1
|
Zuo M, Ye M, Lin H, Liao S, Xing X, Liu J, Wu D, Huang Z, Ren X. Mitochondrial Dysfunction in Environmental Toxicology: Mechanisms, Impacts, and Health Implications. Chem Res Toxicol 2024; 37:1794-1806. [PMID: 39485318 DOI: 10.1021/acs.chemrestox.4c00328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Mitochondria, pivotal to cellular metabolism, serve as the primary sources of biological energy and are key regulators of intracellular calcium ion storage, crucial for maintaining cellular calcium homeostasis. Dysfunction in these organelles impairs ATP synthesis, diminishing cellular functionality. Emerging evidence implicates mitochondrial dysfunction in the etiology and progression of diverse diseases. Environmental factors that induce mitochondrial dysregulation raise significant public health concerns, necessitating a nuanced comprehension and classification of mitochondrial-related hazards. This review systematically adopts a toxicological perspective to illuminate the biological functions of mitochondria, offering a comprehensive exploration of how toxicants instigate mitochondrial dysfunction. It delves into the disruption of energy metabolism, the initiation of mitochondrial fragility and autophagy, and the induction of mutations in mitochondrial DNA by mutagens. The overarching objective is to enhance our understanding of the repercussions of mitochondrial damage on human health.
Collapse
Affiliation(s)
- Mingyang Zuo
- School of Public Health, Southern Medical University, No. 1023 Shatai Nan Road, Baiyun District, Guangzhou 510515, China
| | - Mingqi Ye
- School of Public Health, Southern Medical University, No. 1023 Shatai Nan Road, Baiyun District, Guangzhou 510515, China
| | - Haofeng Lin
- School of Public Health, Southern Medical University, No. 1023 Shatai Nan Road, Baiyun District, Guangzhou 510515, China
| | - Shicheng Liao
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Xiumei Xing
- School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Jianjun Liu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, China
| | - Desheng Wu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, China
| | - Zhenlie Huang
- School of Public Health, Southern Medical University, No. 1023 Shatai Nan Road, Baiyun District, Guangzhou 510515, China
| | - Xiaohu Ren
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, China
| |
Collapse
|
2
|
Tan Q, Chu H, Wei J, Yan S, Sun X, Wang J, Zhu L, Yang F. Astaxanthin Alleviates Hepatic Lipid Metabolic Dysregulation Induced by Microcystin-LR. Toxins (Basel) 2024; 16:401. [PMID: 39330859 PMCID: PMC11435617 DOI: 10.3390/toxins16090401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024] Open
Abstract
Microcystin-LR (MC-LR), frequently generated by cyanobacteria, has been demonstrated to raise the likelihood of liver disease. Few previous studies have explored the potential antagonist against MC-LR. Astaxanthin (ASX) has been shown to possess various beneficial effects in regulating lipid metabolism in the liver. However, whether ASX could alleviate MC-LR-induced hepatic lipid metabolic dysregulation is as yet unclear. In this work, the important roles and mechanisms of ASX in countering MC-LR-induced liver damage and lipid metabolic dysregulation were explored for the first time. The findings revealed that ASX not only prevented weight loss but also enhanced liver health after MC-LR exposure. Moreover, ASX effectively decreased triglyceride, total cholesterol, aspartate transaminase, and alanine aminotransferase contents in mice that were elevated by MC-LR. Histological observation showed that ASX significantly alleviated lipid accumulation and inflammation induced by MC-LR. Mechanically, ASX could significantly diminish the expression of genes responsible for lipid generation (Srebp-1c, Fasn, Cd36, Scd1, Dgat1, and Pparg), which probably reduced lipid accumulation induced by MC-LR. Analogously, MC-LR increased intracellular lipid deposition in THLE-3 cells, while ASX decreased these symptoms by down-regulating the expression of key genes in the lipid synthesis pathway. Our results implied that ASX played a crucial part in lipid synthesis and effectively alleviated MC-LR-induced lipid metabolism dysregulation. ASX might be developed as a novel protectant against hepatic impairment and lipid metabolic dysregulation associated with MC-LR. This study offers new insights for further management of MC-LR-related metabolic diseases.
