1
|
Fang L, Lakshmanan P, Su X, Shi Y, Chen Z, Zhang Y, Sun W, Wu J, Xiao R, Chen X. Impact of residual antibiotics on microbial decomposition of livestock manures in Eutric Regosol: Implications for sustainable nutrient recycling and soil carbon sequestration. J Environ Sci (China) 2025; 147:498-511. [PMID: 39003065 DOI: 10.1016/j.jes.2023.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 07/15/2024]
Abstract
The land application of livestock manure has been widely acknowledged as a beneficial approach for nutrient recycling and environmental protection. However, the impact of residual antibiotics, a common contaminant of manure, on the degradation of organic compounds and nutrient release in Eutric Regosol is not well understood. Here, we studied, how oxytetracycline (OTC) and ciprofloxacin (CIP) affect the decomposition, microbial community structure, extracellular enzyme activities and nutrient release from cattle and pig manure using litterbag incubation experiments. Results showed that OTC and CIP greatly inhibited livestock manure decomposition, causing a decreased rate of carbon (28%-87%), nitrogen (15%-44%) and phosphorus (26%-43%) release. The relative abundance of gram-negative (G-) bacteria was reduced by 4.0%-13% while fungi increased by 7.0%-71% during a 28-day incubation period. Co-occurrence network analysis showed that antibiotic exposure disrupted microbial interactions, particularly among G- bacteria, G+ bacteria, and actinomycetes. These changes in microbial community structure and function resulted in decreased activity of urease, β-1,4-N-acetyl-glucosaminidase, alkaline protease, chitinase, and catalase, causing reduced decomposition and nutrient release in cattle and pig manures. These findings advance our understanding of decomposition and nutrient recycling from manure-contaminated antibiotics, which will help facilitate sustainable agricultural production and soil carbon sequestration.
Collapse
Affiliation(s)
- Linfa Fang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Prakash Lakshmanan
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs; Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia 4067, QLD, Australia
| | - Xiaoxuan Su
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yujia Shi
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Zheng Chen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yu Zhang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Wei Sun
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and National Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Junxi Wu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and National Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Ran Xiao
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China.
| | - Xinping Chen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China.
| |
Collapse
|
2
|
Guo N, Zhang H, Wang L, Yang Z, Li Z, Wu D, Chen F, Zhu Z, Song L. Metagenomic insights into the influence of pH on antibiotic removal and antibiotic resistance during nitritation: Regulations on functional genus and genes. ENVIRONMENTAL RESEARCH 2024; 261:119689. [PMID: 39068965 DOI: 10.1016/j.envres.2024.119689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/10/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
The changes in pH and the resulting presence of free nitrous acid (FNA) or free ammonia (FA) often inhibit antibiotic biodegradation during nitritation. However, the specific mechanisms through which pH, FNA and FA influence antibiotic removal and the fate of antibiotic resistance genes (ARGs) are not yet fully understood. In this study, the effects of pH, FNA, and FA on the removal of cefalexin and amoxicillin during nitritation were investigated. The results revealed that the decreased antibiotic removal under both acidic condition (pH 4.5) and alkaline condition (pH 9.5) was due to the inhibition of the expression of amoA in ammonia-oxidizing bacteria and functional genes (hydrolase-encoding genes, transferase-encoding genes, lyase-encoding genes, and oxidoreductase-encoding genes) in heterotrophs. Furthermore, acidity was the primary inhibitor of antibiotic removal at pH 4.5, followed by FNA. Antibiotic removal was primarily inhibited by alkalinity at pH 9.5, followed by FA. The proliferation of ARGs mediated by mobile genetic element was promoted under both acidic and alkaline conditions, attributed to the promotion of FNA and FA, respectively. Overall, this study highlights the inhibitory effects of acidity and alkalinity on antibiotic removal during nitritation.
Collapse
Affiliation(s)
- Ning Guo
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China; Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, China
| | - Hengyi Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Lin Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China; Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, China
| | - Zhuhui Yang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Zhao Li
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Daoji Wu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China; Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, China
| | - Feiyong Chen
- Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, China
| | - Zhaoliang Zhu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China.
| | - Li Song
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250000, China.
| |
Collapse
|
3
|
Neyrot S, Acha D, Morales-Belpaire I. The fate of sulfamethoxazole in microcosms of the macrophyte Schoenoplectus californicus and its impact on microbial communities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024:124947. [PMID: 39278559 DOI: 10.1016/j.envpol.2024.124947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 09/18/2024]
Abstract
Sulfamethoxazole is a widely used antibiotic frequently found as an environmental pollutant. It can alter microbial communities and increase antibiotic resistance, becoming a public health risk. Constructed wetlands have the potential for removing sulfamethoxazole from polluted waters, but the role of different macrophytes in this process is not well understood. We investigated the fate of sulfamethoxazole and its effect on bacterial communities in microcosms containing Schoenoplectus californicus, an altitude-tolerant macrophyte. Within the first ten hours after introducing sulfamethoxazole (initial concentration 5 mg/L) to the microcosms, the concentration in the liquid phase significantly differed between microcosms with and without S. californicus. However, over the long term (15 and 30 days post-addition), the removal percentage (around 75%) in the liquid phase was not significantly influenced by S. californicus, indicating that sediments might be primarily responsible for removing the antibiotic. The presence of S. californicus promoted algae growth in the microcosms, and we determined that algae contributed to sulfamethoxazole removal from the liquid phase, likely through adsorption. Additionally, we characterized bacterial communities in the microcosm sediments via nanopore sequencing to identify changes following sulfamethoxazole addition. The relative abundance of Proteobacteria increased from 37-46% to 48-99% with the addition of the antibiotic. Conversely, the relative abundance of cyanobacteria decreased significantly after sulfamethoxazole was added (from 17-35% to less than 2%), suggesting it may serve as a biological marker for sulfamethoxazole pollution. In addition, the functional profile of the community was estimated from taxonomic diversity using PICRUST.
