1
|
Wang Y, Meng S, Li D, Liu S, Li L, Wu L. Dietary chlorogenic acid supplementation protects against lipopolysaccharide-induced oxidative stress, inflammation and apoptosis in intestine of amur ide (Leuciscus waleckii). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 279:107223. [PMID: 39740528 DOI: 10.1016/j.aquatox.2024.107223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 12/26/2024] [Accepted: 12/26/2024] [Indexed: 01/02/2025]
Abstract
In this study, the alleviative effects of chlorogenic acid (CGA) on oxidative stress, inflammation and apoptosis of amur ide (Leuciscus waleckii) induced by lipopolysaccharide (LPS) were evaluated. Using a 2 × 2 factorial design, amur ide were irregularity divided into 4 groups and fed two diets with 0.00 % (CK and LPS), 0.04 % CGA(CGA and LC). After 4-week feeding trial, LPS challenge was executed. Results showed that 0.04 % CGA alleviated LPS-induced intestinal barrier dysfunction by decreasing the levels of 5-HT, D-LA, ET-1 and DAO in serum, increasing ZO-1, Occludin-α, Claudin-c, Claudin-f mRNA, and ZO-1, Occludin, Claudin-1 protein expression, improving intestinal morphology. Moreover, 0.04 % CGA alleviated LPS-induced inflammation and apoptosis by up-regulating TGF-β and Bcl-2 mRNA, down-regulating NF-κBp65, TNF-α, Bax, Caspase-3, Caspase-9 mRNA and NF-κBp65, Bax, Caspase-3 protein expression. 0.04 %CGA reversed LPS-induced the reduction of GSH-PX, CAT, T-SOD and T-AOC in intestines, whereas MDA showed the opposite result. 0.04 % alleviated LPS-induced the decrease of Nrf2, HO-1, CAT, SOD mRNA and Nrf2 protein expression, the increase of Keap1 mRNA. Summary, this study suggested that 0.04 % of dietary CGA alleviated LPS-induced intestinal oxidative stress, inflammation and apoptosis of amur ide.
Collapse
Affiliation(s)
- Yintao Wang
- College of Animal Science and Technology, Jilin Agriculture University, Changchun 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, China
| | - Sitong Meng
- College of Animal Science and Technology, Jilin Agriculture University, Changchun 130118, China
| | - Denglai Li
- College of Animal Science and Technology, Jilin Agriculture University, Changchun 130118, China
| | - Siying Liu
- College of Animal Science and Technology, Jilin Agriculture University, Changchun 130118, China
| | - Liang Li
- College of Animal Science and Technology, Jilin Agriculture University, Changchun 130118, China
| | - Lifang Wu
- College of Animal Science and Technology, Jilin Agriculture University, Changchun 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
2
|
Wang R, Wang C, Chen P, Qi H, Zhang J. Oxidised rice bran oil induced oxidative stress and apoptosis in IPEC-J2 cells via the Nrf2 signalling pathway. J Anim Physiol Anim Nutr (Berl) 2024; 108:1844-1855. [PMID: 39037063 DOI: 10.1111/jpn.14025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/05/2023] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
Rice bran oil is a type of rice oil made by leaching or pressing during rice processing and has a high absorption rate after consumption. When oxidative rancidity occurs, it may cause oxidative stress (OS) and affect intestinal function. Meanwhile, the toxic effects of oxidised rice bran oil have been less well studied in pigs. Therefore, the IPEC-J2 cells model was chosen to explore the regulatory mechanisms of oxidised rice bran oil on OS and apoptosis. Oxidised rice bran oil extract treatment (OR) significantly decreased the viability of IPEC-J2 cells. The results showed that OR significantly elevated apoptosis and reactive oxygen species levels and promoted the expression of pro-apoptotic gene Caspase-3 messenger RNA levels. The activation of Nrf2 signalling pathway by OR decreased the cellular antioxidant capacity. This was further evidenced by the expression of kelch-like ECH-associated protein 1, heme oxygenase 1, NADH: quinone oxidoreductase 1, superoxide dismutase 2 and heat shock 70 kDa protein genes and proteins were all downregulated. In conclusion, our results suggested that oxidised rice bran oil induced damage in IPEC-J2 cells through the Nrf2 signalling pathway.
Collapse
Affiliation(s)
- Ruqi Wang
- Institute of Food Quality and Nutrition, Academy of National Food and Strategic Reserves Administration, Beijing, People's Republic of China
- Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, College of Animal Sciences, Jilin University, Changchun, People's Republic of China
| | - Chuanqi Wang
- Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, College of Animal Sciences, Jilin University, Changchun, People's Republic of China
| | - Peide Chen
- Institute of Food Quality and Nutrition, Academy of National Food and Strategic Reserves Administration, Beijing, People's Republic of China
| | - Huiyu Qi
- Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, College of Animal Sciences, Jilin University, Changchun, People's Republic of China
| | - Jing Zhang
- Institute of Food Quality and Nutrition, Academy of National Food and Strategic Reserves Administration, Beijing, People's Republic of China
- Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, College of Animal Sciences, Jilin University, Changchun, People's Republic of China
| |
Collapse
|
3
|
Muhmood A, Tang J, Li J, Liu S, Hou L, Le G, Liu D, Huang K. No-observed adverse effect levels of deoxynivalenol and aflatoxin B1 in combination induced immune inhibition and apoptosis in vivo and in vitro. Food Chem Toxicol 2024; 189:114745. [PMID: 38763499 DOI: 10.1016/j.fct.2024.114745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/29/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Mycotoxins are toxic metabolites produced by fungal species, commonly exist in animal feeds, and pose a serious risk to human as well as animal health. But limited studies have focused on combined effects of no-observed adverse effect levels. In vivo study, 6 weeks old twenty-four mice were individually exposed to Deoxynivalenol (DON) at 0.1 mg/kg BW, Aflatoxin B1 (AFB1) at 0.01 mg/kg BW, and mixture of DON and AFB1 (0.1 mg/kg BW and 0.01 mg/kg BW, respectively) for 28 days. Then, DON at 0.5 μg/mL, AFB1 at 0.04 μg/mL, and mixtures of DON and AFB1 (0.5 μg/mL, 0.04 μg/mL, respectively) were applied to porcine alveolar macrophages (PAMs) in vitro study. Our in vivo results revealed that the combined no-observed adverse effect levels of DON and AFB1 administration decreased IgA and IgG levels in the serum, the splenic TNF-α, IFN-γ, IL-2 and IL-6 mRNA expression and T-lymphocyte subset levels (CD4+ and CD8+) in the spleen. Additionally, the combined administration increased caspase-3, caspase-9, Bax, Cyt-c, and decreased Bcl-2 protein expression. Taken together, the combined no-observed adverse effect levels of DON and AFB1 could induce immunosuppression, which may be related to apoptosis. This study provides new insights into the combined immune toxicity (DON and AFB1).
Collapse
Affiliation(s)
- Azhar Muhmood
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Jiangyu Tang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Jinyan Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Shuiping Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Lili Hou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Guannan Le
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Dandan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| |
Collapse
|
4
|
Kim HY, Moon JO, Kim SW. Development and application of a multi-step porcine in vitro system to evaluate feedstuffs and feed additives for their efficacy in nutrient digestion, digesta characteristics, and intestinal immune responses. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:265-282. [PMID: 38800740 PMCID: PMC11127235 DOI: 10.1016/j.aninu.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 05/29/2024]
Abstract
In vitro model provides alternatives to the use of live animals in research. In pig nutrition, there has been a tremendous increase in in vivo research over the decades. Proper utilization of in vitro models could provide a screening tool to reduce the needs of in vivo studies, research duration, cost, and the use of animals and feeds. This study aimed to develop a multi-step porcine in vitro system to simulate nutrient digestion and intestinal epithelial immune responses affected by feedstuffs and feed additives. Seven feedstuffs (corn, corn distillers dried grains with solubles [corn DDGS], barley, wheat, soybean meal, soy protein concentrates, and Corynebacterium glutamicum cell mass [CGCM]), feed enzymes (xylanase and phytase), and supplemental amino acids (arginine, methionine, and tryptophan), were used in this in vitro evaluation for their efficacy on digestibility, digesta characteristics, and intestinal health compared with the results from previously published in vivo studies. All in vitro evaluations were triplicated. Data were analyzed using Mixed procedure of SAS9.4. Evaluations included (1) nutrient digestibility of feedstuffs, (2) the effects of feed enzymes, xylanase and phytase, on digestibility of feedstuffs and specific substrates, and (3) the effects of amino acids, arginine, tryptophan, and methionine, on anti-inflammatory, anti-oxidative, and anti-heat stress statuses showing their effects (P < 0.05) on the measured items. Differences in dry matter and crude protein digestibility among the feedstuffs as well as effects of xylanase and phytase were detected (P < 0.05), including xylo-oligosaccharide profiles and phosphorus release from phytate. Supplementation of arginine, tryptophan, and methionine modulated (P < 0.05) cellular inflammatory and oxidative stress responses. The use of this in vitro model allowed the use of 3 experimental replications providing sufficient statistical power at P < 0.05. This indicates in vitro models can have increased precision and consistency compared with in vivo animal studies.