Collapse
Affiliation(s)
- Qinmei Tan
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Hanyu Chu
- Hengyang Maternal and Child Health Hospital, Hengyang 421001, China
| | - Jia Wei
- Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Sisi Yan
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xiaoya Sun
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Jiangping Wang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Lemei Zhu
- School of Public Health, Changsha Medical University, Changsha 410219, China
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
- Affiliated Nanhua Hospital University of South China, Hengyang 421000, China
| |
Collapse
|
3
|
Mugani R, El Khalloufi F, Redouane EM, Haida M, Aba RP, Essadki Y, El Amrani Zerrifi S, Hejjaj A, Ouazzani N, Campos A, Grossart HP, Mandi L, Vasconcelos V, Oudra B. Unlocking the potential of bacterioplankton-mediated microcystin degradation and removal: A bibliometric analysis of sustainable water treatment strategies. WATER RESEARCH 2024; 255:121497. [PMID: 38555787 DOI: 10.1016/j.watres.2024.121497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/31/2024] [Accepted: 03/19/2024] [Indexed: 04/02/2024]
Abstract
Microcystins (MCs) constitute a significant threat to human and environmental health, urging the development of effective removal methods for these toxins. In this review, we explore the potential of MC-degrading bacteria as a solution for the removal of MCs from water. The review insights into the mechanisms of action employed by these bacteria, elucidating their ability to degrade and thus remove MCs. After, the review points out the influence of the structural conformation of MCs on their removal, particularly their stability at different water depths within different water bodies. Then, we review the crucial role played by the production of MCs in ensuring the survival and safeguarding of the enzymatic activities of Microcystis cells. This justifies the need for developing effective and sustainable methods for removing MCs from aquatic ecosystems, given their critical ecological function and potential toxicity to humans and animals. Thereafter, challenges and limitations associated with using MC-degrading bacteria in water treatment are discussed, emphasizing the need for further research to optimize the selection of bacterial strains used for MCs biodegradation. The interaction of MCs-degrading bacteria with sediment particles is also crucial for their toxin removal potential and its efficiency. By presenting critical information, this review is a valuable resource for researchers, policymakers, and stakeholders involved in developing sustainable and practical approaches to remove MCs. Our review highlights the potential of various applications of MC-degrading bacteria, including multi-soil-layering (MSL) technologies. It emphasizes the need for ongoing research to optimize the utilization of MC-degrading bacteria in water treatment, ultimately ensuring the safety and quality of water sources. Moreover, this review highlights the value of bibliometric analyses in revealing research gaps and trends, providing detailed insights for further investigations. Specifically, we discuss the importance of employing advanced genomics, especially combining various OMICS approaches to identify and optimize the potential of MCs-degrading bacteria.
Collapse
Affiliation(s)
- Richard Mugani
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech 40000, Morocco; National Center for Studies and Research on Water and Energy, Cadi Ayyad University, P.O. Box: 511, 40000 Marrakech, Morocco; Department of Plankton and Microbial Ecology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Zur alten Fischerhuette 2, 14775 Stechlin, Germany
| | - Fatima El Khalloufi
- Natural Resources Engineering and Environmental Impacts Team, Multidisciplinary Research and Innovation Laboratory, Polydisciplinary Faculty of Khouribga, Sultan Moulay Slimane University of Beni Mellal, B.P.: 145, 25000, Khouribga, Morocco
| | - El Mahdi Redouane
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech 40000, Morocco
| | - Mohammed Haida
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech 40000, Morocco
| | - Roseline Prisca Aba
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech 40000, Morocco; National Center for Studies and Research on Water and Energy, Cadi Ayyad University, P.O. Box: 511, 40000 Marrakech, Morocco
| | - Yasser Essadki
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech 40000, Morocco
| | - Soukaina El Amrani Zerrifi
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech 40000, Morocco; Higher Institute of Nurses Professions and Health Techniques of Guelmim, Guelmim, Morocco
| | - Abdessamad Hejjaj
- National Center for Studies and Research on Water and Energy, Cadi Ayyad University, P.O. Box: 511, 40000 Marrakech, Morocco.