Collapse
Affiliation(s)
- Sara Neyrot
- .Instituto de Ecología, Universidad Mayor de San Andrés, Campus Universitario de Cota Cota, La Paz, Bolivia.
| | - Dario Acha
- .Unidad de Ecología Acuática, Instituto de Ecología, Universidad Mayor de San Andrés, Campus Universitario de Cota Cota, La Paz, Bolivia.
| | - Isabel Morales-Belpaire
- .Instituto de Biología Molecular y Biotecnología. Carrera de Biología. Facultad de Ciencias Puras y Naturales. Universidad Mayor de San Andrés. Bolivia.
| |
Collapse
|
4
|
Mosharaf MK, Gomes RL, Cook S, Alam MS, Rasmusssen A. Wastewater reuse and pharmaceutical pollution in agriculture: Uptake, transport, accumulation and metabolism of pharmaceutical pollutants within plants. CHEMOSPHERE 2024; 364:143055. [PMID: 39127189 DOI: 10.1016/j.chemosphere.2024.143055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
The presence of pharmaceutical pollutants in water sources has become a growing concern due to its potential impacts on human health and other organisms. The physicochemical properties of pharmaceuticals based on their intended therapeutical application, which include antibiotics, hormones, analgesics, and antidepressants, is quite diverse. Their presence in wastewater, sewerage water, surface water, ground water and even in drinking water is reported by many researchers throughout the world. Human exposure to these pollutants through drinking water or consumption of aquatic and terrestrial organisms has raised concerns about potential adverse effects, such as endocrine disruption, antibiotic resistance, and developmental abnormalities. Once in the environment, they can persist, undergo transformation, or degrade, leading to a complex mixture of contaminants. Application of treated wastewater, compost, manures or biosolids in agricultural fields introduce pharmaceutical pollutants in the environment. As pharmaceuticals are diverse in nature, significant differences are observed during their uptake and accumulation in plants. While there have been extensive studies on aquatic ecosystems, the effect on agricultural land is more disparate. As of now, there are few reports available on the potential of plant uptake and transportation of pharmaceuticals within and between plant organs. This review summarizes the occurrence of pharmaceuticals in aquatic water bodies at a range of concentrations and their uptake, accumulation, and transport within plant tissues. Research gaps on pharmaceutical pollutants' specific effect on plant growth and future research scopes are highlighted. The factors affecting uptake of pharmaceuticals including hydrophobicity, ionization, physicochemical properties (pKa, logKow, pH, Henry's law constant) are discussed. Finally, metabolism of pharmaceuticals within plant cells through metabolism phase enzymes and plant responses to pharmaceuticals are reviewed.
Collapse
Affiliation(s)
- Md Khaled Mosharaf
- Agriculture and Environmental Sciences Division, School of Biosciences, Sutton Bonington, University of Nottingham, LE12 5RD, United Kingdom; Department of Environmental Science, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh.
| | - Rachel L Gomes
- Food Water Waste Research Group, Faculty of Engineering, University of Nottingham, NG7 2RD, United Kingdom
| | - Sarah Cook
- Water and Environmental Engineering, School of Engineering, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Mohammed S Alam
- Agriculture and Environmental Sciences Division, School of Biosciences, Sutton Bonington, University of Nottingham, LE12 5RD, United Kingdom
| | - Amanda Rasmusssen
- Agriculture and Environmental Sciences Division, School of Biosciences, Sutton Bonington, University of Nottingham, LE12 5RD, United Kingdom
| |
Collapse
|
5
|
Chen JY, Niu SH, Li HY, Liao XD, Xing SC. Multiomics analysis of the effects of manure-borne doxycycline combined with oversized fiber microplastics on pak choi growth and the risk of antibiotic resistance gene transmission. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134931. [PMID: 38889467 DOI: 10.1016/j.jhazmat.2024.134931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/23/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
In this study, oversized microplastics (OMPs) were intentionally introduced into soil containing manure-borne doxycycline (DOX). This strategic approach was used to systematically examine the effects of combined OMP and DOX pollution on the growth of pak choi, analyze alterations in soil environmental metabolites, and explore the potential migration of antibiotic resistance genes (ARGs). The results revealed a more pronounced impact of DOX than of OMPs. Slender-fiber OMPs (SF OMPs) had a more substantial influence on the growth of pak choi than did coarse-fiber OMPs (CF OMPs). Conversely, CF OMPs had a more significant effect on the migration of ARGs within the system. When DOX was combined with OMPs, the negative effects of DOX on pak choi growth were mitigated through the synthesis of indole through the adjustment of carbon metabolism and amino acid metabolism in pak choi roots. In this process, Pseudohongiellaceae and Xanthomonadaceae were key bacteria. During the migration of ARGs, the potential host bacterium Limnobacter should be considered. Additionally, the majority of potential host bacteria in the pak choi endophytic environment were associated with tetG. This study provides insights into the intricate interplay among DOX, OMPs, ARGs, plant growth, soil metabolism, and the microbiome.
Collapse
Affiliation(s)
- Jing-Yuan Chen
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Shi-Hua Niu
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Hai-Yang Li
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Xin-Di Liao
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry Agriculture, Guangzhou, Guangdong 510642, China; National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou, Guangdong 510642, China
| | - Si-Cheng Xing
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry Agriculture, Guangzhou, Guangdong 510642, China; National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
6
|
Zhong L, Sun HJ, Pang JW, Ding J, Zhao L, Xu W, Yuan F, Zhang LY, Ren NQ, Yang SS. Ciprofloxacin affects nutrient removal in manganese ore-based constructed wetlands: Adaptive responses of macrophytes and microbes. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134579. [PMID: 38761761 DOI: 10.1016/j.jhazmat.2024.134579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/28/2024] [Accepted: 05/08/2024] [Indexed: 05/20/2024]
Abstract
Ciprofloxacin (CIP) has received considerable attention in recent decades due to its high ecological risk. However, little is known about the potential response of macrophytes and microbes to varying levels of CIP exposure in constructed wetlands. Therefore, lab-scale manganese ore-based tidal flow constructed wetlands (MO-TFCWs) were operated to evaluate the responses of macrophytes and microbes to CIP over the long term. The results indicated that total nitrogen removal improved from 79.93% to 87.06% as CIP rose from 0 to 4 mg L-1. The chlorophyll content and antioxidant enzyme activities in macrophytes were enhanced under CIP exposure, but plant growth was not inhibited. Importantly, CIP exposure caused a marked evolution of the substrate microbial community, with increased microbial diversity, expanded niche breadth and enhanced cooperation among the top 50 genera, compared to the control (no CIP). Co-occurrence network also indicated that microorganisms may be more inclined to co-operate than compete. The abundance of the keystone bacterium (involved in nitrogen transformation) norank_f__A0839 increased from 0.746% to 3.405%. The null model revealed drift processes (83.33%) dominated the community assembly with no CIP and 4 mg L-1 CIP. Functional predictions indicated that microbial carbon metabolism, electron transfer and ATP metabolism activities were enhanced under prolonged CIP exposure, which may contribute to nitrogen removal. This study provides valuable insights that will help achieve stable nitrogen removal from wastewater containing antibiotic in MO-TFCWs.
