprovincialis mussel populations. Using biomarkers across sub-cellular, cellular, tissue, and individual levels, the study revealed significant physiological and biochemical impairments in both sperm cells and adults exposed to UV-filters. Temperature emerged as the primary driver influencing mussel responses and modulating the impacts of 4-MBC/BP-3, emphasizing their sensitivity to temperatures outside the optimal range and interactive effects between stressors. Specifically, sperm motility declined with increasing UV-filter concentrations, while temperature alone influenced ROS production, leading to compromised mitochondrial activity and DNA damage in the presence of combined stressors, indicative of potential reproductive impairments. Adults exhibited high UV-filter bioconcentration potential in whole tissues, compromised physiological status, morphophysiological changes in digestive glands, oxidative stress, and alterations in metabolic capacity, antioxidant defences, and biotransformation mechanisms, correlating with UV-filter exposure and temperature increase. Among the UV-filters tested, 4-MBC was the most detrimental, especially when combined with warming. Overall, this study underscores the vulnerability of M. galloprovincialis to cumulative stressors and highlights the importance of employing a multi-biomarker approach to assess and mitigate the impacts of stressors on coastal ecosystems.
Collapse
Affiliation(s)
- Alessia Cuccaro
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Lucia De Marchi
- Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado, PI, Italy
| | - Andrea Pirone
- Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado, PI, Italy
| | - Gianfranca Monni
- Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado, PI, Italy
| | - Valentina Meucci
- Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado, PI, Italy
| | - Giulia Lazzarini
- Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado, PI, Italy
| | - Giorgia Fumagalli
- Interuniversity Consortium of Marine Biology and Applied Ecology, "G. Bacci", 57128, Livorno, Italy
| | - Matteo Oliva
- Interuniversity Consortium of Marine Biology and Applied Ecology, "G. Bacci", 57128, Livorno, Italy
| | - Vincenzo Miragliotta
- Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado, PI, Italy
| | - Rosa Freitas
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Carlo Pretti
- Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado, PI, Italy; Interuniversity Consortium of Marine Biology and Applied Ecology, "G. Bacci", 57128, Livorno, Italy.
| |
Collapse
|
4
|
Leite C, Russo T, Cuccaro A, Pinto J, Polese G, Soares AMVM, Pretti C, Pereira E, Freitas R. Rare earth elements and warming: Implications for adult mussel health and sperm quality. MARINE ENVIRONMENTAL RESEARCH 2024; 201:106666. [PMID: 39133969 DOI: 10.1016/j.marenvres.2024.106666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 09/09/2024]
Abstract
The present study aimed to investigate the effects of europium (Eu) exposure (10 μg/L), warming (a 4 °C increase), and their combination on Mytilus galloprovincialis. Biochemical and histopathological changes in adult mussels were evaluated after a 28-day exposure period. Additionally, biochemical and physiological alterations in sperm were measured following a 30-min exposure period. The overall responses to each treatment were assessed using the Integrated Biological Response index version 2 (IBRv2). In adult mussels, warming elevated metabolism and activated glutathione S-transferases (GSTs), leading to redox imbalance and cellular damage. Europium exposure alone slightly enhanced metabolism and GSTs activity, resulting in cellular damage and histopathological injuries in digestive tubules. The combined exposure to Eu and warming was the most detrimental treatment for adults, as indicated by the highest IBRv2 value. This treatment slightly increased metabolism and uniquely elevated the activity of antioxidant enzymes, as well as GSTs and carboxylesterases. Despite these responses, they were inadequate to prevent redox imbalance, cellular damage, and histopathological injuries in digestive tubules and gills. Regarding sperm, warming reduced reactive oxygen species (ROS) production but raised lipid peroxidation levels. Sperm exposed to this treatment also increased their oxygen consumption and exhibited reduced velocity. The IBRv2 indicated that Eu was the most harmful treatment for sperm, significantly increasing ROS production and notably decreasing sperm velocity. When combined with warming, Eu elevated superoxide anion (O2-) production, lowered sperm velocity, and increased oxygen consumption. This study underscores the importance of investigating the effects of rare earth elements and their interaction with climate change-related factors.