| | - Naaila Ouazzani
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech 40000, Morocco; National Center for Studies and Research on Water and Energy, Cadi Ayyad University, P.O. Box: 511, 40000 Marrakech, Morocco
| | - Alexandre Campos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal
| | - Hans-Peter Grossart
- Department of Plankton and Microbial Ecology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Zur alten Fischerhuette 2, 14775 Stechlin, Germany; Institute of Biochemistry and Biology, University of Potsdam, Maulbeeralle 2, 14469 Potsdam, Germany
| | - Laila Mandi
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech 40000, Morocco; National Center for Studies and Research on Water and Energy, Cadi Ayyad University, P.O. Box: 511, 40000 Marrakech, Morocco
| | - Vitor Vasconcelos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| | - Brahim Oudra
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech 40000, Morocco
| |
Collapse
|
4
|
Borriello G, Buonincontri V, de Donato A, Della Corte M, Gravina I, Iulianiello P, Joshi R, Mone P, Cacciola G, Viggiano D. The interplay between sodium/glucose cotransporter type 2 and mitochondrial ionic environment. Mitochondrion 2024; 76:101878. [PMID: 38599300 DOI: 10.1016/j.mito.2024.101878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/04/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Mitochondrial volume is maintained through the permeability of the inner mitochondrial membrane by a specific aquaporin and the osmotic balance between the mitochondrial matrix and cellular cytoplasm. Various electrolytes, such as calcium and hydrogen ions, potassium, and sodium, as well as other osmotic substances, affect the swelling of mitochondria. Intracellular glucose levels may also affect mitochondrial swelling, although the relationship between mitochondrial ion homeostasis and intracellular glucose is poorly understood. This article reviews what is currently known about how the Sodium-Glucose transporter (SGLT) may impact mitochondrial sodium (Na+) homeostasis. SGLTs regulate intracellular glucose and sodium levels and, therefore, interfere with mitochondrial ion homeostasis because mitochondrial Na+ is closely linked to cytoplasmic calcium and sodium dynamics. Recently, a large amount of data has been available on the effects of SGLT2 inhibitors on mitochondria in different cell types, including renal proximal tubule cells, endothelial cells, mesangial cells, podocytes, neuronal cells, and cardiac cells. The current evidence suggests that SGLT inhibitors (SGLTi) may affect mitochondrial dynamics regarding intracellular Sodium and hydrogen ions. Although the regulation of mitochondrial ion channels by SGLTs is still in its infancy, the evidence accumulated thus far of the effect of SGLTi on mitochondrial functions certainly will foster further research in this direction.
Collapse
Affiliation(s)
- Gianmarco Borriello
- Dept. Translational Medical Sciences, Univ. Campania, "L Vanvitelli", Naples, Italy
| | | | - Antonio de Donato
- Biogem, Biology and Molecular Genetics Institute, Ariano Irpino, AV, Italy
| | - Michele Della Corte
- Dept. Translational Medical Sciences, Univ. Campania, "L Vanvitelli", Naples, Italy
| | - Ilenia Gravina
- Dept. Translational Medical Sciences, Univ. Campania, "L Vanvitelli", Naples, Italy
| | - Pietro Iulianiello
- Dept. Translational Medical Sciences, Univ. Campania, "L Vanvitelli", Naples, Italy
| | - Rashmi Joshi
- Dept. Translational Medical Sciences, Univ. Campania, "L Vanvitelli", Naples, Italy
| | - Pasquale Mone
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy; Casa di cura privata Montevergine, Mercogliano, Italy
| | - Giovanna Cacciola
- Dept. Translational Medical Sciences, Univ. Campania, "L Vanvitelli", Naples, Italy
| | - Davide Viggiano
- Dept. Translational Medical Sciences, Univ. Campania, "L Vanvitelli", Naples, Italy.