Collapse
Affiliation(s)
- Le Zhong
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Han-Jun Sun
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ji-Wei Pang
- China Energy Conservation and Environmental Protection Group, CECEP Digital Technology Co., Ltd., Beijing 100096, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei Xu
- General Water of China Co., Ltd., Beijing 100022, China
| | - Fang Yuan
- General Water of China Co., Ltd., Beijing 100022, China
| | - Lu-Yan Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
7
|
Peng X, Zhang X, Zhang S, Li Z, Zhang H, Zhang L, Wu Z, Liu B. Revealing the response characteristics of periphyton biomass and community structure to sulfamethoxazole exposure in aquaculture water: The perspective of microbial network relationships. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123301. [PMID: 38190873 DOI: 10.1016/j.envpol.2024.123301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/08/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024]
Abstract
The widespread application of sulfonamide antibiotics in aquaculture has raised concerns about their adverse environmental impacts. Periphyton plays a crucial role in the aquatic ecosystem. In this study, we examined sulfamethoxazole (SMX) effects on the community structure and interactions of periphyton in simulated aquaculture water. Our findings indicated that the total biomass of periphyton decreased, while the biomass of periphytic algae and the secretion of extracellular polymeric substances (EPS) increased at 0.7 × 10-3 mg/L. Under higher SMX concentrations (5 mg/L and 10 mg/L), periphyton growth was severely inhibited, the microbial community structure of periphyton were sharply altered, characterized by the cyanobacteria growth suppression and decrease in the diversity index of community. Furthermore, elevated SMX concentrations (5 mg/L and 10 mg/L) increased the ratio of negative relationships from 45.4% to 49.4%, which suggested that high SMX concentrations promoted potential competition among microbes and disrupted the microbial food webs in periphyton. The absolute abundance of sul1 and sul2 genes in T2 and T3 groups were 2-3 orders of magnitude higher than those in control group after 30 days of SMX exposure, which elevated the risk of resistance gene enrichment and dissemination in the natural environment. The study contributes to our understanding of the detrimental effects of antibiotic pollution, which can induce changes in the structure and interaction relationship of microbial communities in aquaculture water.
Collapse
Affiliation(s)
- Xue Peng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xinyi Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuxian Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhuxi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Haokun Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lu Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Biyun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
8
|
Zhang S, Han W, Liu T, Feng C, Jiang Q, Zhang B, Chen Y, Zhang Y. Tetracycline inhibits the nitrogen fixation ability of soybean (Glycine max (L.) Merr.) nodules in black soil by altering the root and rhizosphere bacterial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168047. [PMID: 37918730 DOI: 10.1016/j.scitotenv.2023.168047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/07/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023]
Abstract
Tetracycline is a widely used antibiotic and may thus also be an environmental contaminant with an influence on plant growth. The aim of this study was to investigate the inhibition mechanisms of tetracycline in relation to soybean growth and ecological networks in the roots and rhizosphere. To this end, we conducted a pot experiment in which soybean seedlings were grown in soil treated with 0, 10, or 25 mg/kg tetracycline. The effects of tetracycline pollution on growth, productivity, oxidative stress, and nitrogenase activity were evaluated. We further identified the changes in microbial taxa composition and structure at the genus and species levels by sequencing the 16S rRNA gene region. The results showed that tetracycline activates the antioxidant defense system in soybeans, which reduces the abundance of Bradyrhizobiaceae, inhibits the nitrogen-fixing ability, and decreases the nitrogen content in the root system. Tetracycline was also found to suppress the formation of the rhizospheric environment and decrease the complexity and stability of bacterial networks. Beta diversity analysis showed that the community structure of the root was markedly changed by the addition of tetracycline, which predominantly affected stochastic processes. These findings demonstrate that the influence of tetracycline on soybean roots could be attributed to the decreased stability of the bacterial community structure, which limits the number of rhizobium nodules and inhibits the nitrogen-fixing capacity. This exploration of the inhibitory mechanisms of tetracycline in relation to soybean root development emphasises the potential risks of tetracycline pollution to plant growth in an agricultural setting. Furthermore, this study provides a theoretical foundation from which to improve our understanding of the physiological toxicity of antibiotics in farmland.
Collapse
Affiliation(s)
- Shuo Zhang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Wei Han
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Tianqi Liu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Chengcheng Feng
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Qun Jiang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Bo Zhang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yukun Chen
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ying Zhang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
9
|
Lu J, Mu X, Zhang S, Song Y, Ma Y, Luo M, Duan R. Coupling of submerged macrophytes and epiphytic biofilms reduced methane emissions from wetlands: Evidenced by an antibiotic inhibition experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166710. [PMID: 37652383 DOI: 10.1016/j.scitotenv.2023.166710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Wetlands are the largest natural methane source, but how submerged macrophytes affect methane emission remains controversial. In this study, the impacts of submerged macrophytes on methane fluxes, water purification, and epiphytic microbial community dynamics were investigated in simulated wetlands (with and without Hydrilla verticillata) treated with norfloxacin (NOR) for 24 days. Mean methane fluxes were significantly lower in treatments with Hydrilla verticillata (56.84-90.94 mg/m2/h) than bulks (65.96-113.21 mg/m2/h) (p < 0.05) during the experiment regardless of NOR. The relative conductivity (REC) values, H2O2, and malondialdehyde (MDA) contents increased in plant leaves, while water nutrients removal rates decreased with increasing NOR concentration at the same sampling time. The partial least squares path model analysis revealed that plant physiological indices and water nutrients positively affected methane fluxes (0.72 and 0.49, p < 0.001). According to illumina sequencing results of 16S rRNA and pmoA genes, α-proteobacteria (type II) and γ-proteobacteria (type I) were the dominant methanotroph classes in all epiphytic biofilms. The ratio of type I/type II methanotrophs and pmoA gene abundance in epiphytic biofilm was considerably lower in treatment with 16 mg/L NOR than without it (p < 0.05). pmoA gene abundance was negatively correlated with methane fluxes (p < 0.05). Additionally, the assembly of epiphytic bacterial community was mainly governed by deterministic processes, while stochastic dispersal limitation was the primary assembly process in the epiphytic methanotrophic community under NOR stress. The deterministic process gained more importance with time both in bacterial and methanotrophic community assembly. Network analysis revealed that relationships among bacteria in epiphytic biofilms weakened with time but associations among methanotrophic members were enhanced under NOR stress over time. It could be concluded that submerged macrophytes-epiphytic biofilms symbiotic system exhibited potential prospects to reduce methane emissions from wetlands under reasonable management.
