1
|
Fora CG, Csorba AB, Balog A. The Effect of Spinosad on the Oak Lace Bug Corythucha arcuata (Hemiptera: Tingidae)-A Preliminary Study Performed Under Laboratory Conditions. INSECTS 2024; 15:815. [PMID: 39452391 PMCID: PMC11509119 DOI: 10.3390/insects15100815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
The effect of biopesticide compound spinosad in different concentrations was tested for the first time under laboratory conditions against the rapidly spreading forest pest, oak lace bug (Corythucha arcuata, Say 1832), and its effects were compared with the synthetic pesticide lambda-cyhalothrin. These results revealed a significant effect of spinosad at 2 mL/4 L and 2 mL/2 L water concentrations against C. arcuata nymphs. The mortality rate after 3 days was similar to synthetic insecticide effects and reached 94% and 98%, respectively. Overall, it can be concluded that spinosad is an effective biological method to control oak lace bug; treatments under field conditions should consider the high diversity of other insects in oak forests.
Collapse
Affiliation(s)
- Ciprian George Fora
- Faculty of Engineering and Applied Technologies, University of Life Sciences “King Michael I” from Timișoara, Calea Aradului 119, 300645 Timișoara, Romania
| | - Artúr Botond Csorba
- Department of Horticulture, Faculty of Technical and Human Sciences, Sapientia Hungarian University of Transylvania, Aleea Sighișoarei 2, Târgu Mureș, 547367 Corunca, Romania;
| | - Adalbert Balog
- Department of Horticulture, Faculty of Technical and Human Sciences, Sapientia Hungarian University of Transylvania, Aleea Sighișoarei 2, Târgu Mureș, 547367 Corunca, Romania;
| |
Collapse
|
2
|
Vermelho AB, Moreira JV, Akamine IT, Cardoso VS, Mansoldo FRP. Agricultural Pest Management: The Role of Microorganisms in Biopesticides and Soil Bioremediation. PLANTS (BASEL, SWITZERLAND) 2024; 13:2762. [PMID: 39409632 PMCID: PMC11479090 DOI: 10.3390/plants13192762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/28/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024]
Abstract
Pesticide use in crops is a severe problem in some countries. Each country has its legislation for use, but they differ in the degree of tolerance for these broadly toxic products. Several synthetic pesticides can cause air, soil, and water pollution, contaminating the human food chain and other living beings. In addition, some of them can accumulate in the environment for an indeterminate amount of time. The agriculture sector must guarantee healthy food with sustainable production using environmentally friendly methods. In this context, biological biopesticides from microbes and plants are a growing green solution for this segment. Several pests attack crops worldwide, including weeds, insects, nematodes, and microorganisms such as fungi, bacteria, and viruses, causing diseases and economic losses. The use of bioproducts from microorganisms, such as microbial biopesticides (MBPs) or microorganisms alone, is a practice and is growing due to the intense research in the world. Mainly, bacteria, fungi, and baculoviruses have been used as sources of biomolecules and secondary metabolites for biopesticide use. Different methods, such as direct soil application, spraying techniques with microorganisms, endotherapy, and seed treatment, are used. Adjuvants like surfactants, protective agents, and carriers improve the system in different formulations. In addition, microorganisms are a tool for the bioremediation of pesticides in the environment. This review summarizes these topics, focusing on the biopesticides of microbial origin.
Collapse
Affiliation(s)
- Alane Beatriz Vermelho
- Bioinovar Laboratory, General Microbiology Department, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.V.M.); (I.T.A.); (V.S.C.); (F.R.P.M.)