| |
Collapse
|
5
|
Chen X, Cao M, Yuan C, Luo Y, Wang N, Liu K, Chen T, Chen L, Zhang B, Li C, Zhou X. Follicular fluid exosomes inhibit expression of BTG2 and promote glucose uptake in granulosa cells by delivering miR-21-5p. Theriogenology 2024; 218:45-55. [PMID: 38301506 DOI: 10.1016/j.theriogenology.2024.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/03/2024]
Abstract
Glucose metabolism in granulosa cells (GCs) is essential for follicle development and oocyte maturation. Porcine follicular fluid exosomes promote the proliferation of porcine GCs and the synthesis of steroid hormones. However, their role in regulating glucose uptake in GCs is unclear. The objective of this study was to elucidate the effects of porcine follicular fluid exosomes on glucose uptake in porcine GCs and the intrinsic mechanisms involved. First, transcriptome sequencing revealed that glucose metabolism-related pathways were altered in GCs treated with follicular fluid exosomes. Next, in vitro culture experiments showed that glucose uptake was increased and the IRS1/AKT signaling pathway was activated in GCs after treatment with follicular fluid exosomes. Finally, miRNA sequencing of follicular fluid exosomes revealed that miR-21-5p was the most abundant miRNA. Subsequent investigations indicated that miR-21-5p promoted glucose uptake in GCs by targeting BTG2, which activated the IRS1/AKT signaling pathway. In conclusion, the findings of this study indicate that porcine follicular fluid exosomes promote glucose uptake in porcine GCs by delivering miR-21-5p, which inhibits the expression of BTG2, activating the IRS1/AKT signaling pathway.
Collapse
Affiliation(s)
- Xue Chen
- College of Animal Sciences, Jilin University, Changchun, 130062, China.
| | - Maosheng Cao
- College of Animal Sciences, Jilin University, Changchun, 130062, China.
| | - Chenfeng Yuan
- College of Animal Sciences, Jilin University, Changchun, 130062, China.
| | - Yuxin Luo
- College of Animal Sciences, Jilin University, Changchun, 130062, China.
| | - Nan Wang
- College of Animal Sciences, Jilin University, Changchun, 130062, China.
| | - Kening Liu
- College of Animal Sciences, Jilin University, Changchun, 130062, China.
| | - Tong Chen
- College of Animal Sciences, Jilin University, Changchun, 130062, China.
| | - Lu Chen
- College of Animal Sciences, Jilin University, Changchun, 130062, China.
| | - Boqi Zhang
- College of Animal Sciences, Jilin University, Changchun, 130062, China.
| | - Chunjin Li
- College of Animal Sciences, Jilin University, Changchun, 130062, China.
| | - Xu Zhou
- College of Animal Sciences, Jilin University, Changchun, 130062, China.
| |
Collapse
|
6
|
Ge K, Du X, Liu H, Meng R, Wu C, Zhang Z, Liang X, Yang J, Zhang H. The cytotoxicity of microcystin-LR: ultrastructural and functional damage of cells. Arch Toxicol 2024; 98:663-687. [PMID: 38252150 DOI: 10.1007/s00204-023-03676-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024]
Abstract
Microcystin-LR (MC-LR) is a toxin produced by cyanobacteria, which is widely distributed in eutrophic water bodies and has multi-organ toxicity. Previous cytotoxicity studies have mostly elucidated the effects of MC-LR on intracellular-related factors, proteins, and DNA at the molecular level. However, there have been few studies on the adverse effects of MC-LR on cell ultrastructure and function. Therefore, research on the cytotoxicity of MC-LR in recent years was collected and summarized. It was found that MC-LR can induce a series of cytotoxic effects, including decreased cell viability, induced autophagy, apoptosis and necrosis, altered cell cycle, altered cell morphology, abnormal cell migration and invasion as well as leading to genetic damage. The above cytotoxic effects were related to the damage of various ultrastructure and functions such as cell membranes and mitochondria. Furthermore, MC-LR can disrupt cell ultrastructure and function by inducing oxidative stress and inhibiting protein phosphatase activity. In addition, the combined toxic effects of MC-LR and other environmental pollutants were investigated. This review explored the toxic targets of MC-LR at the subcellular level, which will provide new ideas for the prevention and treatment of multi-organ toxicity caused by MC-LR.