Collapse
Affiliation(s)
- Hee Yeon Kim
- Application Center, CJ Blossom Park, Suwon, South Korea
| | - Jun-Ok Moon
- Application Center, CJ Blossom Park, Suwon, South Korea
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
5
|
Guo P, Li X, Xue Y, Lu Q, Liu Y, Xiong J, Wu Z, Fu S, Ye C, Wang X, Qiu Y. Using network pharmacology and molecular docking to uncover the mechanism by which quercetin alleviates deoxynivalenol-induced porcine intestinal injury. Toxicon 2024; 243:107709. [PMID: 38615996 DOI: 10.1016/j.toxicon.2024.107709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/19/2024] [Accepted: 04/03/2024] [Indexed: 04/16/2024]
Abstract
Deoxynivalenol is a widespread feed contaminant that leads to vomit, which results in serious symptom such as increased intestinal permeability and even intestinal mucosal necrosis. Recent studies have reported the role of quercetin in alleviating deoxynivalenol-induced intestinal injury; however, the mechanisms and targets remain unclear. Thus, we aimed to identify the mechanisms of action by using a combination of network pharmacology and molecular docking. We identified 151 quercetin targets, 235 deoxynivalenol targets and 47 porcine intestinal injury targets by searching compound database and PubMed database, among which there were two common targets. The PPI network showed that the key proteins involved are NQO1 and PPAR-γ. The PPI network showed that the key proteins involved were NQO1 and PPARG. GO analysis found that genes were enriched primarily in response to oxidative stress. The PPI network showed that the key proteins involved are NQO1 and PPAR-γ. The genes are enriched primarily in response to oxidative stress. KEGG analysis showed enrichment of the HIF, reactive oxygen species and other signaling pathways. The molecular docking results indicated key binding activity between NQO1-quercetin and PPAR-γ-quercetin. By using network pharmacology, we have revealed the potential molecular mechanisms by which quercetin alleviates deoxynivalenol-induced porcine intestinal injury, which lays the foundation for the development of drugs to treat deoxynivalenol-induced intestinal injury in pigs.
Collapse
Affiliation(s)
- Pu Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Xuemin Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Yunda Xue
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Qirong Lu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Yu Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Jianglin Xiong
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Zhongyuan Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Shulin Fu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Chun Ye
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Yinsheng Qiu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, 430023, China.
| |
Collapse
|
6
|
Fang YX, Lu EQ, Cheng YJ, Xu E, Zhu M, Chen X. Glutamine Promotes Porcine Intestinal Epithelial Cell Proliferation through the Wnt/β-Catenin Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7155-7166. [PMID: 38526961 DOI: 10.1021/acs.jafc.3c08701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Glutamine (Gln) is a critical nutrient required by neonatal mammals for intestinal growth, especially for newborn piglets. However, the mechanisms underlying the role of Gln in porcine intestinal epithelium development are not fully understood. The objective of the current study was to explore the possible signaling pathway involved in the promotion of porcine intestinal epithelial cell (IPEC-J2) proliferation by Gln. The results showed that 1 mM Gln promoted IPEC-J2 cell proliferation, and tandem mass tag proteomics revealed 973 differentially expressed proteins in Gln-treated IPEC-J2 cells, 824 of which were upregulated and 149 of which were downregulated. Moreover, gene set enrichment analysis indicated that the Wnt signaling pathway is activated by Gln treatment. Western blotting analysis further confirmed that Gln activated the Wnt/β-catenin signaling pathway. In addition, Gln increased not only cytosolic β-catenin but also nuclear β-catenin protein expression. LF3 (a β-catenin/TCF4 interaction inhibitor) assay and β-catenin knockdown demonstrated that Gln-mediated promotion of Wnt/β-catenin signaling and cell proliferation were blocked. Furthermore, the inhibition of TCF4 expression suppressed Gln-induced cell proliferation. These findings further confirmed that Wnt/β-catenin signaling is involved in the promotion of IPEC-J2 cell proliferation by Gln. Collectively, these findings demonstrated that Gln positively regulated IPEC-J2 cell proliferation through the Wnt/β-catenin pathway. These data greatly enhance the current understanding of the mechanism by which Gln regulates intestinal development.
Collapse
Affiliation(s)
- Yong-Xia Fang
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, China
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - En-Qing Lu
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, China
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - Yu-Jie Cheng
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, China
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - E Xu
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, China
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - Min Zhu
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, China
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - Xiang Chen
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, China
| |
Collapse
|
7
|
Lin Y, Zhai JL, Wang YT, Guo PT, Zhang J, Wang CK, Jin L, Gao YY. Potassium diformate alleviated inflammation of IPEC-J2 cells infected with EHEC. Vet Microbiol 2024; 291:110013. [PMID: 38364468 DOI: 10.1016/j.vetmic.2024.110013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/16/2024] [Accepted: 01/28/2024] [Indexed: 02/18/2024]
Abstract
Potassium diformate (KDF) is a kind of formate, which possesses the advantages of antimicrobial activity, growth promotion and preventing diarrhea in weaned piglets. However, the researches of KDF in animal production mostly focused on apparent indexes such as growth performance and the mechanisms of KDF on intestinal health have not been reported. Thus, porcine small intestinal epithelial cells (IPEC-J2) infected with Enterohemorrhagic Escherichia coli (EHEC) was used to investigate the role of KDF on alleviating intestinal inflammation in this study. The 0.125 mg/mL KDF treated IPEC-J2 cells for 6 h and IPEC-J2 cells challenged with 5 × 107 CFU/mL EHEC for 4 h were confirmed as the optimum concentration and time for the following experiment. The subsequent experiment was divided into four groups: control group (CON), EHEC group, KDF group, KDF+EHEC group. The results showed that KDF increased the cell viability and the gene expression levels of SGLT3 and TGF-β, while decreased the content of IL-1β compared with the CON group. The cell viability and the gene expressions of SGLT1, SGLT3, GLUT2, Claudin-1, Occludin and TGF-β, and the protein expression of ZO-1 in EHEC group were lower than those in CON group, whereas the gene expressions of IL-1β, TNF, IL-8 and TLR4, and the level of phosphorylation NF-кB protein were increased. Pretreatment with KDF reduced the content of IgM and IL-1β, the gene expressions of IL-1β, TNF, IL-8 and TLR4 and the level of phosphorylation NF-кB protein, and increased the gene expression of TGF-β and the protein expression of Occludin in IPEC-J2 cells infected EHEC. In conclusion, 0.125 mg/mL KDF on IPEC-J2 cells for 6 h had the beneficial effects on ameliorating the intestinal inflammation because of reduced pro-inflammatory cytokines and enhanced anti-inflammatory cytokines through regulating NF-кB signaling pathway under the EHEC challenge.
Collapse
Affiliation(s)
- Ying Lin
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jun-Lei Zhai
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ya-Ting Wang
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ping-Ting Guo
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jing Zhang
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chang-Kang Wang
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ling Jin
- China National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yu-Yun Gao
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
8
|
Dai C, Li H, Zhao W, Fu Y, Cheng J. Bioactive functions of chlorogenic acid and its research progress in pig industry. J Anim Physiol Anim Nutr (Berl) 2024; 108:439-450. [PMID: 37975278 DOI: 10.1111/jpn.13905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 09/04/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
Chlorogenic acid (CGA), also known as 3-caffeioylquinic acid or coffee tannin, is a water-soluble polyphenol phenylacrylate compound produced through the shikimate pathway by plants during aerobic respiration. CGA widely exists in higher dicotyledons, ferns and many Chinese medicinal materials, and enjoys the reputation of 'plant gold'. Here, we summarized the source, chemical structure, biological activity functions of CGA and its research progress in pigs, aiming to provide a more comprehensive understanding and theoretical basis for the prospect of CGA replacing antibiotics as a pig feed additive.