- Center of Excellence in Fertilizers and Plant Nutrition (Cefenp), SEDEICS, Rio de Janeiro 21941-850, RJ, Brazil
| | - Jean Vinícius Moreira
- Bioinovar Laboratory, General Microbiology Department, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.V.M.); (I.T.A.); (V.S.C.); (F.R.P.M.)
| | - Ingrid Teixeira Akamine
- Bioinovar Laboratory, General Microbiology Department, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.V.M.); (I.T.A.); (V.S.C.); (F.R.P.M.)
| | - Veronica S. Cardoso
- Bioinovar Laboratory, General Microbiology Department, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.V.M.); (I.T.A.); (V.S.C.); (F.R.P.M.)
| | - Felipe R. P. Mansoldo
- Bioinovar Laboratory, General Microbiology Department, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.V.M.); (I.T.A.); (V.S.C.); (F.R.P.M.)
| |
Collapse
|
3
|
Duan Y, Yao X, Li P, Zhao Y, Zhang B, An S, Wei J, Li X. Death-Associated LIM-Only Protein Reduces Cry1Ac Toxicity by Sequestration of Cry1Ac Protoxin and Activated Toxin in Helicoverpa armigera. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18708-18719. [PMID: 39106049 DOI: 10.1021/acs.jafc.4c04657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
The extensive use of Bacillus thuringiensis (Bt) in pest management has driven the evolution of pest resistance to Bt toxins, particularly Cry1Ac. Effective management of Bt resistance necessitates a good understanding of which pest proteins interact with Bt toxins. In this study, we screened a Helicoverpa armigera larval midgut cDNA library and captured 208 potential Cry1Ac-interacting proteins. Among these, we further examined the interaction between Cry1Ac and a previously unknown Cry1Ac-interacting protein, HaDALP (H. armigera death-associated LIM-only protein), as well as its role in toxicology. The results revealed that HaDALP specifically binds to both the Cry1Ac protoxin and activated toxin, significantly enhancing cell and larval tolerance to Cry1Ac. Additionally, HaDALP was overexpressed in a Cry1Ac-resistant H. armigera strain. These findings reveal a greater number of Cry1Ac-interacting proteins than previously known and demonstrate, for the first time, that HaDALP reduces Cry1Ac toxicity by sequestering both the protoxin and activated toxin.
Collapse
Affiliation(s)
- Yunpeng Duan
- Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Xue Yao
- Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Pin Li
- Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Yuge Zhao
- Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Bo Zhang
- Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Shiheng An
- Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Jizhen Wei
- Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Xianchun Li
- Department of Entomology and BIO5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
4
|
Smith RJ, Chen Y, Lafleur CI, Kaur D, Bede JC. Effect of sublethal concentrations of the bioinsecticide spinosyn treatment of Trichoplusia ni eggs on the caterpillar and its parasitoid, Trichogramma brassicae. PEST MANAGEMENT SCIENCE 2024; 80:2965-2975. [PMID: 38298017 DOI: 10.1002/ps.8004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/18/2024] [Accepted: 01/30/2024] [Indexed: 02/02/2024]
Abstract
BACKGROUND Integrated Pest Management (IPM) seeks to combine multiple management strategies for optimal pest control. One method that is successfully employed in IPM is the use of beneficial organisms. However, in severe circumstances when pest insects exceed threshold limits, insecticides may still need to be implemented. Thus, understanding the effects of insecticides on biocontrol agents, such as parasitoid wasps, is paramount to ensure sustainable agroecosystems. Sublethal effects of the bioinsecticide spinosyn, a mixture of the bacterial Saccharopolyspora spinosa (Mertz and Yao) fermentation products spinosyn A and D, on eggs of Trichoplusia ni (Hübner), a cruciferous crop pest, and its egg parasitoid Trichogramma brassicae (Bezdenko) was investigated. RESULTS The LC50 for spinosyn A and D (dissolved