Collapse
Affiliation(s)
- Jianhui Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Xiaoying Mu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Songhe Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Yingying Song
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yu Ma
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Min Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Rufei Duan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
10
|
Li L, Hu Y, Li B, Kuang K, Peng L, Xu Y, Song K. Effect and microbial mechanism of pharmaceutical and personal care product exposure on partial nitrification process and nitrous oxide emission. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166286. [PMID: 37586526 DOI: 10.1016/j.scitotenv.2023.166286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
This study focused on the short- and long-term exposure of pharmaceutical and personal care products (PPCPs) to the partial nitrification process and nitrous oxide emission. The corresponding microbial mechanisms were also explored. The results revealed a concentration-dose effect on the partial nitrification process. Moreover, the PPCP concentration of ≥2 μg/L featured inhibitory effects on the process. The solo effect of PPCP on the partial nitrification process was analyzed through microcosmic experiments, and the results revealed significant variations in PN. A dose-effect relationship existed between the PPCP concentration and N2O emission intensity. After exposure to PPCPs, the N2O emission released during the partial nitrification process was significantly reduced. Different PPCPs featured various effects in mitigating N2O emissions. Low PPCP concentrations led to a reduction in the richness and diversity of microbes, but their community structure remained significantly unchanged. High PPCP concentrations (≥5 μg/L) resulted in increased species richness and diversity, but their microbial community composition was significantly affected. The function prediction and nitrogen metabolic pathway analysis indicated that PPCP exposure led to the inhibition of the ammonia oxidation process. However, all genes encoding denitrification enzymes were upregulated. The microorganisms in the microbial community featured modular structural properties and wide synergistic relationships between genera. This study provides valuable insights into the effect of PPCP exposure on the particle nitrification process and corresponding changes in the microbial community.
Collapse
Affiliation(s)
- Lu Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Yikun Hu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Biqing Li
- Guangzhou Sewage Purification Co. Ltd., Guangzhou 510655, China
| | - Ke Kuang
- Guangzhou Sewage Purification Co. Ltd., Guangzhou 510655, China
| | - Lai Peng
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China
| | - Yifeng Xu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China
| | - Kang Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
11
|
Xu JM, Lv Y, Xu K, Liu X, Wang K, Zi HY, Zhang G, Wang AJ, Lu S, Cheng HY. Long-distance responses of ginger to soil sulfamethoxazole and chromium: Growth, co-occurrence with antibiotic resistance genes, and consumption risk. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122081. [PMID: 37414118 DOI: 10.1016/j.envpol.2023.122081] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/15/2023] [Accepted: 06/17/2023] [Indexed: 07/08/2023]
Abstract
The coexistence of antibiotics and heavy metals in agroecosystems is nonnegligible, which permits the promotion of antibiotic resistance genes (ARGs) in crops, thus posing a potential threat to humans along the food chain. In this study, we investigated the bottom-up (rhizosphere→rhizome→root→leaf) long-distance responses and bio-enrichment characteristics of ginger to different sulfamethoxazole (SMX) and chromium (Cr) contamination patterns. The results showed that ginger root systems adapted to SMX- and/or Cr-stress by increasing humic-like exudates, which may help to maintain the rhizosphere indigenous bacterial phyla (i.e., Proteobacteria, Chloroflexi, Acidobacteria and Actinobacteria). The root activity, leaf photosynthesis and fluorescence, and antioxidant enzymes (SOD, POD, CAT) of ginger were significantly decreased under high-dose Cr and SMX co-contamination, while a "hormesis effect" was observed under single low-dose SMX contamination. For example, CS100 (co-contamination of 100 mg/L SMX and 100 mg/L Cr) caused the most severe inhibition to leaf photosynthetic function by reducing photochemical efficiency (reflected on PAR-ETR, φPSII and qP). Meanwhile, CS100 induced the highest ROS production, in which H2O2 and O2·- increased by 328.82% and 238.00% compared with CK (the blank control without contamination). Moreover, co-selective stress by Cr and SMX induced the increase of ARG bacterial hosts and bacterial phenotypes containing mobile elements, contributing to the high detected abundance of target ARGs (sul1, sul2) up to 10-2∼10-1 copies/16S rRNA in rhizomes intended for consumption.
Collapse
Affiliation(s)
- Jia-Min Xu
- School of Civil and Environmental Engineering, Harbin Institute of Technology-Shenzhen (HIT-SZ), Shenzhen, 518055, China; State Key Laboratory of Urban Water Resources and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Yao Lv
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Kun Xu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Xiaohui Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Kai Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Hu-Yi Zi
- School of Civil and Environmental Engineering, Harbin Institute of Technology-Shenzhen (HIT-SZ), Shenzhen, 518055, China; State Key Laboratory of Urban Water Resources and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Guodong Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ai-Jie Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology-Shenzhen (HIT-SZ), Shenzhen, 518055, China; State Key Laboratory of Urban Water Resources and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Shaoyong Lu
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Hao-Yi Cheng
- School of Civil and Environmental Engineering, Harbin Institute of Technology-Shenzhen (HIT-SZ), Shenzhen, 518055, China; State Key Laboratory of Urban Water Resources and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China.