Collapse
Affiliation(s)
- Carla Leite
- Department of Biology & CESAM, University of Aveiro 3810-193, Aveiro, Portugal
| | - Tania Russo
- Department of Biology, University of Naples Federico II, 80126, Napoli, Italy
| | - Alessia Cuccaro
- Department of Biology & CESAM, University of Aveiro 3810-193, Aveiro, Portugal
| | - João Pinto
- Department of Chemistry & LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Gianluca Polese
- Department of Biology, University of Naples Federico II, 80126, Napoli, Italy
| | - Amadeu M V M Soares
- Department of Biology & CESAM, University of Aveiro 3810-193, Aveiro, Portugal
| | - Carlo Pretti
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado, 56122, Pisa, Italy; Interuniversity Consortium of Marine Biology of Leghorn "G. Bacci", 57128, Livorno, Italy
| | - Eduarda Pereira
- Department of Chemistry & LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology & CESAM, University of Aveiro 3810-193, Aveiro, Portugal.
| |
Collapse
|
5
|
Leite C, Russo T, Cuccaro A, Pinto J, Polese G, Soares AMVM, Pretti C, Pereira E, Freitas R. Praseodymium and warming interactions in mussels: Comparison between observed and predicted results. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:172893. [PMID: 38692321 DOI: 10.1016/j.scitotenv.2024.172893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/19/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Being a crucial element for technological development, praseodymium (Pr) has been increasingly used, leading to a rise in its concentration in aquatic systems. However, its potential threats to organisms remain poorly understood. Besides contamination, organisms are also threatened by climate change-related factors, including warming. It is important to evaluate how climate change-related factors may influence the effects of contaminants. To address this, histopathological and biochemical analyses were performed in adult mussels of Mytilus galloprovincialis, following a 28-day exposure to Pr (10 μg/L) and warming (4 °C increase) separately, and in combination. Additionally, biochemical and physiological alterations were analysed in the sperm of mussels after 30-min exposure to the same treatments. Furthermore, it was used the Independent Action model to predict the interaction between Pr and warming. The results showed, in the case of adults exposed to Pr, an increase in superoxide dismutase (SOD) and glutathione S-transferases (GSTs) activities. However, it was insufficient, leading to histopathological injuries, redox imbalance, and cellular damage. In the case of sperm, Pr induced an increase of mitochondrial activity and respiration rate, in response to the increase in systemic metabolic rate and oxygen demand. Warming increased the metabolism, and induced redox imbalance and cellular damage in adults. In sperm, a rise in temperature induced lipid peroxidation and a decrease in velocity. Warming induced some alterations in how adult mussels responded to Pr, activating catalase instead of SOD, and in addition to GSTs, also activated carboxylesterases. However, it was not enough to avoid redox imbalance and cellular damage. In the case of sperm, the combination induced a decrease in H2O2 production, and higher oxygen demand, which prevented the decrease in motility and velocity. This study highlights the limitations of using models and emphasizes the importance of studying the impacts of emerging contaminants, such as rare earth elements, and their combination with climate change-related factors. Under environmental conditions, chronic exposure to the combined effect of different stressors might generate impacts at higher biological levels. This may affect organisms' respiratory and filtration capacity, nutrient absorption, defence capacity against infections or diseases, and sperm viability, ultimately resulting in reduced growth and reproduction, with consequences at the population level.
Collapse
Affiliation(s)
- Carla Leite
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Tania Russo
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy
| | - Alessia Cuccaro
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; Department of Veterinary Sciences, University of Pisa, San Piero a Grado, 56122 Pisa, Italy
| | - João Pinto
- Department of Chemistry, LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Gianluca Polese
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy
| | - Amadeu M V M Soares
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carlo Pretti
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado, 56122 Pisa, Italy; Interuniversity Consortium of Marine Biology of Leghorn "G. Bacci", 57128 Livorno, Italy
| | - Eduarda Pereira
- Department of Chemistry, LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
6
|
Leite C, Russo T, Cuccaro A, Pinto J, Polese G, Soares AM, Pretti C, Pereira E, Freitas R. The role of warming in modulating neodymium effects on adults and sperm of Mytilus galloprovincialis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120854. [PMID: 38640759 DOI: 10.1016/j.jenvman.2024.120854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 04/21/2024]
Abstract
The use of rare earth elements (REEs) has been increasing and one of the most used is neodymium (Nd). Being an emergent contaminant, its negative impacts are poorly understood. Aquatic organisms are also threatened by climate change-related factors, as is the case of warming, which can change the effects of REEs. Thus, the impacts of Nd, warming, and the combination of both stressors were studied in adult mussels and sperm of the species Mytilus galloprovincialis, after an exposure period of 28 days (adults) and 30 min (sperm). The effects were evaluated through the analysis of biochemical and histopathological alterations in adults and biochemical and physiological responses given by sperm. The results showed that mussels only activated their biotransformation capacity when exposed to the stressors acting alone, which was insufficient to avoid lipid peroxidation. Furthermore, warming (alone and combined with Nd) also produces damage to proteins. The digestive gland was the most sensitive organ to Nd, presenting several histopathological alterations. In the case of sperm, all stressors induced lipid peroxidation, a higher oxygen demand, and a decrease in velocity, even if the sperm viability was maintained. It seems that warming influenced the effects of Nd to some extent. The present findings contribute significantly to the field of REEs environmental toxicology by offering valuable insights into the impacts of Nd on various biological levels of mussels. Additionally, within the context of climate change, this study sheds light on how temperature influences the effects of Nd. The obtained results indicate that both stressors can potentially compromise the overall health of mussel populations, thereby affecting other species reliant on them for food and habitat. Moreover, this study highlights impaired sperm health, which could adversely affect their reproductive capacity and ultimately lead to population decline.