Collapse
Affiliation(s)
- Chaohui Dai
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Crop and Livestock Integration Ministry of Agriculture and Rural Affairs, Nanjing, China
- Jiangsu Germplasm Resources Protection and Utilization Platform, Nanjing, China
| | - Hui Li
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Crop and Livestock Integration Ministry of Agriculture and Rural Affairs, Nanjing, China
- Jiangsu Germplasm Resources Protection and Utilization Platform, Nanjing, China
| | - Weimin Zhao
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Crop and Livestock Integration Ministry of Agriculture and Rural Affairs, Nanjing, China
- Jiangsu Germplasm Resources Protection and Utilization Platform, Nanjing, China
| | - Yanfeng Fu
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Crop and Livestock Integration Ministry of Agriculture and Rural Affairs, Nanjing, China
- Jiangsu Germplasm Resources Protection and Utilization Platform, Nanjing, China
| | - Jinhua Cheng
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Crop and Livestock Integration Ministry of Agriculture and Rural Affairs, Nanjing, China
- Jiangsu Germplasm Resources Protection and Utilization Platform, Nanjing, China
| |
Collapse
|
9
|
Lyu CC, Ji XY, Che HY, Meng Y, Wu HY, Zhang JB, Zhang YH, Yuan B. CGA alleviates LPS-induced inflammation and milk fat reduction in BMECs through the NF-κB signaling pathway. Heliyon 2024; 10:e25004. [PMID: 38317876 PMCID: PMC10838784 DOI: 10.1016/j.heliyon.2024.e25004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 01/06/2024] [Accepted: 01/18/2024] [Indexed: 02/07/2024] Open
Abstract
Mastitis is an easy clinical disease in dairy cows, which seriously affects the milk yield and quality of dairy cows. Chlorogenic acid (CGA), a polyphenolic substance, is abundant in Eucommia ulmoides leaves and has anti-inflammatory and anti-oxidative stress effects. Here, we explore whether CGA attenuated lipopolysaccharide (LPS)-induced inflammation and decreased milk fat in bovine mammary epithelial cells (BMECs). 10 μg/mL LPS was used to induce mastitis in BMECs. QRT-PCR, Western blotting, oil red O staining, and triglyceride (TG) assay were used to examine the effects of CGA on BMECs, including inflammatory response, oxidative stress response, and milk fat synthesis. The results showed that CGA repaired LPS-induced inflammation in BMECs. The expression of IL-6, IL-8, TNF-α, IL-1β, and iNOS was decreased, and the expression levels of CHOP, XCT, NRF2, and HO-1 were increased, which reduced the oxidative stress level of cells and alleviated the reduction of milk fat synthesis. In addition, the regulation of P65 phosphorylation by CGA suggests that CGA may exert its anti-inflammatory and anti-oxidative effects through the NF-κB signaling pathway. Our study showed that CGA attenuated LPS-induced inflammation and oxidative stress, and restored the decrease in milk fat content in BMECs by regulating the NF-κB signaling pathway.
Collapse
Affiliation(s)
| | | | - Hao-Yu Che
- College of Animal Science, College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin, PR China
| | - Yu Meng
- College of Animal Science, College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin, PR China
| | - Hong-Yu Wu
- College of Animal Science, College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin, PR China
| | - Jia-Bao Zhang
- College of Animal Science, College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin, PR China
| | | | | |
Collapse
|
10
|
Zhu M, Lu EQ, Fang YX, Liu GW, Cheng YJ, Huang K, Xu E, Zhang YY, Wang XJ. Piceatannol Alleviates Deoxynivalenol-Induced Damage in Intestinal Epithelial Cells via Inhibition of the NF-κB Pathway. Molecules 2024; 29:855. [PMID: 38398607 PMCID: PMC10891758 DOI: 10.3390/molecules29040855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Deoxynivalenol (DON) is a common mycotoxin that is widely found in various foods and feeds, posing a potential threat to human and animal health. This study aimed to investigate the protective effect of the natural polyphenol piceatannol (PIC) against DON-induced damage in porcine intestinal epithelial cells (IPEC-J2 cells) and the underlying mechanism. The results showed that PIC promotes IPEC-J2 cell proliferation in a dose-dependent manner. Moreover, it not only significantly relieved DON-induced decreases in cell viability and proliferation but also reduced intracellular reactive oxygen species (ROS) production. Further studies demonstrated that PIC alleviated DON-induced oxidative stress damage by increasing the protein expression levels of the antioxidant factors NAD(P)H quinone oxidoreductase-1 (NQO1) and glutamate-cysteine ligase modifier subunit (GCLM), and the mRNA expression of catalase (CAT), Superoxide Dismutase 1 (SOD1), peroxiredoxin 3 (PRX3), and glutathione S-transferase alpha 4 (GSTα4). In addition, PIC inhibited the activation of the nuclear factor-B (NF-κB) pathway, downregulated the mRNA expression of interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor α (TNF-α) to attenuate DON-induced inflammatory responses, and further mitigated DON-induced cellular intestinal barrier injury by regulating the protein expression of Occludin. These findings indicated that PIC had a significant protective effect against DON-induced damage. This study provides more understanding to support PIC as a feed additive for pig production.
Collapse
Affiliation(s)
- Min Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China; (E.-Q.L.); (Y.-X.F.); (G.-W.L.); (Y.-J.C.); (K.H.); (E.X.); (Y.-Y.Z.)
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - En-Qing Lu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China; (E.-Q.L.); (Y.-X.F.); (G.-W.L.); (Y.-J.C.); (K.H.); (E.X.); (Y.-Y.Z.)
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - Yong-Xia Fang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China; (E.-Q.L.); (Y.-X.F.); (G.-W.L.); (Y.-J.C.); (K.H.); (E.X.); (Y.-Y.Z.)
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - Guo-Wei Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China; (E.-Q.L.); (Y.-X.F.); (G.-W.L.); (Y.-J.C.); (K.H.); (E.X.); (Y.-Y.Z.)
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - Yu-Jie Cheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China; (E.-Q.L.); (Y.-X.F.); (G.-W.L.); (Y.-J.C.); (K.H.); (E.X.); (Y.-Y.Z.)
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - Ke Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China; (E.-Q.L.); (Y.-X.F.); (G.-W.L.); (Y.-J.C.); (K.H.); (E.X.); (Y.-Y.Z.)
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - E Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China; (E.-Q.L.); (Y.-X.F.); (G.-W.L.); (Y.-J.C.); (K.H.); (E.X.); (Y.-Y.Z.)
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - Yi-Yu Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China; (E.-Q.L.); (Y.-X.F.); (G.-W.L.); (Y.-J.C.); (K.H.); (E.X.); (Y.-Y.Z.)
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - Xiao-Jing Wang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| |
Collapse
|
11
|
Chen J, Zhou Z, Wu N, Li J, Xi N, Xu M, Wu F, Fu Q, Yan G, Liu Y, Xu X. Chlorogenic acid attenuates deoxynivalenol-induced apoptosis and pyroptosis in human keratinocytes via activating Nrf2/HO-1 and inhibiting MAPK/NF-κB/NLRP3 pathways. Biomed Pharmacother 2024; 170:116003. [PMID: 38091639 DOI: 10.1016/j.biopha.2023.116003] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024] Open
Abstract
Deoxynivalenol (DON) is a common mycotoxic contaminant, frequently found in food and feed, causing a severe threat to human and animal health. Because of the widespread contamination of DON, humans involved in agricultural practices may be directly exposed to DON through the skin route. Chlorogenic acid (CGA) is a phenolic acid, which has anti-inflammatory and antioxidant properties. However, it is still unclear whether CGA can protect against DON-induced skin damage. Here, the effect of CGA on mitigating damage to human keratinocytes (HaCaT) triggered by DON, as well as its underlying mechanisms were investigated. Results demonstrated that DON exposure significantly decreased cell viability, and induced excessive mitochondrial reactive oxygen species (mtROS) generation, mitochondrial damage, oxidative stress, cell apoptosis and pyroptosis. However, CGA pretreatment for 2 h significantly increased cell viability and reversed DON-induced oxidative stress by improving antioxidant enzyme activities such as superoxide dismutase (SOD), glutathione (GSH), catalase (CAT), reducing mtROS generation and enhancing mitochondrial function through activating Nrf2/HO-1 pathway. Moreover, CGA significantly increased the Bcl-2 protein expression, decreased the protein expressions of Bax and cleaved Caspase-3, and suppressed the phosphorylated of ERK, JNK, NF-κB. Further experiments revealed that CGA could also inhibit the pyroptosis-related protein expressions including NLRP3, cleaved Caspase-1, GSDMD-N, cleaved IL-1β and IL-18. In conclusion, our results suggest that CGA could attenuate DON-induced oxidative stress, inflammation, and apoptosis by activating the Nrf2/HO-1 pathway and inhibiting MAPK/NF-κB/NLRP3 pathway. CGA might be a novel promising therapeutic agent for alleviating the dermal damage triggered by DON.