| |
Collapse
|
12
|
Fang L, Chen C, Zhang F, Ali EF, Sarkar B, Rinklebe J, Shaheen SM, Chen X, Xiao R. Occurrence profiling and environmental risk assessment of veterinary antibiotics in vegetable soils at Chongqing region, China. ENVIRONMENTAL RESEARCH 2023; 227:115799. [PMID: 37015300 DOI: 10.1016/j.envres.2023.115799] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 05/08/2023]
Abstract
Veterinary antibiotics (VAs) are emerging contaminants in soils as they may pose high risks to the ecosystem and human health. Identifying VAs accumulation in soils is essential for assessing their potential risks. Therefore, we investigated the distribution of VAs in soils from vegetable fields and evaluated their potential ecological and antimicrobial resistance risks in the Chongqing region of the Three Gorges Reservoir area, China. Results indicated that twenty-six species of VAs, including nine sulfonamides (SAs), seven quinolones (QNs), four tetracyclines (TCs), four macrolides (MLs), and two other species of VAs were detected in soils, with their accumulative levels ranging from 1.4 to 3145.7 μg kg-1. TCs and QNs were the dominant VAs species in soils with high detection frequencies (100% TCs and 80.6% for QNs) and accumulative concentration (up to 1195 μg kg-1 for TCs and up to 485 μg kg-1 for QNs). Risk assessment indices showed that VAs (specifically SAs, TCs, and QNs) in most vegetable soils would pose a medium to high risk to the ecosystem and antimicrobial resistance. Mixture of VAs posed a higher risk to soil organisms, antimicrobial resistance, and plants than to aquatic organisms. Modeling analysis indicated that socioeconomic conditions, farmers' education levels, agricultural practices, and soil properties were the main factors governing VAs accumulation and environmental risks. Farmers with a high educational level owned large-scale farms and were more willing to use organic fertilizers for vegetable production, which eventually led to high VAs accumulation in vegetable soil. These findings would provide a reference for sustainable agricultural and environmental production under the current scenario of chemical fertilizer substitution by organic products and green agricultural development.
Collapse
Affiliation(s)
- Linfa Fang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Chengyu Chen
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China
| | - Fen Zhang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Esmat F Ali
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Binoy Sarkar
- Future Industries Institute, University of South Australia, Mawson Lakes, SA5095, Australia
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589, Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516, Kafr El-Sheikh, Egypt.
| | - Xinping Chen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, 400715, China.
| | - Ran Xiao
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
13
|
Chen P, Yu K, He Y. The dynamics and transmission of antibiotic resistance associated with plant microbiomes. ENVIRONMENT INTERNATIONAL 2023; 176:107986. [PMID: 37257204 DOI: 10.1016/j.envint.2023.107986] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 06/02/2023]
Abstract
Antibiotic resistance genes (ARGs) have been widely found and studied in soil and water environments. However, the propagation of ARGs in plant microbiomes has attracted insufficient attention. Plant microbiomes, especially the rhizosphere microorganisms, are closely connected with water, soil, and air, which allows ARGs to spread widely in ecosystems and pose a threat to human health after entering the human body with bacteria. Therefore, it is necessary to deeply understand and explore the dynamics and the transmission of ARGs in rhizosphere microorganisms and endophytes of plants. In this review, the transmission and influencing factors of ARGs in the microorganisms associated with plants, especially the influence of root exudates on plant microbiomes, are analyzed. Notably, the role of intrinsic genes of plants in determining root exudates and their potential effects on ARGs are proposed and analyzed. The important role of phyllosphere microorganisms and endophytes in the transmission of ARGs and co-resistance of antibiotics and other substances are also emphasized. The proliferation and transmission of ARGs associated with plant microbiomes addressed in this review is conducive to revealing the fate of ARGs in plant microorganisms and alleviating ARG pollution.
Collapse
Affiliation(s)
- Ping Chen
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Kaifeng Yu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yiliang He
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
14
|
Zhou Q, Zhang J, Fang Q, Zhang M, Wang X, Zhang D, Pan X. Microplastic biodegradability dependent responses of plastisphere antibiotic resistance to simulated freshwater-seawater shift in onshore marine aquaculture zones. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 331:121828. [PMID: 37187278 DOI: 10.1016/j.envpol.2023.121828] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/09/2023] [Accepted: 05/13/2023] [Indexed: 05/17/2023]
Abstract
MPs carrying ARGs can travel between freshwater and seawater due to intensive land-sea interaction in onshore marine aquaculture zones (OMAZ). However, the response of ARGs in plastisphere with different biodegradability to freshwater-seawater shift is still unknown. In this study, ARG dynamics and associated microbiota on biodegradable poly (butyleneadipate-co-terephthalate) (PBAT) and non-biodegradable polyethylene terephthalate (PET) MPs were investigated through a simulated freshwater-seawater shift. The results exhibited that freshwater-seawater shift significantly influenced ARG abundance in plastisphere. The relative abundance of most studied ARGs decreased rapidly in plastisphere after they entered seawater from freshwater but increased on PBAT after MPs entered freshwater from seawater. Besides, the high relative abundance of multi-drug resistance (MDR) genes occurred in plastisphere, and the co-change between most ARGs and mobile genetic elements indicated the role of horizontal gene transfer on ARG regulation. Proteobacteria was dominant phylum in plastisphere and the dominant genera, such as Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, Afipia, Gemmobacter and Enhydrobacter, were significantly associated with qnrS, tet and MDR genes in plastisphere. Moreover, after MPs entered new water environment, the ARGs and microbiota genera in plastisphere changed significantly and tended to converge with those in receiving water. These results indicated that MP biodegradability and freshwater-seawater interaction influenced potential hosts and distributions of ARGs, of which biodegradable PBAT posed a high risk in ARG dissemination. This study would be helpful for understanding the impact of biodegradable MP pollution on spread of antibiotic resistance in OMAZ.