Collapse
Affiliation(s)
- Kangfeng Ge
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Haohao Liu
- Department of Public Health, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Ruiyang Meng
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Chunrui Wu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Zongxin Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiao Liang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Jun Yang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
7
|
Zhu J, Wei R, Wang X, He D, Jiang X, Wang M, Yang Y, Yang L. Polyphosphate promotes oxidation resistance of ppk-expressing transgenic rice in low phosphorus culture. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108006. [PMID: 37696192 DOI: 10.1016/j.plaphy.2023.108006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/15/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023]
Abstract
Phosphorus (P) plays a crucial role in plant growth. Insufficient availability of inorganic phosphate (Pi) can significantly impact crop yields. To address this, we previously developed transgenic rice expressing the low polyphosphate kinase gene (ppk) - known as ETRS - to enhance the efficiency of P resource utilization. Previous studies have shown that ETRS thrives and presents high yields in the low P culture. ETRS and wild-type rice (WT) were cultivated to the heading stage at 15 μM of P in the low P (LP) culture and 300 μM of P in the normal culture (CK) to identify the molecular pathways behind low P tolerance. Our findings revealed that polyphosphate (polyP) significantly enhanced the growth performance of ETRS in the LP culture. This enhanced tolerance can be attributed to polyP's capacity to mitigate oxidative damage induced by LP. This was evidenced by the reduction in levels of superoxide radicals, hydrogen peroxide, and malondialdehyde. PolyP also improved the antioxidant capacity of ETRS under LP stress by regulating enzymatic antioxidants viz., superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), as well as non-enzymatic antioxidants such as ascorbate (AsA) and glutathione (GSH). In addition, transcriptomics analysis suggested that polyP synthesis positively promoted the expressions of SOD, POD, and CAT related genes and played an active role in regulating the expression of AsA-GSH cycle system related genes in ETRS in the LP culture. These results strongly support the notion that polyP within ETRS mitigates oxidative damage through enhancement of the antioxidant system, ultimately bolstering tolerance to LP conditions.
Collapse
Affiliation(s)
- Jinling Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Ruping Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Xin Wang
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Di He
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Xue Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Mengmeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Yicheng Yang
- Agricultural and Biological Engineering Department, University of Florida, Gainesville, FL, 32611, United States
| | - Liuyan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
8
|
Dos Santos FCF, da Costa CS, Graceli JB. Effects of microcystin-LR on mammalian ovaries. Reprod Toxicol 2023; 120:108441. [PMID: 37473929 DOI: 10.1016/j.reprotox.2023.108441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
The ovaries play critical roles in regulating oocyte maturation and sex steroid hormone production and thus are critical for female reproduction. Ovarian function relies on hormone receptors and signaling pathways, making the ovaries potential targets for environmental factors, such as microcystins (MCs). MCs are a diverse group of cyanobacterial toxins generally found in eutrophic water or algal blooms. Here, we review relevant research on the associations between MC exposure and ovarian dysfunction, including their effects on ovarian morphology, folliculogenesis, steroid production, oxidative stress, endoplasmic reticulum stress, apoptosis, autophagy, and fertility. This review covers the most recent in vitro and in vivo studies in mammals. We also discuss important gaps in the literature. Overall, current evidence indicates that MC exposure causes impairments in ovarian function, but further studies are needed to elucidate the mechanisms through which MCs affect ovarian function and other female endocrine functions.
Collapse
Affiliation(s)
| | - Charles S da Costa
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | - Jones B Graceli
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil.
| |
Collapse
|
9
|
Veerabadhran M, Manivel N, Sarvalingam B, Seenivasan B, Srinivasan H, Davoodbasha M, Yang F. State-of-the-art review on the ecotoxicology, health hazards, and economic loss of the impact of microcystins and their ultrastructural cellular changes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 256:106417. [PMID: 36805195 DOI: 10.1016/j.aquatox.2023.106417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/30/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
Cyanobacteria are ubiquitously globally present in both freshwater and marine environments. Ample reports have been documented by researchers worldwide for pros and cons of cyanobacterial toxins. The implications of cyanobacterial toxin on health have received much attention in recent decades. Microcystins (MCs) represent the unique class of toxic metabolites produced by cyanobacteria. Although the beneficial aspects of cyanobacterial are numerous, the deleterious effect of MCs overlooked. Several studies on MCs evidently reported that MCs exhibit a plethora of harmful effect on animals, plants, and cell lines. Accordingly, numerous histopathological studies have also found that MCs cause detrimental effects to cells by damaging cellular organelles, including nuclear envelope, Golgi apparatus, endoplasmic reticulum, mitochondria, plastids, flagellum, pilus membrane structures and integrity, vesicle structures, and autolysosomes and autophagosomes. Such ultrastructural cellular damages holistically influence the morphological, biochemical, physiological, and genetic status of the host. Indeed, MCs have also been found to cause the deleterious effect to different animals and plants. Such deleterious effects of MCs have greater impact on agriculture, public health which in turn influences ecotoxicology and economic consequences. The impairments correspond to oxidative stress, organ failure, carcinogenesis, aquaculture loss, with an emphasis for blooms and respective bioaccumulation prospects. The preservation of mortality among life forms is addressed in a critical cellular perspective for multitude benefits. The comprehensive cellular assessment could provide opportunity to develop strategy for therapeutic implications.