Collapse
Affiliation(s)
- Jiashe Chen
- Department of Pathology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Zhiyu Zhou
- Department of Pathology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Nanhui Wu
- Department of Pathology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Jie Li
- Department of Pathology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Ningyuan Xi
- Department of Pathology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Mingyuan Xu
- Department of Pathology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Fei Wu
- Department of Pathology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Qiaoting Fu
- Department of Pathology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Guorong Yan
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China.
| | - Yeqiang Liu
- Department of Pathology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China.
| | - Xiaoxiang Xu
- Department of Pathology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China.
| |
Collapse
|
12
|
Wang P, Yao Q, Meng X, Yang X, Wang X, Lu Q, Liu A. Effective protective agents against organ toxicity of deoxynivalenol and their detoxification mechanisms: A review. Food Chem Toxicol 2023; 182:114121. [PMID: 37890761 DOI: 10.1016/j.fct.2023.114121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 10/15/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023]
Abstract
Deoxynivalenol (DON) is one of the most prevalent mycotoxins in feed, which causes organ toxicity in animals. Therefore, reducing DON-induced organ toxicity can now be accomplished effectively using protective agents. This review provides an overview of multiple studies on a wide range of protective agents and their molecular mechanisms against DON organ toxicity. Protective agents include plant extracts, yeast products, bacteria, peptides, enzymes, H2, oligosaccharides, amino acids, adsorbents, vitamins and selenium. Among these, biological detoxification of DON using microorganisms to reduce the toxicity of DON without affecting the growth performance of pigs may be the most promising detoxification strategy. This paper also evaluates future developments related to DON detoxification and discusses the detoxification role and application potential of protective agents. This paper provides new perspectives for future research and development of safe and effective feed additives.
Collapse
Affiliation(s)
- Pengju Wang
- Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China
| | - Qin Yao
- Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China
| | - Xiangwen Meng
- Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China
| | - Xiaosong Yang
- Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Qirong Lu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, PR China
| | - Aimei Liu
- Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China.
| |
Collapse
|
13
|
Wang Q, Liu T, Koci M, Wang Y, Fu Y, Ma M, Ma Q, Zhao L. Chlorogenic Acid Alleviated AFB1-Induced Hepatotoxicity by Regulating Mitochondrial Function, Activating Nrf2/HO-1, and Inhibiting Noncanonical NF-κB Signaling Pathway. Antioxidants (Basel) 2023; 12:2027. [PMID: 38136147 PMCID: PMC10740517 DOI: 10.3390/antiox12122027] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 12/24/2023] Open
Abstract
Aflatoxin B1 (AFB1), a kind of mycotoxin, imposes acute or chronic toxicity on humans and causes great public health concerns. Chlorogenic acid (CGA), a natural phenolic substance, shows a powerful antioxidant and anti-inflammatory effect. This study was conducted to investigate the effect and mechanism of CGA on alleviating cytotoxicity induced by AFB1 in L-02 cells. The results showed that CGA (160 μM) significantly recovered cell viability and cell membrane integrity in AFB1-treated (8 μM) cells. Furthermore, it was found that CGA reduced AFB1-induced oxidative injury by neutralizing reactive oxygen species (ROS) and activating the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway. In addition, CGA showed anti-inflammatory effects as it suppressed the expression of inflammation-related genes (IL-6, IL-8, and TNF-α) and AFB1-induced noncanonical nuclear factor kappa-B (NF-κB) activation. Moreover, CGA mitigated AFB1-induced apoptosis by maintaining the mitochondrial membrane potential (MMP) and inhibiting mRNA expressions of Caspase-3, Caspase-8, Bax, and Bax/Bcl-2. These findings revealed a possible mechanism: CGA prevents AFB1-induced cytotoxicity by maintaining mitochondrial membrane potential, activating Nrf2/HO-1, and inhibiting the noncanonical NF-κB signaling pathway, which may provide a new direction for the application of CGA.
Collapse
Affiliation(s)
- Qianqian Wang
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming Yuan, Beijing 100193, China; (Q.W.); (T.L.); (Y.W.); (Y.F.); (M.M.); (Q.M.)
| | - Tianxu Liu
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming Yuan, Beijing 100193, China; (Q.W.); (T.L.); (Y.W.); (Y.F.); (M.M.); (Q.M.)
| | - Matthew Koci
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
| | - Yanan Wang
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming Yuan, Beijing 100193, China; (Q.W.); (T.L.); (Y.W.); (Y.F.); (M.M.); (Q.M.)
| | - Yutong Fu
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming Yuan, Beijing 100193, China; (Q.W.); (T.L.); (Y.W.); (Y.F.); (M.M.); (Q.M.)
| | - Mingxin Ma
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming Yuan, Beijing 100193, China; (Q.W.); (T.L.); (Y.W.); (Y.F.); (M.M.); (Q.M.)
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming Yuan, Beijing 100193, China; (Q.W.); (T.L.); (Y.W.); (Y.F.); (M.M.); (Q.M.)
| | - Lihong Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming Yuan, Beijing 100193, China; (Q.W.); (T.L.); (Y.W.); (Y.F.); (M.M.); (Q.M.)
| |
Collapse
|
14
|
Tu Y, Liu S, Cai P, Shan T. Global distribution, toxicity to humans and animals, biodegradation, and nutritional mitigation of deoxynivalenol: A review. Compr Rev Food Sci Food Saf 2023; 22:3951-3983. [PMID: 37421323 DOI: 10.1111/1541-4337.13203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/18/2023] [Accepted: 06/05/2023] [Indexed: 07/10/2023]
Abstract
Deoxynivalenol (DON) is one of the main types of B trichothecenes, and it causes health-related issues in humans and animals and imposes considerable challenges to food and feed safety globally each year. This review investigates the global hazards of DON, describes the occurrence of DON in food and feed in different countries, and systematically uncovers the mechanisms of the various toxic effects of DON. For DON pollution, many treatments have been reported on the degradation of DON, and each of the treatments has different degradation efficacies and degrades DON by a distinct mechanism. These treatments include physical, chemical, and biological methods and mitigation strategies. Biodegradation methods include microorganisms, enzymes, and biological antifungal agents, which are of great research significance in food processing because of their high efficiency, low environmental hazards, and drug resistance. And we also reviewed the mechanisms of biodegradation methods of DON, the adsorption and antagonism effects of microorganisms, and the different chemical transformation mechanisms of enzymes. Moreover, nutritional mitigation including common nutrients (amino acids, fatty acids, vitamins, and microelements) and plant extracts was discussed in this review, and the mitigation mechanism of DON toxicity was elaborated from the biochemical point of view. These findings help explore various approaches to achieve the best efficiency and applicability, overcome DON pollution worldwide, ensure the sustainability and safety of food processing, and explore potential therapeutic options with the ability to reduce the deleterious effects of DON in humans and animals.
Collapse
Affiliation(s)
- Yuang Tu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, PR China
| | - Shiqi Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, PR China
| | - Peiran Cai
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, PR China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| |
Collapse
|
15
|
Liu H, Li X, Zhang K, Lv X, Zhang Q, Chen P, Wang Y, Zhao J. Integrated multi-omics reveals the beneficial role of chlorogenic acid in improving the growth performance and immune function of immunologically stressed broilers. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 14:383-402. [PMID: 37635925 PMCID: PMC10448031 DOI: 10.1016/j.aninu.2023.05.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 04/24/2023] [Accepted: 05/11/2023] [Indexed: 08/29/2023]
Abstract
Intensive production can cause immunological stress in commercial broilers. Chlorogenic acid (CGA) regulates the intestinal microbiota, barrier function, and immune function in chickens. As complex interrelations regulate the dynamic interplay between gut microbiota, the host, and diverse health outcomes, the aim of this study was to elucidate the immunoregulatory mechanisms of CGA using multi-omics approaches. A total of 240 one-day-old male broilers were assigned to a 2 × 2 factorial design with 2 CGA levels (0 or 500 mg/kg) either with or without dexamethasone (DEX) injection for a 21-day experimental period. Therefore, there were 4 dietary treatments: control, DEX, CGA, and DEX + CGA, with 6 replicates per treatment. CGA supplementation improved (P < 0.05) growth performance, jejunal morphology, jejunal barrier function, and immune function in DEX-treated broilers. Moreover, in DEX + CGA-treated broilers, the increase in gut microbiome diversity (P < 0.05) was consistent with a change in taxonomic composition, especially in the Clostridiales vadin BB60_group. Additionally, the levels of short-chain fatty acids increased remarkably (P < 0.01) after CGA supplementation. This was consistent with the Kyoto Encyclopedia of Genes and Genomes analysis results that the "pyruvate fermentation to butanoate" pathway was more enriched (P < 0.01) in the DEX + CGA group than in the DEX group. Proteomics revealed that CGA treatment increased the expression of several health-promoting proteins, thymosin beta (TMSB4X) and legumain (LGMN), which were verified by multiple reaction monitoring. Metabolomics revealed that CGA treatment increased the expression of health-promoting metabolites (2,4-dihydroxy benzoic acid and homogentisic acid). Proteomic and metabolic analyses showed that CGA treatment regulated the peroxisome proliferator-activated receptor (PPAR) and mitogen-activated protein kinase (MAPK) pathways. Western blotting results support these findings. Pearson's correlation analyses showed correlations (P < 0.01) between altered immune function, jejunal barrier function, different microbiota, proteins, and metabolites parameters. Overall, our data indicate that CGA treatment increased growth performance and improved the immunological functions of DEX-treated broilers by regulating gut microbiota and the PPAR and MAPK pathways. The results offer novel insights into a CGA-mediated improvement in immune function and intestinal health.
