1
|
Cocci P, Stecconi T, Minicucci M, Gabrielli S, Mosconi G, Stramenga A, Tavoloni T, Piersanti A, Bracchetti L, Palermo FA. Levels and oxidative toxicity of microplastics and perfluoroalkyl substances (PFASs) in different tissues of sea cucumber (Holothuria tubulosa). THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 962:178472. [PMID: 39808903 DOI: 10.1016/j.scitotenv.2025.178472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/20/2024] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Abstract
Nowadays, marine pollution is a global problem which finds in microplastics (MPs) and emerging pollutants, such as perfluoroalkyl substances (PFASs), two of the main culprits. Sea cucumbers are a group of marine benthic invertebrates that show ecological, economic and social relevance. As deposit/suspension feeders, sea cucumbers show high susceptibility to bioaccumulate marine pollutants, including PFASs and MPs. In this study, we describe the presence and the effects of MP and PFAS accumulation on gastrointestinal tract (GIT) and coelomic fluid of sea cucumber (Holothuria tubulosa) specimens through the assessment of oxidative stress biomarkers. The MP abundance in the GIT ranged from 3 to 20 particles animal-1, while the extracted MPs from the coelomic fluid ranged from 0 to 7 particles animal-1, thus confirming a probable transfer through the respiratory tree. The MPs were identified by FT-IR and Raman analyses, and the polymer types were mainly polyethylene (PE) and polypropylene (PP). The concentrations of nineteen perfluoroalkyl sulfonic acids (PFSAs) were measured in the body wall of sea cucumbers. We found up to seven out of the nineteen PFASs. The Σ19PFAS were in the range 0.083-0.620 μg kg-1 and the maximum concentrations of individual PFASs in all the samples varied from 0.010 (PFHxA, PFHpA) to 0.390 (PFBS). Pearson coefficients showed a positive correlation among MPs and most of the oxidative stress parameters (i.e. catalase, glutathione S transferase, malondialdehyde and DNA damage) suggesting, however, a potential tissue-related response. This study thus revealed that MPs, and partially PFASs, induce oxidative imbalance in H. tubulosa, and pointed up the importance of different tissues in mediating dose/time-related responses to oxidative stress. Sea cucumbers prove to be very promising model organisms for ecotoxicological investigation.
Collapse
Affiliation(s)
- Paolo Cocci
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino, MC, Italy
| | - Tommaso Stecconi
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Perugia, Italy
| | - Marco Minicucci
- Physics Division, School of Science and Technology, University of Camerino, Via Madonna Delle Carceri, 62032 Camerino, MC, Italy
| | - Serena Gabrielli
- Chemistry Interdisciplinary Project (ChIP), School of Science and Technology, University of Camerino, Via Madonna Delle Carceri, 62032 Camerino, MC, Italy
| | - Gilberto Mosconi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino, MC, Italy
| | - Arianna Stramenga
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Perugia, Italy
| | - Tamara Tavoloni
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Perugia, Italy
| | - Arianna Piersanti
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Perugia, Italy
| | - Luca Bracchetti
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino, MC, Italy
| | - Francesco Alessandro Palermo
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino, MC, Italy.
| |
Collapse
|
2
|
Maldeniya MUS, Ma B, Liu Y, Yin J, Pan W, Wen S, Luo P. Potential harmful impacts of micro- and nanoplastics on the health of a tropical sea cucumber, Holothuria leucospilota, evidenced by changes of gut microflora, histology, immune and oxidative indexes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176487. [PMID: 39332734 DOI: 10.1016/j.scitotenv.2024.176487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/21/2024] [Accepted: 09/21/2024] [Indexed: 09/29/2024]
Abstract
Nanoplastics (NPs) and microplastics (MPs) have emerged as pervasive environmental pollutants, and they ubiquitously distribute in ecosystems and accumulate within organisms, thereby posing a substantial threat to global ecology. Though the disruptive effects of NPs and MPs on physiology and behavior in some aquatic species have been extensively documented, the potential impacts of them on a widespread sea cucumber, Holothuria leucospilota, remain unexplored. In this study, we conducted a comprehensive investigation to reveal the effect of polyethylene NPs (200 nm) and MPs (20 μm) on the health of the sea cucumber. The results indicated that the exposure to NPs and MPs deeply altered the gut microbiota, wherein a substantial alternation of core gut microorganisms such as Rhodobacteraceae and Flavobacteriaceae was observed. NPs and MPs induced oxidative stress in the gut of sea cucumbers, which may be linked to intraspecific variations in the abundance of Rhodobacteraceae, Arcobacteraceae, and Spirochaetaceae, as well as an immune imbalance associated with shifts in Rhodobacteraceae and Arcobacteraceae populations within the gut microbiota. Notably, NPs exerting a more pronounced effect on oxidative stress levels compared to MPs. Additionally, obvious transmission and accumulation of plastic particles could be observed in the gut tissues, and therefore it likely contributed to histological damage, immunological dysregulation, and oxidative stress. These findings clearly demonstrated that NPs and MPs exert harmful impacts on the health of the sea cucumber. This study provides valuable and deep insights into the broader ecological hazards caused by the contamination of plastic particles in marine ecosystems.
Collapse
Affiliation(s)
- M U S Maldeniya
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China; China-Sri Lanka Joint Center for Research and Education (CSL-CER), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510000, China
| | - Bo Ma
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Liu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiayue Yin
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjie Pan
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuyang Wen
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Peng Luo
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; China-Sri Lanka Joint Center for Research and Education (CSL-CER), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510000, China.
| |
Collapse
|
3
|
Bhuyan MS, Jenzri M, Pandit D, Adikari D, Alam MW, Kunda M. Microplastics occurrence in sea cucumbers and impacts on sea cucumbers & human health: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175792. [PMID: 39197778 DOI: 10.1016/j.scitotenv.2024.175792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/02/2024] [Accepted: 08/23/2024] [Indexed: 09/01/2024]
Abstract
Microplastics (MPs) are a developing concern in marine environments, with scientists concentrating more on their effects on various creatures. Sea cucumbers (SCs), as suspension and deposit feeders, are expected to be exposed to and consume MPs in their habitat. The purpose of this methodical review is to gather and integrate accessible research on the presence and effects of MPs on SCs. A systematic search of relevant databases yielded relevant papers exploring the occurrence of MPs in SC habitats as well as the possible effects of MP intake on SCs. Bibliometric analysis was also conducted to collect and analyze a large volume of data. Then the papers were sorted (a total of 249) related to the occurrence and effects of MPs in SCs. Finally, targeted data were collected from the articles for the study. The review emphasizes the ubiquity of MPs in SC ecosystems, citing studies that found high quantities in coastal areas and sediment. MPs have a variety of effects on SCs, with some studies indicating that they lower eating efficiency, affect behavior, and cause tissue damage. However, there is still no unanimity on the overall effects of MP exposure on SCs. This review gives a complete summary of the present state of information about the incidence and impact of MPs on SCs, highlighting the need for additional study in this area. Understanding the possible dangers of MPs on SCs is critical for the survival of these ecologically significant creatures.