Collapse
Affiliation(s)
- Qian Zhou
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jun Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qunkai Fang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Ming Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiaonan Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Daoyong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
15
|
Salah M, Zheng Y, Wang Q, Li C, Li Y, Li F. Insight into pharmaceutical and personal care products removal using constructed wetlands: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 885:163721. [PMID: 37116812 DOI: 10.1016/j.scitotenv.2023.163721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/31/2023] [Accepted: 04/21/2023] [Indexed: 05/13/2023]
Abstract
Pharmaceutical and personal care products (PPCPs) were regarded as emerging environmental pollutants due to their ubiquitous appearance and high environmental risks. The wastewater treatment plants (WWTPs) became the hub of PPCPs receiving major sources of PPCPs used by humans. Increasing concern has been focused on promoting cost-effective ways to eliminate PPCPs within WWTPs for blocking their route into the environment through effluent discharging. Among all advanced technologies, constructed wetlands (CWs) with a combination of plants, substrates, and microbes attracted attention due to their cost-effectiveness and easier maintenance during long-term operation. This study offers baseline data for risk control and future treatment by discussing the extent and dispersion of PPCPs in surface waters over the past ten years and identifying the mechanisms of PPCPs removal in CWs based on the up-to-present research, with a special focus on the contribution of sediments, vegetation, and the interactions of microorganisms. The significant role of wetland plants in the removal of PPCPs was detailed discussed in identifying the contribution of direct uptake, adsorption, phytovolatilization, and biodegradation. Meanwhile, the correlation between the physical-chemical characteristics of PPCPs, the configuration operation of wetlands, as well as the environmental conditions with PPCP removal were also further estimated. Finally, the critical issues and knowledge gaps before the real application were addressed followed by promoted future works, which are expected to provide a comprehensive foundation for study on PPCPs elimination utilizing CWs and drive to achieve large-scale applications to treat PPCPs-contaminated surface waters.
Collapse
Affiliation(s)
- Mohomed Salah
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266003, China; Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yu Zheng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266003, China; Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao, China
| | - Qian Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266003, China; Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao, China.
| | - Chenguang Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266003, China; Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yuanyuan Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266003, China; Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao, China
| | - Fengmin Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266003, China; Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao, China; Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China.
| |
Collapse
|
16
|
Liu D, Zhang Y, Yang Q, Li Y, Li J, Liao X. Fate of ofloxacin in rural wastewater treatment facility: Removal performance, pathways and microbial characteristics. BIORESOURCE TECHNOLOGY 2023; 371:128611. [PMID: 36640816 DOI: 10.1016/j.biortech.2023.128611] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Ofloxacin (OFL) with high biological activity and antimicrobial degradation is a kind of the typical high concentration and environmental risk antibiotics in rural sewage. In this paper, a combined rural sewage treatment facility based on anaerobic baffled reactor and integrated constructed wetlands was built and the removal performance, pathway and mechanism for OFL and conventional pollutants were evaluated. Results showed that the OFL and TN removal efficiency achieved 91.78 ± 3.93 % and 91.44 ± 4.15 %, respectively. Sludge adsorption was the primary removal pathway of OFL. Metagenomics analysis revealed that Proteobacteria was crucial in OFL removal. baca was the dominated antibiotic resistance genes (ARGs). Moreover, carbon metabolism with a high abundance was conductive to detoxify OFL to enhance system stability and performance. Co-occurrence network analysis further elucidated that mutualism was the main survival mode of microorganisms. Denitrifers Microbacterium, Geobacter and Ignavibacterium, were the host of ARGs and participated in OFL biodegradation.
Collapse
Affiliation(s)
- Dengping Liu
- College of Resources and Environment, Southwest University, Chongqing 400715, China; College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 500025, China
| | - Yuduo Zhang
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 500025, China
| | - Qilin Yang
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 500025, China
| | - Yancheng Li
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 500025, China.
| | - Jiang Li
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 500025, China
| | - Xun Liao
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 500025, China
| |
Collapse
|
17
|
A review of the antibiotic ofloxacin: current status of ecotoxicology and scientific advances in its removal from aqueous systems by adsorption technology. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2023.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
18
|
Chen D, Samwini AMN, Manirakiza B, Addo FG, Numafo-Brempong L, Baah WA. Effect of erythromycin on epiphytic bacterial communities and water quality in wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159008. [PMID: 36162586 DOI: 10.1016/j.scitotenv.2022.159008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
The occurrence of antibiotics such as erythromycin (ERY) under macrolide group, has long been acknowledged for negatively affecting ecosystems in freshwater environments. However, the effects of ERY on water quality and microbial communities in epiphytic biofilms are poorly understood. Here, Scanning Electron Microscopy (SEM), High-throughput sequencing, and physicochemical analytical methods were employed to unravel the impact of ERY on the water quality and bacterial morphology, biodiversity, composition, interaction, and ecological function in epiphytic biofilms attached to Vallisneria natans and artificial plants in mesocosmic wetlands. The study showed that ERY exposure significantly impaired the nutrient removal capacity (TN, TP, and COD) and altered the epiphytic bacterial morphology of V. natans and artificial plants. ERY did not affect the bacterial α-diversity. Notwithstanding ERY decreased the bacterial composition, but the relative abundance of Proteobacteria and Patescibacteria spiked by 62.2 % and 54 %, respectively, in V. natans, while Desulfobacteria and Chloroflexi increased by 8.9 % and 11.2 %, respectively, in artificial plants. Notably, ERY disturbed the food web structure and metabolic pathways such as carbohydrate metabolism, amino acid metabolism, energy metabolism, cofactor and vitamin metabolism, membrane transport, and signal transduction. This study revealed that ERY exposure disrupted the bacterial morphology, composition, interaction or food web structure, and metabolic functions in epiphytic biofilm. These data underlined that ERY negatively impacts epiphytic bacterial communities and nutrient removal in wetlands.
Collapse
Affiliation(s)
- Deqiang Chen
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Abigail Mwin-Nea Samwini
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Benjamin Manirakiza
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; University of Rwanda (UR), College of Science and Technology (CST), Department of Biology, P.O. Box 3900, Kigali, Rwanda.