Collapse
Affiliation(s)
- Maruthanayagam Veerabadhran
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Hunan 410078, China
| | - Nagarajan Manivel
- ICAR-Central Marine Fisheries Research Institute, Chennai 600 0028, India
| | - Barathkumar Sarvalingam
- National Centre for Coastal Research (NCCR), Ministry of Earth Science, NIOT Campus, Chennai 600100, India
| | - Boopathi Seenivasan
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Chennai, India
| | - Hemalatha Srinivasan
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 600 0048, India
| | - MubarakAli Davoodbasha
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 600 0048, India.
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, China.
| |
Collapse
|
10
|
Zhang S, Liu H, Du X, Chen X, Petlulu P, Tian Z, Shi L, Zhang B, Yuan S, Guo X, Wang Y, Guo H, Zhang H. A new identity of microcystins: Environmental endocrine disruptors? An evidence-based review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158262. [PMID: 36029820 DOI: 10.1016/j.scitotenv.2022.158262] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Microcystins (MCs) are widely distributed cyanobacterial toxins in eutrophic waters. At present, the endocrine-disrupting effects of MCs have been extensively studied, but whether MCs can be classified as environmental endocrine disruptors (EDCs) is still unclear. This review is aimed to evaluate the rationality for MCs as to be classified as EDCs based on the available evidence. It has been identified that MCs meet eight of ten key characteristics of chemicals that can be classified as EDCs. MCs interfere with the six processes, including synthesis, release, circulation, metabolism, binding and action of natural hormones in the body. Also, they are fit two other characteristics of EDC: altering the fate of producing/responding cells and epigenetic modification. Further evidence indicates that the endocrine-disrupting effect of MCs may be an important cause of adverse health outcomes such as metabolic disorders, reproductive disorders and effects on the growth and development of offspring. Generally, MCs have endocrine-disrupting properties, suggesting that it is reasonable for them to be considered EDCs. This is of great importance in understanding and evaluating the harm done by MCs on humans.
Collapse
Affiliation(s)
- Shiyu Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China; Quality Control Department, Ninth Hospital of Xi'an, Shanxi, China
| | - Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xinghai Chen
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, TX, USA
| | | | - Zhihui Tian
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Linjia Shi
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Bingyu Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Shumeng Yuan
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xing Guo
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yongshui Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Hongxiang Guo
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, China.
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
11
|
Zhang H, Wang Z, Liu Y, Xie P. Exploring the direct effects of microcystin-LR on DNA via using cross-technical means. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113841. [PMID: 36068764 DOI: 10.1016/j.ecoenv.2022.113841] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/13/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Microcystin-leucine arginine (MC-LR) is the most toxic and abundant microcystin produced by cyanobacteria. Previous studies have demonstrated that MC-LR can lead to DNA damage by increasing intracellular reactive oxygen species content to induce oxidative stress. However, the direct effect of MC-LR on DNA has not been fully described. In this study, the direct effect of MC-LR on DNA was explored by using spectral analysis and molecular biology technology. First, the fluorescent probe Bptp-R2 was developed to monitor different types of DNA and explore the direct interaction between DNA and MC-LR. The significant differences in the fluorescence of probe-plasmid DNA and probe-ds DNA at various MC-LR concentrations (0, 5, 10, 20, and 30 μmol/L) and MC-LR exposure times (0, 6, 12, and 24 h) showed that the direct interaction between DNA and MC-LR was significant (P ≤ 0.01). Gel electrophoresis demonstrated that the direct interaction between DNA and MC-LR cannot cause DNA strand breaks or change DNA configuration. Then, PCR experiments revealed that the direct interaction between DNA and MC-LR cannot affect DNA replication in a PCR system (P ≤ 0.01). This study discovered that the effects of MC-LR on DNA originate mainly from the secondary effects of MC-LR rather than from the direct interaction between DNA and MC-LR.