Collapse
Affiliation(s)
- Md Simul Bhuyan
- Bangladesh Oceanographic Research Institute, Cox's Bazar-4730, Bangladesh; Department of Aquatic Resource Management, Faculty of Fisheries, Sylhet Agricultural University, Sylhet-3100, Bangladesh.
| | - Maroua Jenzri
- Research Laboratory of Bioresources: Integrative Biology & Valorization (LR 14ES06), Higher Institute of Biotechnology of Monastir, Avenue Tahar Hadded, PB. 74, 5000 Monastir, Tunisia
| | - Debasish Pandit
- Department of Aquatic Resource Management, Faculty of Fisheries, Sylhet Agricultural University, Sylhet-3100, Bangladesh; Department of Oceanography, Faculty of Fisheries and Ocean Sciences, Khulna Agricultural University, Khulna-3100, Bangladesh
| | - Diponkor Adikari
- Department of Aquatic Resource Management, Faculty of Fisheries, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| | - Md Wahidul Alam
- Department of Oceanography, Faculty of Marine Sciences and Fisheries, University of Chittagong, Chittagong-4331, Bangladesh
| | - Mrityunjoy Kunda
- Department of Aquatic Resource Management, Faculty of Fisheries, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| |
Collapse
|
4
|
Villanova-Solano C, Navalón-Alajarín G, González-Sálamo J, Hernández-Borges J, Hernández-Sánchez C. Assessment of anthropogenic particles in Holothuria sanctori from Tenerife (Canary Islands, Spain). MARINE POLLUTION BULLETIN 2024; 208:117013. [PMID: 39321633 DOI: 10.1016/j.marpolbul.2024.117013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/03/2024] [Accepted: 09/14/2024] [Indexed: 09/27/2024]
Abstract
Sea cucumbers play a key role in maintaining the health of coastal marine ecosystems. The aim of this research was to evaluate the presence of anthropogenic particles in sea cucumbers of the species Holothuria sanctori in intertidal pools from Tenerife (Canary Islands, Spain) and in the surrounding seawater. In the case of sea cucumbers (n = 18), the gastrointestinal tract (particles ingested directly from the sediment) and Cuvierian tubules (particles presence as a result of gas exchange with seawater) were analysed separately. Anthropogenic particles were found in all samples, with an average concentration of 20.0 ± 4.4 items per litre in seawater and 11.8 ± 3.9 items per individual in the sea cucumbers, with a higher concentration of particles in the gastrointestinal tract (9.3 ± 3.4 items per gastrointestinal tract) than in the Cuvierian tubules (2.6 ± 3.3 items per Cuvierian tubules). Transparent and blue microfibres were predominant, accounting for over 90 % of the samples analysed. A significant proportion of these fibres were of cellulosic origin (either natural or semisynthetic, comprising 78.7 %), while fully synthetic polymers (microplastics), were also identified, including polyester and polyvinyl chloride (the latter exclusively detected in seawater).
Collapse
Affiliation(s)
- Cristina Villanova-Solano
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain
| | - Gloria Navalón-Alajarín
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain
| | - Javier González-Sálamo
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain
| | - Javier Hernández-Borges
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain
| | - Cintia Hernández-Sánchez
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Forense y Legal y Parasitología, Área de Medicina Preventiva y Salud Pública, Universidad de La Laguna (ULL), C/ Sta. María de Soledad, s/n, 38320 San Cristóbal de La Laguna, Spain.
| |
Collapse
|
5
|
Albarano L, Maggio C, La Marca A, Iovine R, Lofrano G, Guida M, Vaiano V, Carotenuto M, Pedatella S, Spica VR, Libralato G. Risk assessment of natural and synthetic fibers in aquatic environment: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173398. [PMID: 38777048 DOI: 10.1016/j.scitotenv.2024.173398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/15/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
Marine microplastics, categorized as primary and secondary, including synthetic microfibers like polyethylene terephthalate (PET), polypropylene (PP) and acrylic (PC), represent a potential environmental concern. The complex classification of these fibers, originating from diverse sources such as textiles and many others commercial goods, prompts a need for understanding their impact on aquatic organisms. This study assesses the ecological risks associated with both natural and synthetic fibers in aquatic ecosystems, focusing on toxicity data and their effects on taxonomic groups like Mollusca, Arthropoda, Echinodermata, Cnidaria, and Chordata. To carry out species sensitivity distribution (SSD) curves, a comprehensive analysis of scientific literature was conducted, collecting toxicity data related to various fibers. The resulting SSDs provide insights into the relative sensitivity of different taxonomic groups. The potential ecological risks were evaluated by comparing measured concentrations in diverse aquatic environments with Predicted No-Effect Concentration (PNEC) values. The calculation of Risk Quotient (RQ) allowed to indicate areas where fibers abundance poses a potential threat to aquatic organisms. The study reveals that nylon fibers can pose the highest toxicity risk, especially in Atlantic and Pacific Ocean, Arabian Gulf and VietNam river. Mollusca emerged as particularly sensitive to different fiber types, likely due to their body structure facilitating the accumulation of microfibers. The research emphasizes the urgent need for further studies to get data to human health risk analysis and to address comprehensive environmental management strategies to address the global issue of microfiber pollution.
Collapse
Affiliation(s)
- Luisa Albarano
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126 Naples, Italy.