in ethanol) on T. ni eggs is 54 ng mL-1. Transcriptomics on caterpillars (1st and 3rd instars) that hatched from eggs treated with sublethal concentrations of spinosyn identified the upregulation of several genes encoding proteins that may be involved in insecticide resistance including detoxification enzymes, such as cytochrome P450s, glutathione S-transferases and esterases. Sublethal T. ni egg treatments did not affect parasitoid emergence, however, there was a marked increase in the size of T. brassicae hind tibia and wings that emerged from spinosyn-treated eggs. CONCLUSIONS For the caterpillar, treatment of eggs with sublethal concentrations of spinosyn may induce insecticide resistance mechanisms. For the parasitoids, their increased size when reared in spinosyn-treated eggs suggests that the emerged wasps may have higher performance. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Ryan J Smith
- Department of Plant Science, McGill University, Ste-Anne-de-Bellevue, Canada
| | - Yinting Chen
- Department of Plant Science, McGill University, Ste-Anne-de-Bellevue, Canada
| | | | - Diljot Kaur
- Department of Plant Science, McGill University, Ste-Anne-de-Bellevue, Canada
| | - Jacqueline C Bede
- Department of Plant Science, McGill University, Ste-Anne-de-Bellevue, Canada
| |
Collapse
|
5
|
Su Y, Wang W, Dai Y, Qi R, Gu H, Guo X, Liu X, Ren Y, Li F, Li B, Sun H. JH degradation pathway participates in hormonal regulation of larval development of Bombyx mori following λ-cyhalothrin exposure. CHEMOSPHERE 2024; 349:140871. [PMID: 38056714 DOI: 10.1016/j.chemosphere.2023.140871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
λ-Cyhalothrin (λ-cyh), a widely utilized pyrethroid insecticide, poses serious threats to non-target organisms due to its persistence nature in the environment. Exposure to low concentrations of λ-cyh has been observed to result in prolonged larval development in Bombyx mori, leading to substantial financial losses in sericulture. The present study was undertaken to elucidate the underlying mechanisms for prolonged development caused by λ-cyh (LC10) exposure. The results showed that the JH Ⅲ titer was significantly increased at 24 h of λ-cyh exposure, and the JH interacting genes Methoprene-tolerant 2, Steroid Receptor Co-activator, Krüppel-homolog 1, and JH binding proteins were also up-regulated. Although the target of rapamycin (Tor) genes were induced by λ-cyh, the biosynthesis of JH in the corpora allata was not promoted. Notably, 13 JH degradation genes were found to be significantly down-regulated in the midgut of B. mori. The mRNA levels and enzyme activity assays indicated that λ-cyh had inhibitory effects on JH esterase, JH epoxide hydrolase, and JH diol kinase (JHDK). Furthermore, the suppression of JHDK (KWMTBOMO01580) was further confirmed by both western blot and immunohistochemistry. This study has offered a comprehensive perspective on the mechanisms underlying the prolonged development caused by insecticides, and our results also hold significant implications for the safe production of sericulture.
Collapse
Affiliation(s)
- Yue Su
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Wanwan Wang
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Yixin Dai
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Ruinan Qi
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Haoyi Gu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Xiqian Guo
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Xinyu Liu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Yuying Ren
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Fanchi Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China; Sericulture Institute of Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Bing Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China; Sericulture Institute of Soochow University, Suzhou, Jiangsu, 215123, PR China.
| | - Haina Sun
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China; Sericulture Institute of Soochow University, Suzhou, Jiangsu, 215123, PR China.