| | - Felix Gyawu Addo
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Lydia Numafo-Brempong
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Wambley Adomako Baah
- College of Harbour, Coastal and Offshore Engineering, Hohai University, Nanjing 210098, China
| |
Collapse
|
19
|
Ohore OE, Wang Y, Wei Y, Sanganyado E, Shafiq M, Jiao X, Nwankwegu AS, Liu W, Wang Z. Ecological mechanisms of sedimental microbial biodiversity shift and the role of antimicrobial resistance genes in modulating microbial turnover. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116547. [PMID: 36419283 DOI: 10.1016/j.jenvman.2022.116547] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/30/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022]
Abstract
The mechanisms of phylogenetic turnover of microbial communities to environmental perturbations in sediments remain unclear. In this study, the molecular mechanisms of phylogenetic turnover, and impact of antibiotics and antibiotic resistance genes (ARGs) on the modification of microbial assemblages were unravelled. We investigated 306 ARGs, 8 transposases, and 4 integron integrases, bacteria, and eukaryotic diversity through high-throughput quantitative PCR and illumina sequencing, 21 antibiotics and 3 tetracycline byproducts. The freshwater and estuary ecosystems were mainly dominated by genus Sulfurovum and colonised by closely related species compared with the estuary (closeness centrality = 0.42 vs. 0.46), which was dominated by genus Mycobacterium. Eighty-six percent of the ecological process in the bacterial community was driven by stochastic processes, while the rest was driven by deterministic processes. Environmental-related concentrations of antibiotics (0.15-32.53 ng/g) stimulated the proliferation of ARGs which potentially modulated the microbial community assembly. ARG acquisition significantly (P < 0.001) increased eukaryotic diversity through protection mechanisms. ARGs showed complex interrelationships with the microbial communities, and phylum arthropods and Nematea demonstrated the strongest ARG acquisition potential. This study provides key insights for environmental policymakers into understanding the ecological impact of antibiotics and the role of ARGs in modulating the phylogenetic turnover of microbial communities and trophic transfer mechanisms.
Collapse
Affiliation(s)
- Okugbe Ebiotubo Ohore
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Protection, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China.
| | - Yuwen Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Protection, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Yunjie Wei
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Protection, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Edmond Sanganyado
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Protection, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Muhammad Shafiq
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, China
| | - Xiaoyang Jiao
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, China
| | - Amechi S Nwankwegu
- College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Wenhua Liu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Protection, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Zhen Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Protection, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China.
| |
Collapse
|
20
|
Fu J, Zhao Y, Yao Q, Addo-Bankas O, Ji B, Yuan Y, Wei T, Esteve-Núñez A. A review on antibiotics removal: Leveraging the combination of grey and green techniques. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156427. [PMID: 35660594 DOI: 10.1016/j.scitotenv.2022.156427] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 05/27/2023]
Abstract
Antibiotics are currently a major source of concern around the world due to the serious risks posed to human health and the environment. The performance of the secondary wastewater treatment processes/technologies (representing grey process) and constructed wetlands (CWs) (typical green process) in removing antibiotics and antibiotic resistance genes (ARG) was reviewed. The result showed that the grey process mainly removes antibiotics, but does not significantly remove ARG, and some processes may even cause ARG enrichment. The overall treatment in CWs is better than WWTPs, especially for ARG. Vertical subsurface flow CWs (VFCWs) are more conductive to antibiotics removal, while horizontal subsurface flow CWs (HFCWs) have a better ARG removal. More importantly, this review admits and suggests that the combination of grey process with green process is an effective strategy to remove antibiotics and ARG. The most advantage of the combination lies in realizing complementary advantages, i.e. the grey process as the primary treatment while CWs as the polishing stage. The efficiency of such the hybrid system is much higher than either single treatment process.
Collapse
Affiliation(s)
- Jingmiao Fu
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China; Department of Municipal and Environmental Engineering, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, PR China
| | - Yaqian Zhao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China; Department of Municipal and Environmental Engineering, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, PR China.
| | - Qi Yao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China
| | - Olivia Addo-Bankas
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China; Department of Municipal and Environmental Engineering, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, PR China
| | - Bin Ji
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China
| | - Yujie Yuan
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China
| | - Ting Wei
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China; Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Madrid, Spain
| | - Abraham Esteve-Núñez
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China; Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Madrid, Spain; Bioelectrogenesis Group, IMDEA WATER, Madrid, Spain.
| |
Collapse
|
21
|
Wang J, Long Y, Yu G, Wang G, Zhou Z, Li P, Zhang Y, Yang K, Wang S. A Review on Microorganisms in Constructed Wetlands for Typical Pollutant Removal: Species, Function, and Diversity. Front Microbiol 2022; 13:845725. [PMID: 35450286 PMCID: PMC9016276 DOI: 10.3389/fmicb.2022.845725] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/01/2022] [Indexed: 01/09/2023] Open
Abstract
Constructed wetlands (CWs) have been proven as a reliable alternative to traditional wastewater treatment technologies. Microorganisms in CWs, as an important component, play a key role in processes such as pollutant degradation and nutrient transformation. Therefore, an in-depth analysis of the community structure and diversity of microorganisms, especially for functional microorganisms, in CWs is important to understand its performance patterns and explore optimized strategies. With advances in molecular biotechnology, it is now possible to analyze and study microbial communities and species composition in complex environments. This review performed bibliometric analysis of microbial studies in CWs to evaluate research trends and identify the most studied pollutants. On this basis, the main functional microorganisms of CWs involved in the removal of these pollutants are summarized, and the effects of these pollutants on microbial diversity are investigated. The result showed that the main phylum involved in functional microorganisms in CWs include Proteobacteria, Bacteroidetes, Actinobacteria and Firmicutes. These functional microorganisms can remove pollutants from CWs by catalyzing chemical reactions, biodegradation, biosorption, and supporting plant growth, etc. Regarding microbial alpha diversity, heavy metals and high concentrations of nitrogen and phosphorus significantly reduce microbial richness and diversity, whereas antibiotics can cause large fluctuations in alpha diversity. Overall, this review can provide new ideas and directions for the research of microorganisms in CWs.