| | - Chiara Maggio
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126 Naples, Italy
| | - Annamaria La Marca
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126 Naples, Italy
| | - Rosalba Iovine
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126 Naples, Italy
| | - Giusy Lofrano
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Italy
| | - Marco Guida
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126 Naples, Italy; Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126 Naples, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy
| | - Vincenzo Vaiano
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Maurizio Carotenuto
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Silvana Pedatella
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126 Naples, Italy
| | - Vincenzo Romano Spica
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Italy
| | - Giovanni Libralato
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126 Naples, Italy
| |
Collapse
|
6
|
Lai K, Zhang L, Xu J. Evaluation of the chronic toxicity of bisphenol A and bisphenol AF to sea cucumber Apostichopus japonicus after long-term single and combined exposure at environmental relevant concentration. ENVIRONMENTAL RESEARCH 2024; 251:118748. [PMID: 38522740 DOI: 10.1016/j.envres.2024.118748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/14/2024] [Accepted: 03/17/2024] [Indexed: 03/26/2024]
Abstract
Bisphenols are emerging endocrine disrupting pollutant, and several studies have reported that they are already ubiquitous in various environmental matrices and intend to deposit in sediment. The primary sources of bisphenols are river and sewage discharge. Sea cucumber (Apostichopus japonicus), a typical deposit feeder, is one of the most important commercial marine species in Aisa. However, the effects of the bisphenol A (BPA) and its analogues bisphenol AF (BPAF) on sea cucumber was unclear. In this study, we carried out field survey in major sea cucumber farming areas in northern China, with the aim of determining which bisphenol analogue is the major bisphenol contamination in this aquaculture area. The results showed that the presence of BPAF was detected in four sampling sites (Dalian, Tangshan, Laizhou, and Longpan). The mean level of BPAF in Laizhou sediment samples was the highest which reached to 9.007 ± 4.702 μ g/kg. Among the seawater samples, the BPAF only have been detected in the samples collected at Longpan. (0.011 ± 0.003 μ g/L). Furthermore, we conducted an experiment to evaluate the single and combined toxicity of BPA and BPAF on sea cucumbers. The concentrations were informed by the findings based on the results of field research. (0.1, 1.0, and 10 μ g/L). After exposure, the body weight gain, and specific growth rate showed no significant changes (P > 0.05). We observed the histological alterations in respiratory tree of treated sea cucumbers including the fusion and detachment of lining epithelial tissue, and increase of lumen space. However, the catalase (CAT), malondialdehyde (MDA), and glutathione (GSH) activity was not significantly changed (P > 0.05). We evaluated the effects of BPA and BPAF through calculating the integrated biomarker response index (IBR), and the results indicated that the toxicity of combined treatment was higher than single treatment. Additionally, BPAF exposure to A. japonicus was more toxic than BPA.
Collapse
Affiliation(s)
- Kaiqi Lai
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jialei Xu
- Shandong Tonhe Ocean Technology Co., Ltd., Dongying, 257200, China
| |
Collapse
|
7
|
Mohsen M, Ismail S, Yuan X, Yu Z, Lin C, Yang H. Sea cucumber physiological response to abiotic stress: Emergent contaminants and climate change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172208. [PMID: 38583632 DOI: 10.1016/j.scitotenv.2024.172208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/05/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
The ocean is facing a multitude of abiotic stresses due to factors such as climate change and pollution. Understanding how organisms in the ocean respond to these global changes is vital to better predicting consequences. Sea cucumbers are popular echinoderms with multiple ecological, nutritional, and pharmaceutical benefits. Here, we reviewed the effects of environmental change on an ecologically important echinoderm of the ocean, aiming to understand their response better, which could facilitate healthy culture programs under environmental changes and draw attention to knowledge gaps. After screening articles from the databases, 142 studies were included on the influence of emergent contaminants and climate variation on the early developmental stages and adults of sea cucumbers. We outlined the potential mechanism underlying the physiological response of sea cucumbers to emerging contaminants and climate change. It can be concluded that the physiological response of sea cucumbers to emergent contaminants differs from their response to climate change. Sea cucumbers could accumulate pollutants in their organs but are aestivated when exposed to extreme climate change. Research showed that the physiological response of sea cucumbers to pollutants indicates that these pollutants impair critical physiological processes, particularly during the more susceptible early phases of development compared to adults, and the accumulation of these pollutants in adults is often observed. For climate change, sea cucumbers showed gradual adaptation to the slight variation. However, sea cucumbers undergo aestivation under extreme conditions. Based on this review, critical suggestions for future research are presented, and we call for more efforts focusing on the co-occurrence of different stressors to extend the knowledge regarding the effects of environmental changes on these economically and ecologically important species.
Collapse
Affiliation(s)
- Mohamed Mohsen
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, Fujian 361021, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Department of Fish Production, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo 11884, Egypt.
| | - Sherif Ismail
- Environmental Engineering Department, Zagazig University, Zagazig City, 44519, Egypt; Civil and Environmental Engineering Department, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Xiutang Yuan
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Zonghe Yu
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Chenggang Lin
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Hongsheng Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
8
|
Harikrishnan T, Sivakumar P, Sivakumar S, Arumugam S, Raman T, Singaram G, Thangavelu M, Kim W, Muthusamy G. Effect of microfibers induced toxicity in marine sedentary polychaete Hydroides elegans: Insight from embryogenesis axis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167579. [PMID: 37797759 DOI: 10.1016/j.scitotenv.2023.167579] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/21/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
Presence of surgical face masks in the environment are more than ever before after the COVID-19 pandemic, and it poses a newer threat to aquatic habitats around the world due to microfibers (MFs) and other contaminants that get discharged when these masks deteriorate. The mechanism behind the developmental toxicity of MFs, especially released from surgical masks, on the early life stages of aquatic organisms are not well understood. Toxicity test were developed to examine the effects of MFs released from surgical facemask upon deterioration using the early gametes and early life stages of marine sedentary polychaete Hydroides elegans. For MFs release, cut pieces of face masks were allowed to degrade in seawater for different time points (1 day, 30 days and 120 days) after which the fibers were obtained for further toxicity studies. The gametes of H. elegans were exposed to the MFs (length < 20 μm) separately for 20 min at a concentration of 50 MFs/ml before fertilization. In addition, we also analyzed the experimental samples for heavy metals and organic substances released from face masks. Our findings demonstrated that gametes exposed to MFs affected the percentage of successful development, considerably slowed down the mitotic cell division and significantly postponed the time of larval hatching and also produced an adverse effect during embryogenesis. When the sperm were exposed fertilization rate was decreased drastically, whereas when the eggs were exposed to MFs fertilization was not inhibited but a delay in early embryonic development observed. In addition the release of heavy metals and other volatile organics from the degrading face masks could also contribute to overall toxicity of these materials in environment. Our study thus shows that inappropriately discarded face masks and MFs and other pollutants released from such face masks could pose long-term hazard to coastal ecosystems.