| |
Collapse
|
6
|
Rezende TMT, Menezes HSG, Rezende AM, Cavalcanti MP, Silva YMG, de-Melo-Neto OP, Romão TP, Silva-Filha MHNL. Culex quinquefasciatus Resistant to the Binary Toxin from Lysinibacillus sphaericus Displays a Consistent Downregulation of Pantetheinase Transcripts. Biomolecules 2023; 14:33. [PMID: 38254633 PMCID: PMC10813629 DOI: 10.3390/biom14010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Culex quinquefasciatus resistance to the binary (Bin) toxin, the major larvicidal component from Lysinibacillus sphaericus, is associated with mutations in the cqm1 gene, encoding the Bin-toxin receptor. Downregulation of the cqm1 transcript was found in the transcriptome of larvae resistant to the L. sphaericus IAB59 strain, which produces both the Bin toxin and a second binary toxin, Cry48Aa/Cry49Aa. Here, we investigated the transcription profiles of two other mosquito colonies having Bin resistance only. These confirmed the cqm1 downregulation and identified transcripts encoding the enzyme pantetheinase as the most downregulated mRNAs in both resistant colonies. Further quantification of these transcripts reinforced their strong downregulation in Bin-resistant larvae. Multiple genes were found encoding this enzyme in Cx. quinquefasciatus and a recombinant pantetheinase was then expressed in Escherichia coli and Sf9 cells, with its presence assessed in the midgut brush border membrane of susceptible larvae. The pantetheinase was expressed as a ~70 kDa protein, potentially membrane-bound, which does not seem to be significantly targeted by glycosylation. This is the first pantetheinase characterization in mosquitoes, and its remarkable downregulation might reflect features impacted by co-selection with the Bin-resistant phenotype or potential roles in the Bin-toxin mode of action that deserve to be investigated.
Collapse
Affiliation(s)
- Tatiana M. T. Rezende
- Department of Entomology, Instituto Aggeu Magalhães-Fiocruz, Recife 50740-465, PE, Brazil; (T.M.T.R.); (H.S.G.M.); (Y.M.G.S.); (T.P.R.)
| | - Heverly S. G. Menezes
- Department of Entomology, Instituto Aggeu Magalhães-Fiocruz, Recife 50740-465, PE, Brazil; (T.M.T.R.); (H.S.G.M.); (Y.M.G.S.); (T.P.R.)
| | - Antonio M. Rezende
- Department of Microbiology, Instituto Aggeu Magalhães-Fiocruz, Recife 50740-465, PE, Brazil; (A.M.R.); (M.P.C.); (O.P.d.-M.-N.)
| | - Milena P. Cavalcanti
- Department of Microbiology, Instituto Aggeu Magalhães-Fiocruz, Recife 50740-465, PE, Brazil; (A.M.R.); (M.P.C.); (O.P.d.-M.-N.)
| | - Yuri M. G. Silva
- Department of Entomology, Instituto Aggeu Magalhães-Fiocruz, Recife 50740-465, PE, Brazil; (T.M.T.R.); (H.S.G.M.); (Y.M.G.S.); (T.P.R.)
| | - Osvaldo P. de-Melo-Neto
- Department of Microbiology, Instituto Aggeu Magalhães-Fiocruz, Recife 50740-465, PE, Brazil; (A.M.R.); (M.P.C.); (O.P.d.-M.-N.)
| | - Tatiany P. Romão
- Department of Entomology, Instituto Aggeu Magalhães-Fiocruz, Recife 50740-465, PE, Brazil; (T.M.T.R.); (H.S.G.M.); (Y.M.G.S.); (T.P.R.)
| | - Maria Helena N. L. Silva-Filha
- Department of Entomology, Instituto Aggeu Magalhães-Fiocruz, Recife 50740-465, PE, Brazil; (T.M.T.R.); (H.S.G.M.); (Y.M.G.S.); (T.P.R.)
- National Institute for Molecular Entomology, Rio de Janeiro 21941-902, RJ, Brazil
| |
Collapse
|
7
|
Botina LL, Barbosa WF, Acosta JPL, Bernardes RC, Cortes JEQ, Pylro VS, Mendonça AC, Barbosa RC, Lima MAP, Martins GF. The impact of early-life exposure to three agrochemicals on survival, behavior, and gut microbiota of stingless bees (Partamona helleri). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27385-4. [PMID: 37147541 DOI: 10.1007/s11356-023-27385-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/28/2023] [Indexed: 05/07/2023]
Abstract
Over the last few decades, agrochemicals have been partially associated with a global reduction in bees' population. Toxicological assessment is therefore crucial for understanding the overall agrochemical risks to stingless bees. Therefore, the lethal and sublethal effects of agrochemicals commonly used in crops (copper sulfate, glyphosate, and spinosad) on the behavior and gut microbiota of the stingless bee, Partamona helleri, were assessed using chronic exposure during the larval stage. When used at the field-recommended rates, both copper sulfate (200 µg of active ingredient/bee; a.i µg bee-1) and spinosad (8.16 a.i µg bee-1) caused a decrease in bee survival, while glyphosate (148 a.i µg bee-1) did not show any significant effects. No significant adverse effects on bee development were observed in any treatment with CuSO4 or glyphosate, but spinosad (0.08 or 0.03 a.i µg bee -1) increased the number of deformed bees and reduced their body mass. Agrochemicals changed the behavior of bees and composition of the gut microbiota of adult bees, and metals such as copper accumulated in the bees' bodies. The response of bees to agrochemicals depends on the class or dose of the ingested compound. In vitro rearing of stingless bees' larvae is a useful tool to elucidate the sublethal effects of agrochemicals.