Collapse
Affiliation(s)
| | | | - Kai Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaoguo Lv
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Quanwei Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Peng Chen
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Yang Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Jinshan Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
16
|
Zhang L, Song S, Chen B, Li R, Wang L, Wang C, Han L, Fu Z, Zhang Z, Wang Q, Yu H. Integration of UHPLC/Q-OrbitrapMS-based metabolomics and activities evaluation to rapidly explore the anti-inflammatory components from lasianthus. Heliyon 2023; 9:e16117. [PMID: 37274662 PMCID: PMC10238613 DOI: 10.1016/j.heliyon.2023.e16117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/21/2023] [Accepted: 05/06/2023] [Indexed: 06/06/2023] Open
Abstract
Lasianthus, belonging to Rubiaceae, has been verified to improve clinical syndrome in immune diseases (e.g., hepatitis, nephritis, and rheumatoid arthritis). Both the anti-inflammatory function and chemical composition of Lasianthus vary considerably between different species but few studies focus. So essential it is to explore lasianthus and further search for anti-inflammatory substances. The target of this artical is to analyze the anti-inflammatory activity and chemical composition of lasianthus of different species. And the subsequent active compounds were explored. Primary, the anti-inflammatory activity among seven species of lasianthus (e.g., L. fordii., L. wallichii., L. hookeri C., L. verticillatus., L. sikkimensis., L. appressihirtus., and L. hookeri var) were evaluated by vitro experiments (RAW 264.7 cells). Next, UHPLC/Q-Orbitrap-MS-based metabolomics and the mass defect filter (MDF) algorithm were performed to explore metabolites. In addition, principal component analysis (PCA) was to screen out differential compounds in seven species. Finally, the correlation analysis between activities and composition to rapidly discover the active compounds (compounds were verified pharmacologically). Among the 7 species of lasianthus, the L. fordii. and L. hookeri C indicated the best anti-inflammatory activity. Untargeted metabolomics and MDF show 112 compounds, classified into six dominant types (e.g., flavonoids, phenolic acids, alkaloids, iridoids, coumarins, and anthraquinones). Furthermore, 33 differential metabolites were confirmed by PCA. Then according to correlation analysis and pharmacological validation, 7 compounds IC50<100 (e.g., scopoletin, asperulosidic acid, chlorogenic acid, ferulic acid, betaine, syringic acid, and emodin) were verified as anti-inflammatory compounds and conduct quantitative analysis. Metabolomics integrated with activities evaluation might be a rapid and effective strategy to explore the active compounds from natural products.
Collapse
Affiliation(s)
- Lele Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China
| | - Shaofei Song
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China
| | - Biying Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China
| | - Rongrong Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China
| | - Liming Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China
| | - Chenxi Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China
| | - Lifeng Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, PR China
| | - Zhifei Fu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China
| | - Zhonglian Zhang
- Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan Branch of Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Jinghong, 666100, China
| | - Qilong Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, PR China
| | - Heshui Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China
| |
Collapse
|
17
|
Xu X, Chang J, Wang P, Liu C, Zhou T, Yin Q, Yan G. Glycyrrhinic acid and probiotics alleviate deoxynivalenol-induced cytotoxicity in intestinal epithelial cells. AMB Express 2023; 13:52. [PMID: 37249811 DOI: 10.1186/s13568-023-01564-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 05/18/2023] [Indexed: 05/31/2023] Open
Abstract
Deoxynivalenol (DON) is one of the most prevalent mycotoxin contaminants, which posing a serious health threat to animals and humans. Previous studies have found that individually supplemented probiotic or glycyrrhinic acid (GA) could degrade DON and alleviate DON-induced cytotoxicity. The present study investigated the effect of combining GA with Saccharomyces cerevisiae (S. cerevisiae) and Enterococcus faecalis (E. faecalis) using orthogonal design on alleviating IPEC-J2 cell damage induced by DON. The results showed that the optimal counts of S. cerevisiae and E. faecalis significantly promoted cell viability. The optimal combination for increasing cell viability was 400 µg/mL GA, 1 × 106 CFU/mL S. cerevisiae and 1 × 106 CFU/mL E. faecalis to make GAP, which not only significantly alleviated the DON toxicity but also achieved the highest degradation rate of DON (34.7%). Moreover, DON exposure significantly increased IL-8, Caspase3 and NF-κB contents, and upregulated the mRNA expressions of Bax, Caspase 3, NF-κB and the protein expressions of Bax, TNF-α and COX-2. However, GAP addition significantly reduced aforementioned genes and proteins. Furthermore, GAP addition significantly increased the mRNA expressions of Claudin-1, Occludin, GLUT2 and ASCT2, and the protein expressions of ZO-1, Claudin-1 and PePT1. It was inferred that the combination of GA, S. cerevisiae, and E. faecalis had the synergistic effect on enhancing cell viability and DON degradation, which could protect cells from DON-induced damage by reducing DON cytotoxicity, alleviating cell apoptosis and inflammation via inhibiting NF-κB signaling pathway, improving intestinal barrier function, and regulating nutrient absorption and transport. These findings suggest that GAP may have potential as a dietary supplement for livestock or humans exposed to DON-contaminated food or feed.
Collapse
Affiliation(s)
- Xiaoxiang Xu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Juan Chang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Ping Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Chaoqi Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Ting Zhou
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, N1G 5C9, Canada
| | - Qingqiang Yin
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Guorong Yan
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| |
Collapse
|
18
|
Qin Y, Wang S, Huang W, Li K, Wu M, Liu W, Han J. Chlorogenic acid improves intestinal morphology by enhancing intestinal stem-cell activity. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3287-3294. [PMID: 36698257 DOI: 10.1002/jsfa.12469] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 12/11/2022] [Accepted: 01/26/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Chlorogenic acid (CGA), as one of the most abundant naturally occurring phenolic acids, has been documented to be beneficial for intestinal health. However, the underlying mechanism is still not fully understood. The adult intestinal stem cell is the critical driver of epithelial homeostasis and regeneration. RESULTS This study hypothesized that CGA exerted intestinal health effects by modulating intestinal stem-cell functions. Lgr5-EGFP mice were treated for 14 days, and intestinal organoids derived from these mice were treated for 3 days, using CGA solution. In comparison with the control group, CGA treatment increased intestinal villous height and crypt depth in mice and augmented the area expansion and the number of budding intestinal organoids. Quantitative polymerase chain reaction (qPCR) analysis revealed that CGA treatment significantly increased the expression of genes coding intestinal stem-cell markers in intestinal tissue and organoids, and upregulated the expression of genes coding secretory cell lineages and enterocytes, although not statistically significantly. Fluorescence-activated cell-sorting analysis further confirmed that CGA augmented the number of stem cells. 5-Ethynyl-2'-deoxyuridine (EdU) incorporation and Ki67 immunostaining results also demonstrated that CGA treatment enhanced intestinal stem-cell proliferation. CONCLUSION Altogether, our findings indicate that CGA could activate intestinal stem-cell and epithelial regeneration, which could contribute to the improvement of intestinal morphology or organoid growth of mice. This highlights a promising mechanism for CGA as an excellent candidate for the formulation of dietary supplements and functional foods for intestinal protection. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yumei Qin
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Suqiang Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Weiwei Huang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Kejin Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Min Wu
- Ecology and Health Institute, Hangzhou Vocational and Technical College, Hangzhou, China
| | - Weilin Liu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Jianzhong Han
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
19
|
Rahmani S, Roohbakhsh A, Karimi G. Inhibition of Drp1-dependent mitochondrial fission by natural compounds as a therapeutic strategy for organ injuries. Pharmacol Res 2023; 188:106672. [PMID: 36690165 DOI: 10.1016/j.phrs.2023.106672] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/03/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
Mitochondria are morphologically dynamic organelles frequently undergoing fission and fusion processes that regulate mitochondrial integrity and bioenergetics. These processes are considered critical for cell survival. The mitochondrial fission process regulates mitochondrial biogenesis and mitophagy. It is associated with apoptosis, while mitochondrial fusion controls the accurate distribution of mitochondrial DNA and metabolic substances across the mitochondria. Excessive mitochondrial fission results in mitochondrial structural changes, dysfunction, and cell damage. Accumulating evidence demonstrates that mitochondrial dynamics affect neurodegenerative and cardiovascular diseases along with several other diseases. Biological molecules regulating the process of mitochondrial fission are potential targets for developing therapeutic agents. Many natural products target the dynamin-related protein 1 (Drp1)-dependent mitochondrial fission pathway, and their inhibitory effects ameliorate mitochondrial fragmentation. In this article, we reviewed the research literature that describes Drp1-dependent inhibition as a mechanism for the protective effects of natural compounds.