Collapse
Affiliation(s)
- Thilagam Harikrishnan
- Postgraduate and Research Department of Zoology, Pachaiyappa's College for Men, Chennai 600 030, India.
| | - Priya Sivakumar
- Postgraduate and Research Department of Zoology, Pachaiyappa's College for Men, Chennai 600 030, India
| | - Swetha Sivakumar
- Department of Biotechnology, Prince Venkateswara Arts and Science College, Chennai 600 073, India
| | - Sriramajayam Arumugam
- Postgraduate and Research Department of Zoology, Pachaiyappa's College for Men, Chennai 600 030, India
| | - Thiagarajan Raman
- Department of Zoology, Ramakrishna Mission Vivekananda College (Autonomous), Chennai 600 004, India
| | - Gopalakrishnan Singaram
- Department of Biotechnology, Dwaraka Doss Goverdhan Doss Vaishnav College, Chennai 600106, India
| | - Muthukumar Thangavelu
- Dept BIN Convergence Tech, Dept PolymerNano Sci & Tech, Jeonbuk National University, 567 Baekje-dearo, Deokjin, Jeonju, Jeollabuk-do 54896, Republic of Korea
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daehak-ro, Buk-gu, Daegu 41566, South Korea
| | - Govarthanan Muthusamy
- Department of Environmental Engineering, Kyungpook National University, Daehak-ro, Buk-gu, Daegu 41566, South Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India.
| |
Collapse
|
9
|
Chen R, Zhao X, Wu X, Wang J, Wang X, Liang W. Research progress on occurrence characteristics and source analysis of microfibers in the marine environment. MARINE POLLUTION BULLETIN 2024; 198:115834. [PMID: 38061148 DOI: 10.1016/j.marpolbul.2023.115834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/13/2023] [Accepted: 11/18/2023] [Indexed: 01/05/2024]
Abstract
Synthetic microfiber pollution is a growing concern in the marine environment. However, critical issues associated with microfiber origins in marine environments have not been resolved. Herein, the potential sources of marine microfibers are systematically reviewed. The obtained results indicate that surface runoffs are primary contributors that transport land-based microfibers to oceans, and the breakdown of larger fiber plastic waste due to weathering processes is also a notable secondary source of marine microfibers. Additionally, there are three main approaches for marine microplastic source apportionment, namely, anthropogenic source classification, statistical analysis, and numerical simulations based on the Lagrangian particle tracking method. These methods establish the connections between characteristics, transport pathways and sources of microplastics, which provides new insights to further conduct microfiber source apportionment. This study helps to better understand sources analysis and transport pathways of microfibers into oceans and presents a scientific basis to further control microfiber pollution in marine environments.
Collapse
Affiliation(s)
- Rouzheng Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 10012, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 10012, China.
| | - Xiaowei Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 10012, China
| | - Junyu Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 10012, China
| | - Xia Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 10012, China
| | - Weigang Liang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 10012, China
| |
Collapse
|
10
|
Wang X, Zhao Z, Jiang J, Mi R, Guan X, Dong Y, Li S, Chen Z, Gao S, Wang B, Xiao Y, Pan Y, Zhou Z. Temporal stability and assembly mechanisms of gut microbiota in sea cucumbers response to nanoplastics treatment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115407. [PMID: 37639828 DOI: 10.1016/j.ecoenv.2023.115407] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/13/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
Aquaculture provides essential food for humans, and the health of farmed species is particularly important for the aquaculture industry. Aquaculture environment could be a sink of plastic debris (PDs) due to the enclosed character and heavy use of plastics. Gut microbiota of aquaculture species could respond to the exogenous pollutants and regulate the health of hosts. Here, variations in gut microbiota of Apostichopus japonicus induced by the ingested nanoplastics (NPs) were investigated by a lab experiment. We selected a NPs concentration gradient of 100 mg/kg and 500 mg/kg to simulate microplastic pollution to A. japonicus, and the significant differences in gut microbiota composition after 21 days of NP exposure were evaluated. According to the high-throughput sequencing from time series samples, a decrease of diversity in gut microbiota of A. japonicus with dietary NPs was observed. In addition, the gut microbiota compositions of sea cucumbers with and without NPs exposure were also distinct, expressing as enrichment of Bacteroidota while reducement of Proteobacteria under NPs stresses. Combined the results of network analysis, the less complexity and stability of gut microbiota in sea cucumbers with dietary NPs were proved. Based on the neutral community model, the ingested NPs elevated the contribution of stochastic processes for the gut microbiota assembly in sea cucumbers. Our study showed that substantial variations in gut microbiota of A. japonicus under NPs stresses, and also explored the underlying mechanisms regulating these changes. This research would offer new meaningful insights into the toxicity of NPs on sea cucumbers, contributing a solid fundament to improve the health of sea cucumbers under NPs stresses.
Collapse
Affiliation(s)
- Xuda Wang
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Zelong Zhao
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Jingwei Jiang
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Rui Mi
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Xiaoyan Guan
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Ying Dong
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Shilei Li
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Zhong Chen
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Shan Gao
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Bai Wang
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Yao Xiao
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Yongjia Pan
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Zunchun Zhou
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China.
| |
Collapse
|
11
|
Wang H, Liu H, Zhang Y, Zhang L, Wang Q, Zhao Y. The toxicity of microplastics and their leachates to embryonic development of the sea cucumber Apostichopus japonicus. MARINE ENVIRONMENTAL RESEARCH 2023; 190:106114. [PMID: 37517918 DOI: 10.1016/j.marenvres.2023.106114] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/06/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
Microplastic pollution has been widely detected across the global ocean, posing a major threat to a wide variety of marine biota. To date, the deleterious impacts of microplastics have predominantly been linked to their direct exposure, while the potential risks posed by the leachates emanating from microplastics have received comparatively less attention. Here, the toxicity of virgin plasticized polyvinyl chloride (PVC) microspheres and their leachates were evaluated on the embryo-larval development of sea cucumber Apostichopus japonicus using an in-vitro assay. Results showed that a significant toxic effect of both PVC microspheres and their leachates on the embryo development and larval growth of sea cucumbers follows a dose-dependent and time-dependent pattern. Nonetheless, the toxicity of PVC leachates surpasses that of the microspheres themselves. Abnormal developmental phenotypes, such as aberrant gastrulation, misaligned mesenchymal cells, and delayed arm development, were also observed in embryos and larvae treated with PVC. Further chemical analyses of PVC microspheres and leachates revealed the existence of five distinct phthalate esters (PAEs), with DIBP (diisobutyl phthalate) and DBP (dibutyl phthalate) exhibiting higher concentrations in the PVC leachates. This finding suggests that the elevated toxicity of plastic leachate may be attributed to the leaching of phthalate additives from the plastic particles.
Collapse
Affiliation(s)
- Haona Wang
- Ocean School, Yantai University, Yantai, 264005, PR China
| | - Hui Liu
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Yanying Zhang
- Ocean School, Yantai University, Yantai, 264005, PR China
| | - Lijie Zhang
- Ocean School, Yantai University, Yantai, 264005, PR China
| | - Qing Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China.
| | - Ye Zhao
- Ocean School, Yantai University, Yantai, 264005, PR China.
| |
Collapse
|
12
|
Zhang L, Liu X, Zhang C. Effect of PET microplastics on the growth, digestive enzymes, and intestinal flora of the sea cucumber Apostichopus japonicus. MARINE ENVIRONMENTAL RESEARCH 2023; 190:106125. [PMID: 37552920 DOI: 10.1016/j.marenvres.2023.106125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/16/2023] [Accepted: 08/03/2023] [Indexed: 08/10/2023]
Abstract
Marine microplastic (MP) pollution is becoming a serious problem and their potentially toxic effects on marine organisms have attracted much attention. Sea cucumber is very important for the safety and health of marine ecosystems. However, there have been relatively few studies on the effects of microplastic pollution on sea cucumbers at environmentally-related concentrations and under controlled conditions. Therefore, this study evaluated the effects of polyethylene terephthalate (PET) microplastics (particle sizes: 0.5-45 μm, 2-200 μm, and 20-300 μm; and three concentration levels for each particle size, approximately 103, 104, and 105 particles/kg) on the basic biological indicators, intestinal digestive enzymes, and intestinal flora of Apostichopus japonicus after a 28-day feeding experiment. This study showed that environmentally-related and high concentrations of microplastics had little effect on A. japonicus. This study provides valuable reference information about the effects of marine microplastic pollution on sea cucumbers.