Collapse
Affiliation(s)
- Lorena Lisbetd Botina
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.
| | - Wagner Faria Barbosa
- Departamento de Estatística, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - João Paulo Lima Acosta
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | | | | | - Victor Satler Pylro
- Departamento de Biologia, Universidade Federal de Lavras - UFLA, Lavras, MG, 37200-900, Brazil
| | - Adriana Corrêa Mendonça
- Departamento de Ciência de Solos, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Renata Cristina Barbosa
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | | | | |
Collapse
|
8
|
Wei J, Liu S, Wang K, Sun C, Li S, Liu X, Yin X, Bai S, Liang G, Crickmore N, An S. Cyclosporin A acts as a novel insecticide against Cry1Ac-susceptible and -resistant Helicoverpa armigera. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105283. [PMID: 36464338 DOI: 10.1016/j.pestbp.2022.105283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 10/25/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
Cotton bollworm (Helicoverpa armigera) is an economically important pest, which is difficult to manage due to its biological and ecological traits, and resistance to most insecticides. Alternative compounds for the sustainable management of H. armigera are needed. As a fungal metabolite, Cyclosporin A (CsA) has not been applied in agriculture pests. Here, CsA was evaluated as a propective insecticide for H. armigera. The results showed that CsA displayed high insecticidal activity against both Cry1Ac-susceptible and -resistant populations of H. armigera. Moreover, lower concentrations of CsA had clear effects, including significantly reduced pupal weight, pupation rate, emergence rate, ovary size, female fecundity and egg hatchability. Further study confirmed that CsA suppressed calcineurin activity and the subsequent expression of endogenous antimicrobial peptide genes (APMs), leading to impaired immunity, ultimately resulting in delayed development and increased mortality. Thus, CsA treatment could control the cotton bollworm population and even showed efficacy against those with Bt resistance. In addition, the morphological changes observed in insects fed CsA with lower concentrations provide insight into insect immunity, regulation of growth and development, regulation of body color, ovary development and sexual selection under external pressure. Overall, our study provides information on biological control potential of Cry1Ac-susceptible and -resistant populations of H. armigera to develop novel bioinsecticides.
Collapse
Affiliation(s)
- Jizhen Wei
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Shaokai Liu
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Kai Wang
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Chengxian Sun
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Shunjia Li
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaoguang Liu
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Xinming Yin
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Sufen Bai
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China.