Collapse
Affiliation(s)
- Jianwu Wang
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, China
| | - Yuannan Long
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, China
| | - Guanlong Yu
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, China
- Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha, China
| | - Guoliang Wang
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, China
| | - Zhenyu Zhou
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, China
| | - Peiyuan Li
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, China
| | - Yameng Zhang
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, China
| | - Kai Yang
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, China
| | - Shitao Wang
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, China
| |
Collapse
|
22
|
Hu X, Peng K, Chen Y, Chen X, Liu S, Zhao Y, Wu Y, Xu Z. Effect of g-C 3N 4 on biodiversity and structure of bacterial community in sediment of Xiangjiang River under tetracycline pressure. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:503-515. [PMID: 35181861 DOI: 10.1007/s10646-022-02525-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Photocatalysts have been widely prepared and used in wastewater treatment. Although the influence of photocatalyst application on survival and activity of organisms has been examined, its impact on composition and diversity of microbial community is not fully understood. In this study, the impact of photocatalyst g-C3N4 (Graphitic carbon nitride) on microbial communities in riverbed sediments polluted by antibiotic tetracycline (TC) was investigated. The sediment samples collected from the Xiangjiang River of China were exposed to different concentrations of TC, g-C3N4 and TC/g-C3N4 and the bacterial community were analyzed by Illumina sequencing. The results showed that the dominant bacterial phyla were Acidobacteriota, Proteobacteria, Actinobacteriota, and Chloroflexi in the study site. When compared to the control treatments, the application of TC, g-C3N4 and TC/g-C3N4 exhibited distinguishable effects on bacterial community structure in sediments. The presence of TC had greater influence on bacterial composition, while g-C3N4 and TC/g-C3N4 had less influence on bacteria. The diversity and richness of microorganisms in sediment increased under g-C3N4 application and reached the highest values when g-C3N4 was 75 mg/kg. The photocatalyst g-C3N4 restored bacterial community diversity affected by TC, reduced the TC residues in aquatic environment, and eliminated the side effects of TC application in sediments. Our study indicated that g-C3N4 was an environmentally friendly photocatalyst with lightly negative effects on microbial community in riverbed sediments, and could be used for effective remediation of TC-contaminated environments.
Collapse
Affiliation(s)
- Xuemei Hu
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Kuan Peng
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yijun Chen
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Xiaoyong Chen
- College of Arts and Sciences, Governors State University, University Park, IL, 60484, USA
| | - Shuguang Liu
- National Engineering Laboratory for Applied Forest Ecological Technology in Southern China, Changsha, 410004, China
| | - Yunlin Zhao
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yaohui Wu
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, 410004, China.
- National Engineering Laboratory for Applied Forest Ecological Technology in Southern China, Changsha, 410004, China.
| | - Zhenggang Xu
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio-Disaster, College of Forestry, Northwest A and F University, No.3 Taicheng Road, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
23
|
The relevance of hormesis at higher levels of biological organization: Hormesis in microorganisms. CURRENT OPINION IN TOXICOLOGY 2022. [DOI: 10.1016/j.cotox.2021.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
24
|
Ohore OE, Qin Z, Sanganyado E, Wang Y, Jiao X, Liu W, Wang Z. Ecological impact of antibiotics on bioremediation performance of constructed wetlands: Microbial and plant dynamics, and potential antibiotic resistance genes hotspots. JOURNAL OF HAZARDOUS MATERIALS 2021; 424:127495. [PMID: 34673400 DOI: 10.1016/j.jhazmat.2021.127495] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 02/05/2023]
Abstract
Constructed wetlands (CWs) are nature-based solutions for treating domestic and livestock wastewater which may contain residual antibiotics concentration. Antibiotics may exert selection pressure on wetland's microbes, thereby increasing the global antibiotics resistance problems. This review critically examined the chemodynamics of antibiotics and antibiotics resistance genes (ARGs) in CWs. Antibiotics affected the biogeochemical cycling function of microbial communities in CWs and directly disrupted the removal efficiency of total nitrogen, total phosphorus, and chemical oxygen demand by 22%, 9.3%, and 24%, respectively. Since changes in microbial function and structure are linked to the emergence and propagation of antibiotic resistance, antibiotics could adversely affect microbial diversity in CWs. The cyanobacteria community seemed to be particularly vulnerable, while Proteobacteria could resist and persist in antibiotics contaminated wetlands. Antibiotics triggered excitation responses in plants and increased the root activities and exudates. Microbes, plants, and substrates play crucial roles in antibiotic removal. High removal efficiency was exhibited for triclosan (100%) > enrofloxacin (99.8%) > metronidazole (99%) > tetracycline (98.8%) > chlortetracycline (98.4%) > levofloxacin (96.69%) > sulfamethoxazole (91.9%) by the CWs. This review showed that CWs exhibited high antibiotics removal capacity, but the absolute abundance of ARGs increased, suggesting CWs are potential hotspots for ARGs. Future research should focus on specific bacterial response and impact on microbial interactions.
Collapse
Affiliation(s)
- Okugbe Ebiotubo Ohore
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Zhirui Qin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Edmond Sanganyado
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; Organization of African Academic Doctors, Off Kamiti Road P.O. Box 25305-00100, Nairobi, Kenya
| | - Yuwen Wang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Xiaoyang Jiao
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Wenhua Liu
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China
| | - Zhen Wang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China.
| |
Collapse
|
25
|
Lv Y, Li Y, Liu X, Xu K. Effect of soil sulfamethoxazole on strawberry (Fragaria ananassa): Growth, health risks and silicon mitigation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117321. [PMID: 33975211 DOI: 10.1016/j.envpol.2021.117321] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/29/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
The negative impact of antibiotic pollution on the agricultural system and human health is a hot issue in the world. However, little information is available on the antibiotics toxicity mechanism and the role of silicon (Si) to alleviate the antibiotics toxicity. In this study, strawberry (Fragaria ananassa) showed excitatory response to low-dose SMZ (1 mg L-1), but strawberry root and photosynthetic efficiency were damaged under high level. When SMZ level exceeded 10 mg L-1, H202, O2-, MDA and relative conductivity increased, while SOD and CAT activities first increased and then decreased. SMZ accumulated more in roots and fruits, but less in stems, and the accumulation increased with the increase of SMZ-dose. Under 1 mg L-1 SMZ, the SMZ accumulation in fruits was 110.54 μg kg-1, which exceeded the maximum residue limit. SMZ can induce the expression of sul1, sul2 and intI1, and intI1 had the highest abundance. Exogenous application of Si alleviated the toxicity of SMZ, which is mainly related to the degradation of SMZ in soil and the reduction of SMZ absorption by strawberry. In addition, Si relieved root damage, promoted the increase of photosynthetic efficiency, and improved the antioxidant system to resist SMZ toxicity.
Collapse
Affiliation(s)
- Yao Lv
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong Taian, 271018, China; Key Laboratory of Biology of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, Taian, 271018, China; State Key Laboratory of Crop Biology, Taian, 271018, China
| | - Yanyan Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Xiaohui Liu
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Kun Xu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong Taian, 271018, China; Key Laboratory of Biology of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, Taian, 271018, China; State Key Laboratory of Crop Biology, Taian, 271018, China.
| |
Collapse
|