Collapse
Affiliation(s)
- Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Sciences, Chinese Academy of Sciences, Qingdao, 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, 266071, China.
| | - Xiang Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Sciences, Chinese Academy of Sciences, Qingdao, 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, 266071, China; College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Chenxi Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Sciences, Chinese Academy of Sciences, Qingdao, 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, 266071, China; College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
13
|
Lai K, Zhang L, Xu J. Metabolic and oxidative stress response of sea cucumber Apostichopus japonicus exposed to acute high concentration of bisphenol AF. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 262:106654. [PMID: 37579560 DOI: 10.1016/j.aquatox.2023.106654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/26/2023] [Accepted: 08/10/2023] [Indexed: 08/16/2023]
Abstract
Bisphenols are known as endocrine disruptor that affect the development, and growth of marine creatures, including human. There were plenty of manuscripts evaluated the toxicology of bisphenol A (BPA) and its analogues such as bisphenol F (BPF), bisphenol AF (BPAF), and bisphenol S (BPS), but limits of them studied the effects of bisphenol analogues on echinoderms. In this study, we used metabolomics to investigate the metabolic response of sea cucumber (Apostichopus japonicus) exposed to BPAF, and the activities of glutathione (GSH), catalase (CAT), and superoxide dismutase (SOD) were determined. The results demonstrated alterations in lipid metabolism, glycerophospholipid metabolism, and biosynthesis of amino acids following BPAF treatment. Sea cucumbers upregulated the glycerophospholipid metabolism to repair the destruction of intestine cellular homeostasis. Six metabolites were selected as the potential biomarkers for the exposure of BPAF. This study revealed the metabolic response and oxidative response of sea cucumber arising from BPAF exposure, and provided theoretical support for the risk assessment of bisphenol analogues on economically important echinoderms, such as A. japonicus.
Collapse
Affiliation(s)
- Kaiqi Lai
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jialei Xu
- Tonghe (Shandong) Ocean Technology Co., Ltd., Dongying 257200, China
| |
Collapse
|
14
|
Zhao Z, Wang X, Jiang J, Dong Y, Pan Y, Guan X, Wang B, Gao S, Chen Z, Zhou Z. Adverse effects of polystyrene nanoplastics on sea cucumber Apostichopus japonicus and their association with gut microbiota dysbiosis. CHEMOSPHERE 2023; 330:138568. [PMID: 37019397 DOI: 10.1016/j.chemosphere.2023.138568] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/22/2023] [Accepted: 03/31/2023] [Indexed: 05/14/2023]
Abstract
The mariculture environment is a sink of microplastics (MPs) due to its enclosed nature and mass use of plastics. Nanoplastics (NPs) are MPs with a diameter <1 μm that have a more toxic effect on aquatic organisms than other MPs. However, little is known about the underlying mechanisms of NP toxicity on mariculture species. Here, we performed a multi-omics investigation to explore gut microbiota dysbiosis and associated health problems induced by NPs in juvenile sea cucumber Apostichopus japonicus, a commercially and ecologically important marine invertebrate. We observed significant differences in gut microbiota composition after 21 days of NP exposure. Ingestion of NPs significantly increased core gut microbes, especially Rhodobacteraceae and Flavobacteriaceae families. Additionally, gut gene expression profiles were altered by NPs, especially those related to neurological diseases and movement disorders. Correlation and network analyses indicated close relationships between transcriptome changes and gut microbiota variation. Furthermore, NPs induced oxidative stress in sea cucumber intestines, which may be associated with intraspecies variation in Rhodobacteraceae in the gut microbiota. The results suggested that NPs were harmful to the health of sea cucumbers, and they highlighted the importance of the gut microbiota in the responses to NP toxicity in marine invertebrates.
Collapse
Affiliation(s)
- Zelong Zhao
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Xuda Wang
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Jingwei Jiang
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China.
| | - Ying Dong
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Yongjia Pan
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Xiaoyan Guan
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Bai Wang
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Shan Gao
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Zhong Chen
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Zunchun Zhou
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China.
| |
Collapse
|
15
|
Qualhato G, Vieira LG, Oliveira M, Rocha TL. Plastic microfibers as a risk factor for the health of aquatic organisms: A bibliometric and systematic review of plastic pandemic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161949. [PMID: 36740053 DOI: 10.1016/j.scitotenv.2023.161949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/21/2022] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Plastic microfibers (PMFs) are emerging pollutants widely distributed in the environment. In the early 2020s, the need for personal protection due to the COVID-19 pandemic led to increased consumption of plastic materials (e.g., facemasks and gloves) and ultimately to increased plastic pollution, especially by PMFs. The PMFs present in the environment may be released in this form (primary particles) or in larger materials, that will release them as a result of environmental conditions. Although a considerable number of studies have been addressing the effects of microplastics, most of them studied round particles, with fewer studies focusing on PMFs. Thus, the current study aimed to summarize and critically discuss the available data concerning the ecotoxicological impact of PMFs on aquatic organisms. Aquatic organisms exposed to PMFs showed accumulation, mainly in the digestive tract, and several toxic effects, such as DNA damage, physiological alterations, digestive damage and even mortality, suggesting that PMFs can pose a risk for the health of aquatic organisms. The PMFs induced toxicity to aquatic invertebrate and vertebrate organisms depends on size, shape, chemical association and composition of fibers. Regarding other size range (nm) of plastic fibers, the literature review highlighted a knowledge gap in terms of the effects of plastic nanofibers on aquatic organisms. There is a knowledge gap in terms of the interaction and modes of action of PMFs associated with other pollutants. In addition, studies addressing effects at different trophic levels as well as the use of other biological models should be considered. Overall, research gaps and recommendations for future research and trends considering the environmental impact of the COVID-19 pandemic are presented.