Collapse
Affiliation(s)
- Sohrab Rahmani
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Roohbakhsh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
20
|
Jin X, Su M, Liang Y, Li Y. Effects of chlorogenic acid on growth, metabolism, antioxidation, immunity, and intestinal flora of crucian carp ( Carassius auratus). Front Microbiol 2023; 13:1084500. [PMID: 36699591 PMCID: PMC9868665 DOI: 10.3389/fmicb.2022.1084500] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/02/2022] [Indexed: 01/11/2023] Open
Abstract
In recent years, with the harm caused by the abuse of antibiotics and the increasing demand for green and healthy food, people gradually began to look for antibiotic alternatives for aquaculture. As a Chinese herbal medicine, leaf extract chlorogenic acid (CGA) of Eucommia ulmoides Oliver can improve animal immunity and antioxidant capacity and can improve animal production performance. In this study, crucian carp (Carassius auratus) was fed with complete feed containing 200 mg/kg CGA for 60 days to evaluate the antioxidant, immuno-enhancement, and regulation of intestinal microbial activities of CGA. In comparison to the control, the growth performance indexes of CGA-added fish were significantly increased, including final body weight, weight gain rate, and specific growth rate (P < 0.01), while the feed conversion rate was significantly decreased (P < 0.01). Intestinal digestive enzyme activity significantly increased (P < 0.01); the contents of triglyceride in the liver (P < 0.01) and muscle (P > 0.05) decreased; and the expression of lipid metabolism-related genes in the liver was promoted. Additionally, the non-specific immune enzyme activities of intestinal and liver tissues were increased, but the expression level of the adenylate-activated protein kinase gene involved in energy metabolism was not affected. The antioxidant capacity of intestinal, muscle, and liver tissues was improved. Otherwise, CGA enhanced the relative abundance of intestinal microbes, Fusobacteria and Firmicutes and degraded the relative abundance of Proteobacteria. In general, our data showed that supplementation with CGA in dietary had a positive effect on Carassius auratus growth, immunity, and balance of the bacteria in the intestine. Our findings suggest that it is of great significance to develop and use CGA as a natural non-toxic compound in green and eco-friendly feed additives.
Collapse
Affiliation(s)
- Xuexia Jin
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mengyuan Su
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yunxiang Liang
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, China,Yunxiang Liang,
| | - Yingjun Li
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, China,Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, Guangdong, China,Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China,*Correspondence: Yingjun Li,
| |
Collapse
|
21
|
Chen J, Huang Z, Cao X, Chen X, Zou T, You J. Plant-Derived Polyphenols as Nrf2 Activators to Counteract Oxidative Stress and Intestinal Toxicity Induced by Deoxynivalenol in Swine: An Emerging Research Direction. Antioxidants (Basel) 2022; 11:2379. [PMID: 36552587 PMCID: PMC9774656 DOI: 10.3390/antiox11122379] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
The contamination of deoxynivalenol (DON) in feed is a global problem, which seriously threatens the productivity efficiency and welfare of farm animals and the food security of humans. Pig is the most sensitive species to DON, and is readily exposed to DON through its grain-enriched diet. The intestine serves as the first biological barrier to ingested mycotoxin, and is, therefore, the first target of DON. In the past decade, a growing amount of attention has been paid to plant-derived polyphenols as functional compounds against DON-induced oxidative stress and intestinal toxicity in pigs. In this review, we systematically updated the latest research progress in plant polyphenols detoxifying DON-induced intestinal toxicity in swine. We also discussed the potential underlying mechanism of action of polyphenols as Nrf2 activators in protecting against DON-induced enterotoxicity of swine. The output of this update points out an emerging research direction, as polyphenols have great potential to be developed as feed additives for swine to counteract DON-induced oxidative stress and intestinal toxicity.
Collapse
Affiliation(s)
| | | | | | | | | | - Jinming You
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Province Key Innovation Center of Integration in Production and Education for High-Quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
22
|
Xiao Y, Wang J, Wang J, Wang H, Wu S, Bao W. Analysis of the roles of the Notch1 signalling pathway in modulating deoxynivalenol cytotoxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114183. [PMID: 36270035 DOI: 10.1016/j.ecoenv.2022.114183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Deoxynivalenol (DON) is a trichothecenes produced by fungi that is widespread and poses a threat to human and animal health. The Notch1 signalling pathway is tightly involved in cell fate determination. The aim of this study was to investigate the role of the Notch1 signalling pathway in DON exposure. Herein, we found that the Notch1 signalling pathway was significantly activated after DON exposure, while Notch1 expression was negatively regulated by DON-induced ROS. Then, the Notch1 signalling pathway was blocked by the γ-secretase inhibitor DAPT in DON exposure. Flow cytometry analysis and antioxidant parameter measurements revealed that DAPT treatment significantly aggravated the oxidative stress induced by DON. The detection of apoptosis showed that DAPT treatment increased the cell apoptotic rate. Further analysis revealed that inhibiting the Notch1 signalling pathway reduced autophagy upon DON exposure. RT-qPCR and Western blot analysis showed that inhibiting the Notch1 signalling pathway aggravated cellular inflammation and activated the MAPK pathway, indicating that the MAPK pathway may be the downstream signalling pathway. Taken together, our research revealed that the Notch1 signalling pathway is essential for protection against DON. Inhibition of Notch1 signalling increases oxidative stress, causes cell apoptosis, reduces autophagy and aggravates cell inflammation after DON exposure. This study investigated the role of the Notch1 signalling pathway in DON exposure and provided a basis for exploring the mechanism of DON.
Collapse
Affiliation(s)
- Yeyi Xiao
- Key Laboratory for Animal Genetic, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Jie Wang
- Key Laboratory for Animal Genetic, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Jingneng Wang
- Shanghai Xiongtu Biotechnology Co., Ltd., Shanghai 200000, China.
| | - Haifei Wang
- Key Laboratory for Animal Genetic, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Shenglong Wu
- Key Laboratory for Animal Genetic, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Wenbin Bao
- Key Laboratory for Animal Genetic, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Shanghai Xiongtu Biotechnology Co., Ltd., Shanghai 200000, China.
| |
Collapse
|
23
|
Plant-derived polyphenols in sow nutrition: An update. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 12:96-107. [PMID: 36632620 PMCID: PMC9823128 DOI: 10.1016/j.aninu.2022.08.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/10/2022] [Accepted: 08/14/2022] [Indexed: 11/07/2022]
Abstract
Oxidative stress is a potentially critical factor that affects productive performance in gestating and lactating sows. Polyphenols are a large class of plant secondary metabolites that possess robust antioxidant capacity. All polyphenols are structurally characterized by aromatic rings with multiple hydrogen hydroxyl groups; those make polyphenols perfect hydrogen atoms and electron donors to neutralize free radicals and other reactive oxygen species. In the past decade, increasing attention has been paid to polyphenols as functional feed additives for sows. Polyphenols have been found to alleviate inflammation and oxidative stress in sows, boost their reproductivity, and promote offspring growth and development. In this review, we provided a systematical summary of the latest research advances in plant-derived polyphenols in sow nutrition, and mainly focused on the effects of polyphenols on the (1) antioxidant and immune functions of sows, (2) placental functions and the growth and development of fetal piglets, (3) mammary gland functions and the growth and development of suckling piglets, and (4) the long-term growth and development of progeny pigs. The output of this review provides an important foundation, from more than 8,000 identified plant phenols, to screen potential polyphenols (or polyphenol-enriched plants) as functional feed additives suitable for gestating and lactating sows.