Collapse
Affiliation(s)
- Huixia Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes; School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, P.R. China
| | - Zhaomin Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Shandong 250022, P.R. China
| | - Yong Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes; School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, P.R. China.
| | - Ping Xie
- Institute for Ecological Research and Pollution Control of Plateau Lakes; School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, P.R. China; Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China.
| |
Collapse
|
12
|
Disruption of O-GlcNAcylation Homeostasis Induced Ovarian Granulosa Cell Injury in Bovine. Int J Mol Sci 2022; 23:ijms23147815. [PMID: 35887161 PMCID: PMC9324263 DOI: 10.3390/ijms23147815] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 11/21/2022] Open
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAc) modification is a ubiquitous, reversible, and highly dynamic post-translational modification, which takes charge of almost all biological processes examined. However, little information is available regarding the molecular regulation of O-GlcNAcylation in granulosa cell function and glucose metabolism. This study focused on the impact of disrupted O-GlcNAc cycling on the proliferation and apoptosis of bovine granulosa cells, and further aimed to determine how this influenced glucose metabolism. Pharmacological inhibition of OGT with benzyl-2-acetamido-2-deoxy-α-D-galactopyranoside (BADGP) led to decreased cellular O-GlcNAc levels, as well as OGT and OGA protein expressions, whereas increasing O-GlcNAc levels with the OGA inhibitor, O-(2-acetamido-2-deoxy-D-gluco-pyranosylidene) (PUGNAc), resulted in elevated OGA protein expression and decreased OGT protein expression in granulosa cells. Dysregulated O-GlcNAc cycling reduced cell viability, downregulated the proliferation-related genes of CDC42 and PCNA transcripts, upregulated the pro-apoptotic genes of BAX and CASPASE-3 mRNA and the ratio of BAX/BCL-2, and increased the apoptotic rate. Glycolytic enzyme activities of hexokinase and pyruvate kinase, metabolite contents of pyruvate and lactate, mitochondrial membrane potential, ATP levels, and intermediate metabolic enzyme activities of succinate dehydrogenase and malate dehydrogenase involved in the tricarboxylic acid cycle, were significantly impaired in response to altered O-GlcNAc levels. Moreover, inhibition of OGT significantly increased the expression level of thioredoxin-interacting protein (TXNIP), but repression of OGA had no effect. Collectively, our results suggest that perturbation of O-GlcNAc cycling has a profound effect on granulosa cell function and glucose metabolism.
Collapse
|
13
|
Jerome MS, Kuthethur R, Kabekkodu SP, Chakrabarty S. Regulation of mitochondrial function by forkhead transcription factors. Biochimie 2022; 198:96-108. [PMID: 35367579 DOI: 10.1016/j.biochi.2022.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/09/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023]
|
14
|
Liu K, Zhao X, Guo M, Zhu J, Li D, Ding J, Han X, Wu J. Microcystin-leucine arginine (MC-LR) induces mouse ovarian inflammation by promoting granulosa cells to produce inflammatory cytokine via activation of cGAS-STING signaling. Toxicol Lett 2022; 358:6-16. [PMID: 35032610 DOI: 10.1016/j.toxlet.2022.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 12/07/2021] [Accepted: 01/11/2022] [Indexed: 12/24/2022]
Abstract
Early experimental studies have demonstrated that microcystin-leucine arginine (MC-LR) is able to induce multiple organ damage. Female reproductive disorders caused by MC-LR have attracted increased attention in recent years. However, the underlying mechanisms of female reproductive malfunctions are not yet fully understood. Our previous study confirmed that MC-LR could enter mice ovary, induce apoptosis of ovarian granulosa cell and lead to follicular atresia. Research shows that ovary inflammation is positively related to the decline of female reproductive function. This study was aimed to find out the relationship between inflammation response and ovarian injury caused by MC-LR. MC-LR were administrated at 0, 7.5, 22.5 and 45 µg/kg for two weeks by intraperitoneal injection in female BALB/c mice. Histopathological analysis of ovary was performed. We found that MC-LR exposure induced inflammation response and fibrosis in ovary. In the present study, we observed that MC-LR could enter ovary and was mainly distributed in mGCs (mouse ovarian granulosa cells), but not in the theca-interstitial cells. We isolated and cultured mGCs with different concentrations of MC-LR at 0, 0.01, 0.1, 1 and 10 µM. MC-LR exposure caused mitochondrial DNA (mtDNA) leakage which was detected by qPCR andimmunofluorescence staining. Subsequently, mtDNA leakage activated cGAS-STING signaling, leading to elevated production of inflammatory cytokines TNF-α in mGCs.Diffusion of TNF-α in ovary resulted in inflammatory cell infiltration and interstitial cell proliferation. Ovarian inflammation provides a new perspective to explore the underlying mechanisms associated with MC-LR-induced female reproductive dysfunction.