Collapse
Affiliation(s)
- Carla Leite
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Tania Russo
- Department of Biology, University of Naples Federico II, 80126, Napoli, Italy
| | - Alessia Cuccaro
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal; Department of Veterinary Sciences, University of Pisa, San Piero a Grado, 56122, Pisa, Italy
| | - João Pinto
- Department of Chemistry & LAQV-REQUIMTE, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Gianluca Polese
- Department of Biology, University of Naples Federico II, 80126, Napoli, Italy
| | - Amadeu Mvm Soares
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Carlo Pretti
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado, 56122, Pisa, Italy; Interuniversity Consortium of Marine Biology of Leghorn "G. Bacci", 57128, Livorno, Italy
| | - Eduarda Pereira
- Department of Chemistry & LAQV-REQUIMTE, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
7
|
Vellani V, Cuccaro A, Oliva M, Pretti C, Renzi M. Assessing combined effects of long-term exposure to copper and marine heatwaves on the reef-forming serpulid Ficopomatus enigmaticus through a biomarker approach. MARINE POLLUTION BULLETIN 2024; 201:116269. [PMID: 38531206 DOI: 10.1016/j.marpolbul.2024.116269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
Sessile benthic organisms can be affected by global changes and local pressures, such as metal pollution, that can lead to damages at different levels of biological organization. Effects of exposure to marine heatwaves (MHWs) alone and in combination with environmentally relevant concentration of copper (Cu) were evaluated in the reef-forming tubeworm Ficopomatus enigmaticus using a multi-biomarker approach. Biomarkers of cell membrane damage, enzymatic antioxidant defences, metabolic activity, neurotoxicity, and DNA integrity were analyzed. The exposure to Cu alone did not produce any significant effect. Exposure to MHWs alone produced effects only on metabolic activity (increase of glutathione S-transferase) and energy reserves (decrease in protein content). MHWs in combination with copper was the condition that most influenced the status of cell homeostasis of exposed F. enigmaticus. The combination of MHWs plus Cu exposure induced increase of protein carbonylation and glutathione S-transferase activity, decrease in protein/carbohydrate content and carboxylesterase activity. This study on a reef-forming organism highlighted the additive effect of a climate change-related stressor to metals pollution of marine and brackish waters.
Collapse
Affiliation(s)
- Verdiana Vellani
- Department of Life Sciences, University of Trieste, 34127 Trieste, TS, Italy; CoNiSMa, Piazzale Flaminio 9, 00196 Roma, Italy
| | - Alessia Cuccaro
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Matteo Oliva
- Interuniversity Consortium of Marine Biology of Leghorn 'G. Bacci', 57128 Leghorn, Italy
| | - Carlo Pretti
- Interuniversity Consortium of Marine Biology of Leghorn 'G. Bacci', 57128 Leghorn, Italy; Department of Veterinary Sciences, University of Pisa, San Piero a Grado, PI 56122, Italy.