Collapse
|
24
|
Ji Q, Zhang M, Wang Y, Chen Y, Wang L, Lu X, Bai L, Wang M, Bao L, Hao H, Wang Z. Protective effects of chlorogenic acid on inflammatory responses induced by Staphylococcus aureus and milk protein synthesis in bovine mammary epithelial cells. Microb Pathog 2022; 171:105726. [PMID: 35995255 DOI: 10.1016/j.micpath.2022.105726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/06/2022] [Accepted: 08/14/2022] [Indexed: 11/26/2022]
Abstract
Staphylococcus aureus (S. aureus) is a major mastitis-causing pathogen in dairy cows. Dairy cows with mastitis suffer from a decrease in milk yield and protein content. Chlorogenic acid (CGA) is a natural product with anti-inflammatory effects. In this study, we examined the function and mechanism of CGA with regard to its anti-inflammatory effects and evaluated its protective function in milk protein synthesis in bovine mammary epithelial cells (BMECs). BMECs were cultured with and without infection by S. aureus and CGA, and extracellular inflammatory cytokines and amino acids in the medium and milk proteins were determined by ELISA. The function of IL-10RA in anti-inflammatory processes and of SF-1 in milk protein synthesis was assessed by gene silencing. The activity of mTORC1, NF-κB, and STAT5 was examined by western blot. S. aureus caused intracellular infection and upregulated TNF-α, IL-1β, IL-6, and IL-8, whereas uptake of amino acids and milk protein synthesis were suppressed. CGA mitigated the S. aureus-induced inflammatory response and milk protein synthesis in vitro and in vivo. CGA alleviated S. aureus-induced inhibition of mTORC1 and STAT5 and upregulated IL-10 and IL-10RA. In addition, SF-1 was predicted to be a transcription factor of the milk protein-encoding genes α-LA, β-LG, and CSN2. S. aureus downregulated SF-1 and CGA reversed the decline in milk protein synthesis due to SF-1 knockdown. Thus, CGA mitigates the inflammatory response that is induced by S. aureus and protects the uptake of amino acids and milk protein synthesis in BMECs.
Collapse
Affiliation(s)
- Qiang Ji
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| | - Meng Zhang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| | - Yanfeng Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Yuhao Chen
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China; School of Life Sciences and Technology, Jining Normal University, Jining, 012000, China
| | - Liping Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Xinyue Lu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Linfeng Bai
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Manshulin Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Lili Bao
- School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, 010110, China
| | - Huifang Hao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| | - Zhigang Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| |
Collapse
|
25
|
Pharmacological Effects of Polyphenol Phytochemicals on the Intestinal Inflammation via Targeting TLR4/NF-κB Signaling Pathway. Int J Mol Sci 2022; 23:ijms23136939. [PMID: 35805952 PMCID: PMC9266441 DOI: 10.3390/ijms23136939] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 02/05/2023] Open
Abstract
TLR4/NF-κB is a key inflammatory signaling transduction pathway, closely involved in cell differentiation, proliferation, apoptosis, and pro-inflammatory response. Toll like receptor 4 (TLR4), the first mammalian TLR to be characterized, is the innate immune receptor that plays a key role in inflammatory signal transductions. Nuclear factor kappa B (NF-κB), the TLR4 downstream, is the key to accounting for the expression of multiple genes involved in inflammatory responses, such as pro-inflammatory cytokines. Inflammatory bowel disease (IBD) in humans is a chronic inflammatory disease with high incidence and prevalence worldwide. Targeting the TLR4/NF-κB signaling pathway might be an effective strategy to alleviate intestinal inflammation. Polyphenol phytochemicals have shown noticeable alleviative effects by acting on the TLR4/NF-κB signaling pathway in intestinal inflammation. This review summarizes the pharmacological effects of more than 20 kinds of polyphenols on intestinal inflammation via targeting the TLR4/NF-κB signaling pathway. We expected that polyphenol phytochemicals targeting the TLR4/NF-κB signaling pathway might be an effective approach to treat IBD in future clinical research applications.
Collapse
|
26
|
Protective Effects of Ferulic Acid on Deoxynivalenol-Induced Toxicity in IPEC-J2 Cells. Toxins (Basel) 2022; 14:toxins14040275. [PMID: 35448884 PMCID: PMC9027710 DOI: 10.3390/toxins14040275] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
Deoxynivalenol (DON), a mycotoxin that contaminates crops such as wheat and corn, can cause severe acute or chronic injury when ingested by animals or humans. This study investigated the protective effect of ferulic acid (FA), a polyphenolic substance, on alleviating the toxicity induced by DON (40 μM) in IPEC-J2 cells. The experiments results showed that FA not only alleviated the decrease in cell viability caused by DON (p < 0.05), but increased the level of superoxide dismutase (SOD) (p < 0.01), glutathione peroxidase (GSH-Px), (catalase) CAT and glutathione (GSH) (p < 0.05) through the nuclear factor erythroid 2-related factor 2 (Nrf2)-epoxy chloropropane Kelch sample related protein-1 (keap1) pathway, and then decreased the levels of intracellular oxidative stress. Additionally, FA could alleviate DON-induced inflammation through mitogen-activated protein kinases (MAPKs) and nuclear factor kappa-B (NF-κB) pathways, down-regulated the secretion of interleukin-6 (IL-6) (p < 0.0001), interleukin-8 (IL-8) (p < 0.05), interleukin-1β (IL-1β), interferon-γ (IFN-γ) and further attenuated the DON-induced intracellular apoptosis (10.7% to 6.84%) by regulating the expression of Bcl2-associated X protein (Bax) (p < 0.0001), B-cell lymphoma-2 (Bcl-2) (p < 0.0001), and caspase-3 (p < 0.0001). All these results indicate that FA exhibits a significantly protective effect against DON-induced toxicity.
Collapse
|
27
|
Dong Y, Xia Y, Yin J, Zhou D, Sang Y, Yan S, Liu Q, Li Y, Wang L, Zhao Y, Chen C, Huang Q, Wang Y, Abbasi MN, Yang H, Wang C, Li J, Tu Q, Yin J. Optimization, Characteristics, and Functions of Alkaline Phosphatase From Escherichia coli. Front Microbiol 2022; 12:761189. [PMID: 35265047 PMCID: PMC8899610 DOI: 10.3389/fmicb.2021.761189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
Weaning of piglets could increase the risk of infecting with Gram-negative pathogens, which can further bring about a wide array of virulence factors including the endotoxin lipopolysaccharide (LPS). It is in common practice that the use of antibiotics has been restricted in animal husbandry. Alkaline phosphatase (AKP) plays an important role in the detoxification and anti-inflammatory effects of LPS. This study investigated the protective effects of AKP on intestinal epithelial cells during inflammation. Site-directed mutagenesis was performed to modulate the AKP activity. The enzyme activity tests showed that the activity of the DelSigD153G-D330N mutants in B. subtilis was nearly 1,600 times higher than that of the wild-type AKP. In this study, an in vitro LPS-induced inflammation model using IPEC-J2 cells was established. The mRNA expression of interleukin-(IL-) 6, IL-8, and tumor necrosis factor-α (TNF-α) were extremely significantly downregulated, and that of ASC amino acid transporter 2 (ASCT-2), zonula occludens protein-1 (ZO-1), and occludin-3 (CLDN-3) were significantly upregulated by the DelSigD153G-D330N mutant compared with LPS treatment. This concludes the anti-inflammatory role of AKP on epithelial membrane, and we are hopeful that this research could achieve a sustainable development for the pig industry.