| | - Gemei Liang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Neil Crickmore
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Shiheng An
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
9
|
Sun C, Li S, Wang K, Feng H, Tian C, Liu X, Li X, Yin X, Wang Y, Wei J, An S. Cyclosporin A as a Source for a Novel Insecticidal Product for Controlling Spodoptera frugiperda. Toxins (Basel) 2022; 14:toxins14100721. [PMID: 36287989 PMCID: PMC9610628 DOI: 10.3390/toxins14100721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/30/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022] Open
Abstract
The fall armyworm (FAW), Spodoptera frugiperda, causes substantial annual agricultural production losses worldwide due to its resistance to many insecticides. Therefore, new insecticides are urgently needed to more effectively control FAW. Cyclosporin A (CsA) is a secondary metabolite of fungi; little is known about its insecticidal activity, especially for the control of FAW. In this study, we demonstrate that CsA shows excellent insecticidal activity (LC50 = 9.69 μg/g) against FAW through significant suppression of calcineurin (CaN) activity, which is a new target for pest control. Combinations of CsA and indoxacarb, emamectin benzoate, or Vip3Aa showed independent or synergistic toxicity against FAW; however, the combination of CsA and chlorantraniliprole showed no toxicity. Sublethal doses of CsA led to decreases in FAW larval and pupal weight, pupation, emergence, mating rates, adult longevity, extended development of FAW larvae and pupae and the pre-oviposition period of adults, and increases in the proportion of pupal malformation. Importantly, CsA treatment reduced FAW ovarian size and female fecundity, which suggests that it has great potential to suppress FAW colony formation. Taken together, these results indicate that CsA has high potential as an insecticide for controlling FAW.
Collapse
Affiliation(s)
- Chengxian Sun
- State Key Laboratory of Wheat and Maize Crop Science, Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Shunjia Li
- State Key Laboratory of Wheat and Maize Crop Science, Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Kai Wang
- State Key Laboratory of Wheat and Maize Crop Science, Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Hongqiang Feng
- Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Caihong Tian
- Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Xiaoguang Liu
- State Key Laboratory of Wheat and Maize Crop Science, Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiang Li
- State Key Laboratory of Wheat and Maize Crop Science, Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Xinming Yin
- State Key Laboratory of Wheat and Maize Crop Science, Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Yanmei Wang
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
- Correspondence: (Y.W.); (J.W.)
| | - Jizhen Wei
- State Key Laboratory of Wheat and Maize Crop Science, Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
- Correspondence: (Y.W.); (J.W.)
| | - Shiheng An
- State Key Laboratory of Wheat and Maize Crop Science, Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
10
|
Hafeez M, Ullah F, Khan MM, Wang Z, Gul H, Li X, Huang J, Siddiqui JA, Qasim M, Wang RL, Imran M, Assiri MA, Rehman M, Fahad S, Lu Y. Comparative low lethal effects of three insecticides on demographical traits and enzyme activity of the Spodoptera exigua (Hübner). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:60198-60211. [PMID: 35414161 DOI: 10.1007/s11356-022-20182-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Many species of devastating insect pests have acquired a high degree of resistance to insecticides in the field during the last few decades. Spodoptera exigua, for example, is the most damaging pests of economic crops with a worldwide spread. In a present study, the comparative growth, reproduction, and detoxification enzyme activity were evaluated along with exposure to three insecticides at low lethal doses of lufenuron, indoxacarb, and spinosad as compared to the control. Results indicate that the larval developmental time was significantly extended on lufenuron (21.5 ± 29 days) followed by indoxacarb (20.28 ± 0.24 days) and spinosad (19.74 ± 0.23 days) as compared to that on the control (18.13 ± 0.13 days). Similarly, the lowest number of eggs of S. exigua females were recorded on lufenuron (328.75 ± 50.81 eggs) followed by spinosad (367 ± 36.4 eggs) and indoxacarb (411.58 ± 42.38 eggs) as compared to that on the control (560.2 ± 13.47). Interestingly, the lowest intrinsic rate of increase (r) (0.121 ± 0.009) and highest mean generation time (T) (36.2 ± 0.35 days) were observed when larvae were treated to a low lethal concentration (LC20) of lufenuron as compared to that of indoxacarb, spinosad, and control. In addition, considerably lower activity of all detoxification enzymes in larvae was recorded on lufenuron after control as compared to that on indoxacarb and spinosad. Our study serves as a reference and basis for the toxicity and low lethal evaluation of lufenuron, indoxacarb, and spinosad on life table parameters and enzymatic properties in S. exigua, which may contribute to identifying targets for effective control of S. exigua.