| | - Monia Renzi
- Department of Life Sciences, University of Trieste, 34127 Trieste, TS, Italy; CoNiSMa, Piazzale Flaminio 9, 00196 Roma, Italy
| |
Collapse
|
8
|
Leite C, Russo T, Cuccaro A, Pinto J, Polese G, Soares AMVM, Pretti C, Pereira E, Freitas R. Can temperature rise change the impacts induced by e-waste on adults and sperm of Mytilus galloprovincialis? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166085. [PMID: 37549702 DOI: 10.1016/j.scitotenv.2023.166085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/21/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Nowadays, it is of utmost importance to consider climate change factors, such as ocean warming, since the risk of negative impacts derived from increased surface water temperature is predicted to be high to the biodiversity. The need for renewable energy technologies, to reduce greenhouse gas emissions, has led to the increasing use of rare earth elements (REEs). Dysprosium (Dy) is widely used in magnets, motors, electrical vehicles, and nuclear reactors, being considered a critical REE to technology due to its economic importance and high supply risk. However, the increasing use of this element contributes to the enrichment of anthropogenic REEs in aquatic systems. Nevertheless, the information on the potential toxicity of Dy is limited. Moreover, the effects of pollutants can be amplified when combined with climate change factors. Thus, this study aimed to assess the effects of Dy (10 μg/L) in the species Mytilus galloprovincialis under actual (17 °C) and predicted warming conditions (21 °C). The Dy concentration in contaminated mussels was similar between temperatures, probably due to the detoxification capacity in individuals under these treatments. The combined stressors affected the redox balance, but higher impacts were caused by Dy and warming acting alone. In terms of cellular damage, although Dy acting alone was prejudicial to mussels, warming and both stressors acting together induced higher levels of LPO and PC. The histopathological effects of Dy in the digestive tubules were independent of the temperature tested. Regarding effects on sperm, only warming induced cellular damage, while both stressors, alone and together, impaired sperm movement. Overall, this study highlights that warming might influence the effects induced by Dy, but greater impacts were caused by the element. Eventually, the tested stressors may have consequences on mussels' reproduction capacity as well as their growth, abundance, and survival.
Collapse
Affiliation(s)
- Carla Leite
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Tania Russo
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy
| | - Alessia Cuccaro
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; Interuniversity Consortium of Marine Biology of Leghorn "G. Bacci", 57128 Livorno, Italy
| | - João Pinto
- Department of Chemistry & LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Gianluca Polese
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy
| | - Amadeu M V M Soares
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carlo Pretti
- Interuniversity Consortium of Marine Biology of Leghorn "G. Bacci", 57128 Livorno, Italy; Department of Veterinary Sciences, University of Pisa, San Piero a Grado, 56122 Pisa, Italy
| | - Eduarda Pereira
- Department of Chemistry & LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
9
|
Cruz P, Cuccaro A, Pretti C, He Y, Soares AMVM, Freitas R. Comparative subcellular responses to pharmaceutical exposures in the mussel Mytilus galloprovincialis: An in vitro study. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 104:104314. [PMID: 37979633 DOI: 10.1016/j.etap.2023.104314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
Pharmaceutical active compounds (PhACs) have raised concerns in the last decade due to their increased consumption and inadequate elimination during discharge, resulting in their introduction into water systems and potential significant threats to non-target organisms. However, few studies have investigated the sublethal impacts of PhAC exposure on marine invertebrates. Thus, the present study aimed to assess tissue-specific responses in Mytilus galloprovincialis to sodium lauryl sulfate (SLS), salicylic acid (SA), and caffeine (CAF) (4.0 mg/L, 4.0 mg/L and 2.0 μg/L, respectively). Short-term in vitro exposures with mussel digestive gland and gill tissues were conducted and biochemical responses related to antioxidant and detoxification capacity, cellular damage and neurotoxicity were assessed. The present results clearly showed significant differences in tissue sensitivity and biochemical responses to the contaminants tested. This study highlights the suitability of filter-feeder species as valuable model organisms for studying the sublethal effects of unintended environmental exposures to PhACs.
Collapse
Affiliation(s)
- Patrícia Cruz
- Departamento de Biologia, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Alessia Cuccaro
- Departamento de Biologia, Universidade de Aveiro, 3810-193 Aveiro, Portugal; CESAM-Centre for Environmental and Sea Studies, Universidade de Aveiro, 3810-193 Aveiro, Portugal; Department of Veterinary Sciences, University of Pisa, San Piero a Grado (PI), 56122, Italy
| | - Carlo Pretti
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado (PI), 56122, Italy; Interuniversity Consortium of Marine Biology of Leghorn "G. Bacci", Livorno 57128, Italy
| | - Yide He
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Amadeu M V M Soares
- Departamento de Biologia, Universidade de Aveiro, 3810-193 Aveiro, Portugal; CESAM-Centre for Environmental and Sea Studies, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Departamento de Biologia, Universidade de Aveiro, 3810-193 Aveiro, Portugal; CESAM-Centre for Environmental and Sea Studies, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
10
|