Collapse
Affiliation(s)
- Yachao Dong
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Yandong Xia
- College of Life Sciences and Technology, Central South University of Forestry and Technology, Changsha, China
| | - Jie Yin
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Diao Zhou
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yidan Sang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Sufeng Yan
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Qingshu Liu
- Hunan Institute of Microbiology, Changsha, China
| | - Yaqi Li
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Leli Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Ying Zhao
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Cang Chen
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Qiuyun Huang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Ying Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Muhammad Nazeer Abbasi
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Huansheng Yang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Chuni Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Jianzhong Li
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Qiang Tu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Jia Yin
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
28
|
Pu J, Chen D, Tian G, He J, Huang Z, Zheng P, Mao X, Yu J, Luo J, Luo Y, Yan H, Yu B. All-Trans Retinoic Acid Attenuates Transmissible Gastroenteritis Virus-Induced Inflammation in IPEC-J2 Cells via Suppressing the RLRs/NF-κB Signaling Pathway. Front Immunol 2022; 13:734171. [PMID: 35173714 PMCID: PMC8841732 DOI: 10.3389/fimmu.2022.734171] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 01/06/2022] [Indexed: 01/03/2023] Open
Abstract
Transmissible gastroenteritis virus (TGEV) infection can cause transmissible gastroenteritis (TGE), especially in suckling piglets, resulting in a significant economic loss for the global pig industry. The pathogenesis of TGEV infection is closely related to intestinal inflammation. All-trans retinoic acid (ATRA) has anti-inflammatory activity and immunomodulatory properties, but it is unclear whether ATRA can attenuate the inflammatory response induced by TGEV. This study aimed to investigate the protective effect of ATRA on TGEV-induced inflammatory injury in intestinal porcine epithelial cells (IPEC-J2) and to explore the underlying molecular mechanism. The results showed that TGEV infection triggered inflammatory response and damaged epithelial barrier integrity in IPEC-J2 cells. However, ATRA attenuated TGEV-induced inflammatory response by inhibiting the release of pro-inflammatory cytokines, including IL-1β, IL-6, IL-8 and TNF-α. ATRA also significantly reversed the reduction of ZO-1 and Occludin protein levels induced by TGEV infection and maintained epithelial barrier integrity. Moreover, ATRA treatment significantly prevented the upregulation of IкBα and NF-κB p65 phosphorylation levels and the nuclear translocation of NF-кB p65 induced by TGEV. On the other hand, treatment of TGEV-infected IPEC-J2 cells with the NF-κB inhibitors (BAY11-7082) significantly decreased the levels of inflammatory cytokines. Furthermore, ATRA treatment significantly downregulated the mRNA abundance and protein levels of TLR3, TLR7, RIG-I and MDA5, and downregulated their downstream signaling molecules TRIF, TRAF6 and MAVS mRNA expressions in TGEV-infected IPEC-J2 cells. However, the knockdown of RIG-I and MDA5 but not TLR3 and TLR7 significantly reduced the NF-κB p65 phosphorylation level and inflammatory cytokines levels in TGEV-infected IPEC-J2 cells. Our results indicated that ATRA attenuated TGEV-induced IPEC-J2 cells damage via suppressing inflammatory response, the mechanism of which is associated with the inhibition of TGEV-mediated activation of the RLRs/NF-κB signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Bing Yu
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education/Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
29
|
Rajput SA, Shaukat A, Rajput IR, Kamboh AA, Iqbal Z, Saeed M, Akhtar RW, Shah SAH, Raza MA, El Askary A, Abdel-Daim MM, Mohammedsaleh ZM, Aljarai RM, Alamoudi MO, Alotaibi MA. Ginsenoside Rb1 prevents deoxynivalenol-induced immune injury via alleviating oxidative stress and apoptosis in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112333. [PMID: 34058674 DOI: 10.1016/j.ecoenv.2021.112333] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/02/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
Deoxynivalenol (DON) is considered to be a grave threat to humans and animals. Ginsenoside Rb1 (Rb1) has been reported for its antioxidant potential and medicinal properties. However, the shielding effects of Rb1 and the precise molecular mechanisms against DON-induced immunotoxicity in mice have not been reported yet. In the present research, 4-weeks old healthy C57BL/6 mice were randomly assigned into four experimental groups (n = 12), viz., CON, DON 3 mg/kg BW, Rb1 50 mg/kg BW and DON 3 mg/kg + Rb1 50 mg/kg BW (DON + Rb1). Feed intake and body weight gain were monitored during the entire experiment (15 d). Our results demonstrated that Rb1 markedly increased the ADG (30%) and ADFI (25.10%) of mice compared with DON group. Furthermore, Rb1 alleviated the DON-induced immune injury by relieving the splenic histopathological alteration, enhancing the T-lymphocytes subsets (CD4+, CD8+), the levels of cytokines (IL-2, IL-6, IFN-γ, and TNF-α), as well as production of immunoglobulins (IgA, IgM, and IgG). Moreover, Rb1 ameliorated DON-inflicted oxidative stress by reducing the ROS, MDA and H2O2 contents and boosting the antioxidant defense system (T-AOC, T-SOD, CAT, and GSH-Px). Additionally, Rb1 significantly reversed the DON-induced excessive splenic apoptosis via modulating the mitochondria-mediated apoptosis pathway in mice, depicting the decreased percentage of splenocyte apoptotic cells by 26.65%, down-regulated the mRNA abundance of Bax, caspase-3, caspase-9, and protein expression of Bax, cleaved caspase-3, and Cyt-c. Simultaneously, Rb1 markedly rescued both Bcl-2 mRNA and protein expression levels. Taken together, Rb1 mitigates DON-induced immune injury by suppressing the oxidative damage and regulating the mitochondria-mediated apoptosis pathway in mice. Conclusively, our current research provides an insight into the preventive mechanism of Rb1 against DON-induced immune injury in mice and thus, presents a scientific baseline for the therapeutic application of Rb1.
Collapse
Affiliation(s)
- Shahid Ali Rajput
- Department of Animal Nutrition and Feed Science, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.
| | - Aftab Shaukat
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Imran Rashid Rajput
- Faculty of Veterinary and Animal Science, Lasbela University of Agriculture Water and Marine Science, Uthal, Balochistan, Pakistan
| | - Asghar Ali Kamboh
- Department of Veterinary Microbiology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Pakistan
| | - Zahid Iqbal
- Department of Pharmacology, Base for International Science and Technology Cooperation, Carson Cancer Stem Cell Vaccine R&D Center, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Muhammad Saeed
- Faculty of Animal Production and Technology, Cholistan University of Veterinary and Animal Sciences Bahawalpur, Pakistan
| | - Rana Waseem Akhtar
- Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Syed Aftab Hussain Shah
- Pakistan Scientific & Technological Information Center, Quaid-i-Azam University Campus, Islamabad, Pakistan
| | - Muhammad Asif Raza
- Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Ahmad El Askary
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Zuhair M Mohammedsaleh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Saudi Arabia
| | - Rabab M Aljarai
- Biology Department, Faculty of Sciences, University of Jeddah, Jeddah, Saudi Arabia
| | - Muna O Alamoudi
- Biology Department, Faculty of Sciences, Hail University, Hail, Saudi Arabia
| | | |
Collapse
|
30
|
Chen F, Zhang H, Zhao N, Yang X, Du E, Huang S, Guo W, Zhang W, Wei J. Effect of chlorogenic acid on intestinal inflammation, antioxidant status, and microbial community of young hens challenged with acute heat stress. Anim Sci J 2021; 92:e13619. [PMID: 34409681 DOI: 10.1111/asj.13619] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/05/2021] [Accepted: 07/15/2021] [Indexed: 01/13/2023]
Abstract
Heat stress in poultry is deleterious to productive performance. Chlorogenic acid (CGA) exerts antibacterial, anti-inflammatory, and antioxidant properties. This study was conducted to evaluate the effects of dietary supplemental CGA on the intestinal health and cecal microbiota composition of young hens challenged with acute heat stress. 100-day-old Hy-line brown pullets were randomly divided into four groups. The control group (C) and heat stress group (HS) received a basal diet. HS + CGA300 group and HS + CGA600 group received a basal diet supplemented with 300- and 600-mg/kg CGA, respectively, for 2 weeks before heat stress exposure. Pullets of HS, HS + CGA300 , and HS + CGA600 group were exposed to 38°C for 4 h while the control group was maintained at 25°C. In this study, dietary CGA supplementation had effect on mitigate the decreased T-AOC and T-SOD activities and the increasing of IL-1β and TNFα induced by acute heat stress. Dietary supplementation with 600 mg/kg CGA had better effect on increasing the relative abundance of beneficial bacterial genera, such as Rikenellaceae RC9_gut_group, Ruminococcaceae UCG-005, and Christensenellaceae R-7_group, and deceasing bacteria genera involved in inflammation, such as Sutterella species. Therefore, CGA can ameliorate acute heat stress damage through suppressing inflammation and improved antioxidant capacity and cecal microbiota composition.
Collapse
Affiliation(s)
- Fang Chen
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Wuhan, China.,Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Wuhan, China
| | - Hao Zhang
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Wuhan, China
| | - Na Zhao
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Wuhan, China
| | - Xuehai Yang
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Wuhan, China
| | - Encun Du
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Wuhan, China
| | - Shaowen Huang
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Wuhan, China
| | - Wanzheng Guo
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Wuhan, China
| | - Wei Zhang
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Wuhan, China
| | - Jintao Wei
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Wuhan, China
| |
Collapse
|