Collapse
Affiliation(s)
- Gabriel Qualhato
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil.; Department of Morphology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Lucélia Gonçalves Vieira
- Department of Morphology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Miguel Oliveira
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil..
| |
Collapse
|
16
|
Zhang C, Lin C, Li L, Mohsen M, Wang T, Wang X, Zhang L, Huang W. Single and combined effects of microplastics and cadmium on the sea cucumber Apostichopus japonicus. MARINE ENVIRONMENTAL RESEARCH 2023; 186:105927. [PMID: 36842394 DOI: 10.1016/j.marenvres.2023.105927] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/12/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Microplastic pollution of the ocean has received extensive attention as plastic pollution increases globally, but the potential ecological risks caused by microplastic interactions with trace metals still require further research. In this study, Apostichopus japonicus was used to explore the individual and combined toxicities of cadmium (Cd) and microplastics and their effects on growth, Cd tissue accumulation, digestive enzymes, and gut microbes. The body weight gain and specific growth rate of animals exposed to a combination of high concentrations of Cd and microplastics decreased. The addition of high concentrations of cadmium to the diet led to an increase in cadmium content in the respiratory tree, digestive tract and body wall. Amylase, lipase and trypsin decreased to different degrees in the group treated with high concentrations of Cd/microplastics. Firmicutes were significantly reduced across multiple treatment groups, with the order Lactobacillales being the most significantly affected. Cd is the pollutant causing the greatest negative impact, but the presence of microplastics undoubtedly increases its toxicity.
Collapse
Affiliation(s)
- Chenxi Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Sciences, Chinese Academy of Sciences, Qingdao, 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, 266071, China
| | - Chenggang Lin
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Sciences, Chinese Academy of Sciences, Qingdao, 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, 266071, China
| | - Lingling Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Mohamed Mohsen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Sciences, Chinese Academy of Sciences, Qingdao, 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, 266071, China
| | - Ting Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Sciences, Chinese Academy of Sciences, Qingdao, 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, 266071, China
| | - Xu Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Sciences, Chinese Academy of Sciences, Qingdao, 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, 266071, China
| | - Libin Zhang
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Zhejiang, 310012, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Sciences, Chinese Academy of Sciences, Qingdao, 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, 266071, China.
| | - Wei Huang
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Zhejiang, 310012, China
| |
Collapse
|
17
|
Oliveira AM, Patrício Silva AL, Soares AMVM, Barceló D, Duarte AC, Rocha-Santos T. Current knowledge on the presence, biodegradation, and toxicity of discarded face masks in the environment. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2023; 11:109308. [PMID: 36643396 PMCID: PMC9832688 DOI: 10.1016/j.jece.2023.109308] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
During the first year of the COVID-19 pandemic, facemasks became mandatory, with a great preference for disposable ones. However, the benefits of face masks for health safety are counteracted by the environmental burden related to their improper disposal. An unprecedented influx of disposable face masks entering the environment has been reported in the last two years of the pandemic, along with their implications in natural environments in terms of their biodegradability, released contaminants and ecotoxicological effects. This critical review addresses several aspects of the current literature regarding the (bio)degradation and (eco)toxicity of face masks related contaminants, identifying uncertainties and research needs that should be addressed in future studies. While it is indisputable that face mask contamination contributes to the already alarming plastic pollution, we are still far from determining its real environmental and ecotoxicological contribution to the issue. The paucity of studies on biodegradation and ecotoxicity of face masks and related contaminants, and the uncertainties and uncontrolled variables involved during experimental procedures, are compromising eventual comparison with conventional plastic debris. Studies on the abundance and composition of face mask-released contaminants (microplastics/fibres/ chemical compounds) under pre- and post-pandemic conditions should, therefore, be encouraged, along with (bio)degradation and ecotoxicity tests considering environmentally relevant settings. To achieve this, methodological strategies should be developed to overcome technical difficulties to quantify and characterise the smallest MPs and fibres, adsorbents, and leachates to increase the environmental relevancy of the experimental conditions.
Collapse
Affiliation(s)
- Ana M Oliveira
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana L Patrício Silva
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Amadeu M V M Soares
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Damià Barceló
- Catalan Institute for Water research (ICRA-CERCA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101,17003 Girona, Spain
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Armando C Duarte
- Centre for Environmental and Marine Studies (CESAM) and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Teresa Rocha-Santos
- Centre for Environmental and Marine Studies (CESAM) and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
18
|
Urbina MA, da Silva Montes C, Schäfer A, Castillo N, Urzúa Á, Lagos ME. Slow and steady hurts the crab: Effects of chronic and acute microplastic exposures on a filter feeder crab. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159135. [PMID: 36191714 DOI: 10.1016/j.scitotenv.2022.159135] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/16/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Microplastics are a widespread environmental contaminant. Although detrimental effects on aquatic organisms are well documented, little is known about the long-term effects of microplastic exposure to filter-feeding organisms at ecologically realistic levels. This study investigates the effects of environmentally relevant concentrations of polyethylene micro beads ranging in size from 3 to 30 μm, on the physiology and energetics of a coastal filter-feeding crab Petrolisthes laevigatus. We evaluated the impact of microplastics by exposing P. laevigatus to two different concentrations and exposure times: i) a chronic exposure for five months at 250 particles L-1, and ii) an acute exposure for 48 h at 20,800 particles L-1, ~80 times higher than the chronic exposure. The results showed that only chronic exposures elicited negative effects on the coastal crab in both, metabolic and physiological parameters. Our findings demonstrate a strong correlation between the ingestion rate and weight loss, even at low concentrations, the crabs exhibited severe nutritional damage as a result of long-term microplastic exposure. By contrast, acute exposure revealed no significant effects to the crabs, a possible explanation for this being short-term compensatory responses. These results suggest that environmentally relevant concentrations of microplastics are harmful to marine organisms, and they should be evaluated during realistic temporal scales, as their effects strongly dependent on the exposure time. Our results also suggest that the effects of microplastics have been likely underestimated to date, due to the dominance of short-term exposures (acute) reported in the current literature.