Bordalo D, Cuccaro A, Meucci V, De Marchi L, Soares AMVM, Pretti C, Freitas R. Will warmer summers increase the impact of UV filters on marine bivalves? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162108. [PMID: 36773902 DOI: 10.1016/j.scitotenv.2023.162108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/11/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Marine organisms are constantly exposed to multiple stressors including pollutants released into the environment, such as personal care products (PCPs), and climate change-derived factors, namely warming, which are aggravated by anthropogenic drivers and pose increasing pressure on coastal ecosystems. Avobenzone (AVO) is one of the most used ultraviolet (UV) filters in PCPs which have been increasingly used and, thereby, identified in aquatic environments. However, data regarding the influence of warming on the impacts caused by AVO in bivalves is lacking. Mussels are considered good bioindicators thus being often employed in ecotoxicology studies. Hence, the present study aimed to evaluate the toxic effects of an environmentally relevant concentration of AVO (0.5 μg/L) and warming (21 °C), acting alone or in combination, on sperm and adults of the Mediterranean mussel species Mytilus galloprovincialis, through in vitro and in vivo tests, respectively. AVO and warming effects were evaluated by assessing oxidative status, viability, genotoxicity, motility, and kinetics in sperm, together with the quantification of energy content, metabolic capacity, biological defence mechanisms, cellular damage, and neurotoxicity in adults. AVO induced genotoxicity and increased respiration rate in sperm while enhancing the biotransformation enzymes' activity in adults. Exposure to warming led to an increase in respiration rate, ROS overproduction, cellular damage, and viability decrease in sperm whereas metabolic capacity increased in adults. AVO combined with warming caused oxidative stress, cellular damage, genotoxicity, and decreased motility in sperm, while only antioxidant enzymes' activity was enhanced in adults. Overall, the present study demonstrated that when acting in combination the effects of both stressors were more prominent. Furthermore, considering the multiple-stressor scenario tested, major toxic effects occurred in male gametes in comparison to adults.
Collapse
Affiliation(s)
- Diana Bordalo
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Alessia Cuccaro
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal; Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado (PI), Italy
| | - Valentina Meucci
- Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado (PI), Italy
| | - Lucia De Marchi
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci", 57128 Livorno, Italy
| | - Amadeu M V M Soares
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carlo Pretti
- Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado (PI), Italy; Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci", 57128 Livorno, Italy
| | - Rosa Freitas
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
11
|
Oliva M, De Marchi L, Cuccaro A, Fumagalli G, Freitas R, Fontana N, Raugi M, Barmada S, Pretti C. Introducing energy into marine environments: A lab-scale static magnetic field submarine cable simulation and its effects on sperm and larval development on a reef forming serpulid. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 328:121625. [PMID: 37085101 DOI: 10.1016/j.envpol.2023.121625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/07/2023] [Accepted: 04/09/2023] [Indexed: 05/03/2023]
Abstract
Non-chemical sources of anthropogenic environmental stress, such as artificial lights, noise and magnetic fields, are still an underestimate factor that may affect the wildlife. Marine environments are constantly subjected to these kinds of stress, especially nearby to urbanized coastal areas. In the present work, the effect of static magnetic fields, associated with submerged electric cables, was evaluated in gametes and early life stages of a serpulid polychaete, namely Ficopomatus enigmaticus. Specifically, biochemical/physiological impairments of sperm, fertilization rate inhibition and incorrect larval development were assessed. We evaluated differences between two selected magnetic field induction values (0.5 and 1 mT) along a range of exposure times (30 min-48 h), for a sound evaluation on this species. We found that a magnetic induction of 1 mT, a typical value that can be found at distance of tens of cm from a submerged cable, may be considered a biologically and ecologically relevant for sessile organisms and for coastal environments more generally. This value exerted statistically significant effects on membranes, DNA integrity, kinetic parameters and mitochondrial activity of sperm cells. Moreover, a significant reduction in fertilization rate was observed in sperm exposed to the same magnetic induction level (1 mT) for 3 h, compared to controls. Regarding early larval stages, 48-h exposure did not affect the correct development. Our results represent a starting point for a future focus of research on magnetic field effects on early life stages of aquatic invertebrates, using model species as representative for reef-forming/encrusting organisms and ecological indicators of soft sediment quality.
Collapse
Affiliation(s)
- Matteo Oliva
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci" (CIBM), Viale N. Sauro 4, 57128, Livorno, Italy.
| | - Lucia De Marchi
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci" (CIBM), Viale N. Sauro 4, 57128, Livorno, Italy; Department of Veterinary Sciences, University of Pisa, Via Livornese (lato monte), 56122, San Piero a Grado, Pisa, Italy.
| | - Alessia Cuccaro
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal; Department of Veterinary Sciences, University of Pisa, Via Livornese (lato monte), 56122, San Piero a Grado, Pisa, Italy.
| | - Giorgia Fumagalli
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci" (CIBM), Viale N. Sauro 4, 57128, Livorno, Italy.