Collapse
Affiliation(s)
- Kunyang Liu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Xiaonan Zhao
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Meihong Guo
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Jinling Zhu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Dongmei Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Jie Ding
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China.
| | - Jiang Wu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China.
| |
Collapse
|
15
|
Krawczyk K, Marynowicz W, Gogola-Mruk J, Jakubowska K, Tworzydło W, Opydo-Chanek M, Ptak A. A mixture of persistent organic pollutants detected in human follicular fluid increases progesterone secretion and mitochondrial activity in human granulosa HGrC1 cells. Reprod Toxicol 2021; 104:114-124. [PMID: 34311058 DOI: 10.1016/j.reprotox.2021.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/28/2021] [Accepted: 07/21/2021] [Indexed: 01/03/2023]
Abstract
Disruption of granulosa cells (GCs), the main functional cells in the ovary, is associated with impaired female fertility. Epidemiological studies demonstrated that women have detectable levels of organic pollutants (e.g., perfluorooctanoate, perfluorooctane sulfonate, 2,2-dichlorodiphenyldichloroethylene, polychlorinated biphenyl 153, and hexachlorobenzene) in their follicular fluid (FF), and thus these compounds may directly affect the function of GCs in the ovary. Considering that humans are exposed to multiple pollutants simultaneously, we elucidated the effects of a mixture of endocrine-disrupting chemicals (EDCs) on human granulosa HGrC1 cells. The EDC mixture directly increased progesterone secretion by upregulating 3β-hydroxysteroid dehydrogenase (3βHSD) expression. Furthermore, the EDC mixture increased activity of mitochondria, which are the central sites for steroid hormone biosynthesis, and the ATP content. Unexpectedly, the EDC mixture reduced glucose transporter 4 (GLUT4) expression and perturbed glucose uptake; however, this did not affect the glycolytic rate. Moreover, inhibition of GLUT1 by STF-31 did not alter the effects of the EDC mixture on steroid secretion but decreased basal estradiol secretion. Taken together, our results demonstrate that the mixture of EDCs present in FF can alter the functions of human GCs by disrupting steroidogenesis and may thus adversely affect female reproductive health. This study highlights that the EDC mixture elicits its effects by targeting mitochondria and increases mitochondrial network formation, mitochondrial activity, and expression of 3βHSD, which is associated with the inner mitochondrial membrane.
Collapse
Affiliation(s)
- Kinga Krawczyk
- Laboratory of Physiology and Toxicology of Reproduction, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Weronika Marynowicz
- Laboratory of Physiology and Toxicology of Reproduction, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Justyna Gogola-Mruk
- Laboratory of Physiology and Toxicology of Reproduction, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Klaudia Jakubowska
- Laboratory of Physiology and Toxicology of Reproduction, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Wacław Tworzydło
- Department of Developmental Biology and Invertebrate Morphology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Małgorzata Opydo-Chanek
- Laboratory of Experimental Hematology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Anna Ptak
- Laboratory of Physiology and Toxicology of Reproduction, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland.
| |
Collapse
|