Collapse
Affiliation(s)
- Mauricio A Urbina
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile; Instituto Milenio de Oceanografía (IMO), Universidad de Concepción, Concepción, Chile.
| | - Caroline da Silva Montes
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Angela Schäfer
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Nicole Castillo
- Coastal Socio-Ecological Millennium Institute (SECOS), Universidad de Concepción & P. Universidad Católica de Chile, Chile; Coastal Ecosystems & Global Environmental Change Lab (ECCALab), Department of Aquatic System, Faculty of Environmental Sciences, Universidad de Concepción, Concepcion, Chile
| | - Ángel Urzúa
- Departamento de Ecología, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, Chile; Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Marcelo E Lagos
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile; SWIRE Institute of Marine Sciences & School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong
| |
Collapse
|
19
|
Mohsen M, Chenggang L, Sui Y, Yang H. Fate of Microplastic Fibers in the Coelomic Fluid of the Sea Cucumber Apostichopus japonicus. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:205-212. [PMID: 36345956 DOI: 10.1002/etc.5513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/08/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Sea cucumbers are economical and ecologically important species, playing a crucial role in nutrient recycling in the ocean and providing valuable bioactive compounds for nutrition. Previous research has demonstrated that microplastic fibers, which are widely recognized as emerging contaminants, are transferred to the perivisceral coelomic fluid during respiration in sea cucumbers; however, their fate in sea cucumbers is still not well understood. We tracked the status of sea cucumbers (Apostichopus japonicus) with polyester microplastic fibers in their coelomic fluid in clean water. The results showed that after transferring sea cucumbers to clean water, the number of microplastic fibers transferred significantly decreased in the coelomic fluid, but at least one microplastic fiber was found up to 60 days. In addition, sea cucumbers recovered from the effect of microplastic fiber transfer, as indicated by enzyme levels and histological observations. Furthermore, single microplastic fiber transfer over a 60-day farmed period did not significantly affect the growth of sea cucumbers. However, repetitive microplastic fiber transfer (i.e., twice and thrice a week over 60 days) significantly decreased the growth rate (p < 0.05). Accordingly, increasing microplastic fibers in sea cucumber habitats pose a threat to sea cucumbers because they can disrupt development. Thus, farmers are advised to select locations for farming sea cucumbers where low microplastic fiber concentrations are expected. Environ Toxicol Chem 2023;42:205-212. © 2022 SETAC.
Collapse
Affiliation(s)
- Mohamed Mohsen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, China
- Department of Fish Production, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Lin Chenggang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, China
| | - Yanming Sui
- Yancheng Institute of Technology, College of Marine and Biological Engineering, Yancheng, China
| | - Hongsheng Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
20
|
Liu J, Xu D, Chen Y, Zhao C, Liu L, Gu Y, Ren Y, Xia B. Adverse effects of dietary virgin (nano)microplastics on growth performance, immune response, and resistance to ammonia stress and pathogen challenge in juvenile sea cucumber Apostichopus japonicus (Selenka). JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127038. [PMID: 34481388 DOI: 10.1016/j.jhazmat.2021.127038] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/17/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
It has been well documented that micro- and nanoplastics are emerging pollutants in aquatic environments, and their potential toxic effects has attracted widespread concerns. Here, we evaluated the adverse effects of dietary polystyrene nanoplastics and microplastics (PS-N/MPs) on growth performance, oxidative stress induction, immune response, ammonia detoxification, and bacterial pathogen resistance of sea cucumber Apostichopus japonicus. After collection and acclimation, sea cucumbers were randomized into 3 groups (i.e., control, 100 nm PS-NPs and 20 µm PS-MPs at 100 mg kg-1 diet) for 60-day feeding experiment. Every group contained 360 sea cucumbers which were equally divided into 3 aquaria as biological triplicates. The results showed that the specific growth rate and final weight of the sea cucumbers fed with diets containing PS-N/MPs were significantly lower than those of control group. Dietary virgin PS-N/MPs significantly increased the reactive oxygen species production and malondialdehyde content in coelomic fluid, causing oxidative stress and damage to the growth and development of A. japonicus. During the experiment, 100 nm PS-NPs significantly induced the depletion in cellular and humoral immune parameters. The calculated IBR values based on multi-level biomarkers revealed the size-dependent toxic differences of PS-NPs > PS-MPs. The relative expression levels of GDH and GS mRNA showed first rise and then fall trends after exposure to ammonia, and 100 nm PS-NPs had a more profound impact on suppressing ammonia detoxification compared with 20 µm PS-MPs. Moreover, the expression of Hsp90, Hsp70, CL, TLR, and CASP2 genes were all down-regulated by ammonia exposure. Taken together of IBR results, ammonia stress test and pathogen challenge, we deduced that dietary 100 nm PS-NPs are more potentially hazardous than 20 µm PS-MPs. These findings provide valuable information for understanding the size-dependent toxic effects of PS-N/MPs and early risk warning on marine invertebrates.
Collapse
Affiliation(s)
- Ji Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Dongxue Xu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Yanru Chen
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Chunyan Zhao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Lanhao Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China.
| | - Yuanxue Gu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Yichao Ren
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Bin Xia
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China.
| |
Collapse
|
21
|
Riani E, Cordova MR. Microplastic ingestion by the sandfish Holothuria scabra in Lampung and Sumbawa, Indonesia. MARINE POLLUTION BULLETIN 2022; 175:113134. [PMID: 34823866 DOI: 10.1016/j.marpolbul.2021.113134] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/27/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
This study investigated the abundances and characteristics of microplastics in sediments and sandfish (Holothuria scabra) in Lampung and Sumbawa, Indonesia. Microplastics were found in 89.02% of all sandfish samples, with an average abundance of 2.01 ± 1.59 particles individual-1. The abundance of microplastics was 58.42 ± 24.33 particles kg-1 in surface sediments. Furthermore, there was a positive relationship between the abundance of microplastics in sandfish and sediments. Fragments and fibers with small-sized microplastics (300-1000 μm) were the most abundant types found in sandfish and sediments. Fourier-transform infrared (FTIR) analysis showed that polyethylene (30.08%), polypropylene (30.08%), polyurethane (12.20%), and polyethylene terephthalate (8.94%) were the most abundant polymers in the samples. Our results strongly indicate that microplastics in Lampung and Sumbawa originate from the fragmentation of large plastics. Better solid waste management in Indonesia is needed to reduce plastic waste leakage, which could become microplastics.
Collapse
Affiliation(s)
- Etty Riani
- Department of Aquatic Resources Management, Faculty of Fishery and Marine Science, Bogor Agricultural University, Jalan Rasamala Kampus IPB Dramaga, Bogor 16680, Indonesia.
| | - Muhammad Reza Cordova
- Research Center for Oceanography, Indonesian Institute of Sciences, Jl, Pasir Putih 1, Ancol Timur, Jakarta 14430, Indonesia; Research Center for Oceanography, National Research and Innovation Agency, Jl, Pasir Putih 1, Ancol Timur, Jakarta 14430, Indonesia.