| | - Rosa Freitas
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Nunzia Fontana
- Department of Energy, Systems, Territory and Construction Engineering of Organization, University of Pisa, Largo Lucio Lazzarino, 56122, Pisa, Italy.
| | - Marco Raugi
- Department of Energy, Systems, Territory and Construction Engineering of Organization, University of Pisa, Largo Lucio Lazzarino, 56122, Pisa, Italy.
| | - Sami Barmada
- Department of Energy, Systems, Territory and Construction Engineering of Organization, University of Pisa, Largo Lucio Lazzarino, 56122, Pisa, Italy.
| | - Carlo Pretti
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci" (CIBM), Viale N. Sauro 4, 57128, Livorno, Italy; Department of Veterinary Sciences, University of Pisa, Via Livornese (lato monte), 56122, San Piero a Grado, Pisa, Italy.
| |
Collapse
|
12
|
Oliva M, Martinelli E, Guazzelli E, Cuccaro A, De Marchi L, Fumagalli G, Monni G, Vasarri M, Degl'Innocenti D, Pretti C. Posidonia oceanica (L.) (Delile, 1813) extracts as a potential booster biocide in fouling-release coatings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:18480-18490. [PMID: 36215022 DOI: 10.1007/s11356-022-23460-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Since the banning of tributyltin, the addition of inorganic (metal oxides) and organic (pesticides, herbicides) biocides in antifouling paint has represented an unavoidable step to counteract biofouling and the resulting biodeterioration of submerged surfaces. Therefore, the development of new methods that balance antifouling efficacy with environmental impact has become a topic of great importance. Among several proposed strategies, natural extracts may represent one of the most suitable alternatives to the widely used toxic biocides. Posidonia oceanica is one of the most representative organisms of the Mediterranean Sea and contains hundreds of bioactive compounds. In this study, we prepared, characterized, and assessed a hydroalcoholic extract of P. oceanica and then compared it to three model species. Together, these four species belong to relevant groups of biofoulers: bacteria (Aliivibrio fischeri), diatoms (Phaeodactylum tricornutum), and serpulid polychaetes (Ficopomatus enigmaticus). We also added the same P. oceanica extract to a PDMS-based coating formula. We tested this coating agent with Navicula salinicola and Ficopomatus enigmaticus to evaluate both its biocidal performance and its antifouling properties. Our results indicate that our P. oceanica extract provides suitable levels of protection against all the tested organisms and significantly reduces adhesion of N. salinicola cells and facilitates their release in low-intensity waterflows.
Collapse
Affiliation(s)
- Matteo Oliva
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci" (CIBM), Viale N. Sauro 4, 57128, Livorno, Italy.
| | - Elisa Martinelli
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124, Pisa, Italy
| | - Elisa Guazzelli
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124, Pisa, Italy
| | - Alessia Cuccaro
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Lucia De Marchi
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci" (CIBM), Viale N. Sauro 4, 57128, Livorno, Italy
| | - Giorgia Fumagalli
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci" (CIBM), Viale N. Sauro 4, 57128, Livorno, Italy
| | - Gianfranca Monni
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124, Pisa, Italy
| | - Marzia Vasarri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Donatella Degl'Innocenti
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci" (CIBM), Viale N. Sauro 4, 57128, Livorno, Italy
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Carlo Pretti
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci" (CIBM), Viale N. Sauro 4, 57128, Livorno, Italy
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124, Pisa, Italy
| |
Collapse
|
13
|
Huang C, Shen Z, Li L, Yue S, Jia L, Wang K, Zhou W, Qiao Y. Reproductive damage and compensation of wild earthworm Metaphire californica from contaminated fields with long-term heavy metal exposure. CHEMOSPHERE 2023; 311:137027. [PMID: 36419262 DOI: 10.1016/j.chemosphere.2022.137027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Reproduction is a significant biological process for organisms responding to environmental stresses, however, little is known about the reproductive strategies of invertebrates under long-term exposure to contaminations. In this study, earthworm Metaphire californica (Kinberg, 1867) from contaminated fields with an increased metal gradient were collected to investigate their reproductive responses. The results showed heavy metals (Cd, Cu, Zn, and Pb) induced histological damage to earthworms' seminal vesicles, including tissue disorders and cavities, and decreases in mature spermatozoa. Sperm morphology analysis indicated deformity rates were up to13.2% (e.g. head swollen or missing) for worms from the most contaminated site, which coincided with DNA damages. Furthermore, the computer-assisted sperm analysis (CASA) system was employed for the evaluation of sperm kinetic traits. Results suggested earthworms exposed to higher contamination showed a lower sperm viability rate but faster sperm velocity after re-exposure with Cd solution (like the curvilinear velocity and straight-line velocity paraments) compared with those from relatively clean sites. The activities of lactate dehydrogenase and sorbitol dehydrogenase showed the highest 32.5% and 12.5% up-regulation respectively with the increased metal gradient. In conclusion, this study elucidated the earthworm reproductive toxicity, underlying reproductive compensation, metal stress-induced damages, and adaptive responses caused by heavy metal exposure, while also providing the possibility of sperm trait analysis (CASA) for related earthworm toxicological studies.