Collapse
Affiliation(s)
- Muhammad Hafeez
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Farman Ullah
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Muhammad Musa Khan
- Key Laboratory of Bio-Pesticide Innovation and Application, Guangdong Province, South China Agricultural University, Guangzhou, 510642, China
| | - Zhangqian Wang
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China
| | - Hina Gul
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Xiaowei Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
| | - Jun Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
| | - Junaid Ali Siddiqui
- Red Imported Fire Ant Research Center, Department of Entomology, South China Agricultural University, Guangzhou, 510642, China
| | - Muhammad Qasim
- Department of Agriculture and Forestry, Kohsar University Murree, Punjab, 47150, Pakistan
| | - Rui-Long Wang
- College of Natural Resources and Environment, South China Agricultural University Wushan, Guangzhou, 510642, People's Republic of China
| | - Muhammad Imran
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Mohammed A Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Muzammal Rehman
- School of Agriculture, Yunnan University, Kunming, 650504, Yunnan, China
| | - Shah Fahad
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, China.
- Department of Agronomy, University of Haripur, Haripur, 22620, Khyber Pakhtunkhwa, Pakistan.
| | - Yaobin Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China.
| |
Collapse
|
11
|
Chao R, Said G, Zhang Q, Qi YX, Hu J, Zheng CJ, Zheng JY, Shao CL, Chen GY, Wei MY. Design, Semisynthesis, Insecticidal and Antibacterial Activities of a Series of Marine-Derived Geodin Derivatives and Their Preliminary Structure-Activity Relationships. Mar Drugs 2022; 20:82. [PMID: 35200612 PMCID: PMC8880215 DOI: 10.3390/md20020082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/15/2022] [Accepted: 01/15/2022] [Indexed: 02/06/2023] Open
Abstract
To enhance the biological activity of the natural product geodin (1), isolated from the marine-derived fungus Aspergillus sp., a series of new ether derivatives (2-37) was designed and semisynthesized using a high-yielding one-step reaction. In addition, the insecticidal and antibacterial activities of all geodin congeners were evaluated systematically. Most of these derivatives showed better insecticidal activities against Helicoverpa armigera Hübner than 1. In particular, 15 showed potent insecticidal activity with an IC50 value of 89 μM, comparable to the positive control azadirachtin (IC50 = 70 μM). Additionally, 5, 12, 13, 16, 30 and 33 showed strong antibacterial activity against Staphylococcus aureus and Aeromonas salmonicida with MIC values in the range of 1.15-4.93 μM. The preliminary structure-activity relationships indicated that the introduction of halogenated benzyl especially fluorobenzyl, into 1 and substitution of 4-OH could be key factors in increasing the insecticidal and antibacterial activities of geodin.
Collapse
Affiliation(s)
- Rong Chao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (R.C.); (G.S.); (Q.Z.); (J.H.); (C.-L.S.)
| | - Gulab Said
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (R.C.); (G.S.); (Q.Z.); (J.H.); (C.-L.S.)
- Department of Chemistry, Women University Swabi, Swabi 23430, Pakistan
| | - Qun Zhang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (R.C.); (G.S.); (Q.Z.); (J.H.); (C.-L.S.)
| | - Yue-Xuan Qi
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Qingdao 266061, China;
| | - Jie Hu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (R.C.); (G.S.); (Q.Z.); (J.H.); (C.-L.S.)
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Qingdao 266061, China;
| | - Cai-Juan Zheng
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou 570100, China; (C.-J.Z.); (G.-Y.C.)
| | - Ji-Yong Zheng
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Qingdao 266061, China;
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (R.C.); (G.S.); (Q.Z.); (J.H.); (C.-L.S.)
- Department of Chemistry, Women University Swabi, Swabi 23430, Pakistan
| | - Guang-Ying Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou 570100, China; (C.-J.Z.); (G.-Y.C.)
| | - Mei-Yan Wei
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (R.C.); (G.S.); (Q.Z.); (J.H.); (C.-L.S.)
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| |
Collapse
|