| |
Collapse
|
22
|
Zheng JL, Wang D, Chen X, Song HZ, Xiang LP, Yu HX, Peng LB, Zhu QL. Nutritional-status dependent effects of microplastics on activity and expression of alkaline phosphatase and alpha-amylase in Brachionus rotundiformis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150213. [PMID: 34571232 DOI: 10.1016/j.scitotenv.2021.150213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Tissue-nonspecific alkaline phosphatase (ALPL) and alpha-amylase (AMY) are essential in the immune and digestive systems, respectively. Microplastics (MPs) pose a risk to zooplankton which may be in a state of feeding, starvation, or subsequent refeeding. However, molecular characterization of both enzymes and the regulated mechanisms affected by nutritional statuses and MPs remain unclear in zooplankton. In the present study, four full-length genes encoding ALPL and two genes encoding AMY were cloned and characterized from an isolated marine rotifer, Brachionus rotundiformis, including alplA, alplB, alplC, alplD, amy2a, and amy2al. AMY activity and expression of amy2a and amy2al were reduced by starvation and recovered after refeeding compared with feeding. ALPL activity remained unchanged among different statuses, while alplA, alplB and alplD were down-regulated by starvation and refeeding compared with feeding. ALPL activity was not affected by exposure to 10, 100 and 1000 μg/L MPs in rotifers subjected to feeding, starvation and refeeding, whereas AMY activity was significantly enhanced by 1000 μg/L MPs in rotifers subjected to refeeding. Gene expression of the tested genes, except amy2a, was significantly responsive to MPs, especially in the feeding rotifers, depending on MPs concentrations and nutritional statuses. Two-way ANOVA confirmed that these changes were strongly associated with the interaction between MPs concentrations and nutritional statuses. The present study is the first to demonstrate a nutritional status-dependent impact of MPs on immune and digestive responses, and provides more sensitive molecular biomarkers for assessing MPs toxicity using the species as model animals.
Collapse
Affiliation(s)
- Jia-Lang Zheng
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Dan Wang
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Xiao Chen
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Hong-Zi Song
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Li-Ping Xiang
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Han-Xiu Yu
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Li-Bin Peng
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Qing-Ling Zhu
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, PR China
| |
Collapse
|
23
|
Microplastics as Emerging Food Contaminants: A Challenge for Food Safety. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031174. [PMID: 35162198 PMCID: PMC8834762 DOI: 10.3390/ijerph19031174] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 02/06/2023]
Abstract
Microplastics (MPs) have been identified as emerging environmental pollutants classified as primary or secondary based on their source. Composition, shape, size, and colour, among other characteristics, are associated with their capacity to access the food chain and their risks. While the environmental impact of MPs has received much attention, the risks for humans derived from their dietary exposure have not been yet assessed. Several institutions and researchers support that the current knowledge does not supply solid data to complete a solid risk characterization of dietary MPs. The aim of this paper is to review the current knowledge about MPs in foods and to discuss the challenges and gaps for a risk analysis. The presence of MPs in food and beverages has been worldwide observed, but most authors considered the current data to be not only insufficient but of questionable quality mainly because of the outstanding lack of consensus about a standardized quantifying method and a unified nomenclature. Drinking water, crustaceans/molluscs, fish, and salt have been identified as relevant dietary sources of MPs for humans by most published studies. The hazard characterization presents several gaps concerning the knowledge of the toxicokinetic, toxicodynamic, and toxicity of MPs in humans that impede the estimation of food safety standards based on risk. This review provides a tentative exposure assessment based on the levels of MPs published for drinking water, crustaceans and molluscs, fish, and salt and using the mean European dietary consumption estimates. The intake of 2 L/day of water, 70.68 g/day of crustaceans/molluscs, 70.68 g/day of fish, and 9.4 g/day of salt would generate a maximum exposure to 33,626, 212.04, 409.94 and 6.40 particles of MPs/day, respectively. The inexistence of reference values to evaluate the MPs dietary intake prevents the dietary MPs risk characterization and therefore the management of this risk. Scientists and Food Safety Authorities face several challenges but also opportunities associated to the occurrence of MPs in foods. More research on the MPs characterization and exposure is needed bearing in mind that any future risk assessment report should involve a total diet perspective.
Collapse
|
24
|
Mohsen M, Lin C, Liu S, Yang H. Existence of microplastics in the edible part of the sea cucumber Apostichopus japonicus. CHEMOSPHERE 2022; 287:132062. [PMID: 34526273 DOI: 10.1016/j.chemosphere.2021.132062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/29/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs; ≤ 5 mm) have become a potential threat to human health due to the widespread detection of MPs in foods consumed by humans. Here, we investigated the potential of MP occurrence in the main edible part of the most valuable species of sea cucumbers (Apostichopus japonicus). Laboratory experiments showed that fluorescent MPs and microfibers (MFs) could transfer into the body wall of the sea cucumber. The evidence revealed that these MPs enter the body wall via the outer surface. Although these MPs decreased after the sea cucumbers were transferred to clean water, traces of MPs (at least one MP particle) were found up to 60 d post-transfer. To validate these laboratory observations, sea cucumber samples were collected from the field. MPs were found in 86% of live and processed sea cucumber samples. The MP abundances in the field samples ranged from 0-15 MPs animal-1 and 0-2 MP g-1. The isolated MPs were mainly MFs, constituting 81% of MPs, followed by fragments, films, and beads. Fourier transform infrared spectroscopy revealed that the polymer composition of the isolated MPs mainly included rayon, followed by polyester and chlorinated polyethylene. The findings of this study demonstrated that the body walls of farmed and processed sea cucumbers contain MPs, thus highlighting the need to control MP pollution during the farming and processing of sea cucumbers.
Collapse
Affiliation(s)
- Mohamed Mohsen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Sciences, Chinese Academy of Sciences, Qingdao, 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, 266071, China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, 430071, China; Department of Fish Production, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
| | - Chenggang Lin
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Sciences, Chinese Academy of Sciences, Qingdao, 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, 266071, China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Shilin Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Sciences, Chinese Academy of Sciences, Qingdao, 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, 266071, China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Hongsheng Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Sciences, Chinese Academy of Sciences, Qingdao, 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, 266071, China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, 430071, China
| |
Collapse
|
25
|
Reality Check: Experimental Studies on Microplastics Lack Realism. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11188529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Environmental microplastics are gaining interest due to their ubiquity and the threat they pose to environmental and human health. Critical studies have revealed the abundance of microplastics in nature, while others have tested the impacts of these small plastics on organismal health in the laboratory. Yet, there is often a mismatch between these two areas of research, resulting in major discrepancies and an inability to interpret certain findings. Here, we focus on several main lines of inquiry. First, even though the majority of environmental microplastics are plastic microfibers from textiles, laboratory studies still largely use spherical microbeads. There are also inconsistencies between the measurements of microplastics in the environment as compared to the concentrations that tend to be used in experimental studies. Likewise, the period of exposure occurring in experimental studies and in the environment are vastly different. Lastly, although experimental studies often focus on a particular subset of toxic chemicals present on microplastics, textile microfibers carry other dyes and chemicals that are understudied. They also cause types of physical damage not associated with microspheres. This review will analyze the literature pertaining to these mismatches, focusing on aquatic organisms and model systems, and seek to inform a path forward for this burgeoning area of research.
Collapse
|