Collapse
Affiliation(s)
- Caide Huang
- College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China; Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxon, OX10 8BB, UK
| | - Zhiqiang Shen
- College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Liang Li
- College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Shizhong Yue
- College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China; Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, China
| | - Li Jia
- College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China; Centre National de la Recherche Scientifique, Institut des Sciences de la Terre D'Orleans, Université D'Orleans-Brgm, UMR, 7327, France
| | - Kun Wang
- College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China; State Key Laboratory of North China Crop and Regulation, College of Resources and Environmental Science, Hebei Agricultural University, Baoding, 071001, China
| | - Wenhao Zhou
- College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Yuhui Qiao
- College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
14
|
Bordalo D, Cuccaro A, De Marchi L, Soares AMVM, Meucci V, Battaglia F, Pretti C, Freitas R. In vitro spermiotoxicity and in vivo adults' biochemical pattern after exposure of the Mediterranean mussel to the sunscreen avobenzone. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:119987. [PMID: 35995291 DOI: 10.1016/j.envpol.2022.119987] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/26/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Avobenzone (AVO) is one of the most frequent ultraviolet (UV) filters in personal care products (PCPs). The Mediterranean mussel Mytilus galloprovincialis is a bioindicator often used for ecotoxicological research. Since UV filters reach higher peaks during summer in aquatic bodies, coincident with mussels' spawning period, and bivalves are sessile, both male gametes and adults of this species were used in this experiment. Therefore, the present study aimed to assess how AVO affects M. galloprovincialis at different biological levels. In vitro experiments on sperms (30 min-exposure) and in vivo experiments on adults (28 days-exposure) were carried out at 0.1, 1.0 and 10.0 μg/L of AVO concentrations. The oxidative and physiological status together with genotoxicity in exposed sperms were assessed. Several biochemical parameters related to enzymatic antioxidant defences, biotransformation enzymes, cell membrane damage, energy reserves, and neurotoxicity were evaluated in adult mussels. Results of in vitro sperm exposure to AVO showed significant overproduction of superoxide anions and DNA damages in all treatments and decrease in sperm viability at 1.0 and 10.0 μg/L. AVO exposure also led to complete inhibition of motility of sperms at the highest concentration, while a significant increase of curvilinear velocity and decrease of wobble occurred at 1.0 μg/L. In vivo exposed adults exhibited a significant decrease in metabolic capacity at 0.1 μg/L, a significant increase in the total protein content and enzymatic turnover as superoxide dismutase (antioxidant defence) at 10 μg/L. This study revealed an ecological concern related to the high sensitivity of sperms respectively to adults under environmentally relevant concentrations of AVO, underpinning an hypothesis of male reproductive function impairments.
Collapse
Affiliation(s)
- Diana Bordalo
- Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Alessia Cuccaro
- Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal; Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Lucia De Marchi
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci", 57128, Livorno, Italy
| | - Amadeu M V M Soares
- Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal; Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Valentina Meucci
- Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado, PI, Italy
| | - Federica Battaglia
- Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado, PI, Italy
| | - Carlo Pretti
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci", 57128, Livorno, Italy; Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado, PI, Italy
| | - Rosa Freitas
- Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal; Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
15
|
Cuccaro A, De Marchi L, Oliva M, Battaglia F, Meucci V, Fumagalli G, Freitas R, Pretti C. Ecotoxicological effects of the UV-filter 4-MBC on sperms and adults of the mussel Mytilus galloprovincialis. ENVIRONMENTAL RESEARCH 2022; 213:113739. [PMID: 35750122 DOI: 10.1016/j.envres.2022.113739] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/23/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
Present in an increasing number of products, UV-filters are continuously discharged into aquatic environments. Despite potential risks for inhabiting organisms are recognized, the effects of UV-filter 4-methylbenzylidenecamphor (4-MBC) on marine invertebrates are poorly investigated. By combining in vitro/in vivo exposures through a multi-biomarker approach on sperms and adults, the present study evaluated how 4-MBC affect the mussel species Mytilus galloprovincialis, providing ecologically relevant information on organisms' responses. From the obtained results, considering mortality as endpoint, sperms revealed a greater sensitivity (EC50:347 μg/L) than adults (EC50: not calculable). From an ecotoxicological perspective, this resulted in a derived threshold concentration (LOEC) of 100 μg/L and 72 μg/L, respectively. Effects at the cell/molecular level were provided by general redox-status imbalance and oxidative stress. Sperms showed functional and structural impairments, hyperactivation and DNA damage, while adults showed physiological, metabolic/energetic dysfunctions, DNA damage and activation of oxidative and biotransformation enzymes. High 4-MBC bioaccumulation was also observed in exposed mussels (BCFs:14.0-32.0 L/kg). These findings suggest that 4-MBC may impair fitness and survival of the broadcast spawning mussel M. galloprovincialis, affecting reproduction success and population growth.
Collapse
Affiliation(s)
- Alessia Cuccaro
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal; Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci", 57128, Livorno, Italy
| | - Lucia De Marchi
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal; Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci", 57128, Livorno, Italy
| | - Matteo Oliva
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci", 57128, Livorno, Italy
| | - Federica Battaglia
- Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado, PI, Italy
| | - Valentina Meucci
- Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado, PI, Italy
| | - Giorgia Fumagalli
- Department of Biology, University of Pisa, Via Derna 1, 56126, Pisa, Italy
| | - Rosa Freitas
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Carlo Pretti
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci", 57128, Livorno, Italy; Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado, PI, Italy.
| |
Collapse
|
16
|
De Marchi L, Pretti C, Cuccaro A, Oliva M, Tardelli F, Monni G, Magri M, Bulleri F. A multi-bioassay integrated approach to assess antifouling potential of extracts from the Mediterranean sponge Ircinia oros. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:1521-1531. [PMID: 34351580 PMCID: PMC8724186 DOI: 10.1007/s11356-021-15683-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
The phylum Porifera and their symbionts produce a wide variety of bioactive compounds, playing a central role in their ecology and evolution. In this study, four different extracts (obtained by non-polar and semi-polar extraction methodologies) of the Mediterranean sponge Ircinia oros were tested through a multi-bioassay integrated approach to assess their antifouling potential. Tests were performed using three common species, associated with three different endpoints: the marine bacterium Aliivibrio fischeri (inhibition of bioluminescence), the marine diatom Phaeodactylum tricornutum (inhibition of growth), and different development stages of the brackish water serpulid Ficopomatus enigmaticus (gametes: sperm motion, vitality inhibition and cellular damage; larvae: development; adults: AChE (acetylcholinesterase)-inhibitory activity). The effects of extracts were species specific and did not vary among different extraction methodologies. In particular, no significant reduction of bioluminescence of A. fischeri was observed for all tested samples. By contrast, extracts inhibited P. tricornutum growth and had toxic effects on different F. enigmaticus' developmental stages. Our results suggest that the proposed test battery can be considered a suitable tool as bioactivity screening of marine natural products.
Collapse
Affiliation(s)
- Lucia De Marchi
- Dipartimento di Biologia - Unità di Ecologia e Biologia Marina, Università di Pisa, Pisa, Italy
| | - Carlo Pretti
- Consorzio per il Centro Interuniversitario di Biologia Marina ed Ecologia Applicata "G. Bacci" (CIBM), Livorno, Italy.
- Dipartimento di Scienze Veterinarie, Università di Pisa, Via Livornese lato monte, 56122, San Piero a Grado (PI) Pisa, Italy.
| | - Alessia Cuccaro
- Dipartimento di Scienze Veterinarie, Università di Pisa, Via Livornese lato monte, 56122, San Piero a Grado (PI) Pisa, Italy
- Departamento de Biologia, Universidade de Aveiro, Aveiro, Portugal
| | - Matteo Oliva
- Consorzio per il Centro Interuniversitario di Biologia Marina ed Ecologia Applicata "G. Bacci" (CIBM), Livorno, Italy
| | - Federica Tardelli
- Consorzio per il Centro Interuniversitario di Biologia Marina ed Ecologia Applicata "G. Bacci" (CIBM), Livorno, Italy
| | - Gianfranca Monni
- Dipartimento di Scienze Veterinarie, Università di Pisa, Via Livornese lato monte, 56122, San Piero a Grado (PI) Pisa, Italy
| | - Michele Magri
- Dipartimento di Biologia - Unità di Ecologia e Biologia Marina, Università di Pisa, Pisa, Italy
| | - Fabio Bulleri
- Dipartimento di Biologia - Unità di Ecologia e Biologia Marina, Università di Pisa, Pisa, Italy
| |
Collapse
|